
HAL Id: hal-03946630
https://hal.science/hal-03946630

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Multi-Resource Allocation Against Controller
Failures in Network Slice Provisioning
Laiza de Lara, Francesca Fossati, Stephane Rovedakis

To cite this version:
Laiza de Lara, Francesca Fossati, Stephane Rovedakis. Robust Multi-Resource Allocation Against
Controller Failures in Network Slice Provisioning. 2022 Global Internet (GI) Symposium, Nov 2022,
Paris, France. pp.28-33, �10.1109/CloudNet55617.2022.9978814�. �hal-03946630�

https://hal.science/hal-03946630
https://hal.archives-ouvertes.fr

1

Robust Multi-Resource Allocation Against
Controller Failures in Network Slice Provisioning

Laiza de Lara, Francesca Fossati, Stéphane Rovedakis

Abstract—We present solutions for reliable mulit-resource
management for network infrastructures. We propose enhance-
ments to four distributed multi-resource allocation policies for
a network slice provisioning for robustness against resource
controllers failures. We define two cascading and two parallel
computation approaches; their comparison, using a simulation
approach, show that the parallel ones perform better in terms
of fault resiliency and provisioning latency, while a cascading
approach using a controller pre-ordering policy is able to better
reallocature resources by recomputation upon failures.

Index Terms—5G orchestration, multi-resource allocation,
fault-resiliency.

I. INTRODUCTION

The multi-domain integration of infrastructure resources
beyond the radio access is a key challenge in the migration
to the fully-fledged standalone 5G [1]. In fact in the stan-
dalone 5G, the integration of 5G core network functions, their
distribution and agile orchestration, and end-to-end slicing,
are factors that challenge the conventional logic of network
resource provisioning [2]. In particular with network slicing,
multiple resources of multiple domains, as for instance RAN,
transport and core domains, are composed for granting an end-
to-end service-level-agreement [3].

Therefore, the conventional single-resource allocation
paradigm is challenged by the multi-domain nature of network
slicing. Under a multi-resource allocation view, dependency
among resources of a network slice is to be considered; the
operator should not allocate the full capacity to a link bearer
associated to an eMBB (enhanced Mobile BroadBand) slice
user, for instance, when the user cannot get the corresponding
necessary bandwidth in the radio spectrum access [4]. Given
the much higher key-performance-indicators scales in 5G with
respect to 4G, and the congestion at the radio access or
computing or backhauling link levels (depending on the type
of service that has to be provided), resources should not be
wasted, and their allocation shall instead be fine-tuned in an
agile fashion. Indeed, related resources they depend upon may
not be available due to resource congestion situations along a
slice chain, among users within a slice, or among slices.

Taking into account multi-resource dependencies is an im-
portant challenge for the 5G slice life-cycle management, for
both the preparation and commissioning phases as per ETSI

Laiza De Lara and Stéphane Rovedakis are with Cnam, Cedric, 75003 Paris,
France. Email: {firstname.lastname}@cnam.fr

Francesca Fossati is with Univ. Paris Saclay, Centrale-Supelec, France.
francesca.fossati@l2S.centralesupelec.fr

This work was funded by the ANR-18-CE25-0012 project.
Copyright IEEE c©2021.

specifications [5]. In the literature [6], [7], resource allocation
is often associated as a specific subproblem within a broader
definition of the slice embedding problem (decomposed in
resource discovery, virtual network mapping, and resource
allocation steps). Accordingly, software stacks, as Open-Radio
Access Network (ORAN) and Open Network Automation Plat-
form (ONAP), are expected to expose inter-domain and inter-
resource controller interfaces to support resource management
such as the one presented in this article.

Multi-resource allocation is a well-known problem in
cloud computing; orchestrators allocate computing-power-unit
(CPU), live memory, storage, accelerators, while handling
multi-resource constraints [8]. Cloud systems recently even
more penetrate the network stack, with cloud-native and
server-less fabrics being explored for function deployment [9].
Having such a centralized orchestration for cross-domain
network slice resource management would, however, imply
a strong collaboration among resource providers, likely not
possible to achieve. Moreover, the distributed and long-
distance nature of the end-to-end slice spanning radio, trans-
port, and multiple computing domains (NFV, edge Cloud,
remote Cloud) also pushes toward the adoption of distributed
approaches [10]. The distribution is also needed to ensure
fault-resiliency and isolation among resource domains, so that
if one provider fails the other can continue operating a service
in a best-effort way. Fairness and efficiency trade-offs have
to be considered when trading a level of allocation with the
related system efficiency [11].

In this article, we compare distributed multi-resource allo-
cation policies, in terms of fault resiliency and efficiency when
reallocating resources upon resource domain failure.

II. BACKGROUND

Network resource allocation can be addressed as a single-
resource problem, when only one resource has to be shared
among the users, or as a multi-resource one, when there are at
least two resources to share and at least one of them is under
congestion [12]. Given a total amount of available resource
to be shared and a resource demand associated to each user,
an allocation defines the portion of resource demand given to
every user, satisfying desirable mathematical properties [10].

Classically, allocation problems are formulated as a convex
optimization aimed to maximize an aggregate utility. The
problem is not trivial when the resource is congested, i.e.,
when the sum of all the demands of the users is higher than
the available resource. In this case the congestion level, defined
as the ratio between the sum of the demands and the available
amount for the given resource has value greater than one.

2022 Global Internet (GI) Symposium

978-1-6654-8627-9/22/$31.00 ©2022 IEEE 28

2

When multiple resources are combined for provisioning
a slice, multi-resource approaches shall be used to avoid
resource wastage in case of congestion. In literature, we can
find two approaches: a centralized one where a multi-domain
orchestrator has a view on all the resources, receives the users
demands and calculates the allocation, or a distributed one
where providers calculate their own allocation without sharing
confidential information and the final allocation is calculated
thanks to a collaboration between providers [10].

In multi-resource allocation, several resources have to be
shared among a set of users (or tenants). Each user can
obtain a portion of every resource to get its service running.
Therefore, for each user we have to take into account a
set of single-resource demands, one per resource. Given the
available amounts for the resources to be shared and the batch
of demands, a multi-resource allocation policy defines for
each user the allocated amount given for every resource. As
in [11], [13] one can assume a linear relationship between the
resources, e.g., if a user can only obtain half of its demands for
a resource, then a directly proportional reduction does apply
for all the other resources. Thus, the amount of the resources
allocated to each user in a multi-resource setting can be stated
as a unique allocation rate of its demands for all the resources.

A. Centralized multi-resource allocation policies

In the centralized case, the Dominant Resource Fairness
(DRF) policy is a well-known policy [8]: it generalizes the
MMF one for a multi-resource context; for every user, it
computes the share of each resource allocated to that user and
the allocation of a user should be determined by the user’s
dominant share (the maximum share that the user has been
allocated on any resource). Different users may have different
dominant resources; in a nutshell, DRF seeks to maximize the
minimum dominant share across all users.

Other centralized multi-resource allocation policies can be
considered; a description of the state of the art is given in [10].

B. Distributed resource allocation policies

In standards slice life-cycle management, multi-domain
resource allocation operations can be precisely framed within
the commissioning phase, which includes the creation of the
network slice instance within which all needed resources
are allocated and configured to satisfy the network slice
requirements. In the literature, distributed resource allocation
is often not explicitly identified as a distinct step within
slice/network embedding or function placement problems. For
instance, [14] proposes a distributed algorithm based on a
multi-agent approach to compute the mapping of virtual nodes
and links on the physical network managed by a single
provider. [15] considers the network embedding problem over
multiple infrastructure providers and provides a distributed
protocol for coordinating the computation of the embedding
across the participating providers. These works address the
mapping problem of virtual networks on a physical infras-
tructure, but they do not explicitly consider multi-resource
dependencies nor maximum resource allocation budgets in
the resource allocation at the function or virtual network

granularity; this would be indeed required to integrate the
multi-resource allocation policies we consider in this paper.

Our previous work [10] proposes distributed multi-resource
allocation policies for slicing. In this context, following a
distributed setting, several resource controllers, as for instance
radio intelligent controllers (RIC), software-defined-network
(SDN) controllers and cloud stack and network-function-
virtualization (NFV) orchestrators, collaborate in order to com-
pute the ratio of each resource to allocate to every user. Two
directions are proposed: one follows a cascading approach,
while the other exploits parallelism. In cascading approaches,
each provider sends information about its allocation rates to
the following one, as so on so forth across all the providers re-
source controllers, the allocation rates are adjusted taking into
account the congestion level of each resource. The provider
order can be pre-established or can depend on the provider
congestion level. In parallel policies, after the diffusion of
the allocation rates between the providers, the allocation is
calculated using a consensus algorithm. The policies presented
in [10] do not take into account the occurrence of failures and
the impact on the slice resource allocation management. In
this article, we fill this gap by presenting enhanced versions
of previous policies that are robust against failures.

III. ENHANCED MULTI-RESOURCE ALLOCATION POLICIES
UNDER CONTROLLER FAILURES

In practice, faults can happen during the distributed multi-
resource computation process, for example due to a software
failure, so that a loss of signaling messages may occur, at
different providers. In this section, we describe the enhanced
version of the algorithms proposed in [10] to deal with failures.

A. Problem statement

The general problem we address can be formalized as fol-
lows. Let N = {1, ..., n} be the set of tenants, M = {1, ...,m}
be the set of available resources and P = {1, ..., p} be the
set of resource providers. We consider |P | ≤ |M | and only
one provider for each resource, so that each provider can
provide more than one resource. The allocation problem is
represented as a pair (D,R), where D is a n × m matrix
with dij equal to the quantity of resource j ∈ M demanded
by tenant i ∈ N and R = (r1, ..., rm) is a vector of positive
numbers rj equal to the amount of each available resource
j ∈M . It is important to note that each provider k only knows
the quantity of available resources rj and the submatrix Dk

of demands for the resources j ∈M it manages.
The allocation, i.e., the outcome of the problem, is rep-

resented by a matrix A with components aij = dij · xi
where x = (x1, ..., xn), 0 ≤ xi ≤ 1 ∀i ∈ N , is the vector
of the percentage of demand allocated to each tenant. The
allocation is challenging if it exists a resource j ∈ M such
that

∑n
i=1 dij > rj , i.e., if the resource is not covering the

demands of the users. A solution A is admissible if it is Pareto
efficient, i.e., if for any other allocation A′ we have a′kj > akj
for some k ∈ N and j ∈ M implies a′k′j < ak′j for some
k′ ∈ N, k 6= k′.

2022 Global Internet (GI) Symposium

29

3

Fig. 1: CRA and OCRA policy chronogram. δ is the computing
time and τ is the transfer time.

We assume that each resource provider is prone to a failure
and is able to automatically recover from a failure after a
given amount of time. We consider two types of failure: (i)
the controller failure, i.e., a failure during the actual com-
putation at controller and (ii) the loss of messages during the
communication of the rates between two controllers. Only one
failure at a time is considered in our analysis because we take
into account failures at the resource controller system level,
assuming each controller is in a different provider domain and
failures are not prone to be propagated across providers, as the
slice provisioning has to guarantee high availability.

We refer to slice resource allocation without recomputation
to the solution obtained when a provider is down, and to
slice resource allocation with recomputation to the solution
obtained once the failed provider has recovered, after a failure
recovery procedure, because a provider takes into account
the information exchanged by the other providers in order
to complete the computation of the allocation rates. The
possible consequence of a provider failure, in the case without
recomputation, is the loss of its admissible solutions, which
cannot be computed by the other providers since they do not
know the amount of available resource associated to the failed
provider. The impact of a failure can be more or less disruptive,
depending on the allocation policy and the congestion level of
the failed provider.

B. Cascade allocation policies

We present the steps of the Cascade Resource Allocation
(CRA) policy and formal description is given in Algorithm 1
(for normal operation, one provider failure or message loss):

• All the providers process a batch of slice demands,
composed of a requested amount for each resource, for
each demand. Except the first in the chain, the others wait
the allocation rate computed by the preceding provider.

• The first provider in the chain calculates the allocation

Algorithm 1 CRA
Input: R,D,N,M,P, t, timeout
Output: x

Each provider k ∈ P receives Dk , i.e., the submatrix of demands for the
resources provided by k
for k = 1 : p do

if timeout of k is not expired then
if
∑n

i=1
dijxi > rj , for at least one j provided by k then

Provider k updates x (old values of xi are upper bound)
else

Provider k accepts x
end if

else
Provider k calculates x eventually considering the received proposal
of the previous not failed providers

end if
Provider k sends x to the other providers

end for
if one provider k was down then

if
∑n

i=1
dijxi > rj , for at least one j provided by k then

Provider k updates x (old values of xi are upper bound)
else

Provider k accepts x
end if
Provider k sends x to the other providers

end if

rate x for its resources1 and sends the allocation vector
to the next provider in the chain.

• For the following providers, if the preceding provider’s
allocation rates are received within a given timeout tp2,
the provider check the admissibility of the proposed allo-
cation and in case it can not be accepted it proposes a new
allocation, computed based on its local information and
the allocation rate from the preceding providers. In case
of failure, after the time-out has expired the next provider
in the chain after the failed provider automatically takes
over the cascading allocation process.

• In case of failures causing disconnection of a resource
controller, when the failed provider recovers, it receives
the allocation rates from the other controllers and checks
if it can allocate the corresponding allocation rate re-
specting multi-resource constraints, considering the initial
received demands and the amount of provided resource.
If it is not possible, i.e., we have an allocation we refer to
as not admissible, the provider computes new allocation
rates by considering as upper bounds the ratios computed
by the other providers.

Figure 1 illustrates the CRA policy steps when we consider
three resource providers. For this first algorithm, the provider
order is meant to be pre-established; e.g., first radio, then
link and cloud providers. When a failure occurs at the last
provider in the chain (e.g., the cloud provider in Figure 1)
CRA sequence to compute the allocation rates after recovery
is not changed, so the allocation rate provided by the failed
provider does not change in comparison with the normal
system. However, if the failure occurs ahead, e.g., at the radio
or link provider, then the computation path is modified and the
allocation rates computed by the failed provider are different.

1Each provider decides which allocation rule to adopt (e.g., MMF, propor-
tional, DRF, ...) to allocate its own resources.

2We can define a timeout vector t containing the timeout of each provider.

2022 Global Internet (GI) Symposium

30

4

Fig. 2: PRA-1 chronogram. δ is the computing time and τ is
the transfer time.

The second policy we present is the Ordered Cascade
Resource Algorithm (OCRA). It works similarly to CRA but,
unlike CRA, the pathway between the nodes is not pre-defined.
OCRA holds a multi-domain orchestrator able to re-order
the resource provider pathway considering the congestion
levels, to try to (partially) avoid resource re-allocation. In this
setting, two more steps are added before the first step of the
CRA: (i) each resource provider computes its congestion level
(maximum of the congestion levels if many resources) and
sends it to the multi-domain orchestrator, (ii) the orchestrator
orders the resources from the most to the least congested ones,
and it sends the order to the resource providers.

Most of the elements described for CRA are similar except
the order considered in the computation path, and the addi-
tional delay that could be induced by the ordering process.
Similarly to the CRA case, if the failed provider is the least
congested, the original (pre-fault) order is not changed and the
system does not have to recompute when this provider gets up.

C. Parallel allocation policies

In the previous policies, the computation of the resource
allocation is done following a weakly distributed manner.
Indeed, the resource allocation is computed according to a
defined sequence among the resource providers, which implies
a high dependency between providers. Instead, as illustrated in
Figure 2 and 3, the allocations calculated by the providers are
broadcasted and used to obtain the final allocation thanks to
a consensus algorithm. Actually, the parallel approach can be
declined in two different policies named PRA-1 and PRA-2.

In PRA-1, each provider simply broadcasts to all the other
providers its computed allocation rates, and the final rates are
obtained immediately after, in the consensus phase, by taking
the minimum one among those computed by the providers for
each user; even if faster, this does not guarantee a Pareto-
efficient solution [10] and satisfying Pareto efficiency grants
strategic stability and tenant satisfaction for the long-run.

In case a provider fails, the consensus algorithm defines
the allocation rate based on the available providers. When the
failed provider recovers, it receives the allocation rate from the
system and if not satisfied, the provider performs the allocation

Fig. 3: PRA-2 algorithm chronogram. δ is the computing time
and τ is the transfer time.

of its resources using the rule that suits it; this ends up being
the final allocation of the system, without the need for the
consensus algorithm to validate it.

PRA-2 introduces an additional round in order to compute a
Pareto-efficient solution and the time to compute the allocation
is increased in normal operation. Every provider broadcasts
to the other providers: (i) the computed allocation rates, (ii)
its congestion level, i.e., the maximum ratio between the
requested resources and the available resources, and (iii) the
resource share for each resource it provides for each user (i.e.,
ratio between the demand of a user and the available resource).

In the consensus phase, the provider with the most con-
gested resource can identify itself and computes the final
allocation rates using a multi-resource rule. Note that CRA,
OCRA and PRA-2 provide Pareto-efficient solutions [10].

For PRA-2, after the information exchanged among
providers in the first phase the most congested provider is
responsible to compute the final multi-resource allocation.
In case of failure of one provider we set as hypothesis for
the parallel case that the recover is just after the messages
broadcast. This means that for the PRA-2 we do not have
to consider slice resource allocation without recomputation.
Therefore, we do not need extra time to provide the solution
because the recovered provider can take the decision. It follows
also that the allocation provided is always admissible.

Algorithm 2 and 3 formalize the two parallel algorithms
for p providers in case of normal operation or one failure.

To conclude the section we mention that both the ap-
proaches have advantages and disadvantages. In particular:
cascading approaches have high delay budget (total time to
compute the allocation) but low message complexity, while
parallel ones have low delay budget but high message com-
plexity. A more detailed analysis is given in [10].

IV. FAULT-TOLERANCE EVALUATION

For the policy evaluation, we simulate a setting where
providers are prone to failures during the computation of the
multi-resource allocation.

We simulate a system composed of three providers (radio,
link and cloud) managing the allocation of four different

2022 Global Internet (GI) Symposium

31

5

Algorithm 2 PRA-1
Input: R,D,N,M , P , timeout
Output: x
Each provider k ∈ P receives Dk , i.e., the submatrix of demands for the
resources provided by k
Each provider k ∈ P calculates the value of x
Each provider sends the allocation vector to each of the other providers
When the timeout is expired a consensus algorithm provides the final
value of x considering the received allocations
if one provider k was down then

if
∑n

i=1
dijxi > rj , for at least one j provided by k then

Provider k updates x (old values of xi are upper bound)
else

Provider k accepts x
end if
Provider k sends x to the other providers

end if

Algorithm 3 PRA-2
Input: R,D,N,M,P
Output: x
Each provider k ∈ P receives Dk , i.e., the submatrix of demands for the
resources provided by k
Each provider k ∈ P calculates the value of x
Each provider sends a batch of information to each of the other providers
A consensus algorithm provides the final value of x.

resources: resource blocks for the radio provider, bitrate for the
link provider, and vCPU and memory for the cloud provider.

For the slice demands, we used demands generated from
Amazon EC2 templates as in [10] completed with a number
of Resource Blocks (RB) corresponding to the associated
throughput3. In particular when the link resource is 10 Gbps
the RB number obtained is 135 and when the link resource is
25 Gbps the RB number is 273.

In our simulations, we generated 200 problems having
five tenants, defining a total of 1000 demands. For each
problem, we selected random demands based on the Amazon
instance types (considering the associated RB amount) in order
to obtain a congestion level between 0.6 and 1.6, defined
randomly for every provider. Note that we did not correlate
the instance type with the failure occurrence4. We consider
the proportional allocation rule for the radio and link resource
providers and the DRF rule for the cloud provider.

As the providers are prone to a failure, we have considered
the case with (i) normal operation (no failure during the
computation), and the cases when a failure occurs at the (ii)
radio, (iii) link or (iv) cloud provider.

A. Numerical results

We evaluate the robustness of the proposed policies for the
failure scenarios. We consider the number of non-admissible
solutions (i.e., situations in which a slice cannot be allocated)
when a failure occurs in the system during the computation
of the allocation. Moreover, from the tenants’ point of view,
we analyze the impact of a failure on the allocation We
compare the resource allocation rates in a normal operation

3we used state of the art 5G radio dimensioning tools: https://5g-
tools.com/5g-nr-throughput-calculator/

4we have 196 problems with at least one congested provider and each
provider is congested in more than half of the cases: 125 times for the radio,
110 times for the link, and 170 times for the cloud ones.

Fig. 4: Non-admissible solutions after the failure of a provider.

by the allocation rates computed: (i) when we have missing
information from a failed provider in the 3 scenarios (i.e.,
without recomputation) and (ii) by the failed provider that
recovered in the 3 scenarios (i.e., with recomputation).

1) Solutions admissibility: In this section, we analyze the
percentage of solutions (computed by the providers after a
failure) which are admissible, i.e., for every resource the sum
of the users allocations must not be higher than the available
resource. Non-admissible allocations lead to the recomputation
of new allocation rates by considering as upper bounds the
ratios computed by the failed system, so higher non-admissible
allocation rates lead to higher overhead in the multi-resource
allocation process, namely in terms of provisioning delay.

Figure 4 presents for every algorithm and each scenario the
percentage of non-admissible solutions obtained in our simu-
lations. Parallel approaches have better performance compared
to the cascade ones. In fact, as previously explained PRA-2 do
not provide non-admissible solution because it is composed of
two communication phases, and the failed provider recovers
before the second phase so that it can compute an admissible
solution. Furthermore, PRA-1 achieves low non-admissible
solutions rates compared to cascade approaches.

In the case of cloud failure, all the policies (except for PRA-
2) achieve higher and similar percentages of non-admissible
solutions with 46% for CRA, OCRA and PRA-1. Furthermore,
the percentage of non-admissible solutions is smaller for a
radio and a link failure in comparison to a cloud failure. This
is a direct consequence of a higher number of problems in
which the cloud provider is the most congested, and it is
also accentuated by the fact that this provider manages two
resources. The same comparison can be made between a radio
and a link failure. Therefore, we can conclude that the more
congested is a provider suffering from a failure, the highest is
the impact on the computed allocation. Furthermore, PRA-1
achieves low non-admissible solutions compared to cascade
approaches in case of a radio and a link failure, nonetheless
it is important to notice that PRA-1 does not lead to a Pareto
efficient solution contrary to CRA, OCRA and PRA-2 [10].

2) Allocation upon failure: In this section we consider
the robustness of CRA, OCRA and PRA-1 for the three
failure scenarios (PRA-2 is excluded since there is no missing
information because of a provider failure). We analyze how far
is the allocation computed by the system after a failure for each
provider from the allocation obtained in normal operations
(without failure). The failure of a provider implies missing
information on the amount of available resource managed
by the failed provider and the users’ demands related to the
missed resource(s).

2022 Global Internet (GI) Symposium

32

6

Type of failure CRA OCRA PRA-1 PRA-2
Increase Decrease Increase Decrease Increase Decrease Increase Decrease

Without recomputation
Radio 26% 11% 20% 6% 26% 0% - -
Link 24% 11% 18% 8% 22% 0% - -

Cloud 20% 0% 25% 17% 40% 0% - -

With recomputation
Radio 16% 11% 10% 7% 16% 0% - -
Link 18% 11% 10% 7% 20% 0% - -

Cloud 0% 0% 18% 0% 30% 0% - -

TABLE I: Allocation rates changes without or with recomputation upon failure with respect to the case without failure.

Table I presents, the difference (in percentage) between
the allocation rates obtained after each provider failure and
the allocation computed in a normal operation. When upon a
provider failure, the allocation rates increase, we can obtain
an invalid allocation since the system is trying to allocate
more resources than in the normal operation. On the other
hand, if the system decreases the allocation rate of a user,
the allocation is valid but may be less efficient. In fact, an
increase can generate invalid allocations if the allocation rates
is not reduced by the same proportion for other users. Invalid
allocations can also lead to a non-admissible solution because
of over-allocations for several users. Therefore, to determine
the most fault-tolerant algorithm, we evaluate the percentage
of increase and decrease in the rates upon a failure.

Considering the two first lines of Table I, we see that again
parallel algorithms have better performances. PRA-1 suffers
the less from the two types of failure. Furthermore it can only
have an increase of the allocation rates, since the decision is
taken as the minimum allocation between the proposed ones.

Contrarily, we can observe that after the failure of the
cloud provider, the least impacted algorithm is CRA with a
modification of around 20%: only an increase is noticed due
to the fact that the failed node is exactly in the last position
on the computation path considered by this algorithm. PRA-1
and OCRA show almost the same higher percentage change
for the allocation rates.

In general, we can notice that the failure of the highest
congested provider impacts a high number of allocations.

3) Allocation after recomputation: The lines 4 to 6 of
Table I present the difference between the recomputed allo-
cation rates for every failure scenario and the allocation rates
computed in a normal operation.

Among the three providers, the most differentiating results
are obtained for the failure of the cloud provider. The al-
gorithm which provides the best results is CRA, which is
able to recover all the allocation rates and we reach the same
allocation compared to a normal operation (recovery of 100%).
It is due to the fact that the computation path is not modified
compared to a normal operation. OCRA and PRA-1 recover
almost the same percentage of invalid allocations. For the radio
and link failure, we can observe similar results for the three
algorithms. The increase of the allocation rate is reduced by
10 to 25% for CRA and PRA-1 algorithms, while a reduction
of 50% is achieved by OCRA algorithm. So, OCRA algorithm
allows to obtain the lower amount of invalid allocations after
recomputation. Moreover, the three algorithms are able to
maintain the same less efficient allocation.

V. CONCLUSION

We proposed in this paper a set of enhanced version of dis-
tributed multi-resource allocation algorithms that are resilient

against resource controller failures. Extensive simulations of
realistic settings show at which extent parallelization of the
multi-resource allocation computation at different controllers
is the best approach in terms of fault resiliency, while ordering
cascading is able to compensate the most by recomputation
upon failure. PRA-2 allows to reach the best compromise
between fault resiliency and performance. It guarantees admis-
sible solutions which are Pareto-efficient, while introducing no
additional computation delay in case of a failure in comparison
to a normal operation. Thus, this is one of the best distributed
multi-resource allocation algorithm to use when the system is
prone to failures, knowing that it suffer from high message
complexity.

A challenge open for future work relates to the integra-
tion of the proposed framework in disaggregated Open RAN
platforms and related integration with network and service
function orchestration platforms.

REFERENCES

[1] J. Yeung, “An overview of 5g network architecture,”
2020. [Online]. Available: https://medium.com/analytics-vidhya/
an-overview-of-5g-network-architecture-d82379862707

[2] G. Brown, “Service-based architecture for 5g core networks,” 2017. [On-
line]. Available: https://www.3g4g.co.uk/5G/5Gtech 6004 2017 11
Service-Based-Architecture-for-5G-Core-Networks HR Huawei.pdf

[3] K. Katsalis et al., “Network slices toward 5g communications: Slicing
the lte network,” in IEEE Communications Magazine, vol. 55, no. 8,
2017, p. 146154.

[4] X. Foukas et al., “Network slicing in 5g: Survey and challenges,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 94–100, 2017.

[5] ETSI TS 128 530 V15.1.0 (2019-04), “5g; management and orchestra-
tion; concepts, use cases and requirements,” 3GPP TS 28.530 version
15.1.0.

[6] F. Esposito, I. Matta, and V. Ishakian, “Slice embedding solutions for
distributed service architectures,” ACM Comput. Surv., vol. 46, no. 1,
pp. 6:1–6:29, 2013.

[7] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surv. Tutorials,
vol. 15, no. 4, pp. 1888–1906, 2013.

[8] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proceedings of NSDI 2011.

[9] Huawei Technologies, “5g network architecture: A high-level perspec-
tive,” pp. 1–8, 2020.

[10] F. Fossati, S. Rovedakis, and S. Secci, “Distributed algorithms for multi-
resource allocation,” IEEE Transactions on Parallel and Distributed
Systems, pp. 1–1, 2022.

[11] M. Leconte et al., “A resource allocation framework for network slicing,”
in IEEE INFOCOM, 2018.

[12] P. Poullie et al., “A survey of the state-of-the-art in fair multi-resource
allocations for data centers,” IEEE Transactions on Network and Service
Management, vol. 15, no. 1, pp. 169–183, 2018.

[13] S. Lee et al., “Resource management in service chaining,” draft-irtf-
nfvrg-resource-management-service-chain-03, IETF draft, 2013.

[14] I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network
mapping algorithm,” in Proceedings of IEEE International Conference
on Communications, ICC 2008, Beijing, China, 19-23 May 2008. IEEE,
2008, pp. 5634–5640.

[15] F. Samuel, M. Chowdhury, and R. Boutaba, “Polyvine: policy-based
virtual network embedding across multiple domains,” J. Internet Serv.
Appl., vol. 4, no. 1, pp. 6:1–6:23, 2013.

2022 Global Internet (GI) Symposium

33

