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We solve two-dimensional gravity on surfaces with boundary in terms of contact interactions and surface 
degenerations. The known solution of the bulk theory in terms of a contact algebra is generalized to 
include boundaries and an enlarged set of boundary operators. The latter allow for a linearization of the 
Virasoro constraints in terms of an extended integrable KdV hierarchy.
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1. Introduction

Two-dimensional gravity on closed Riemann surfaces was 
solved in terms of matrix models [1–3], conformal field theory 
[4–6] and intersection theory [7,8]. While aspects of gravity on Rie-
mann surfaces with boundary were partially understood in terms 
of matrix models early on [9,10], a rigorous theory of topological 
gravity on Riemann surfaces with boundary was only recently es-
tablished [11]. Since then, various perspectives on these theories 
have been developed [12–17]. The main approaches are through 
geometry and matrix models. The points of view provided by these 
methods on the resulting integrable KdV hierarchy are qualitatively 
distinct and usefully complementary.
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Two-dimensional gravity on closed Riemann surfaces was also 
understood in a conformal field theory approach closely related 
to string theory [18]. The theory was solved in terms of Virasoro 
recursion relations. These relations were derived from a contact 
algebra for vertex operators that carries all the topological infor-
mation provided by the surface as well as the bundles on the 
moduli space of surfaces [7].

Our goal in this paper is to extend the contact algebra approach 
[18] to topological gravity on Riemann surfaces with boundary. To 
that end, we study the contact algebra for operators in the pres-
ence of boundaries as well as how the bulk algebra is represented 
on an extended set of boundary vertex operators. Through repre-
sentation theory and consistency conditions, we fix all constants 
in the extended open Virasoro algebra, and manage to derive the 
Virasoro recursion relation for the open and closed partition func-
tions. Given a few initial correlators, this allows to solve the theory.
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The paper is structured as follows. In section 2 we review 
salient features of topological gravity on Riemann surfaces with 
boundary [11]. The extended representation of the bulk vertex 
operator contact algebra on the boundary vertex operators is con-
structed in section 3 using consistency arguments. In section 4 the 
constraints are translated into a differential Virasoro algebra that 
acts on the generating function of topological correlators. At that 
point, we make contact with the extended open string partition 
function [12] which is sufficient to prove that the solution to the 
Virasoro constraints indeed coincides with the known solution of 
open topological gravity. We conclude in section 5 with a summary 
and suggestions for future research.

2. Open topological gravity

In this section, we recall features of the solution of open and 
closed topological gravity, respectively on Riemann surfaces with 
[11] or without boundary [7]. For open topological gravity, we in-
dicate a few features of the rigorous geometric solution [11]. For 
topological gravity on Riemann surfaces (without boundary), we 
also briefly recall aspects of the solution in terms of a confor-
mal field theory [18] with contact interactions. We then start out 
on the path to generalize that solution to Riemann surfaces with 
boundary.1

Riemann surfaces and carriers of curvature
Topological gravity on Riemann surfaces (without boundary) [7]

satisfies the ghost number conservation equation – or the dimen-
sion constraint on the integral over the moduli space of surfaces –:

3g − 3 + nc =
nc∑

i=1

nc
i . (2.1)

The genus of the Riemann surface is g . The number of bulk vertex 
operator insertions is nc and nc

i are the labels of the bulk vertex 
operators referring to the power of the tangent line bundle at a 
point [7]. A central idea in [18] was to graft the curvature associ-
ated to the Riemann surface itself onto the bulk vertex operators 
such that all topological properties of the theory are captured by 
local operators – this in turn allows for the solution of the theory 
in terms of contact interactions. When we associate a curvature 
2(nc

i − 1)/3 to each bulk vertex operator τnc
i

of power nc
i , then 

ghost number conservation implies that:

The Integrated Curvature = 2g − 2 =
nc∑

i=1

2

3
(nc

i − 1) , (2.2)

namely that the curvature of the surface is faithfully represented. 
The puncture operator τ0 has the smallest curvature contribution 
equal to −2/3, while the dilaton operator τ1 carries no curvature 
at all. All other operators carry positive curvature (in this conven-
tion).

Riemann surfaces with boundary
The integration over the moduli space of Riemann surfaces with 

boundaries and with boundary and bulk insertions leads to the 
dimensionality constraint valid for non-zero open correlation func-
tions [11]:

3g′ − 3 + no + 2nc = 2
nc∑

i=1

nc
i . (2.3)

1 See also [19] for an interesting alternative.
2

The doubled genus g′ is the genus of the Riemann surface that 
is obtained by gluing a given Riemann surface with at least one 
boundary to its reflection. We therefore have the relation g′ =
2g + b − 1 where b is the number of boundaries of the original 
surface and g its genus. The number of boundary operator inser-
tions σ is no [11]. In terms of the ordinary genus g and number 
of boundaries b, we have:

6g − 6 + 3b + 2nc + no = 2
nc∑

i=1

nc
i , (2.4)

in which we recognize the constraint (2.1) as the special case with-
out boundaries.

Our first step in generalizing the solution of the closed theory 
in terms of contact interactions [18] is to appropriately distribute 
curvature in the presence of boundaries and boundary insertions. 
We continue to assign curvature to the bulk insertions as before 
[18] – see equation (2.2). For simplicity, we momentarily imagine 
a single boundary, with a non-zero number no of boundary inser-
tions σ . The ghost number conservation equation (2.4) then sug-
gests that we should assign curvature −1/3 to each basic boundary 
insertion σ , in such a manner that we find the equation:

Boundary Curvature = 1 = −no

3
, (2.5)

in accord with our assignment for bulk curvature as well as the 
ghost number conservation equation (2.4). The relative factor of a 
half compared to the basic bulk (puncture) operator τ0 is due to 
the fact that the boundary operator increases the dimension of the 
moduli space by real dimension one (compared to a bulk operator 
which increases the real dimension by two). This reasoning can 
be generalized to the case of multiple boundaries with insertions. 
It is sufficient to introduce an extra label corresponding to each 
boundary (with its associated boundary insertions). We conclude 
that the boundary operator σ carries curvature −1/3.

Higher powers
To prepare for reasonings to come, it may be useful to inter-

ject a thought experiment at this point. Note that the closed string 
vertex operator τn can be thought of as a power of the vertex 
operator τ1 in an approximate sense. The curvature it carries is 
then interpreted as the curvature n × 2/3 from which we sub-
tract 2/3. The curvature remains bounded from below such that 
the vertex operators do not cut out such a large part of the sur-
face for it to disappear entirely.2 Similarly, if we were to attempt 
to define an arbitrary power of the boundary operator σ to which 
we attached curvature −1/3, the operator would not have well-
defined correlation functions. A manner to remedy this obstruction 
is to add explicit powers of the string coupling u to the oper-
ator: ρn = un−1σ n . Now, the powers of the string coupling are 
counted by the genus g and the number of boundaries b on the 
one hand, and the explicit powers of u on the other hand. Sup-
pose we study a correlation function of operators ρno

j
and τnc

i
. It 

satisfies the equation:

2g − 2 + b +
no∑
j=1

(no
j − 1) =

nc∑
i=1

2(nc
i − 1)

3
+

no∑
j=1

(
2no

j

3
− 1) . (2.6)

This is still the ghost conservation equation (2.4) but rewritten in 
such a way as to make the explicit string coupling contributions 

2 This is dictated by geometry or can be interpreted as a Seiberg bound [20].
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visible on the left hand side. We made use of the fact that the 
coupling u corresponds to the vacuum expectation value of the 
exponential of the dilaton operator τ1 which couples to curvature. 
The operator ρn still caries ghost number n, but it also carries cur-
vature 2n/3 − 1, as we made manifest in our manner of writing 
equation (2.6).3 While the boundary operators that we will soon 
encounter are more intricate still, they share features with the op-
erators ρn .

3. The Virasoro algebra representations

In this subsection, we briefly remind the reader of an intu-
itive manner to solve topological gravity on closed Riemann sur-
faces using contact terms [18]. We extend the approach to include 
boundaries and boundary vertex operators which can be viewed 
as representing the contact algebra. This section heavily relies on 
background provided in [18] to which we do refer for more details.

3.1. The bulk representation of the Virasoro algebra

The method of [18] to solve topological gravity on closed Rie-
mann surfaces is to represent all the topological data in terms of 
local operators in a conformal field theory. As an example, we 
already saw that the curvature (which codes the genus) was as-
signed to local bulk operator insertions. Intersection numbers are 
then represented as integrals over the moduli space of the Rie-
mann surface of conformal field theory correlators.4 We denote 
the curvature carrying bulk local operator insertions τn . Due to the 
topological nature of the theory, the contact interactions between 
the local operators suffice to compute the intersection numbers on 
the moduli space of Riemann surfaces.

The method of [18] to solve topological gravity uses the fact 
that the algebra of integrated vertex operators is represented on 
localized bulk vertex operators (or states) in the form [18]:∫

Dε

τm|τn〉 = An
m|τn+m−1〉 , (3.1)

where the localized vertex operator τn is assumed to lie in the 
disk Dε over which the vertex operator τm is integrated. The rep-
resentation arises from the contact term between the operators 
τm and τn . When we wish to compute the algebra of consecutive 
actions of the locally integrated bulk vertex operators in the rep-
resentation, we need to take into account that the first integrated 
operator may enter into contact with the second integrated oper-
ator. To keep track of this term, it is useful to define a measure 
of the non-commutativity of the operation of localizing the vertex 
operator, and integrating over it [18]:∫

Dε

τm|τn〉 −
∫

Dε

τn|τm〉 = Cnm|τn+m−1〉 . (3.2)

Then, when we consider the action of two integrated vertex op-
erators on a localized operator, we find a consistency condition 
between the representation coefficients A and the measure of non-
commutativity C [18]:

Am+k−1
n Ak

m − An+k−1
m Ak

n + Cnm Ak
m+n−1 = 0 . (3.3)

The coefficient An
m is calculated in [18] and it equals the curvature 

of the insertion plus one:

3 For n ≥ 1 the boundary operator now has sufficient curvature to have well-
defined correlation functions.

4 This is heavily reminiscent of string theory (see e.g. [21]) and we allow string 
theory nomenclature to creep into our language.
3

An
m = 2

3
(n − 1) + 1 , (3.4)

and we retain that we have the contact contribution∫

Dε

τm|τn〉 = 2n + 1

3
|τn+m−1〉 . (3.5)

In turn this implies that the measure of non-commutativity C is 
proportional to the difference in the curvature of the insertions:

Cmn = 2

3
(m − n) . (3.6)

Note that when we identify the coefficients An of the representa-
tion on the bulk vertex operator space with an operator Ln−1, then 
the commutation relation (3.3) shows that we have a representa-
tion of the Virasoro algebra:

[Ln, Lm] = 2

3
(m − n)Lm+n . (3.7)

Thus, the contact algebra is a Virasoro algebra, represented on the 
space of bulk operator insertions. This is an essential tool in the 
solution to the bulk topological gravity theory [18], and we wish 
to extend it to Riemann surfaces with boundary.

3.2. The extended Virasoro representation

In the presence of a boundary, we first address the question 
what happens when a bulk vertex operator is integrated over a 
small ring Rε near an empty boundary. We propose that the in-
tegrated vertex operator in that case generates an operator on the 
boundary:∫

Rε

τn| 〉b = u c(n)|σ b
n−1〉 . (3.8)

We have introduced operators σ b
n that live on a boundary of the 

Riemann surface. We have stripped off one factor of the string 
coupling constant u on the right hand side – we think of the 
bulk vertex operators as carrying one power of the coupling con-
stant more than the boundary operators.5 We have allowed for a 
representation coefficient c(n) that is undetermined for now. The 
curvature of the operator σ b

n equals the curvature of the bulk ver-
tex operator minus one, to compensate for the string coupling 
constant prefactor. Therefore, the curvature of the operator σ b

n−1
equals 2(n − 1)/3 − 1. We allow for operators with n ≥ 2 and set 
other terms to zero.

Thus, we have introduced a new space parameterized by the 
operators σ b

n . Our next step is to assume that the integrated bulk 
vertex operators also act on this space and provide a new repre-
sentation of the Virasoro algebra. We need to make sure that the 
resulting operator carries the sum of the curvatures of the opera-
tors on the left hand side, and we propose that the contact algebra 
coefficient is again fixed to equal the curvature of the operator plus 
one – see equation (3.4). We thus find:∫

Rε

τm|σ b
n 〉 = 2n

3
|σ b

m+n−1〉 . (3.9)

This natural proposal partially fixes the normalization of the 
boundary vertex operators. We still need to check whether the 

5 This is standard in string theory. Alternatively, it can be viewed as a conse-
quence of the relative contribution of bulk and boundary vertex operators to the 
dimension of moduli space.
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Fig. 1. Two degenerations of Riemann surfaces are depicted. The left figure repre-
sents a surface splitting into two surfaces. The sum of genera is conserved. The 
right figure shows a genus two Riemann surface that turns into a genus one Rie-
mann surface, lowering the genus by one.

integrated vertex operators satisfy the Virasoro algebra. The action 
(3.9) is indeed a representation of the Virasoro algebra, as before. 
For the action (3.8) to also enter into a representation of the Vira-
soro algebra, the coefficient c(n) needs to be a linear function of n. 
Finally, we use a choice of overall normalization of the boundary 
vertex operators to set c(n) = n+a

3 where a is a constant to be de-
termined. We will later argue that consistency requires a = 0 and 
we therefore find the action on an empty boundary:∫

Rε

τn| 〉b = u
n

3
|σ b

n−1〉 . (3.10)

In summary, we have extended the space of boundary operators 
considerably, and we have represented the Virasoro contact algebra 
on that space.

3.3. The recursion relation

For topological gravity on closed Riemann surfaces, the rep-
resentation of the contact algebra was leveraged into a recursion 
relation for the topological correlators [18]. The integral over bulk 
vertex operators was split into an integral over small disks where 
other operators reside, neighbourhoods of nodes and uneventful 
regions. The fact that integrals of bulk operators over the whole 
Riemann surface should commute, combined with the contact al-
gebra, gave rise to consistency conditions on the contributions of 
nodes which in turn provided a recursion relation for correlators. 
Our claim is that the same reasoning applies to the integrated bulk 
vertex operators on Riemann surfaces with boundary. We again 
need to take into account the possible development of nodes on 
the Riemann surface, as well as possible generalized contact terms 
with the boundary, which we described previously.

To ease into the generalized recursion relation, let us recall the 
closed recursion relation first [18]6:

〈τn+1

∏
i∈C

τni 〉c =
∑

j

2n j + 1

3
〈τn+n j

∏
i �= j

τni 〉c (3.11)

+ u2

18
(

n−1∑
k=0

(〈τkτn−k−1

∏
i∈C

τni 〉c

+
∑

C=C1∪C2

〈τk

∏
i∈C1

τni 〉c〈τk−i−1

∏
j∈C2

τn j 〉c).

The set C is a set of bulk operator insertions. The first term on 
the right hand side arises from the bulk contact algebra represen-
tation (3.5) while the second line has its origins in the fact that a 
Riemann surface can develop nodes which give rise to a Riemann 
surface of one genus less, or which splits the Riemann surface into 
two closed Riemann surfaces. See Fig. 1 and reference [18].

The generalization to the case of extended open correlators is:

〈τn+1

∏
i∈C

τni

∏
l∈O

σ b
nl
〉o,ext

6 We normalize the bulk correlators as 〈τ0τ0τ0〉c = 1 and 〈τ1〉c = 1/24. We often 
set the string coupling u to one.
4

=
∑

j

2n j + 1

3
〈τn+n j

∏
i �= j

τni

∏
l

σnl 〉o,ext

+
∑

j

2n j

3
〈
∏

i

τni σn+n j

∏
l �= j

σnl 〉o,ext

+ u
n + 1

3
〈σ b

n

∏
i∈C

τni

∏
l∈O

σ b
nl
〉o,ext (3.12)

+ u2

18
(

n−1∑
k=0

(〈τkτn−k−1

∏
i, j∈C O

τnk 〉o,ext

+
∑
(e, f )

∑
C O=C O 1∪C O 2

〈τk

∏
i, j∈C O 1

τni σ
b
n j

〉e〈τk−i−1

∏
l,m∈C O 2

τnlσ
b
nm

〉 f ).

The first line corresponds to the fact that we are considering an 
integrated bulk operator τn+1. It gives rise to the contact terms in 
the second line from the bulk contact term (3.5) and the boundary 
contact term (3.9). The third line arises from the naked bound-
ary term (3.10). The fourth line arises from pinching off a handle. 
The fifth line requires explanation. We sum over the sectors (e, f )
which can be either (open, closed), (closed, open) or (open, open).7

The first two arise when we split the surface into a closed Riemann 
surface and a Riemann surface with boundary.8 In that case, the 
open string sector will contain all the boundary insertions, neces-
sarily. The third value, (open, open) arises when a node splits the 
Riemann surface into two Riemann surfaces with boundary. The 
set C O indicates the set of all bulk and boundary insertions, and 
we sum over their possible distributions C O 1 and C O 2 on the two 
disjoint surfaces.9

Note that the second line in the right hand side contains a cor-
relator that is of one order less in the string coupling constant, and 
the third line a correlator that is down by two orders in the string 
coupling constant u.

3.4. The generalized vertex operators

To make further progress, we must discuss the nature of the ex-
tended set of boundary vertex operators σ b

n in more detail. We re-
call that in the geometric open topological theory [11], we found a 
single boundary vertex operator σ of curvature −1/3 in section 2. 
This matches the curvature of σ b

1 and we will indeed identify the 
two operators: σ = σ b

1 .10 The curvature of the general operator σ b
n

is 2n/3 − 1. To make such operators on the boundary, we can use 
a power of the operator σ as well as the string coupling constant 
(effectively of curvature one). A natural guess is that there is a 
component ρn = u−1(uσ)n to the boundary vertex operator σ b

n (as 
previewed in section 2). However, we also need to allow for more 
drastic processes.

Up to now, a number of complications were implicit in our ex-
tended boundary vertex operators. To start with, we concentrate 
on the simplest extended operator, namely σ b

2 . It naively corre-
sponds to an insertion of uσσ . However, to understand further 
possibilities, we need to study the boundary analogue of nodes. 
A strip (or open string propagator) can be squeezed near the 
boundary of the moduli space of open Riemann surfaces, in var-
ious manners. Either the number of boundaries can decrease as in 

7 We exclude the case with no boundaries from our definition of extended open 
correlators. See equation (3.11) for the purely closed correlators.

8 We effectively obtain a factor of two from these first two sectors.
9 If one labels boundaries, and their associated boundary operators, a finer com-

binatorics and summation is necessary.
10 There is a possible normalization factor between these two operators. Our pre-

vious choice of overall normalization of the boundary operators makes sure that 
this identification is spot on in standard conventions.
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Fig. 2. Two degenerations of Riemann surfaces with boundary are drawn. The left 
figure represents a disk splitting into two disks. The right figure shows an annulus 
that turns into a disk.

an annulus to disk transition, or the number of boundaries can in-
crease as in a disk to two disks transition.11 See Fig. 2. When the 
integrated bulk vertex operator is close to these singular configu-
rations, it can either give rise to boundary vertex operators that sit 
on a single boundary or it can give rise to boundary vertex opera-
tors that sit on two different boundaries of disconnected surfaces. 
The boundary vertex operator σ b

2 must capture both these possi-
bilities. Thus, we propose the equation:

〈. . . σ b
2 . . . 〉o,ext = b1u〈. . . σσ 〉o,ext + b2u〈. . . σ 〉〈σ . . . 〉o,ext .

(3.13)

This equation shows that the generalized vertex operator σ b
2 ex-

hibits a non-local characteristic.
We recall that in the case of a node degeneration (see Fig. 1), 

there was a universality between losing a handle and splitting a 
surface – both terms have equal coefficient in the second line of 
equation (3.11). We propose a similar universality here for the 
two terms in which the boundary operators remain on the same 
boundary, or split – compare Figs. 1 and 2 – and set the two 
constants in the above equation equal, namely b1 = b = b2. To de-
termine the overall constant b, we calculate an amplitude.

3.5. Amplitudes

To understand the content of the recursion relation further, we 
need initial conditions, which we take from the most basic geo-
metric calculations [11]. We have that the boundary three-point 
function is the only non-zero disk amplitude with only boundary 
σ insertions, and normalize it to one12:

〈σσσ 〉o,ext = 1 . (3.14)

The other initial condition is that the bulk-boundary one-point 
function on the disk equals:

〈τ0σ 〉o,ext = 1 . (3.15)

To save on indices, we will drop the upper index on the correlator 
from now on – it should be clear from the context which correlator 
we have in mind.

To understand the structure of the vertex operator σ b
m≥2, we 

can use the puncture equation, namely, the recursion relation 
(3.12) for n = −1:

〈τ0

∏
i∈C

τni

∏
l∈O

σ b
nl
〉 =

∑
j

2n j + 1

3
〈τn j−1

∏
i �= j

τni

∏
l

σnl 〉

+
∑

j

2n j

3
〈
∏

i

τni σn j−1

∏
l �= j

σnl 〉 . (3.16)

11 There is a third degeneration process in which the genus drops by one. When 
one labels boundary components, it will play a role. See e.g. [22] for a discussion in 
open/closed string field theory.
12 This is a disk amplitude. We have set u = 1 once more.
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Let us also be explicit about the dilaton equation:

〈τ1

∏
i∈C

τni

∏
l∈O

σ b
nl
〉 =

∑
j

2n j + 1

3
〈
∏

i

τni

∏
l

σnl 〉

+
∑

j

2n j

3
〈
∏

i

τni

∏
l

σnl 〉 . (3.17)

We are ready to calculate a first amplitude in two manners, using 
either the puncture equation, or the factorization equation (3.13):

〈τ0σ2σσ 〉 = 4

3
〈σσσ 〉

= 2b〈τ0σ 〉〈σσσ 〉 . (3.18)

In the first line we used the puncture equation (3.16). In the 
second line, we used the ansatz (3.13) and allowed for the two 
possible ways in which the vertex operators can split over two cor-
relators to give a non-vanishing result.13 Note that in the second 
line a factor of the string coupling constant implicitly cancelled be-
tween the two disk amplitudes and the expression for the operator 
σ b

2 . Using the normalization of the initial conditions, we find:

b = 2

3
. (3.19)

This fixes our reading of the extended vertex operator σ b
2 once and 

for all. For the next extended operator σ b
3 we propose a similar 

universal ansatz consistent with curvature conservation and split-
ting off a single vertex operator σ :

〈. . . σ b
3 . . . 〉 = c(u〈. . . σσ2〉 + u〈. . . σ2〉〈σ . . . 〉) . (3.20)

We can again determine the constant c using either the puncture 
or the factorization equation to determine one and the same am-
plitude consistently:

〈τ0σ3σ
4〉 = 2〈σ2σ

4〉 = 8〈σ 3〉〈σ 3〉
= c〈τ0σ 〉〈σ2σ

4〉 + 6c〈τ0σ2σ
2〉〈σ 3〉

= 4c〈τ0σ 〉〈σ 3〉〈σ 3〉 + 8c〈σ 3〉〈σ 3〉 , (3.21)

and find that again c = 2/3 – the constant is fixed once more in 
terms of the bulk-boundary one-point function 〈τ0σ 〉. Continuing 
recursively in this manner, e.g. exploiting the correlation functions 
〈τ0σ

b
n σ 2(n−1)〉, we find:

〈. . . σ b
n 〉 = u

2

3
(〈. . . σσ b

n−1〉 + 〈. . . σ b
n−1〉〈σ . . . 〉) . (3.22)

Thus, we have determined the intricate nature of the extended 
boundary vertex operators σ b

n and how they recursively code the 
splitting of boundaries of open Riemann surfaces.

Tying up a loose end: fixing the constant a
We tie up a loose end at the hand of another amplitude. 

The amplitude illustrates a splitting of open Riemann surfaces in-
volving two disk one-point functions. We calculate the amplitude 
〈τ3τ0σσ 〉 in two manners. We can apply recursion to the opera-
tor τ3, or to the operator τ0 first. In this calculation, we restore 
the possible constant a that we introduced in subsection 3.2 and 
use an appropriately modified recursion relation. We demonstrate 
that the constant can be determined by consistency. Using the a-
modified recursion relation, we find:

13 Ghost number conservation applies to each factor separately.
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〈τ3τ0σ
2〉 = 7

3
〈τ2σ

2〉

= 1

3
〈τ2σ

2〉 + 2

9
〈τ0σ 〉〈τ1τ0σ 〉 + 4

3
〈τ0σ3σ 〉

+ 3 + a

3
〈σ2τ0σ

2〉 . (3.23)

This implies:

〈τ2σ
2〉 = 1

9
〈τ0σ 〉〈τ0σ 〉 + 4

3
〈σ2σ 〉 + 3 + a

3

2

3
〈σ 3〉 . (3.24)

We can compute the latter correlator in another manner, using the 
puncture equation and the modified recursion relation:

〈τ2σ
2〉 = 1

9
〈τ0σ 〉〈τ0σ 〉 + 4

3
〈σ2σ 〉 + 2 + a

3
〈σ 3〉 . (3.25)

Using our previous results, we find full consistency if and only if 
a = 0. Thus, we tied up the loose end in subsection 3.2.

4. The extended partition function

In this section we introduce the generating function of ex-
tended open string correlators and prove that the recursion re-
lations for the correlators imply Virasoro constraints on the gen-
erating function. This allows us to make our results more rigor-
ous by connecting to the mathematics literature on the integrable 
structure of the intersection theory on moduli spaces of Riemann 
surfaces with boundary [12]. We conclude the section with a few 
example amplitudes.

4.1. The generating function

We recall the generating functions of closed as well as open 
topological gravity correlation functions [11]:

F c =
∑

g≥0,n≥1,2g−2+n>0

u2g−2

n!
∑
ki≥0

〈τk1 . . . τkn 〉c
gtk1 . . . tkn

F o,geom =
∑

g′,k,l≥0,2g′−2+k+2l>0

∑
ai≥0

ug′−1

k!l! 〈τa1 . . . τalσ
k〉o

g′ sk
l∏

i=1

tai .(4.1)

In view of our enlarged space of boundary vertex operators, we 
also introduce a generating function for extended open topological 
gravity correlation functions:

F o,ext =
∑

g′,k,l≥0,2g′−2+k+2l>0

×
∑

ai ,bi≥0

ug′−1

k!l! 〈τa1 . . . τalσ
b
b1

. . . σ b
bk

〉o,ext
g

∏
i

tai

∏
j

sb j .

(4.2)

The extended Virasoro constraints
We define Virasoro generators

Ln =
∑
i≥0

2i + 1

2
ti∂ti+n − 3

2
∂tn+1 + u2

12

n−1∑
i=0

∂ti ∂tn−i−1

+ 3

4

t2
0

u2
δn,−1 + 1

16
δn,0 (4.3)

Lext
n = Ln +

∑
i≥0

(i + 1)si+1∂sn+i+1 + u
n + 1

2
∂sn + 3

2

s1

u
δn,−1

+ 3
δn,0 (4.4)
4
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for n ≥ −1. These are defined such that the recursion relation 
(3.11) on the closed as well as the recursion relation (3.12) on the 
extended open correlators leads to the constraints:

Ln exp F c = 0

Lext
n exp(F c + F o,ext) = 0 . (4.5)

The extra constants terms in the closed Virasoro algebra (4.3) are 
due to the initialization cases 〈τ 3

0 〉c = 1 = 24 〈τ1〉 at genus zero 
and one respectively, while the initial conditions 〈σ 3〉 = 1 = 〈τ0σ 〉
on the disk lead to the extra constants in the extended Virasoro 
algebra (4.4), which satisfies14

[Lm, Ln] = (m − n)Lm+n . (4.6)

At this stage, we are able to make contact with rigorous results – 
these constraints on an extended partition function of open topo-
logical correlators defined through an extended (or unconstrained) 
integrable KdV hierarchy were found to hold in [12].15 The relation 
between the operators σ b

n and σ as well as the string coupling 
constant is neatly captured by a relation between derivatives of 
the extended partition function:

∂sn = (
2u

3
)n−1∂n

s1
. (4.7)

This equation was proven from the KdV integrable hierarchy per-
spective in [12]. Using this equation, and setting extended open 
times sn≥2 to zero, this relation between derivatives implies the 
higher order Virasoro constraints on the geometric open topologi-
cal partition function, where the open Virasoro generators are [11]:

Lo
n = Ln + (

2u

3
)n∂n+1

s1
+ n + 1

2
u(

2u

3
)n−1∂n

s1
+ δn,−1

3

2

s1

u
+ δn,0

3

4
.

(4.8)

The Virasoro constraints and the initialization condition are suffi-
cient to determine the full partition function [11,12]. Through the 
generating function of extended correlators, we have connected 
our arguments with rigorous results on intersection theory on 
moduli spaces of Riemann surfaces with boundary [11,12].

4.2. A few more amplitudes

For illustrative purposes, we calculate a few more amplitudes. 
They render the integrable hierarchy structure, the Virasoro con-
straints and how to solve them more concrete.

4.2.1. Amplitudes on the disk
We have already indicated that on the disk only the third power 

of the elementary boundary vertex operator σ has a non-zero cor-
relation function and equals one, 〈σ 3〉 = 1. The disk bulk-boundary 
one-point function 〈τ0σ 〉 is also one by a choice of normaliza-
tion. Amplitudes involving extended boundary vertex operators are 
computed through the reduction formula (3.22). A non-trivial ex-
ample is:

〈τ2σ
5〉 = 10

3
〈σ b

2 σ 4〉 = 40

3
, (4.9)

where we used the recursion relations (3.12) and (3.22) as well 
as the 6 choices of factorization. After taking into account the 

14 These generators are rescaled by a factor of 2/3 compared to section 3 in order 
to reach a standard normalization for the Virasoro algebra.
15 The translation of variables and normalizations is: Lthere,ext

n = (3/2)n Lext
n , 

tthere
n = 3−n(2n + 1)!!tn and sthere

n−1 = (2/3)n−1n!sn .
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different normalization in footnote 15, this agrees with a more 
generic formula in [11]. Another interesting correlation function is 
〈τ2τ0σσ 〉. It can be computed through the puncture equation (in 
the first line below) and/or the L1 constraint (in the second line 
below):

〈τ2τ0σσσ 〉 = 5

3
〈τ1σσσ 〉 = 10

3
〈σσσ 〉

= 1

3
〈τ1σσσ 〉 + 2〈τ0σ2σσ 〉

= 2

3
〈σσσ 〉 + 2 × 8

3
〈σσσ 〉 = 10

3
〈σσσ 〉 . (4.10)

The two ways of computing are in agreement.

4.2.2. Higher order amplitudes
Amplitudes that are higher order in the string coupling ex-

hibit qualitatively new phenomena. We illustrate a few. We first 
compute amplitudes corresponding to cylinder diagrams, with two 
boundaries and genus zero. An interesting amplitude that involves 
a closed-open factorization due to a node can once again be com-
puted in two manners:

〈τ2τ0τ0σ 〉 = 5

3
〈τ1τ0σ 〉 = 5

3
〈τ0σ 〉

= 2

3
〈τ1τ0σ 〉 + 1

9
〈τ 3

0 〉c〈τ0σ 〉 + 2

3
〈τ0τ0σ2〉

= 2

3
〈τ0σ 〉 + 1

9
〈τ 3

0 〉c〈τ0σ 〉 + 8

9
〈τ0σ 〉〈τ0σ 〉 . (4.11)

Both ways of computing the correlator lead to the same result, 
given the normalization of the closed three-point function 〈τ 3

0 〉c

as well as the bulk-boundary one-point function 〈τ0σ 〉. Finally, we 
compute an order O (u1) amplitude. It involves the one-loop closed 
one-point function 〈τ1〉c :

〈τ3σ 〉 = 2

3
〈σ3〉 + 〈σ2σ 〉 + 1

9
(1 + 〈τ1〉)〈τ0σ 〉

= ((
2

3
)3 + 2

3
)〈σ 3〉 + 1

9
(1 + 〈τ1〉)〈τ0σ 〉 . (4.12)

Needless to say, many more results can be generated, e.g. by com-
puter. We provided a few telling illustrations that provide insight 
into the foundation of the integrable hierarchy.

5. Conclusions

In the spirit of the solution of the bulk theory [18] and build-
ing on earlier mathematical work [11,12], we have solved two-
dimensional topological gravity on Riemann surfaces with bound-
ary. By making use of an extended set of boundary vertex opera-
tors, we rendered the representation of the contact algebra on the 
boundary linear. Only in a second step the more complicated de-
generation of surfaces with boundary is taken into account and 
the non-linear realization of the (half) Virasoro algebra is found 
[12]. The picture in which the solution of the theory is provided 
through contact interactions is a welcome intuitive complement to 
the geometric and matrix model approaches.

While we have provided a compelling global picture, there are 
many details that remain to be worked out. It would be good to 
find the geometric counterpart to the extended set of boundary 
operators. The link between (the expectation values of) the confor-
mal field theory fields implicit in our analysis [18] and the sections 
of vector bundles of open topological gravity can be clarified (e.g. 
by exploiting references [15,20]). The analysis of the contact terms 
in terms of an integration over a degeneration region of the moduli 
space of open Riemann surfaces would be interesting. It will also 
7

be instructive to compare our analysis to the geometric derivation 
of the topological recursion relation through closed and open fac-
torization [11], intuitively reviewed in [15].

Another research direction is to exploit the insights developed 
here and apply them to more general theories. The generalization 
to the extended closed theory [23]) comes to mind, but mostly 
to open spin r curves. Geometric [24], integrable [25,26], matrix 
model [27,28] and conformal field theory insights [29] could be 
complemented by the perspective developed in this paper.

The study of these topological theories of gravity is worthwhile 
in its own right. It occasionally fruitfully interfaces with recent de-
velopments. For instance, the KdV integrable hierarchy governing 
topological gravity also permeates the two-dimensional JT-gravity 
holographic dual of a peculiar (SYK) one-dimensional quantum sys-
tem – see e.g. [30] and references thereto. We believe that the 
further study of these elementary solvable systems, their integrable 
hierarchy but also their various manifestations in superficially dif-
ferent mathematical structures like topology, matrices and confor-
mal field theory is worthwhile, and may eventually contribute to 
our understanding of quantum gravity.
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