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A WASSERSTEIN-TYPE METRIC FOR GENERIC MIXTURE
MODELS, INCLUDING LOCATION-SCATTER AND GROUP

INVARIANT MEASURES

GENEVIÈVE DUSSON∗, VIRGINIE EHRLACHER† , AND NATHALIE NOUAIME‡

Abstract. In this article, we study Wasserstein-type metrics and corresponding barycenters
for mixtures of a chosen subset of probability measures called atoms hereafter. In particular, this
works extends what was proposed by Delon and Desolneux [10] for mixtures of gaussian measures
to other mixtures. We first prove in a general setting that for a set of atoms equipped with a
metric that defines a geodesic space, the set of mixtures based on this set of atoms is also geodesic
space for the defined modified Wasserstein metric. We then focus on two particular cases of sets
of atoms: (i) the set of location-scatter atoms and (ii) the set of measures that are invariant with
respect to some symmetry group. Both cases are particularly relevant for various applications among
which electronic structure calculations. Along the way, we also prove some sparsity and symmetry
properties of optimal transport plans between measures that are invariant under some well-chosen
symmetries.
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1. Introduction. The original motivation of this work stems from electronic
structure calculations in quantum chemistry, which are widely used for the simulation
of molecular and material systems [6, 18]. Permutation-invariant probability measures
naturally arise in this context, as the square modulus of wavefunctions and their
marginals satisfy such invariance property, due to the indistinguishability of bosonic
and fermionic particles, e.g. electrons. In general, these objects are moreover parame-
trized by the positions of the nuclei in the molecular system, and efficient ways to
interpolate between such objects when the positions of the nuclei are changing would
be extremely beneficial to this field, where the computations at stake are numerically
very expensive, as they involve the resolution of high-dimensional and/or nonlinear
eigenvalue partial differential equations. Due to the localized nature of the considered
probability measures, optimal transport seems a natural way to interpolate between
them using Wasserstein barycenters developed by Carlier and Agueh [1], as shown
in [11] for a toy model with one-dimensional particles. However due to the high-
dimensionality of the considered measures for real systems (e.g. already 3-dimensional
for the electronic density, and 6-dimensional for the electronic pair density), this does
not seem feasible in practice using standard optimal transport algorithms, such as the
now widely used Sinkhorn algorithm [24], see [21] for a monograph on the numerical
aspects of optimal transport describing this algorithm.

Luckily, in [10], Delon and Desolneux proposed a Wasserstein-type distance and
interpolation scheme based on the decomposition of probability measures as mixtures
of gaussian distributions. The modified optimal transport problem expressed in this
context becomes independent of the underlying dimension of the distribution, or of
its discrete spatial representation, so that the problem becomes extremely cheap to
solve when the considered measures can be decomposed as convex combinations of
a few gaussian distributions. However, we encounter two limitations when trying
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†CERMICS, École des Ponts & Inria Paris (virginie.ehrlacher@enpc.fr)
‡CEA Saclay, DEN/DM2S/STMF/LMSF (nathalie.nouaime@cea.fr)

1

mailto:genevieve.dusson@math.cnrs.fr
mailto:virginie.ehrlacher@enpc.fr


to apply this strategy in the context of electronic structure calculations. First, for
some models, the wave-functions are not as regular as gaussians, and cusps are to
be found around the nuclei positions in the molecular system. Therefore, the wave-
function or its marginals would be better represented as a mixture of Slater-type
functions, i.e. based on exp(−α|x|), see [22, Figure 2] for an example on the H+
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molecule which is composed of two protons and one electron. Unfortunately these
functions do not fit in the framework of [10]. Second, when considering fermions, the
wave-function is anti-symmetric, so that its modulus square as well as its marginals is
not only permutation symmetric, but also contains constraints coming from the anti-
symmetry property. For example, the modulus square of the wave-function is zero
when two variables are equal. This feature cannot be satisfied as such with convex
combinations of strictly positive measures. Note that generic distributions as well
as group symmetric mixtures appear in other contexts, such as portfolio theory in
finance [17], or in image analysis where the described objects are defined up to rigid
movements [20].

In this work, we therefore extend the theory presented in [10, 7] to generic mix-
ture models. This allows us to consider both mixtures based on different distribu-
tions such as any elliptical distribution, but also any distribution transported with
an affine map. These are the main cases where the Wasserstein barycenters between
two different individual measures composing the mixtures (later called atoms) can be
explicitely computed. We then provide various numerical results involving different
types of distributions, as well as group-invariant measures for permutation with or
without underlying antisymmetry, as well as rotation-invariant measures. Our main
contributions in this article are listed below:

1. We prove in a general setting that for a set of atoms equipped with a metric
that defines a geodesic space, the set of mixtures based on this set of atoms
is also geodesic space for the defined modified Wasserstein metric.

2. We provide numerical results for the modified Wasserstein barycenters in the
case of location-scatter atoms and group-invariant measures.

3. We prove some sparsity and symmetry properties of optimal transport plans
between measures that are invariant under some specific symmetries, namely
the permutation of the variables, as well as a permutation-invariance arising
from antisymmetry.

We leave the practical application of this theory to electronic structure calculations
to a further work [12].

The rest of the article is organised as follows. In Section 2, we provide a few
preliminaries on Wasserstein distances and barycenters that will be used in the sub-
sequent sections. In Section 3, we give general conditions on a set of atoms for a
modified Wasserstein distance defined on the associated set of mixtures to be com-
putable by means of a sparse discrete optimal transport problem in the spirit of [10],
and for the set of mixtures to be a geodesic space. We then focus our attention
to two particular cases of interest: the case of location-scatter atoms in Section 4,
and the case of symmetry group invariant measures in Section 5. Along the way, in
Section 5.1, we gather some properties satisfied by the exact optimal transport plan
relative to the Wasserstein metric, as well as Wasserstein barycenters.

2. Preliminaries on Wasserstein distances and barycenters. To start
with, we introduce in this section a few objects related to Wasserstein metric and
barycenters, that will be useful in the subsequent sections of this article, see for in-
stance [25, 23, 21] for references. Let Ω ⊂ Rd for d ∈ N be a Borelian set. We denote
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by P(Ω) the set of probability measures on Ω.

2.1. Wasserstein space and distance. Let c : Ω×Ω→ R+ be a metric on Ω.
For p > 1, we denote by Pcp(Ω) the set of probability measures on Ω with finite pth

moments, i.e.

Pcp(Ω) :=

{
µ ∈ P(Ω), ∃x0 ∈ Ω,

∫
Ω

c(x, x0)pdµ(x) < +∞
}
.

The pth-Wasserstein distance between µ, ν ∈ Pcp(Ω) associated to c is defined as

(2.1) W c
p (µ0, µ1) :=

(
inf

γ∈Π(µ0,µ1)

∫
Ω×Ω

c(x, y)p dγ(x, y)

)1/p

,

where Π(µ0, µ1) denotes the set of measures on Ω×Ω with marginals µ0 and µ1, also
called the set of transport plans between µ0 and µ1.

An important particular example is the case where the metric c is the euclidean
distance on Ω, i.e. when

(2.2) ∀x, y ∈ Ω, c(x, y) := ‖x− y‖.

In this case, we drop the superscript c in the notation for the ease of readability.
Then a Wasserstein distance of particular interest is the 2-Wasserstein distance with
euclidean distance on Ω defined by

(2.3) W2(µ0, µ1) := inf
γ∈Π(µ0,µ1)

(∫
Ω×Ω

‖x− y‖2 dγ(x, y)

)1/2

.

The space P2(Ω) endowed with the distance W2 is a metric space, usually called L2-
Wasserstein space (see [25] for more details). From [23, Theorem 1.17], there exists a
unique optimal transport plan solution of the minimization problem (2.3) denoted by
γ in the sequel, provided that µ0 is absolutely continuous. Also, the optimal transport
plan γ has the following form

γ = (Id, T )#µ0,

where T : Ω → Ω is an application called the optimal transport map and satisfying
T#µ0 = µ1. Here, we denote by T#µ the push-forward measure of a measure µ on Ω
by a map T : Ω → Ω, that is the measure ν on Ω such that ∀A ⊂ Ω, T#µ(A) =
µ(T−1(A)). Similar results are available for more generic cost functions c, in particular
when for all x, y ∈ Ω, c(x, y) = h(x− y) with h stricly convex and Ω compact [23].

The path (µt)t∈[0,1] given by

∀t ∈ [0, 1], µt = Pt#γ = ((1−t)Id+tT )#µ0, ∀(x, y) ∈ Ω2, Pt(x, y) := (1−t)x+ty,

then defines a constant speed geodesic in P2(Ω) between µ0 and µ1. The path
(µt)t∈[0,1] is called the McCahn interpolation between µ0 and µ1 [19]. It can be
shown that for all t ∈ [0, 1], µt can be equivalently expressed as the unique solution
of the following minimization problem

(2.4) µt := argmin
ρ∈P2(Ω)

(1− t)W 2
2 (ρ, µ0) + tW 2

2 (ρ, µ1).
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2.2. Wasserstein barycenters. We next recall the notion of barycenters in the
Wasserstein space which was introduced in [1] and can be seen as an extension of the
McCahn interpolation to a family of more than two measures. Let n ∈ N∗ and let

Ln :=

{
t := (t1, · · · , tn) ∈ [0, 1]n,

n∑
i=1

ti = 1

}
be the probability simplex of dimension n−1. For any family of probability measures
µ = (µi)1≤i≤n ∈ (Pcp(Ω))n and barycentric weights t = (ti)1≤i≤n ∈ Ln, if one of the
measures µi has a density, there exists a unique minimizer to the problem

(2.5) inf
ρ∈Pc

p(Ω)

n∑
i=1

tiW
c
p (ρ, µi)

p,

which is the barycenter of the family of measures µ with barycentric weights t. The
solutions of the barycenter problem are moreover related to the solutions of the fol-
lowing multi-marginal optimal transport problem [16]

(2.6) W c
p (µ1, . . . , µn)p := inf

γ∈Π(µ1,...,µn)

∫
Ωn

1

2

n∑
i,j=1

titjc(xi, xj)
p dγ(x1, . . . , xn),

where Π(µ1, . . . , µn) denotes the set of probability measures on Ωn having µ1, . . . , µn
as marginals. In particular, at least in the case of the euclidean distance (2.2) if Ω is
a convex set and if (2.6) has a unique solution γ∗, there exists a unique solution ρ∗

to (2.5) given by ρ∗ = B#γ∗, with B : Ωn → Ω defined by B(x1, . . . , xn) :=
∑n
i=1 tixi

for all (x1, . . . , xn) ∈ Ωn and the infima of (2.5) and (2.6) are equal.

2.3. Case of gaussian distributions. To conclude this section, we recall some
well-known results about gaussians distributions for which many quantities introduced
above can be made explicit. Here, Ω = Rd and we denote by Sd the set of symmetric
positive definite matrices of Rd×d. For any m ∈ Rd and Σ ∈ Sd, the (normalized)
Gaussian distribution gm,Σ ∈ P2(Rd) is defined by

gm,Σ( dx) = Gm,Σ(x) dx,

where

∀x ∈ Rd, Gm,Σ(x) :=
1

(2π)d/2
√

detΣ
exp

(
(x−m)TΣ−1(x−m)

)
.

For any m0,m1 ∈ Rd and Σ0,Σ1 ∈ Sd, denoting by g0 := gm0,Σ0
and g1 := gm1,Σ1

,
there holds

W 2
2 (g0, g1) = ‖m0 −m1‖2 + Tr

(
Σ0 + Σ1 − 2

(
Σ

1/2
0 Σ1Σ

1/2
0

)1/2
)
.

Finally, the Wasserstein barycenter between two and more generally n Gaussian mea-
sures is also a Gaussian measure. Precisely, for t = (ti)1≤i≤n ∈ Ln, the unique
minimizer of (2.5) is given by

(2.7) gt( dx) = Gmt,Σt(x) dx,

where mt and Σt satisfy

(2.8) mt =

n∑
i=1

timi, Σt =

n∑
i=1

ti

(
Σ

1/2
t ΣiΣ

1/2
t

)1/2

.
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3. Wasserstein-type distance and barycenters for mixtures. In this sec-
tion, we follow the works [8, 10] which proposed a modified Wasserstein distance
for gaussian mixtures, and we generalize the theory to a larger setting. Namely, we
exhibit sufficient conditions on the densities constituting the mixtures and the defini-
tion of the modified Wasserstein distance on mixtures to define a metric and geodesic
space. We then prove a similar result as in [10], namely the equivalence between a
discrete optimisation problem and a continuous one in the case where the considered
mixtures are identifiable.

3.1. Distance and barycenters between generic mixtures. We start by
defining a set of particular densities, which we call atoms, and mixtures thereof.

Definition 3.1 (A-mixture). Let A be a subset of P(Ω), called dictionnary of
atoms hereafter. We denote byM(A) the set of finite mixtures of atoms A, i.e. the set
of probability measures µ of P(Ω) such that there exists K ∈ N∗, a := (a1, · · · , aK) ∈
AK and λ := (λ1, · · · , λK) ∈ LK such that

µ =

K∑
k=1

λkak.

Typical examples of dictionaries of atoms are
(i) the set of non-degenerate gaussian measures i.e.

Adg :=
{
gm,Σ, m ∈ Rd, Σ ∈ Sd

}
;

(ii) the set of possibly degenerate gaussian measures i.e.

Adg :=
{
gm,Σ, m ∈ Rd, Σ ∈ Sd

}
;

where Sd is the set of symmetric positive (but not necessarily definite) matrices of

Rd×d. The set M(Adg) (respectively M
(
Adg
)

) is then the set of finite gaussian mix-

tures (respectively possibly degenerate gaussian mixtures) of dimension d. Note that

both Adg and Adg are geodesic spaces when endowed with the metric W2.
In order to define a distance on the set of mixtures as well as establish many

properties on the space of mixtures which we study in the sequel, we introduce a map
δ : A×A → R+, which will need to satisfy the following assumption.

Assumption 3.2. The application δ : A × A → R+ defines a metric on A and
(A, δ) is a geodesic space.

Definition 3.3 (Mixture distance). Let A ⊂ P(Ω) be a dictionary of atoms, and
let δ : A × A → R+ be a metric on A. For all p > 1, we define the application

δM,p : M(A) × M(A) → R+ as follows: for all µ0 =
∑J
j=1 λ

j
0a
j
0 ∈ M(A) and

µ1 =
∑K
k=1 λ

k
1a
k
1 ∈M(A),

(3.1) δM,p(µ0, µ1)p := min
w:=(wjk)1≤j≤J,1≤k≤K∈Π(Λ0,Λ1)

J∑
j=1

K∑
k=1

wjkδ
p(aj0, a

k
1),

with Π(Λ0,Λ1) :=

{
w := (wjk)1≤j≤J,1≤k≤K ∈ RJ×K+ ,

∀1 ≤ j ≤ J,
K∑
k=1

wjk = λj0, ∀1 ≤ k ≤ K,
J∑
j=1

wjk = λk1

}
.
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Remark 3.4. It is easily seen that there exists at least one minimizer w∗ :=
(w∗jk)1≤j≤n0,1≤k≤n1

to problem (3.1). However, let us point out here that uniqueness
is not guaranteed.

Proposition 3.5. For all p > 1, if δ : A × A → R+ defines a metric, the
application δM,p defines a metric on the set of A-mixtures M(A).

The proof of this result follows from [8, Theorem 1] that was derived for the
particular case of gaussian mixtures. We present it here for sake of completeness as
well as to precisely specify the assumptions that guarantee that the result is indeed
valid in this general framework.

Proof. First, δM,p is clearly symmetric, δM,p(µ0, µ1) ≥ 0 and δM,p(µ0, µ1) = 0 if

and only if µ0 = µ1. Next we prove the triangle inequality. Let µ0 =
∑J
j=1 λ

j
0a
j
0 ∈

M(A), µ1 =
∑K
k=1 λ

k
1a
k
1 ∈ M(A), and µ2 =

∑L
l=1 λ

l
2a
l
2 ∈ M(A). We can assume

without loss of generality that λj0 > 0 for all 1 ≤ j ≤ J , λk1 > 0 for all 1 ≤ k ≤ K and
λl2 > 0 for all 1 ≤ l ≤ L. We want to show that

δM,p(µ0, µ2) ≤ δM,p(µ0, µ1) + δM,p(µ1, µ2).

Let w01 ∈ RJ×K be a solution to (3.1) for (µ0, µ1) and w12 ∈ RK×L be a solution
to (3.1) for (µ1, µ2). Let us define for 1 ≤ j ≤ J, 1 ≤ l ≤ L,

w02
jl =

K∑
k=1

w01
jkw

12
kl

λk1
.

A simple calculation leads to show that w02 ∈ Π(Λ0,Λ2). Then

δM,p(µ0, µ2)p ≤
J∑
j=1

L∑
l=1

w02
jl δ

p(aj0, a
l
2) =

J∑
j=1

L∑
l=1

K∑
k=1

w01
jkw

12
kl

λk1
δp(aj0, a

l
2)

≤
J∑
j=1

K∑
k=1

L∑
l=1

w01
jkw

12
kl

λk1

(
δ(aj0, a

k
1) + δ(ak1 , a

l
2)
)p
,

using the triangular inequality for δ. Using Minkowski inequality, we obtain

δM,p(µ0, µ2) ≤

 J,L,K∑
j,k,l=1

w01
jkw

12
kl

λk1
δ(aj0, a

k
1)p

1/p

+

 J,L,K∑
j,l,k=1

w01
jkw

12
kl

λk1
δ(ak1 , a

l
2)p

1/p

=

 J,K∑
j,k=1

w01
jkδ(a

j
0, a

k
1)p

1/p

+

 L,K∑
l,k=1

w12
kl δ(a

k
1 , a

l
2)p

1/p

= δM,p(µ0, µ1) + δM,p(µ1, µ2).

This concludes the proof.

Proposition 3.6 (Geodesic space). Under Assumption 3.2, the space M(A)
equipped with the metric δM,p is a geodesic space.

Proof. To show thatM(A) equipped with the metric δM,p is a geodesic space, we
consider paths ρ := (ρt)t∈[0,1] with ρt ∈ M(A) for all t ∈ [0, 1] and define the length
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of the path relative to the δM,p metric as

(3.2) LenδM,p
(ρ) = sup

N∈N∗, (ti)0≤i≤N∈[0,1]N+1

0=t0<t1<...<tN=1

N∑
i=1

δM,p(ρti−1 , ρti).

We want to show that given any two points µ0, µ1 ∈ M(A), there exists a path
between them the length of which equals the distance δM,p(µ0, µ1) between the points
µ0 and µ1.

First, for µ0, µ1 ∈ M(A), for any path ρ := (ρt)t∈[0,1], we always have, using the
triangle inequality

δM,p(µ0, µ1) ≤
N∑
i=1

δM,p(ρti−1,ρti
).

Therefore, LenδM,p
(ρ) ≥ δM,p(µ0, µ1). To show the equality, we need to exhibit one

path which connects µ0 to µ1 whose length is δM,p(µ0, µ1). The proof here is adapted
from [8, section III, B and C].

Let us assume that µ0 =
∑J
j=1 λ

j
0a
j
0 ∈M(A) and µ1 =

∑K
k=1 λ

k
1a
k
1 ∈M(A). We

define for any aj0, a
k
1 ∈ A a constant speed geodesic (ajkt )t∈[0,1] with ajkt ∈ A for all

t ∈ [0, 1] such that for all 0 ≤ s, t ≤ 1, δ(ajkt , a
jk
s ) = |t− s|δ(aj0, ak1).

Let w∗ be a solution to (3.1) for µ0 and µ1, we define µt =
∑J
j=1

∑K
k=1 w

∗
jka

jk
t .

Then, for any 0 ≤ s ≤ t ≤ 1, choosing wjk,j′k′ = w∗jkδjk,j′k′ ∈ Π(w∗, w∗), we obtain

δpM,p(µs, µt) ≤
∑
jk

∑
j′k′

wjk,j′k′δ
p(ajkt , a

j′k′

s )

≤ (t− s)p
∑
jk

w∗jkδ
p(aj0, a

k
1)

≤ (t− s)pδpM,p(µ0, µ1),

from which we deduce that LenδM,p
((µt)t∈[0,1]) = δM,p(µ0, µ1). We conclude that

M(A) equipped with δM,p is a geodesic space.

In the case where (M(A), δM,p) is a geodesic space, we can now express barycen-
ters in terms of geodesics of atoms.

Corollary 3.7. Let us assume that Assumption 3.2 holds. Let µ0 =
∑J
j=1 λ

j
0a
j
0

and µ1 =
∑K
k=1 λ

k
1a
k
1 be two elements of M(A). The barycenters between µ0 and µ1

belong to M(A) and can be written as

∀t ∈ [0, 1], µt =

J∑
j=1

n1∑
k=1

w∗jka
j,k
t ,

where w∗ = (w∗jk)1≤k≤K,1≤l≤n1
is a solution to (3.1) and (aj,kt )t∈[0,1] are constant

speed geodesic between respectively aj0 and ak1 .

3.2. Particular case of Wasserstein metric. We focus here on the specific
case where A ⊂ Pcp(Ω) for some p > 1 and metric c : Ω × Ω → R+, and where the
atom metric δ is defined by the Wasserstein metric W c

p , i.e.

(3.3) ∀a0, a1 ∈ A, δ(a0, a1) =

(
inf

γ∈Π(a0,a1)

∫
Ω×Ω

(c(x, y))pdγ(x, y)

)1/p

.
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Let us point out that Assumption 3.2 is indeed satisfied in this setting. We first inves-
tigate two-marginal problems, and then show that the theory can easily be extended
to multi-marginal problems.

3.2.1. Two-marginal problem. Let us show that the discrete problem (3.1)
is in fact equivalent to a continuous problem, similar to the one presented in [10].
To obtain this equivalence, we need to make two assumptions, which is the existence
of an optimal transport plan between any atoms, as well as the identifiability of the
mixtures of atoms.

Assumption 3.8 (Existence of optimal transport plan). The set of atoms A and
the cost function c are such that for any a0, a1 ∈ A, there exists at least one solution
to the optimal transport problem

(3.4) inf
γ∈Π(a0,a1)

∫
Ω×Ω

c(x, y)pdγ(x, y).

The set of minimizers of (3.4) is then denoted by Γ∗a0,a1 .

This assumption is for instance satisfied for the cost function c(x, y) = ‖x− y‖, p = 2
and atoms that are absolutely continuous measures.

Assumption 3.9 (Identifiability). The set of mixturesM(A) is identifiable, that

is given two mixtures µ0 =
∑J
j=1 λ

j
0a
j
0, µ1 =

∑K
k=1 λ

k
1a
k
1 , where the atomic functions

(aj0)j=1,...,J are pairwise distinct, and similarly for (ak1)k=1,...,K , then µ0 = µ1 if and
only if J = K, and the indices in the sums can be reordered such that all λk0 = λk1 and
ak0 = ak1 for all k = 1, . . . ,K.

A classical example of identifiable mixtures is the set of gaussian mixturesM(Adg), see
e.g. [10, Appendix]. We then define the set of optimal transport plans of the atoms
as well as mixtures thereof.

Definition 3.10 (Admissible set of atom transport plans). A set of transport
plans Γ(A) ⊂ P(Ω× Ω) is said admissible for the set of atoms A if and only if

Γ(A) =
⋃

a0,a1∈A
Γa0,a1 ,

where for all a0, a1 ∈ A, Γa0,a1 is a convex set such that

Γ∗a0,a1 ⊂ Γa0,a1 ⊂ Π(a0, a1).

Definition 3.11 (Mixtures of admissible atom transport plans). Let Γ(A) be
an admissible set of atom transport plans. We define ΓM(A) :=M (Γ(A)) as the set
of finite mixtures of optimal transport plans of atoms Γ(A), i.e. the set of probability
measures γ of P(Ω × Ω) such that there exists K ∈ N∗, γ := (γ1, · · · , γK) ∈ Γ(A)K

and λ := (λ1, · · · , λK) ∈ LK such that

γ =

K∑
k=1

λkγk.

Proposition 3.12. Let µ0 =
∑J
j=1 λ

j
0a
j
0 ∈ M(A) and µ1 =

∑K
k=1 λ

k
1a
k
1 ∈

M(A). Let us define

(3.5) δ̃M,p(µ0, µ1) :=

(
inf

γ∈Π(µ0,µ1)∩ΓM(A)

∫
Ω×Ω

c(x, y)p dγ(x, y)

)1/p

.
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Then, under Assumptions 3.8 and 3.9, problem (3.5) is equivalent to (3.1), i.e.

δ̃M,p(µ0, µ1) = δM,p(µ0, µ1). Moreover, the sets of minimizers of (3.5) is equal to
the set of measures γ which can be written as

(3.6) γ =

J∑
j=1

K∑
k=1

w∗jkγjk,

with w∗ := (w∗jk)1≤j≤J,1≤k≤K a minimizer of (3.1), and γjk ∈ Γ∗
aj0,a

k
1

is an optimal

transport plan between aj0 and ak1 .

Proof. This proof extends the arguments presented in [10, Proposition 4]. Let

µ0 =
∑J
j=1 λ

j
0a
j
0, µ1 =

∑K
k=1 λ

k
1a
k
1 be two mixtures in M(A), with aj0 (respectively

ak1) all distinct. First, let w∗ ∈ RJ×K be a solution to (3.1), and let for j = 1, . . . , J
and k = 1, . . . ,K, γjk := γ∗

aj0,a
k
1

so that γjk ∈ Γaj0,ak1
⊃ Γ∗

aj0,a
k
1

. Then let us define

γ∗ =
∑J
j=1

∑K
k=1 w

∗
jkγjk. There holds γ∗ ∈ ΓM(A) ∩Π(µ0, µ1). Moreover,

δ̃M,p(µ0, µ1)p ≤
J∑
j=1

K∑
k=1

w∗jk

∫
Ω×Ω

c(x, y)pdγjk(x, y) =

J∑
j=1

K∑
k=1

w∗jkδ
p(aj0, a

k
1)

= δM,p(µ0, µ1)p.

Second, let γ ∈ ΓM(A). Then, there exists I ∈ N∗ such that γ =
∑I
i=1 λ

iγi with
γi ∈ Γ(A). Using that P0#γ = µ0, we obtain

I∑
i=1

λiP0#γi =

J∑
j=1

λj0a
j
0.

Using the fact that for all 1 ≤ i ≤ I, P0#γi ∈ A and using the identifiability
assumption 3.9, we obtain that for each i = 1, . . . , I, there exists j ∈ {1, . . . , J} such
that P0#γi = µj0. Similarly, for each i = 1, . . . , I, there exists k ∈ {1, . . . ,K} such

that P1#γi = µk1 . Hence for all 1 ≤ i ≤ I, γi ∈ Π(µj0, µ
k
1) for some j ∈ {1, . . . , J}, k ∈

{1, . . . , J}. For all 1 ≤ j ≤ J and 1 ≤ k ≤ K, let Ijk :=
{

1 ≤ i ≤ I, γi ∈ Π(µj0, µ
k
1)
}

.

The collection of sets (Ijk)1≤j≤J,1≤k≤K then forms a partition of the set {1, . . . , I}
and for all 1 ≤ j ≤ J and 1 ≤ k ≤ K, we denote by Λjk :=

∑
i∈Ijk

λi. For all 1 ≤ j ≤ J

and 1 ≤ k ≤ K, we also denote by

γjk :=

{
1

Λjk

∑
i∈Ijk λ

iγi if Λjk 6= 0,

γ∗
aj0,a

k
1

if Λjk = 0.

Then, it necessarily holds that for all 1 ≤ j ≤ J , 1 ≤ k ≤ K, γjk ∈ Γaj0,ak1
since

Γaj0,ak1
is a convex set and γi ∈ Γaj0,ak1

for all i ∈ Ijk. Furthermore, we have γ =∑J
j=1

∑K
k=1 Λjkγjk. Thus,∫

Ω×Ω

c(x, y)pdγ(x, y) =

J∑
j=1

K∑
k=1

wjk

∫
Ω×Ω

c(x, y)pdγjk(x, y)

≥
J∑
j=1

K∑
k=1

wjkδ
p(aj0, a

k
1) ≥ δpM,p(µ0, µ1),
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where we have used (3.3). This inequality being valid for any γ ∈ ΓM(A), we con-

clude that δ̃M,p(µ0, µ1) ≥ δM,p(µ0, µ1). Equation (3.6) is then a straightforward
consequence of this proof.

Remark 3.13. In the case where A is the set of atomic gaussian measures Adg,
the result of [10, Proposition 4] corresponds to Proposition 3.12 for a set of atomic
transport plans chosen as

Γ(A) :=
⋃

a0,a1∈Ad
g

(
A2d

g ∩Π(a0, a1)
)

= A2d

g .

Indeed for all a0, a1 ∈ Adg, the set Γa0,a1 :=
(
A2d

g ∩Π(a0, a1)
)

is convex and such that

{γ∗a0,a1} ⊂ Γa0,a1 ⊂ Π(a0, a1).

3.2.2. Multi-marginal problems. The theory naturally extends to multi-mar-
ginal problems. For this, we need to assume the existence of multi-marginal optimal
transport plans. We then define the extensions of Definitions 3.10 and 3.11 to the
multi-marginal case.

Assumption 3.14 (Existence of multi-marginal transport map). The set of
atoms A and the metric c are such that for all Q ≥ 2, for any t := (tq)1≤q≤Q ∈ LQ
and for any a1, · · · , aQ ∈ A, there exists at least one solution to the multi-marginal
optimal transport problem

(3.7) δtQ,A,p(a1, . . . , aQ) =

(
inf

γ∈Π(a1,...,aQ)
s(x1, . . . , xQ)dγ(x1, . . . , xQ)

)1/p

,

with

s(x1, . . . , xQ) =
1

2

Q∑
q=1

Q∑
q′=1

tqtq′c(xq, xq′)
p.

The set of minimizers of (3.7) is then denoted by Γ∗,ta1,...,aQ .

Definition 3.15. We say that ΓQ(A) ⊂ P(ΩQ) is an admissible set of atom
multi-marginal transport plans if

ΓQ(A) =
⋃

a1,··· ,aQ∈A
Γa1,...,aQ ,

where Γa1,...,aQ is any convex set such that⋃
t∈LQ

Γ∗,ta1,...,aQ ⊂ Γa1,...,aQ ⊂ Π(a1, a2, . . . , aQ).

Definition 3.16. We define ΓQ,M(A) as the set of finite mixtures of admissible
atom multi-marginal optimal plans ΓQ(A), i.e. the set of probability measures of
P(ΩQ) such that there exists K ∈ N∗, γ := (γ1, · · · , γK) ∈ ΓQ(A)K and λ :=
(λ1, · · · , λK) ∈ LK such that

γ =

K∑
k=1

λkγk.
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Now, let Q ≥ 2 and for all 1 ≤ q ≤ Q, let Kq ∈ N∗, λq := (λ
kq
q )1≤kq≤Kq ∈ LKq

and µq :=
∑Kq

kq=1 λ
kq
q a

kq
q ∈ M(A). For all t := (tq)1≤q≤Q ∈ LQ, we define the

multi-marginal transport problem as
(3.8)

δ̃tQ,M,p(µ1, . . . , µQ) =

(
inf

γ∈Π(µ1,...,µQ)∩ΓQ,M(A)
s(x1, . . . , xQ)dγ(x1, . . . , xQ)

)1/p

,

with

s(x1, . . . , xQ) =
1

2

Q∑
q=1

Q∑
q′=1

tqtq′c(xi, xj)
p.

Using a similar approach as in the previous section, we prove the following result.

Proposition 3.17. Under Assumption 3.14, problem (3.8) is equivalent to the
following discrete problem
(3.9)(
δtQ,M,p(µ1, . . . , µQ)

)p
= inf
w∈Π(λ1,...,λQ)

K1,K2,...,KQ∑
k1,k2,...,kQ=1

wk1,k2,...,kQ

(
δtQ,A,p(a

k1
1 , a

k2
2 , . . . , a

kQ
Q )
)p
,

with Π(λ1, . . . ,λQ) :=

{
w ∈ RK1×...×KQ

+ ,

∀1 ≤ q ≤ Q, ∀1 ≤ kq ≤ Kq,

K1,...,Kq−1,Kq+1,...,KQ∑
k1,...,kq−1,kq+1,...,kQ=1

wk1,...,kQ = λkqq

}
.

Moreover, denoting by K := {1, . . . ,K1}×{1, . . . ,K2}×. . .×{1, . . . ,KQ}, any solution
to (3.8) can be written as

(3.10) γ∗ =
∑
k∈K

w∗kγ
∗
k,

where (w∗k)k∈K is a solution to (3.9) and γ∗k ∈ Γ∗,t
a
k1
1 ,...,a

kQ
Q

for all k = (k1, . . . , kQ) ∈ K.

As a consequence, any barycenter of (µ1, · · · , µQ) with barycentric weights t can be
written as

(3.11) bart(µ1, . . . , µQ) =
∑
k∈K

w∗k bart(a
k1
1 , . . . , a

kQ
Q ),

where bart(a
k1
1 , . . . , a

kQ
Q ) is the barycenter of (ak11 , . . . , a

kQ
Q ) with barycentric weights

t. Finally, any solution (w∗k)k∈K to (3.9) contains at most K1 +K2 + . . .+KQ−Q+1
nonzeros components.

Proof. The proof for the equivalence between the discrete and continuous opti-
mization problem is similar to the proof of Proposition 3.12. The structure of the
barycenter is a direct consequence of equation (3.10). The maximum number of
nonzeros components comes from the form of the discrete problem, which is a linear
program with K1 +K2 + . . .+KQ −Q+ 1 affine constraints, therefore there exists a
solution with at most n1 +n2 + . . .+nQ−Q+1 nonzero components, see [4, Theorem
2] or [15, Appendix A].
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In the end, as soon as Assumption 3.2 is satisfied for the atoms, we can define a
geodesic space on the mixtures of these atoms. Moreover, if the metric on the atoms
corresponds to a Wasserstein distance for which there is uniqueness of the transport
plans and that the mixtures of atoms are identifiable, then there is an equivalence
between the discrete problem (3.1) and the continuous one (3.5), which in particular
shows that the result is independent of the representation of the mixtures.

4. Mixtures of location-scatter atoms. The sufficient conditions presented
in Section 2 to define a geodesic space on mixtures are pretty simple. We only need
the set of atoms to be a geodesic space (Assumption 3.2). However, all calculations on
mixtures include distance calculations on the set of atoms, as well as multi-marginal
calculations for the computation of barycenters. Therefore, the efficiency of the mix-
ture calculations will highly depend on the cost of computing distances and barycen-
ters between atoms. In the best case scenario, these should be explicit. This is for
example the case of gaussian measures, which motivated the two contributions [10, 8].
The aim of this section is to highlight how the general framework introduced in the
previous section can be used in order to extend these practical considerations to more
general sets of atoms, including location-scatter atoms [3].

Remark 4.1. In the work by Delon and Desolneux [10], it is mentioned that other
distributions than gaussians can be used, as long as they satisfy two conditions: the
identifiability property (Assumption 3.9), and a marginal consistency, i.e. that trans-
port plans are mixtures of 2d-dimensional atoms. In fact, what we have shown in the
previous section is that we do not need the marginal consistency, as we use for trans-
port plans mixtures of transport plans between atoms. Interestingly, for gaussians, the
set of transport plans between atoms can be chosen as the set of (degenerate) gaussians
in dimension 2d.

In this section, we therefore start by stating results on location-scatter measures,
which correspond to families of probability measures generated from affine transfor-
mations. In some specific cases described more precisely below, transport maps and
Wasserstein barycenters are explicitely computable. We then turn to a few prac-
tical examples, including elliptical distributions and affine-generated measures. For
the sake of simplicity, we focus in this section on the 2-Wasserstein distance with
quadratic cost (i.e. when p = 2 and c(x, y) = ‖x− y‖) and Ω = Rd.

4.1. General location-scatter measures. Location-scatter measures are gen-
erated from affine transformations of a given probability measure. We define the
corresponding set of atoms as follows.

Definition 4.2 (Location-scatter atoms). We define the set of location-scatter
atoms generated from a ∈ P2(Rd) as

(4.1) A :=
{
T#a, T : x ∈ Rd 7→ Ax+ b, A ∈ Sd, b ∈ Rd

}
.

We then formulate a generic result on location-scatter measures, which includes
an explicit expression for the Wasserstein distance. This result is a rewriting in our
context of [3, Theorem 2.3], itself based on [9, Theorem 2.1].

Theorem 4.3. Let A be a set of location-scatter atoms generated from a ∈ P2(Rd)
in the sense of Definition 4.2. Let us assume that the measure a has mean ma ∈ Rd and
a covariance matrix Σa ∈ Sd. Let a0, a1 ∈ A be such that there exist T0, T1 : Rd → Rd

with T0(x) = A0x + b0, T1(x) = A1x + b1, A0, A1 ∈ Sd and b0, b1 ∈ Rd such that
a0 = T0#a, a1 = T1#a. Then, a0 and a1 have respectively means mi and covariance
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Σi for i = 0, 1 defined by

mi = Aima + bi, Σi = AiΣaA
T
i .

Moreover the Wasserstein distance squared between a0 and a1 satisfies

(4.2) W 2
2 (a0, a1) ≥ ‖m0 −m1‖2 + Tr

(
Σ0 + Σ1 − 2(Σ

1/2
0 Σ1Σ

1/2
0 )1/2

)
,

with equality if and only if the transport map

(4.3) Tx = Ax+ (m0 −m1), with A = Σ
−1/2
0

(
Σ

1/2
0 Σ1Σ

1/2
0

)1/2

Σ
−1/2
0 ,

is such that T#a0 = a1.

Proof. Let us first show that a0 (respectively a1) has mean m0 and covariance Σ0

(resp. m1 and Σ1). Since a0 = T0#a, the density of a0 satisfies

a0(x) = |detA0|−1a(A−1
0 (x− b0)).

The mean can be computed as

m0 =

∫
Rd

xa0(x)dx =

∫
Rd

x|detA0|−1a(A−1
0 (x− b0))dx.

Using the change of variable y = A−1
0 (x− b0), we obtain

m0 =

∫
Rd

(A0y + b0)a(y)dy = A0ma + b0.

For the covariance, we compute

Σ0 =

∫
Rd

(x−m0)(x−m0)Ta0(x)dx =

∫
Rd

(x−m0)(x−m0)T |detA0|−1a(A−1
0 (x−b0))dx.

Using the same change of variables, we obtain

Σ0 =

∫
Rd

A0(y −ma)(y −ma)TAT0 a(y)dy = A0ΣaA
T
0 .

The proof for computing the mean and covariance of a1 is similar. Equations (4.2)
and (4.3) directly follow from [3, Theorem 2.3].

Example 4.4. A nice example of location-scatter atoms is the case of a generative
atom a that is an absolutely continuous radially symmetric with finite second-order
moments probability measure on Rd, i.e. with an associated density µ satisfying µ(x) =
ξ(|x|) for some function ξ ∈ L1(Rd) [14]. This encompasses the case of elliptical
distributions defined by

∀x ∈ Rd, fm,Σ(x) =
1

Zh,Σ,m
h((x−m)TΣ−1(x−m)),

for m ∈ Rd, Σ ∈ Sd, where the generative atom a can be taken as f0,Id , denoting by
Id the identity matrix of size d.

We can express a similar theorem for the multi-marginal optimal transport prob-
lem.
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Theorem 4.5. Let A be a set of location-scatter atoms generated from a ∈ P2(Rd)
in the sense of Definition 4.2. Let us assume that the measure a has a mean ma ∈ Rd

and a covariance matrix Σa ∈ Sd. Let a1, a2, . . . , aQ ∈ A be such that there exist
T1, . . . , TQ : Rd → Rd with Tq(x) = Aqx + mq, Aq ∈ Sd and mq ∈ Rd such that for
q = 1, . . . , Q, aq = Tq#a, and aq has mean mq and covariance matrix Σq.

The multi-marginal optimal transport problem with parameters t = (t1, . . . , tQ)
has for minimal cost

δtQ,A,2(a1, . . . , aQ) =

Q∑
q=1

tqW
2
2 (aq, āt),

where āt = Tt#a is the Wasserstein barycenter with Tt = Sx + m, where S is the
only positive definite matrix satisfying

S =

Q∑
q=1

tq(S
1/2ΣqS

1/2)1/2, and m =

Q∑
q=1

tqmq.

Proof. This theorem is a reformulation of [3, Corollary 4.5].

With this result, we immediately obtain that the set of location-scatter atoms is
a geodesic space, using the geodesics defined by the barycenters, which guarantees
the applicability of the results of Section 2 for the location-scatter atoms.

4.2. Particular case of elliptical distributions. Among the distributions
satisfying Assumption 3.2, we insist here on the case of elliptical distributions, which
are widely used in practice. The first natural example is the case of gaussian distri-
butions, for which Wasserstein distance and barycenters can be explicitly computed.
This case was thoroughly presented in [10, 8], therefore we do not expand further on
this example. However from Theorem 4.3, any location-scatter distribution can be
considered provided that one knows its mean and covariance matrix.

We therefore make the explicit calculations of the means and covariance matrices
of elliptical distributions which write for a given h : R+ → R+

gm,Σ(x) =
1

Zm,Σ,h
h((x−m)TΣ−1(x−m)),

with m ∈ Rd,Σ ∈ Rd×d, Zm,Σ,h being a normalization factor.

Lemma 4.6. For a given h : R+ → R+, then the distribution defined on Rd via

∀x ∈ Rd, gm,Σ(x) =
1

Zm,Σ,h
h((x−m)TΣ−1(x−m)),

with

(4.4) Zm,Σ,h =
2πd/2

Γ(d/2)
|det Σ|1/2

∫
R+

rd−1h(r2)dr,

has mean m. Moreover if

(4.5)

∫
R+ r

d+1h(r2)dx∫
R+ rd−1h(r2)dr

= d,

then gm,Σ has covariance Σ.
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Proof. First, let us check that gm,Σ indeed defines a probability distribution.
Using a first change of variable y = Σ−1/2(x − m), a second change of variables
with spherical coordinates, and using that the surface of the d−sphere of radius r is
2πd/2

Γ(d/2)r
d−1 we obtain∫

Rd

h((x−m)TΣ−1(x−m))dx =
2πd/2

Γ(d/2)
|det Σ|1/2

∫
R+

rd−1h(r2)dr,

from which we easily deduce using (4.4) that gm,Σ is normalized to one. Second, the
mean of gm,Σ satisfies∫

Rd

xgm,Σ(x)dx =

∫
Rd

(x+m)g0,Σ(x)dx = m,

where we have used a change of variable, and that g0,Σ(−x) = g0,Σ(x) for all x ∈ Rd.
Third, the covariance matrix of gm,Σ can be computed as∫

Rd

(x−m)(x−m)T gm,Σ(x)dx =

∫
Rd

xΣxT g0,I(x)dx = Σ1/2

∫
Rd

yyT g0,I(y)dy[Σ1/2]T .

Using a change of variable with spherical coordinates, we write

y = r (cos(ϕ1), sin(ϕ1) cos(ϕ2), . . . , sin(ϕ1) . . . sin(ϕd−1))

for ϕ1, . . . , ϕd−2 ∈ (0, π) and ϕd−1 ∈ (0, 2π), and the volume element is

rd−1 sind−2(ϕ1) . . . sin(ϕd−2)drdϕ1 . . . dϕd−1.

It is then easy to see that the off-diagonal terms of
∫

Rd yy
T g0,I(y)dy are zero, as they

all contain at least one term writing
∫ π

0
cos(ϕ) sink(ϕ)dϕ for some integer k, which is

zero. As for the diagonal terms, using the Wallis integral formula for the sine terms∫ π

0

sink(ϕ)dϕ =
√
π

Γ
(
k
2 + 1

2

)
Γ
(
k
2 + 1

) ,
and the beta function for the term containing a cosine function∫ π

0

cos2(ϕ) sink(ϕ)dϕ =
Γ
(
k
2 + 1

2

)
Γ
(

3
2

)
Γ
(
k
2 + 2

) =

√
π

2

Γ
(
k
2 + 1

2

)
Γ
(
k
2 + 2

) ,
we obtain that the angular part of the diagonal terms of

∫
Rd yy

T g0,I(y)dy are all equal
to

βd =

∫
sind(ϕ1) sind−1(ϕ2) . . . sind−k+2(ϕk−1) cos2(ϕk) sind−k−1(ϕk)

sind−k−2(ϕk+1) . . . sin(ϕd−2)dϕ1 . . . dϕd−1

= 2π

d∏
i=d−k+2

[
√
π

Γ
(
i
2 + 1

2

)
Γ
(
i
2 + 1

) ] √π
2

Γ
(
d−k−1

2 + 1
2

)
Γ
(
d−k−1

2 + 2
) d−k−2∏

i=1

[
√
π

Γ
(
i
2 + 1

2

)
Γ
(
i
2 + 1

) ]

=
πd/2

Γ(d/2 + 1)
.
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We therefore obtain∫
Rd

(x−m)(x−m)T gm,Σ(x)dx =
βd

Z0,I,h

∫
R+

rd+1h(r2)dr Σ

=
Γ(d/2)

2Γ(d/2 + 1)

∫
R+ r

d+1h(r2)dr∫
R+ rd−1h(r2)dr

Σ

=
1

d

∫
R+ r

d+1h(r2)dr∫
R+ rd−1h(r2)dr

Σ.

Thus gm,Σ has a covariance Σ if (4.5) is satisfied.

The result of this lemma ensures that Theorem 4.3 can be applied for such distri-
butions. Note that gaussian distributions for which h(x) = exp(−x/2) indeed satisfy
equation (4.5).

4.3. Numerical tests. In this section, we provide a few practical examples for
three types of mixtures. Two are based on elliptical distributions, namely based on
Slater functions and on the Wigner semicircle distribution. The third one is based on
the gamma distribution, and illustrate that the framework developed in this article is
not limited to elliptical distributions.

4.3.1. Numerical setting. The numerical tests presented below have been im-
plemented with the Julia language [5] and the Wasserstein barycenters for the W2

metric have been computed with the Python optimal transport library POT [13].
All Wasserstein barycenters for the W2 metric are computed using the log-sinkhorn
algorithm to avoid numerical errors, with a regularization parameter of 10−4 and a
maximum number of iterations of 10000. The one-dimensional cases are computed on
a grid containing 200 points, and the two-dimensional cases on a grid with 50 points
per dimension. The code used for generating all the figures can be downloaded at
https://github.com/dussong/W2_mixtures.jl/.

In terms of computational cost, it is difficult to provide proper timings to compare
the cost of computing the W2 barycenters and the mixture baycenters based on the
mixture metric denoted by W2,M as it highly depends on the choice of the grid, the
smoothing parameter, and number of iterations for the Sinkhorn algorithm for the
W2 calculations. Note however that the cost of computing the mixture Wasserstein
barycenters does not depend on any spatial grid, as the size of the problem is only
related to the number of atoms in the considered mixtures. Therefore, with the
provided parameters, the order of magnitude for computing one mixture barycenter
is less than 1ms while the computation of the W2 barycenters is of the order of 10s for
the one-dimensional cases and about 8 minutes for the two-dimensional cases, hence
several order of magnitude more expensive than the mixture-based calculations.

4.3.2. Slater-type elliptical distributions. We consider here Slater-type el-
liptical distributions, that is we consider h(x) = exp(−αd|x|1/2) where αd is adapted
with respect to d in order to satisfy equation (4.5). Namely, (4.5) is satisfied if

αd =
√
d+ 1, and ZΣ =

2πd/2

(d+ 1)d/2
Γ(d)

Γ(d/2)
|det Σ|1/2.

The identifiability of the mixtures of such atoms can be proved with similar
arguments as in [10, Proposition 2]. Below we provide one-dimensional and two-
dimensional examples for Slater-type elliptical distributions.
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 4.1. Wasserstein barycenters between two mixtures of Slater-type elliptical distributions
for the W2 metric (blue) and the W2,M metric (red).

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 4.2. Contour plots of W2,M (top) and W2 (bottom) barycenters between two mixtures of
Slater-type elliptic distributions.

One-dimensional case. Using the previous argument, we consider the function
h(x) = exp(−

√
2|x|1/2). In Figure 4.1, we present the Wasserstein barycenters with

respect to the W2 and W2,M metrics between two mixtures of two atoms each. We
observe that the two barycenters look quite different. In particular the W2 barycenter
computed with a Sinkhorn algorithm is smoother than the W2,M barycenter, which
is a mixture of three Slater functions, hence inherits three cusps.

Two-dimensional case. In two dimensions, we consider h(x) = exp(−
√

3|x|1/2),
for which we check that equation (4.5) is satisfied. In Figures 4.2 and 4.3, we present
the W2,M and W2 barycenters for mixtures of two-dimensional Slater-type elliptical
distributions. As for the one-dimensional case, the W2 barycenter is smoother than
the W2,M barycenter.

4.3.3. Wigner-semicircle-type elliptical distributions. We now consider
elliptical distributions based on the Wigner-semicircle distribution, i.e. we consider

h(x) =

{ √
1− αdx, x ≤ 1

αd

0, x > 1
αd
,

For αd = 1
d+3 , one easily checks that equation (4.5) is satisfied. Therefore, the

densities of the probability distributions take the form

∀x ∈ Rd, gm,Σ(x) =
1

ZΣ

√
1− 1

d+ 3
(x−m)TΣ−1(x−m),

with

ZΣ =
π

d+1
2 (d+ 3)d/2

2Γ
(
d+3

2

) |det Σ|1/2.
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(a) W2,M-barycenter (b) W2-barycenter

Fig. 4.3. Comparison between W2 and W2,M barycenters for t = 0.5 and the mixtures presented
on Figure 4.2.

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 4.4. Wasserstein barycenters between two mixtures of Wigner-semicircle elliptical distri-
butions for the W2 metric (blue) and the W2,M metric (red).

The identifiability of the mixtures based on these Wigner-semicircle type elliptical
distribution distributions can be easily proved noting that the atoms can be iteratively
uniquely characterized by their support.

One-dimensional case. We take h(x) =

{ √
1− x/4, x ≤ 4

0, x > 4
. In Figure 4.4, we

plot the W2 and W2,M barycenters between two mixtures of two atoms each. We
observe that the two types of barycenters behave quite differently, as the zones with
largest densities as pretty different.

Two-dimensional case. We take h(x) =

{ √
1− x/5, x ≤ 5

0, x > 5
. In Figure 4.5 we

plot the W2 and W2,M barycenters between two mixtures of two atoms each for the
two-dimensional case. The observations are similar to the one-dimensional case.

4.3.4. Gamma-distribution-based atoms. Finally, we consider atoms based
on a Gamma distribution in R. Since Gamma distributions are not elliptical dis-
tributions, we choose one particular gamma distribution and generate atoms from
location-scatters of this particular distribution. For α, β > 0, the probability density
function of the gamma distribution with these parameters is

∀x ≥ 0, fα,β(x) =
βα

Γ(α)
xα−1e−βx,

and has mean α/β and variance α/β2, so that we choose α, β such that α/β2 = 1,
and we then define the atoms characterized by their mean m and covariance Σ > 0
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 4.5. Contour plots of W2,M (top) and W2 (bottom) barycenters between two mixtures of
Wigner semicircle elliptic distributions.

by

∀x ∈ R, gm,Σ(x) =

{
1√
Σ
fα,β(Σ−1/2(x−m+ α

β )), x ≥ m− α
β

0, x < m− α
β .

As for the Slater-type case, it is easy to prove identifiability of the mixtures by
following the arguments presented in [10, Proposition 2].

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 4.6. Wasserstein barycenters between two mixtures of Gamma distributions for the W2

metric (blue) and the W2,M metric (red).

In Figure 4.6, we present the W2 and W2,M barycenters between two mixtures
of two atoms each, where we have taken α = 3., β = 9. to define the atom having a
variance of one. We observe that the W2,M barycenter seems smoother and to have
a lower middle mass movement than the W2 barycenter.

5. Symmetry group invariant measures. In this section, we consider dic-
tionaries of atoms that are defined as sets of symmetric probability measures, i.e.
invariant with respect to some transformation, as stated in the following definition.
Here, Ω is a convex open subset (or the closure of a convex open subset) of Rd, p > 1
and c : Ω× Ω a given metric on Ω.

Definition 5.1 (Invariant measure). Let S : Ω → Ω be a measurable function
from Ω to itself. A measure µ ∈ P(Ω) is said to be invariant with respect to S if
S#µ = µ, that is if for every measurable subset A ⊂ Ω, µ

(
S−1(A)

)
= µ(A).

Typical examples we have in mind are measures that are invariant with respect
to permutations of the variable ordering, as in the case of marginals of squares of the
wavefunction in electronic structure calculations. Another example is given by the
set of measures that are invariant with more generic isometries, such as rotations,
rigid-body motions, or combination thereof.

5.1. A few properties of optimal transport plans and Wasserstein bary-
centers. We start by proving a few results on the symmetries of the optimal transport
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plans as well as Wasserstein barycenters. First, we prove that the optimal transport
plan in a multi-marginal context is symmetric. Second, we show that the Wasserstein
barycenter between several symmetric measures is symmetric as well. Third, we prove
some sparsity properties on the support of the optimal transport plan in the case where
the symmetry is a reflection.

We first study the symmetry of the transport plan between symmetric measures.
Let µ1, . . . , µn be probability measures in Pcp(Ω) and C : Ωn → R+ ∪ {+∞} be
a multi-dimensional cost function. We consider here the following multi-marginal
optimal transport problem: find γ ∈ Π(µ1, . . . , µn) solution to

(5.1) inf
γ∈Π(µ1,...,µn)

∫
Ωn

C dγ.

We have the following proposition.

Proposition 5.2. Let S : Ω→ Ω be a C1-diffeomorphism such that |det∇S(x)| =
1 for all x ∈ Ω. We introduce

(5.2) Sn :

{
Ωn → Ωn

(x1, · · · , xn) 7→ (S(x1), · · · , S(xn)).

In addition, let µ1, . . . , µn be probability measures in P(Ω) that are invariant under
S. Let us assume that C is invariant with respect to Sn, that is
(5.3)
C(Sn(x1, . . . , xn)) = C(S(x1), . . . , S(xn)) = C(x1, . . . , xn), ∀(x1, . . . , xn) ∈ Ωn,

and that there exists a unique solution γ to (5.1). Then γ is invariant with respect to
Sn.

Proof. Let γ be the optimal transport plan solution to (5.1). Let γ̃ := Sn#γ. Let
us prove that γ̃ = γ. First, it is easy to see that for all 1 ≤ i ≤ n, Pi#γ̃ = S#µi.
Since µi is invariant under S for all 1 ≤ i ≤ n, it holds that γ̃ ∈ Π(µ1, · · · , µn).

Moreover using a change of variables, we obtain from (5.3) that∫
Ωn

C(x1, . . . , xn) dγ̃ =

∫
Ωn

C(S(x1), . . . , S(xn)) dγ =

∫
Ωn

C(x1, . . . , xn) dγ.

Thus, γ̃ is also an optimal transport plan between µ1, . . . , µn which implies that γ̃ = γ,
hence the desired result.

We now prove that the 2-Wasserstein barycenter associated to the euclidean dis-
tance between symmetric measures is symmetric.

Proposition 5.3. Let us assume that Ω is convex and that for all x, y ∈ Ω,
c(x, y) = ‖x − y‖. Let S : Ω → Ω be a measurable map such that for all x, y ∈ Ω,
c(S(x), S(y)) = c(x, y) and such that for all t = (ti)1≤i≤n ∈ Ln and all x1, . . . , xn ∈ Ω,
S (
∑n
i=1 tixi) =

∑n
i=1 tiS(xi). Let µ1, . . . , µn be probability measures in Pcp(Ω) that

are invariant under S. Let t = (t1, . . . , tn) ∈ Ln and let us assume that there exists a
unique optimal transport plan solution to (5.1) with

(5.4) C(x1, . . . , xn) :=
∑

1≤i,j≤n

titjc(xi, xj)
p.

Let ν be the p-Wasserstein barycenter between the measures µ1, . . . , µn with weigths
t. Then ν is also invariant under S.
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Proof. It suffices to show that for all real-valued measurable functions f : Ω→ R,
there holds

(5.5)

∫
Ω

f(x) dν(x) =

∫
Ω

f(S(x)) dν(x).

Let f be a measurable real-valued function defined on Ω. From [2], there holds
ν = T#γ with

T (x1, . . . , xn) =

n∑
i=1

tixi, ∀(x1, · · · , xn) ∈ Ωn,

and γ the unique solution to (5.1) associated to the cost function C defined in (5.4).
Thus

(5.6)

∫
Ω

f(x) dν(x) =

∫
Ωn

f(T (x1, . . . , xn)) dγ(x1, . . . , xn),

and ∫
Ω

f(S(x)) dν(x) =

∫
Ωn

f(S(T (x1, . . . , xn))) dγ(x1, . . . , xn).

Using the assumption on S and the fact that
∑n
i=1 ti = 1, we obtain

S(T (x1, . . . , xn)) = T (S(x1), · · · , S(xn)), ∀(x1, · · · , xn) ∈ Ωn.

As a consequence, noting that the assumptions on S and Proposition 5.2 show that γ
is invariant under Sn where Sn is the map defined by (5.2), and using the assumption
on the cost function (5.3),∫

Ω

f(S(x)) dν(x) =

∫
Ωn

f(T (S(x1), . . . , S(xn))) dγ(x1, . . . , xn)

=

∫
Ωn

f(T (Sn(x1, . . . , xn))) dγ(x1, . . . , xn)

=

∫
Ωn

f(T (x1, . . . , xn)) dγ(x1, . . . , xn).

Using (5.6) finishes the proof.

Finally, we prove that when the considered symmetry is a reflection and the
domain can be split into two parts such that S(Ω1) = Ω2 and S(Ω2) = Ω1, the
optimal transport plan between symmetric measures is zero on many parts of the
domain Ωn. Indeed, the only parts of the domain where the optimal transport plan is
nonzero are Ωn1 and Ωn2 .

Proposition 5.4. Let µ1, . . . , µn be probability measures in Pcp(Ω) invariant un-
der a map S : Ω → Ω. We assume that S is a reflection (i.e. S is an isometry in
the sense that c(S(x), S(y)) = c(x, y) for all x, y ∈ Ω and such that S2 = Id) and
that there exist Ω1,Ω2 such that Ω1 ∩ Ω2 = ∅, Ω1 ∪ Ω2 = Ω, and that S(Ω1) = Ω2,
S(Ω2) = Ω1. We also assume that for all (x, y) ∈ (Ω1 × Ω1) ∪ (Ω2 × Ω2),

c(x, y) ≤ c(S(x), y).

Let t = (t1, . . . , tn) ∈ Ln. Let us assume that there exists a unique optimal transport
plan γ ∈ Π(µ1, . . . , µn) solution to (5.1) with C defined in (5.4). Then, the support
of γ is included in Ωn1 ∪ Ωn2 .
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Proof. For any i = (i1, i2, . . . , in) ∈ {0, 1}n, denoting by x = (x1, . . . , xn) ∈ Ωn,
we define the map

(5.7) Si :

{
Ωn → Ωn

x 7→ (Si1(x1), Si2(x2), . . . , Sin(xn)),

so that S2
i1,i2,...,in

= Id. We define a non-negative measure γ̃ on Ωn as follows: for
any measurable subset B ⊂ Ωn, we define

(5.8) γ̃(B) =
1

2

∑
i∈{0,1}n

(Si#γ) (B ∩ (Ωn1 ∪ Ωn2 )).

By construction, the support of γ̃ is included in Ωn1 ∪ Ωn2 . Let us prove that γ̃ is an
optimal Wasserstein transport plan between µ1, . . . , µn. To this aim, we first show
that γ̃ has for marginals µ1, . . . , µn, starting with the first marginal, the others being
dealt with similarly. Let f : Ω → R be a measurable map and define by F : Ωn → R
the function such that F (x) = f(x1) for all x ∈ Ωn. Using (5.8) we obtain∫

Ωn

f(x1) dγ̃(x) =

∫
Ωn

F (x) dγ̃(x) =
1

2

∑
i∈{0,1}n

∫
Ωn

1∪Ωn
2

F (x) d(Si#γ)(x).

Introducing functions Sik in the arguments of the function F which do not change
the values of F for k from 2 to n, and then using a change of variables and writing
explicitly the sum on i1, we obtain∫

Ωn

f(x1) dγ̃(x) =
1

2

∑
i∈{0,1}n

∫
Ωn

1∪Ωn
2

F (x1, S
i2(x2), . . . , Sin(xn)) d(Si#γ)(x)

=
1

2

1∑
i2,··· ,in=0

∫
S0,i2,...,in (Ωn

1∪Ωn
2 )

F (x) dγ(x)

+
1

2

1∑
i2,...,in=0

∫
S1,i2,...,in(Ωn

1∪Ωn
2 )
F (S(x1), x2, . . . , xn) dγ(x).

Using properties of S leads to∫
Ωn

f(x1) dγ̃(x) =
1

2

∫
(Ω1∪Ω2)×Ωn−1

[F (x) + F (S(x1), x2, . . . , xn)] dγ(x)

=
1

2

∫
Ω

f(x1) dµ1(x1) +
1

2

∫
Ω

f(S(x1)) dµ1(x1).

Noting that f is symmetric under S, we obtain that the first marginal of γ̃ is µ1. The
proof for the other marginals are similar. Hence γ̃ ∈ Π(µ1, . . . , µn). Now, let us prove

that γ̃ is an optimal Wasserstein transport plan. Indeed, noting that

c(S(x), S(y)) = c(x, y) if (x, y) ∈ (Ω1 × Ω1) ∪ (Ω2 × Ω2)

and
c(S(x), y) ≤ c(x, y) if (x, y) ∈ (Ω1 × Ω2) ∪ (Ω2 × Ω1),

there holds
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∫
Ωn

∑
1≤k,l≤n

tktlc(xk, xl)
p dγ̃(x) =

1

2

∑
i∈{0,1}n

∫
Ωn

1∪Ωn
2

∑
1≤k,l≤n

tktlc(xk, xl)
pd(Si#γ)(x)

=
1

2

∑
i∈{0,1}n

∫
Si(Ωn

1∪Ωn
2 )

∑
1≤k,l≤n

tktlc(S
ik(xk), Sil(xl))

p dγ(x)

≤ 1

2

∑
i∈{0,1}n

∫
Si(Ωn

1∪Ωn
2 )

∑
1≤k,l≤n

tktlc(xk, xl)
p dγ(x)

=

∫
Ωn

∑
1≤k,l≤n

tktlc(xk, xl)
p dγ(x).

Therefore, γ being a Wasserstein optimal transport plan between µ1, . . . , µn, so is γ̃.
The desired result then follows from the uniqueness of the optimal transport plan.

5.2. Mixture distance for group invariant measures: general case. We
now introduce dictionaries of symmetric atoms in order to define a mixture distance
on symmetric measures. Let G be a finite or compact group acting on P2(Ω) through
a group action denoted by ·. We denote by H the normalised Haar measure on G.
Note that for finite groups, this measure corresponds to Dirac masses on the elements
of the group with equal weight that is the inverse of the cardinal of the group.

Let A be a set of atoms such that for all a ∈ A and all g ∈ G, g · a ∈ A. We
define Asym as the set of symmetric measures defined from A as follows:

(5.9) Asym =

{∫
G

g · a H(dg), a ∈ A
}
.

For any a ∈ A, we denote by

S(a) :=

∫
G

g · a H(dg).

Note that, for any g ∈ G and any a ∈ A, S(g ·a) = S(a). This leads us to introduce a
metric on Asym. In order to impose uniqueness up to the group action, we make the
following assumption.

Assumption 5.5. For any a1, a2 ∈ A, there holds S(a1) = S(a2) if and only if
there exists g ∈ G such that a1 = g · a2.

This assumption is well-adapted to atoms generating identifiable mixtures, but
not satisfied in general. Let us give a toy example, taking Ω =

(
− 1

2 ,
1
2

)
and the two-

element group (e, ẽ). Let us consider the following group action: for all a ∈ P2(Ω),

(5.10) e · a = a, ẽ · a = (−Id)#a.

If the dictionary of atoms A is chosen so that (i) for all a ∈ A, (−Id)#a ∈ A and
(ii) the set mixtures M(A) is identifiable, it is easy to show that Assumption 5.5 is
satisfied. However, taking a0( dx) = 21[−1/2,0](x) dx and a1( dx) = 2

1+e−x dx, there

holds 1
2a0 + 1

2 (−Id)#a0 = 1
2a1 + 1

2 (−Id)#a1, while it does not hold that a1 = a0 or
a1 = (−Id)#a0.

A metric on the set of symmetric measures Asym is defined as follows.
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Proposition 5.6. Let d : A × A → R+ be a metric such that for all a0, a1 ∈ A
and all g ∈ G,

(5.11) d(g · a0, g · a1) = d(a0, a1).

Then, the map d̄ : Asym ×Asym → R+ defined by

(5.12) ∀a0, a1 ∈ A, d̄(ā0, ā1) = inf
g∈G

d(a0, g · a1), where ā0 = S(a0), ā1 = S(a1),

is a metric on Asym.

Remark 5.7. Note that the definition given in Proposition 5.6 is equivalent to

∀ā0, ā1 ∈ Asym, d̄(ā0, ā1) = inf
g0,g1∈G

d(g0 ·a0, g1 ·a1), where ā0 = S(a0), ā1 = S(a1),

due to (5.11).

Proof. First, d̄ is clearly symmetric. Second, if d̄(ā0, ā1) = 0, there exists g ∈ G
such that d(a0, g · a1) = 0 and so a0 = g · a1. Therefore, S(a0) = S(g · a1) = S(a1),
i.e. ā0 = ā1. Third, we prove the triangle inequality. Let a0, a1, a2 ∈ A so that
ā0, ā1, ā2 ∈ Asym. It then holds that

d̄(ā0, ā2) = inf
g∈G

d(a0, g · a2) ≤ inf
g∈G

[d(a0, a1) + d(a1, g · a2)] ≤ d̄(ā0, ā1) + d̄(ā1, ā2).

Hence d̄ is a metric.

Proposition 5.8. Asym equipped with the metric d̄ is a geodesic space.

Proof. The proof is similar to that of Proposition 3.6. We consider paths (ρt)t∈[0,1]

with ρt ∈ Asym for all t ∈ [0, 1], we define the length of the path relative to the d̄ metric
as in (3.2), and we show that given any two points ā0, ā1 ∈ Asym, there exists a path
between them the length of which equals the distance d̄(ā0, ā1). We first show using
the triangle inequality that Lend̄(ρ) ≥ d̄(ā0, ā1). The equality is shown by defining
ḡ = argming∈G d(a0, g · a1), where ā0 = S(a0), a0 ∈ A and ā1 = S(a1), a1 ∈ A, and
taking (µt)t∈[0,1] be a constant speed geodesic between a0 and ḡ · a1. Noting that for
all 0 ≤ s, t ≤ 1,

d(µt, µs) = |t− s|d(a0, ḡ · a1).

we define µ̄t = S(µt) to obtain that for any 0 ≤ s, t ≤ 1,

d̄(µ̄t, µ̄s) = inf
g̃∈G

d(µt, g̃ · µs) ≤ d(µt, µs) ≤ |t− s|d(a0, ḡ · a1) = |t− s|d̄(ā0, ā1),

from which we deduce that Lend̄((µt)t∈[0,1]) = d̄(ā0, ā1). We conclude that Asym

equipped with d̄ is a geodesic space.

Having now proved that (Asym, d̄) is a geodesic space, we can now express barycen-
ters in terms of geodesics of atoms.

Corollary 5.9. Let ā0 = S(a0) and ā1 = S(a1) be two elements of Asym. Let
ḡ = argming∈G d(a0, g · a1). The barycenters between ā0 and ā1 belong to Asym and
can be written as

∀t ∈ [0, 1], āt = S(at),

where (at)t∈[0,1] is a constant speed geodesic between a0 and ḡ · a1.

Note that if Assumption 5.5 is satisfied, it is easy to show that the barycenter
between ā0 and ā1 does not depend on the choice of a0 and a1.
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(a) two even densities (b) W2 optimal trans-
port plan

(c) W2,M optimal trans-
port plan

Fig. 5.1. Comparison between W2 and W2,M transport plans between two even densities

5.3. Wasserstein case. In this section, we focus on the particular case where d
is the Wasserstein distance defined in (2.1), and where the group action of G on Pcp(Ω)
is inherited from a group action of G onto Ω as follows: for all g ∈ G, g · a = a#Tg
where Tg : Ω → Ω is defined by Tg(x) = g · x for all x ∈ Ω. For all k ∈ N∗, we
define T kg : Ωk → Ωk as the map such that T kg (x1, · · · , xk) = (g · x1, · · · , g · xk) for
all x1, · · · , xk ∈ Ω. Using a slight abuse of notation, for all k ∈ N∗, and for all
γ ∈ Pp(Ωk), we denote by g · γ = γ#T kg . Then there holds

(5.13) d̄(ā0, ā1) =

[
inf

g0,g1∈G
inf

γ∈Π(g0·a0,g1·a1)

∫
c(x, y)pdγ(x, y)

]1/p

.

By analogy, one can define the following symmetrized optimal transport plan as

γ̄ =

∫
g∈G

g · γ H(dg).

Note that this is not equivalent to the true Wasserstein transport plan. Indeed, the
transport plans are in general different, as shown in Figure 5.1 for two densities being
even hence symmetric with respect to the group action defined in (5.10). This can
be easily understood. For the true Wasserstein distance, the optimal transport plan
satisfies the monotone rearrangment property, while in the case of the symmetrized
distance, the atom is first transported to the closest one, and then the transport plan
is symmetrized. However, this allows for a simple generalization to the multi-marginal
problem.

Definition 5.10 (Symmetric multi-marginal problem). Let Q ∈ N∗. Let t :=
(tq)1≤q≤Q ∈ LQ. Let a1, . . . , aQ ∈ A and ā1 = S(a1), . . . , āQ = S(aQ) for A a set of
atoms. We define the symmetric multi-marginal transport problem by
(5.14)

d̄tQ(ā1, . . . , āQ) =

(
inf

g1,...,gQ∈G
inf

γ∈Π(g1·a1,...,gQ·aQ)
s(x1, . . . , xQ)dγ(x1, . . . , xQ)

)1/p

,

with

s(x1, . . . , xQ) =
1

2

Q∑
q=1

Q∑
q′=1

tqtq′c(xq, xq′)
p.

Denoting by Γtā1,...,āQ the set of minimizers of (5.14), for all γ ∈ Γtā1,...,āQ , we define
the associated symmetrized optimal transport plan as

γ̄ =

∫
g∈G

g · γ H(dg).
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Finally, assuming that Wasserstein barycenters between atoms in A also belong to A,
the barycenters of (ā1, · · · , āQ) with barycentric weights t can be written as

(5.15) bart(ā1, . . . , āQ) = S(bart(ḡ1 · a1, . . . , ḡQ · aQ))

where (ḡ1, . . . , ḡQ) ∈ GQ is such that

(ḡ1, . . . ḡQ) ∈ arginf
g1,...,gQ∈G

inf
γ∈Π(g1·a1,...,gQ·aQ)

s(x1, . . . , xQ)dγ(x1, . . . , xQ).

With this definition, we show that the multi-marginal problem is equivalent to
the symmetric barycentric problem.

Proposition 5.11. The infimum in (5.14) matches the following barycentric mi-
nimization problem

(5.16) d̄tQ(ā1, . . . , āQ)p = inf
ā∈Asym

Q∑
q=1

tqd̄(ā, āq)
p.

Proof. Starting from the right handside of (5.16), and using the distance defini-
tion (5.12), we obtain

inf
ā∈Asym

Q∑
q=1

tqd̄(ā, āq)
p = inf

a∈A

Q∑
q=1

tq[ inf
gq∈G

d(a, gq · aq)]p = inf
g1,...,gQ∈G

inf
a∈A

Q∑
q=1

tqd(a, gq · aq)p.

Then using the equivalence between the multi-marginal problem and the barycentric
problem on the set of atoms A, which is well-posed since the atoms are stable under
Wasserstein barycenter proves (5.16).

5.4. Examples. We now provide a few examples in dimension d = 1, 2 for group
actions defined over permutation groups and the rotation group SO(2). We also
present an example closely related to quantum chemistry applications. For simplicity,
we consider the case Ω = Rd, p = 2 and c(x, y) = ‖x − y‖. All the numerical
results presented below are performed with the same setting as in Section 4.3 for the
W2 barycenters. The W2,M barycenters are computed following Definition (5.15).
In terms of computational cost, let us remark that the computational cost of the
mixture barycenter highly depends on the cost of computing the barycenter between
two atoms. This cost namely depends on the cardinal of the group if finite, or the
complexity of solving (5.12) for infinite groups. However, in the tests presented below,
the cardinal of the considered finite groups, which are the permutation groups, is only
two, therefore the computation of the mixture barycenters stays orders of magnitude
cheaper than the computation of the W2 barycenters.

5.4.1. Parity group. We first consider the case d = 1, Ω = Rd and where G is
defined as the two-element group (e, ẽ) with the group action defined in (5.10). We
compute the W2 and W2,M barycenters for the symmetric measure of a mixture of two
Slater functions with respect to this group action and present them in Figure 5.2. We
observe that the barycenters correspond to the symmetrized version of the barycenters
presented on Figure 4.1 which is naturally expected.

5.4.2. Permutation group. We then consider the permutation group Sn on
the set {1, . . . , n}. We define a group action · on elements of P2(Ω) by

∀a ∈ P2(Ω), ∀σ ∈ Sn, σ · a = a#Tσ,
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 5.2. Wasserstein barycenters between two mixtures of symmetric Slater distributions for
the W2 metric (blue) and the W2,M metric (red)

(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 5.3. Contour plots of W2,M (top) and W2 (bottom) barycenters between two mixtures of
symmetric gaussian distributions.

where

Tσ :

{
Ω→ Ω

(x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)),

which corresponds to a permutation of the variables. It is easy to check that this
indeed defines a group action. For a given set of atomic measures A, the corresponding
set of symmetric atomic measures Asym is then given as the set of elements a defined
for all a ∈ A by

ā =
1

n!

∑
σ∈Sn

σ · a.

The computation of the symmetric barycenters can be then easily done, provided that
the underlying set of atoms allows for an efficient - or even explicit - computation of
distances d. Choosing for the atoms A any set of location-scatter atoms, the compu-
tation of the symmetric Wasserstein distance d̄ only requires the computation of n!
explicit Wasserstein distances, which stays cheap for moderate values of n. In Fig-
ure 5.3 we plot the W2 barycenters between symmetric mixtures of gaussian measures
for the group action defined above and compare it to the symmetric barycenter based
on gaussian mixtures. We observe that the mixture barycenter is smoother than the
W2 barycenter, and obtained at a fraction of the cost.

5.4.3. Application in quantum chemistry. One application of the symmetry
group invariant mixtures presented in the previous section is to compute Wasserstein-
type distances and interpolants (i.e. barycenters) of many-body densities in electronic
structure theory. As mentioned in the introduction, this was the first motivation of
the present work.

In quantum chemistry, the state of a system ofN electrons is fully characterized by
its electronic wavefunction, which is a function ψ ∈ L2(RdN ; C) with d the dimension of
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the underlying physical space (typically d = 1, 2, 3). This wavefunction is normalized
in the sense that ∫

RdN

|ψ|2 = 1.

Note that we omit here the spin variables for simplicity of the presentation. Since
electrons are fermions, the function ψ is antisymmetric with respect to permutations
of the ordering of the variables. More precisely, for all σ ∈ SN that is a permutation
of the set {1, · · · , N} and all (x1, . . . , xN ) ∈ (Rd)N , there holds

ψ(xσ(1), . . . , xσ(N)) = ε(σ)ψ(x1, . . . , xN ),

where ε(σ) denotes the signature of the permutation σ. In electronic structure calcu-
lations, such a wavefunction is often approximated as a finite linear combination of so-
called Slater determinants, which are defined as follows. For any set Φ = {φ1, . . . , φN}
of N functions of L2(Rd; C), the associated Slater determinant SΦ is defined as the
function in L2(RdN ; C) such that for almost all (x1, . . . , xN ) ∈ (Rd)N ,

SΦ(x1, . . . , xN ) =
1

ZΦ
det


φ1(x1) φ1(x2) . . . φ1(xN )
φ2(x1) φ2(x2) . . . φ2(xN )

...
...

. . .
...

φN (x1) φN (x2) . . . φN (xN )

 ,

where ZΦ > 0 is the normalisation constant such that
∫

RdN |SΦ|2 = 1.
Since the wavefunction is defined on a high-dimensional space when the number

of electrons in the system is large, it is more convenient to handle the (normalized)
one-body density which is defined as follows:

∀x1 ∈ Rd, ρ1(x1) :=

∫
(x2,...,xN )∈(Rd)N−1

|ψ(x1, x2, . . . , xN )|2 dx2 . . . dxN .

More generally, for all 1 ≤ n ≤ N , the n-body density associated to the wavefunction
ψ is defined as follows:
(5.17)

∀x = (x1, x2, . . . xn) ∈ (Rd)n, ρn(x) :=

∫
(xn+1,...,xN )∈(Rd)N−n

|ψ(x)|2 dxn+1 . . . dxN .

For all 1 ≤ n ≤ N , ρn can then be seen as the density associated to a probability
measure on Rdn.

Due to the linear approximation with Slater determinants based on gaussian func-
tions often used in quantum chemistry codes to approximate the wave-function, as
well as the symmetry constraints on the n-body densities, it seems natural to approx-
imate n-body densities by mixtures of squared Slater determinants with Gaussian
functions. More precisely, for all mi ∈ Rd and Σi ∈ Sd for i = 1, . . . , n, denoting by
m := (m1, . . . ,mn) and by Σ := (Σ1, . . . ,Σn), one can define

aSDm,Σ(dx1, . . . , dxn) :=
1

Ym,Σ

∣∣SΦm,Σ
(x1, . . . , xn)

∣∣2 dx1 . . . dxn,

where Φm,Σ := {Gm1,Σ1 , . . . , Gmn,Σn} and where Ym,Σ > 0 is the normalization
constant such that aSDm,Σ is a probability measure on Rdn.

Denoting by

AndSD :=
{
aSDm,Σ, m ∈ (Rd)n, Σ ∈ (Sd)n

}
,
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 5.4. Contour plots of W2,M (top) and W2 (bottom) barycenters between two mixtures of
squared Slater determinants based on gaussian functions.

electronic n-body densities of the form (5.17) can be approximated as elements of
M
(
AndSD

)
. We would therefore define a Wasserstein-type distance and Wasserstein-

type barycenters on this set of mixtures. To this aim, we exploit the following remark.
Consider Andg,BD the set of gaussian measures on Rnd with block-diagonal covariance
matrices, i.e.

Andg,BD :=
{
gm,diag(Σ), m ∈ (Rd)n, Σ ∈ (Sd)n

}
,

where diag(Σ) is the nd × nd block-diagonal matrix with diagonal blocks given by
Σ1, . . . ,Σn. It can be easily checked that Andg,BD embedded with the Wasserstein
distance is a geodesic space.

Denoting by Andg,sym the set of symmetrized gaussian measures obtained from the

dictionnary Andg,BD via the permutation symmetry group introduced in Section 5.4.2,

it can easily be checked that M
(
AndSD

)
is isomorphic to M

(
Andg,sym

)
. More precisely,

the following application I is an isomorphism:

I :

{
M
(
AndSD

)
→ M

(
Andg,sym

)∑K
k=1 πka

SD
mk,Σk 7→

∑K
k=1 πkgmk,diag(Σk),

where for all 1 ≤ k ≤ K, we denote by mk ∈ (Rd)n, Σk ∈ (Sd)n, by (πk)1≤k≤K an ele-
ment of LK , and by gmk,diag(Σk) the symmetrized gaussian obtained from gmk,diag(Σk).

It is then natural to define a Wasserstein-type distance dSD on M
(
AndSD

)
as follows:

∀a1, a2 ∈M
(
AndSD

)
, dSD(a1, a2) := d(I(a1), I(a2)),

where d is the symmetry-invariant Wasserstein distance defined in (5.13). Wasserstein-
like barycenters are then also naturally defined using the isomorphism I.

To illustrate this case, we plot on Figure 5.4 the barycenters between two mix-
tures of squares of Slater determinants for the W2 and W2,M distances. First we
observe that both types of barycenters satisfy that they are zero on the diagonal,
as is constrained by the form of the densities for the W2,M distance, and naturally
expected from Proposition 5.3 for the 2-Wasserstein barycenters. Second, we observe
that the mixture Wasserstein barycenters are smoother than the W2-barycenters.

The application of the Wasserstein-type distance and Wasserstein-type barycen-
ters presented here to accelerate computations in quantum chemistry will be the object
of the future work [12].
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75 (e) t = 1

Fig. 5.5. Contour plots of W2,M (top) and W2 (bottom) barycenters between two mixtures of
SO(2)-symmetric measures based on Slater-type distributions

5.4.4. Rotation group SO(2). Finally, we consider the case where Ω = R2 and
the two-dimensional rotation group SO(2), for which we can, as for the permutation
group, define a natural group action · via

∀a ∈ A, ∀Q ∈ SO(2), (Q · a) = a#TQ,

with TQ : R2 3 x 7→ Qx. Note that such a group action can similarly be defined for
SO(n). From definition (5.9) the symmetric atoms ā of Asym write

ā =

∫
Q · a H(dQ).

We now provide a numerical example, taking A as the set of two-dimensional slater-
type distributions. The main difficulty and difference with the previous examples
is that the group is not finite. Therefore, problem (5.12) which has to be solved
to compute the distance between elements in Asym as well as barycenters is now
a continuous optimization problem. In this two-dimensional case, there is in fact
only one parameter to optimize which is the angle of the rotation, and we chose to
perform this optimization numerically. This increases the computational cost of the
distance and barycenters, however the computational cost stays way below the cost of
computing the W2 Wasserstein barycenters. In Figure 5.5 we provide an example of
barycenters between two mixtures of symmetric distributions, themselves based on one
slater function each. We observe that the W2 Wasserstein barycenter computed with
the Sinkhorn algorithm is way less regular than the modified Wasserstein barycenter.
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