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ABSTRACT
JSON Schema is a schema language for JSON documents, based on
a complex combination of structural operators, Boolean operators
(negation included), and recursive variables. The static analysis of
JSON Schema documents comprises practically relevant problems,
including schema satisfiability, inclusion, and equivalence. These
problems can be reduced to witness generation: given a schema,
generate an element of the schema — if it exists — and report
failure otherwise. Schema satisfiability, inclusion, and equivalence
have been shown to be decidable. However, no witness generation
algorithm has yet been formally described. We contribute a first,
direct algorithm for JSON Schema witness generation, and study
its effectiveness and efficiency in experiments over several schema
collections, including thousands of real-world schemas.
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1 INTRODUCTION
JSON Schema is a schema language based on a set of assertions that
describe features of the JSON values described and on logical and
structural combinators for these assertions.

While validation of a JSON value 𝐽 with respect to a schema 𝑆 ,
denoted 𝐽 ⊨ 𝑆 , is a well-understood problem for which the JSON
Schema Test Suite [25] lists over 50 validator tools at the time of
writing, for the main static analysis problems, which we describe
below, we still lack well-principled tools.

Inclusion 𝑆 ⊆ 𝑆 ′: does, for each value 𝐽 , 𝐽 ⊨ 𝑆 ⇒ 𝐽 ⊨ 𝑆 ′?
Checking schemas for inclusion (or containment) is of great prac-
tical importance: if the output format of a tool is specified by a
schema 𝑆 , and the input format of a different tool by a schema 𝑆 ′,
the problem of format compatibility is equivalent to schema inclu-
sion 𝑆 ⊆ 𝑆 ′; given the high expressive power of JSON Schema,
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this “format” may actually include detailed information about the
range of specific parameters. For example, the IBMML framework
LALE [15] adopts an incomplete inclusion checking algorithm for
JSON Schema, to improve safety of ML pipelines [22].

Equivalence 𝑆 ≡ 𝑆 ′: does, for each value 𝐽 , 𝐽 ⊨ 𝑆 ⇔ 𝐽 ⊨ 𝑆 ′?
Checking equivalence builds upon inclusion, and is relevant in de-
signing workbenches for schema analysis and simplification [21].

Satisfiability of 𝑆 : does a value 𝐽 exist such that 𝐽 ⊨ 𝑆?
Witness generation for 𝑆 , a constructive generalization of satis-

fiability: given 𝑆 , generate a value 𝐽 such that 𝐽 ⊨ 𝑆 , or return
“unsatisfiable” if no such value exists. In the first case, we call 𝐽 a
witness. Schema inclusion 𝑆 ⊆ 𝑆 ′ can be immediately reduced to
witness generation for 𝑆 ∧ ¬𝑆 ′, but with a crucial advantage: if a
witness 𝐽 for 𝑆 ∧ ¬𝑆 ′ is generated, we can provide users with an
explanation: 𝑆 is not included in 𝑆 ′ because of values such as 𝐽 . We
can similarly solve a “witnessed” version of equivalence: given 𝑆

and 𝑆 ′, either prove that one is equivalent to the other, or provide
an explicit witness 𝐽 that belongs to one, but not to the other.

The techniques and the notions that we present in this paper
can be also useful for the design of example generation algorithms,
that is, algorithms that do not just generate one arbitrary witness,
but generate many of them, according to some heuristics aimed to
fulfill criteria of “completeness” and “realism”.

Open challenges. Witness generation for JSON Schema is dif-
ficult. Existing tools are incomplete and struggle with this task
(as we will show in our experiments). First of all, JSON Schema
includes conjunction, disjunction, negation, modal (or structural)
operators, recursive second-order variables, and recursion under
negation. Secondly, for each JSON type, the different structural op-
erators have complex interactions, as in the following example,
where "required" and the negated "patternProperties" force
the presence of fields whose names match "^a" and "^abz$" (this
is explained in the paper), "maxProperties" : 1 forces these two
fields to be one, and, finally, "patternProperties" forces the value
of that field to satisfy var2, since "abz" also matches "z$".

{"required":["abz"],
"not":{"patternProperties":{"^a":{"$ref":"#/$defs/var1"}}},
"maxProperties":1,
"patternProperties":{"z$":{"$ref":"#/$defs/var2"}},
"$defs" : ...

}

Each aspect would make the problem computationally intracta-
ble by itself. Their combination exacerbates the difficulty of the



design of a complete algorithm that is practical, that is, of an algo-
rithm that is correct and complete by design, but is also able to run
in a reasonable time over the vast majority of real-world schemas.

Contributions. The main contribution of this paper is an origi-
nal sound and complete algorithm for checking the satisfiability
of an input schema 𝑆 , generating a witness 𝐽 when the schema
is satisfiable. Our algorithm supports the whole language with-
out uniqueItems. While the existence of an algorithm for this spe-
cific problem follows from the results in [17], where the problem
is proved to be EXPTIME-complete, we are the first to explicitly
describe an algorithm, and specifically one that has the potential
to work in reasonable time over schemas of realistic size. Our al-
gorithm is based on a set of formal manipulations of the schema,
some of which, such as preparation, are unique to JSON Schema,
and have not been proposed before in this form. Particularly rele-
vant in this context is the notion of lazy and-completion, which we
will describe later. In this paper, we detail each algorithm phase,
show that each is in 𝑂 (2poly (N ) ), and focus on preparation and
generation of objects, the phases completely original to this work.

The practical applicability of our algorithm is proved by our ex-
perimentation, which is another contribution of this work. Our ex-
periments are based on four real-world datasets, on a synthetic
dataset, and on a handwritten dataset. Real-world datasets com-
prise 6,427 unique schemas extracted, through an extensive data
cleaning process, from a large corpus of schemas crawled from
GitHub [13] and curated by us for errors and redundancies; the
other datasets, already used in [22], are related to specific applica-
tion domains and originated from Snowplow[4], The Washington
Post [27], and Kubernetes [23]. The synthetic dataset is synthesized
from the standard schemas provided by JSON Schema Org [25],
from which we derive schemas that are known to be satisfiable or
unsatisfiable by design [6]. The handwritten dataset is specifically
engineered to test the most complex aspects of the JSON Schema
language. The experiments show that our algorithm is complete,
and that, despite its exponential complexity, it behaves quite well
even on schemas with tens of thousands of nodes.

Paper outline. In Section 2 we review related work. In Section 3
we describe our algebraic representation of JSON Schema. In Sec-
tions 4–6, we describe the algorithm. In Section 7 we present our
experimental evaluation. We conclude in Section 8.

2 RELATEDWORK
Overviews over schema languages for JSON can be found in [10, 11,
17, 26]. Pezoa et al. [26] introduced the first formalization of JSON
Schema and showed that it cannot be captured by MSO or tree
automata because of the uniqueItems constraints. While they fo-
cused on validation and proved that it can be decided in𝑂 ( |𝐽 |2 |𝑆 |)
time, they also showed that JSON Schema can simulate tree au-
tomata. Hence, schema satisfiability is EXPTIME-hard.

In [17] Bourhis et al. refined the analysis of Pezoa et al. They
mapped JSON Schema onto an equivalent modal logic, called re-
cursive JSL, and proved that satisfiability is EXPTIME-complete for
recursive schemas without uniqueItems, and it is in 2EXPTIME for
recursive schemas with uniqueItems. Their work is extremely im-
portant in establishing complexity bounds. Since they map JSON

Schema onto recursive JSL logic, and provide a specific kind of al-
ternating tree automata for this logic, they already provide an indi-
rect indication of an algorithm for witness generation. However,
classical reachability algorithms for alternating automata are de-
signed to prove complexity upper bounds, not as practical tools.
They are typically based on the exploration of all subsets of the
state set of the automaton [19], hence on a sequence of complex
operations on a set of sets whose dimension may be in the realm of
210,000. While exponentiality cannot be avoided in the worst case,
it is clear that we need a different approach when designing a prac-
tical algorithm.

To the best of our knowledge, the only tool that is currently
available to check the satisfiability of a schema is the containment
checker described by Habib et al. [22]. While it has been designed
for schema containment checking, e.g., 𝑆1 ⊆ 𝑆2, it can also be ex-
ploited for schema satisfiability since 𝑆 is satisfiable if and only if
𝑆 ⊈ 𝑆 ′, where 𝑆 ′ is an empty schema. The approach of Habib et
al. bears some resemblances to ours, e.g., schema canonicalization
has been first presented there, but its ability to cope with negation
is very limited as well as its support for recursion.

Several tools (see [16] and [1]) for example generation exist. They
generate JSON data starting from a schema. These tools, however,
are based on a trial-and-error approach and cannot detect unsatis-
fiable schemas. We compare our tool with [16] in our experiments.

Own prior work. In our technical report [14], we discuss nega-
tion-completeness for JSON Schema, that is, we show how pairs of
schema operators such as "patternProperties"-"required" and
"items"-"contains" are almost dual under negation, as ∧-∨ or ∀-
∃ are, but not exactly. In the process, we define an algorithm for
not-elimination.

A preliminary version of the algorithm described in the current
paper has been presented in [12]. In that paper we provided an
hint on the different phases of the algorithm, while here we go in
much more detail. An earlier prototype implementation has been
presented in tool demos [7, 8, 21].

This paper is accompanied by a full version [9], containing de-
tailed proofs and additional experiments.

3 JSON SCHEMA AND THE ALGEBRA
3.1 JSON data model
Each JSON value belongs to one of the six JSON Schema types:
nulls, Booleans, decimal numbersNum, strings Str, objects, arrays.

𝐽 ::= 𝐵 | 𝑂 | 𝐴 JSON expr
𝐵 ::= null | true | false | 𝑞 | 𝑠

𝑞 ∈ Num, 𝑠 ∈ Str Basic values
𝑂 ::= {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛}

𝑛 ≥ 0, 𝑖 ≠ 𝑗 ⇒ 𝑙𝑖 ≠ 𝑙 𝑗 Objects
𝐴 ::= [𝐽1, . . . , 𝐽𝑛] 𝑛 ≥ 0 Arrays

Definition 1 (JSON objects). We interpret a JSON object {𝑙1 :
𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛} as a set of pairs (members) {(𝑙1, 𝐽1), . . . , (𝑙𝑛, 𝐽𝑛)},
where 𝑖 ≠ 𝑗 ⇒ 𝑙𝑖 ≠ 𝑙 𝑗 , and an array [𝐽1, . . . , 𝐽𝑛] as an ordered
list; JSON value equality is defined accordingly, that is, by ignor-
ing member order when comparing objects.



3.2 JSON Schema
We base our work on JSON Schema Draft-06 [31], as it supports
virtually all schemas that we could crawl from GitHub [13]. The
successive Draft 2019-09 [30] made validation dependent on an-
notations, a questionable semantic shift that we prefer not to em-
brace for now. However, we include in our algebra the operators
"minContains" and "maxContains" introduced with Draft 2019-09,
since they are very interesting in the context of witness generation,
and their semantics does not depend on annotations.

JSON Schema uses JSON syntax. A schema is a JSON object that
collects assertions that are members, i.e., name-value pairs, where
the name indicates the assertion and the value collects its param-
eters, as in "minLength" : 3, where the value is a number, or in
"items" : {"type" : ["boolean"]}, where the value for "items" is
an object that is itself a schema. We next describe JSON Schema by
giving its translation into an algebra.

3.3 The core and the positive algebras
In JSON Schema, themeaning of some assertions is modified by the
surrounding assertions, making formal manipulation much more
difficult. Moreover, the language is rich in redundant operators. In
our implementation, we therefore map an input schema onto an
algebraic representation based on a core algebra, an algebraic ver-
sion of JSON Schema with less redundant operators. We then elim-
inate negative expressions through not-elimination (Section 5.2),
by using a positive algebra without negation but with three new
operators: notMulOf (𝑛), pattReq(𝑟 : 𝑆), and contAfter(𝑖+ : 𝑆).

Our algebras extend JSON Schema regular expressions with ex-
ternal intersection and complement operators 𝑟 ⊓ 𝑟 ′ and 𝑟 ; this
extension is discussed in Section 3.4. The syntax of the two alge-
bras, core and positive, is presented below.

𝑚 ∈Num−∞, 𝑀 ∈Num∞, 𝑙 ∈N>0, 𝑖 ∈N, 𝑗 ∈N∞, 𝑞 ∈Num, 𝑘 ∈Str
𝑇 ::= Arr | Obj | Null | Bool | Str | Num
𝑟 ::= Any regular expression | 𝑟 | 𝑟1 ⊓ 𝑟2
𝑏 ::= true | false
𝑆 ::= ifBoolThen(𝑏) | pattern(𝑟 ) | betw𝑀

𝑚 | xBetw𝑀
𝑚

| mulOf (𝑞) | props(r : 𝑆) | req(k) | pro𝑗
𝑖

| item(𝑙 : 𝑆) | items(𝑖+ : 𝑆) | cont𝑗
𝑖
(𝑆)

| type(𝑇 ) | x | 𝑆1 ∧ 𝑆2 | 𝑆1 ∨ 𝑆2
core: | ¬𝑆

positive: | notMulOf (𝑞) | pattReq(𝑟 : 𝑆) | contAfter(𝑖+ : 𝑆)
𝐸 ::= 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛
𝐷 ::= 𝑆 defs (𝐸)

Num−∞ are the decimal numbers extended with −∞, and simi-
larly for Num∞ and N∞. N>0 is N without 0, used in item(𝑙 : 𝑆).

We distinguish Boolean operators (∧, ∨ and ¬), variables (x),
and Typed Operators (TO — all the others). All TOs different from
type(𝑇 ) have an implicative semantics: “if the instance belongs to
the type 𝑇 then . . . ”, so that they are trivially satisfied by every
instance not belonging to type 𝑇 . We say that they are implicative
typed operators (ITOs).

The operators of the core algebra strictly correspond to those of
JSON Schema, and in particular to their implicative semantics.

Informally, an instance 𝐽 of the core or positive algebra satisfies
an assertion 𝑆 if:

• ifBoolThen(𝑏): if the instance 𝐽 is a boolean, then 𝐽 = 𝑏.
• pattern(𝑟 ): if 𝐽 is a string, then 𝐽 matches 𝑟 .
• betw𝑀

𝑚 : if 𝐽 is a number, then𝑚 ≤ 𝐽 ≤ 𝑀 . xBetw𝑀
𝑚 is the

same with extreme excluded.
• mulOf (𝑞): if 𝐽 is a number, then 𝐽 = 𝑞× 𝑖 for some integer 𝑖 .
𝑞 is any number, i.e., any decimal number (Section 3.1).

• props(r : 𝑆) if 𝐽 is an object and if (𝑘, 𝐽 ′) is a member of 𝐽
where 𝑘 matches the pattern 𝑟 , then 𝐽 ′ satisfies 𝑆 . Hence, it
is satisfied by any instance that is not an object and also by
any object where no member name matches 𝑟 .

• req(k): if 𝐽 is an object, then it contains at least one member
whose name is 𝑘 .

• pro𝑗
𝑖
: if 𝐽 is an object, then it has between 𝑖 and 𝑗 members.

• item(𝑙 : 𝑆): if 𝐽 is an array [𝐽1, . . . , 𝐽𝑛] (𝑛 ≥ 0) and if 𝑙 ≤ 𝑛,
then 𝐽𝑙 satisfies 𝑆 . Hence, it is satisfied by any 𝐽 that is not
an array and also by any array that is strictly shorter than 𝑙 :
it does not force the position 𝑙 to be actually used.

• items(𝑖+ : 𝑆): if 𝐽 is an array [𝐽1, . . . , 𝐽𝑛], then 𝐽𝑙 satisfies 𝑆
for every 𝑙 > 𝑖 . Hence, it is satisfied by any 𝐽 that is not an
array and by any array shorter than 𝑖 .

• cont𝑗
𝑖
(𝑆): if 𝐽 is an array, then the total number of elements

that satisfy 𝑆 is included between 𝑖 and 𝑗 .
• type(𝑇 ) is satisfied by any instance belonging to the prede-
fined JSON type 𝑇 (Str, Num, Bool, Obj, Arr, and Null).

• x is equivalent to its definition in the environment 𝐸 associ-
ated with the expression.

• 𝑆1 ∧ 𝑆2: both 𝑆1 and 𝑆2 are satisfied.
• 𝑆1 ∨ 𝑆2: either 𝑆1, or 𝑆2, or both, are satisfied.
• ¬𝑆 : 𝑆 is not satisfied.
• notMulOf (𝑛): if 𝐽 is a number, then is not a multiple of 𝑛.
• pattReq(𝑟 : 𝑆): if 𝐽 is an object, then it contains at least one
member (𝑘, 𝐽 ) where 𝑘 matches 𝑟 and 𝐽 satisfies 𝑆

• contAfter(𝑖+ : 𝑆): if 𝐽 is an array [𝐽1, . . . , 𝐽𝑛], then it con-
tains at least one element 𝐽 𝑗 with 𝑗 > 𝑖 that satisfies 𝑆 .

• 𝐷 = 𝑆 defs (𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛): 𝐽 satisfies 𝑆 when every 𝑥𝑖
is interpreted as an alias for the corresponding 𝑆𝑖 .

Variables in 𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛 are mutually recursive,
but we require recursion to be guarded. Let us say that 𝑥𝑖 directly
depends on 𝑥 𝑗 if some occurrence of 𝑥 𝑗 appears in the definition of
𝑥𝑖 without being in the scope of an ITO. Recursion is not guarded if
the transitive closure of the relation “directly depends on” contains
a reflexive pair (𝑥, 𝑥). Informally, recursion is guarded iff every
cyclic chain of dependencies traverses an ITO. An environment
𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛 is guarded if recursion is guarded in 𝐸. An
environment 𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛 is closing for 𝑆 if all variables
in 𝑆1, . . . , 𝑆𝑛 and in 𝑆 are included in 𝑥1, . . . , 𝑥𝑛 .

The three operators added in the positive algebra do not directly
correspond to JSON Schema operators, but can still be expressed
in JSON Schema, through the negation ofmulOf, props, and items,
as follows, where 𝑆1 ⇒ 𝑆2 is an abbreviation for ¬𝑆1 ∨ 𝑆2:

notMulOf (𝑛) = type(Num) ⇒ ¬mulOf (𝑛)
pattReq(𝑟 : 𝑆) = type(Obj) ⇒ ¬props(r : ¬𝑆)
contAfter(𝑖+ : 𝑆) = type(Arr) ⇒ ¬items(𝑖+ : ¬𝑆)



In [9] we formalize the official JSON Schema semantics by defin-
ing a function [[𝑆]]𝐸 that associates a set of JSON values to any
assertion 𝑆 whose variables are defined by the guarded schema 𝐸,
also in cases of mutual recursion under negation.

Hereafter we will often use the redundant operators t and f ,
where t is satisfied by any JSON value, and f is satisfied by none.

3.4 About regular expressions
3.4.1 Mapping JSON Schema regular expressions onto standard REs.
Following the example of [17], we represent JSON Schema regu-
lar expressions (REs) using standard REs. In practice, in our im-
plementation we map every JSON Schema RE into a standard RE,
using a simple incomplete algorithm,1 and we are currently able to
translate more than 97% of the distinct patterns in our corpus. The
others mostly contain look-ahead and look-behind.

3.4.2 Extending REs with external complement and intersection.
In our algebra, we use a form of externally extended REs (EEREs),
where the two extra operators are not first class RE operators, so
that one cannot write (𝑟 )∗, but they can be used at the outer level:

𝑟 ::= Any regular expression | 𝑟 | 𝑟1 ⊓ 𝑟2

This extension does not affect the expressive power of regular ex-
pressions but affects their succinctness, hence the complexity of
problems such as emptiness checking. We are going to exploit this
expressive power in four different ways:

(1) in order to translate "additionalProperties" : 𝑆 as
props( (𝑟1 | . . . |𝑟𝑚) : ⟨𝑆⟩) (Section 3.5);

(2) in order to translate "propertyNames" : 𝑆 (Section 3.5);
(3) during not-elimination (Section 5.2), where pattern(𝑟 ) is used

to rewrite ¬pattern(𝑟 );
(4) during object preparation (Section 6.3.3), where we must ex-

press the intersection and the difference of patterns that ap-
pear in props(𝑟 : 𝑆) and pattReq(𝑟 : 𝑆) operators.

During the final phases of our algorithm (Section 6.3), we need
to solve the following 𝑖-enumeration problem (which generalizes
emptiness) for our EEREs: for a given EERE 𝑟 and for a given 𝑖 ,
either return 𝑖 words that belong to 𝐿(𝑟 ), where 𝐿(𝑟 ) is the lan-
guage of 𝑟 , or return “impossible” if |𝐿(𝑟 ) | < 𝑖 . It is well-known
that emptiness of REs extended (internally) with negation and in-
tersection is non-elementary [28]. However, in the full paper [9]
we show that for our external-only extension 𝑖-enumeration and
emptiness can be solved in time 𝑂 (𝑖2 × 2𝑛).

3.5 From JSON Schema to the Algebra
The translation from JSON Schema to the algebra is rather intu-
itive, and is described in [9]. Essentially, each JSON Schema asser-
tion is translated into the corresponding algebraic assertion. How-
ever, attention must be paid to certain families of assertions, which
must be grouped and translated together:

• if, then, else, translated using Boolean operators;
• property assertions additionalProperties, properties,
and patternProperties (here indicated as adPr, pr, and
paPr): pr, paPr correspond to our props operator, while "adPr" :
𝑆 associates a schema 𝑆 to any name that does not match ei-
ther pr or paPr arguments, and is translated as props( (𝑟1 | . . . |𝑟𝑚) :

1Dominik Freydenberger suggested this algorithm to us, in personal communication.

𝑆), where 𝑟1, . . . , 𝑟𝑚 are patterns that represent all arguments
of all pr or paPr that occur in the same schema;

• additionalItems, items, translated using the algebra as-
sertion items( 𝑗+ : 𝑆), item(𝑙 : 𝑆);

• minContains, maxContains, contains, which are translated
as cont𝑀𝑚 (. . .).

Some redundant operators are mapped to simpler operators:
• "oneOf" : [𝑆1, . . . , 𝑆𝑛] requires that a value 𝐽 satisfies one of
𝑆1, . . . , 𝑆𝑛 and violates all the others; it is translated using
Boolean operators and variables;

• "propertyNames" : S requires that every member name sat-
isfies 𝑆 ; it is translated as props(PattOfS(¬𝑆) : f), where
PattOfS(¬𝑆) is a pattern that uses 𝑟 and ⊓ in order to en-
code all strings that violate 𝑆 ;

• the "dependencies" assertion specifies that if the instance
contains a member with name 𝑘𝑖 , then it must also satisfy
some other assertions; it is translated using req and⇒;

• "const" : 𝐽 and "enum" : [𝐽1, . . . , 𝐽𝑛], used to restrict a
schema to a finite set of values; they are translated to struc-
tural operators as in [22].

Finally, the definitions-references mechanism of JSON Schema
(the $ref : path operator) is translated into our simpler mecha-
nism, based on variables and environments.

4 THE STRUCTURE OF THE ALGORITHM
In a recursive algorithm for witness generation, in order to gener-
ate a witness for an ITO such as pattReq(𝑟 : 𝑆), one can generate a
witness 𝐽 for 𝑆 and use it to build an object with a member whose
name matches 𝑟 and whose value is 𝐽 . The same approach can be
followed for the other ITOs. For the Boolean operator 𝑆1 ∨ 𝑆2, one
recursively generates witnesses of 𝑆1 and 𝑆2.

Negation and conjunction are much less direct: there is no way
to generate a witness for ¬𝑆 starting from a witness for 𝑆 . Also,
given a witness for 𝑆1, if it is not a witness for 𝑆1∧𝑆2, we may need
to try infinitely many others before finding one that satisfies 𝑆2 as
well. We solve this problem as follows. We first eliminate ¬ using
not-elimination, then we bring all definitions of variables into DNF
so that conjunctions are limited to sets of ITOs that regard the
same type (Section 5). We then perform a form of and-elimination
over these homogeneous conjunctions (preparation), andwe finally
use these “prepared” homogeneous conjunctions to generate the
witnesses, through a bottom-up iterative process (Section 6).

Preparation is the crucial step: here we make all the interactions
between the conjuncted ITOs explicit, which may require the gen-
eration of new variables. This phase is delicate because it is expo-
nentially hard in the general case, and we must organize it in order
to run fast enough in typical case. Moreover, it may generate infin-
itely many new variables, which we avoid with a technique based
on ROBDDs, that we define in Section 5.1.

5 TRANSFORMATION IN POSITIVE,
STRATIFIED, GROUND, CANONICAL DNF

We will illustrate the preliminary phases of our algorithm by ex-
ploiting the running example of Figure 1.



(a
) 𝑟 : pattReq(𝑏 : x) ∨ props(a : y) ∨ props(a.∗ : ¬r ∨ x),

𝑥 : type(Arr), 𝑦 : type(Num)

(b
)

𝑟 : pattReq(𝑏 : x) ∨ props(a : y) ∨ props(a.∗ : co(r) ∨ x),
𝑥 : type(Arr), 𝑦 : type(Num),
co(r) : type(Obj) ∧ props(𝑏 : co(x)) ∧ pattReq(a : co(y))

∧pattReq(a.∗ : r ∧ co(x)),
co(x) : type(Null)∨type(Bool)∨type(Num)∨type(Str)∨type(Obj),
co(y) : type(Null)∨ type(Bool)∨ type(Str)∨type(Obj)∨type(Arr)

(c
)

𝑟 : pattReq(𝑏 : x) ∨ props(a : y) ∨ props(a.∗ : crx),
co(r) : type(Obj) ∧ props(𝑏 : co(x)) ∧ pattReq(a : co(y))

∧pattReq(a.∗ : rcx),
crx : co(r) ∨ x, rcx : r ∧ co(x)

(d
)

crx : {type(Obj), props(𝑏 : co(x)), pattReq(a : co(y)),
pattReq(a.∗ : rcx) } ∨ {type(Arr) },

rcx : {(pattReq(𝑏 : x), type(Null) } ∨ {(pattReq(𝑏 : x), type(Bool) }
∨ {(pattReq(𝑏 : x), type(Num) } ∨ {(pattReq(𝑏 : x), type(Str) }
∨ {(pattReq(𝑏 : x), type(Obj) }
∨ {props(a : y), type(Null) } ∨ {props(a : y), type(Bool) }
∨ {props(a : y), type(Num) } ∨ {props(a : y), type(Str) }
∨ {props(a : y), type(Obj) }
∨ {props(a.∗ : crx), type(Null) } ∨ . . .

∨ {props(a.∗ : crx), type(Obj) }

(e
)

𝑟 : {type(Obj), pattReq(𝑏 : x) } ∨ {type(Obj), props(a : y) }
∨{type(Obj), props(a.∗ : crx} ∨ {type(Null) }
∨{type(Bool) } ∨ {type(Num) } ∨ {type(Str) } ∨ {type(Arr) },

rcx : {type(Obj), pattReq(𝑏 : x) } ∨ {type(Obj), props(a : y) }
∨{type(Obj), props(a.∗ : crx) } ∨ {type(Null) }
∨{type(Bool) } ∨ {type(Num) } ∨ {type(Str) } ∨ {type(Arr) }

Figure 1: (a) Original term. (b) After not-elimination. (c) Af-
ter stratification, omitting unaffected variables. (d) After
transformation to GDNF. (e) After canonicalization.

5.1 Premise: ROBDD reduction
Two expressions built with variables and Boolean operators are
Boolean-equivalent when they can be proved equivalent using the
laws of the Boolean algebra. A Reduced Ordered Boolean Deci-
sion Diagram (ROBDD) is a data structure that provides the same
representation for two such expressions if, and only if, they are
Boolean-equivalent [18]. Hence, whenever we define a variable 𝑥
whose body 𝑆𝑥 is a Boolean combination of variables, in any phase
of the algorithm, we perform the ROBDD reduction: we compute
the ROBDD representation of 𝑆𝑥 , robdd (𝑆𝑥 ), and we store a pair
𝑥 : robdd (𝑆𝑥 ) in the ROBDDTab table, unless a pair 𝑦 : robdd (𝑆𝑦)
with robdd (𝑆𝑥 ) = robdd (𝑆𝑦) is already present. In this case, we
substitute every occurrence of 𝑥 with 𝑦. This technique makes the
entire algorithm more efficient and, crucially, it ensures termina-
tion of the preparation phase (Section 6.3.3).

5.2 Not-elimination
Not-elimination, described in detail in [14], proceeds in two phases:
not-completion of variables and not-rewriting.

During not-completion of variables, for every variable 𝑥𝑛 : 𝑆𝑛
we define a corresponding 𝑛𝑜𝑡_𝑥𝑛 : ¬𝑆𝑛 . After not-completion,

every variable has a complement variable co(xi) = 𝑛𝑜𝑡_𝑥𝑖 and
co(not_xi) = 𝑥𝑖 . The complement co(x) is used for not-elimination.

During not-rewriting, we rewrite every expression ¬𝑆 into an
expressionwhere the negation has been pushed inside, by applying
the rules reported in [14], which include the following (Fig. 1(b)):

¬(pattern(𝑟 )) = type(Str) ∧ pattern(𝑟 )
¬(props(r : 𝑆)) = type(Obj) ∧ pattReq(r : ¬𝑆)
¬(pattReq(𝑟 : 𝑆)) = type(Obj) ∧ props(𝑟 : ¬𝑆)
¬(item(𝑙 : 𝑆)) = type(Arr) ∧ item(𝑙 : ¬𝑆𝑖 ) ∧ cont∞

𝑙
(t)

¬(items(𝑖+ : 𝑆)) = type(Arr) ∧ contAfter(𝑖+ : ¬𝑆)
¬(contAfter(𝑖+ : 𝑆)) = type(Arr) ∧ items(𝑖+ : ¬𝑆)
¬(x) = co(x)

Not-elimination of a schema of size𝑁 produces an equivalent sche-
ma of size 𝑂 (𝑁 ) [14]; hereafter, we use 𝑁 to indicate the size of
the abstract syntax tree of the original schema, where numbers
and strings are represented in binary notation, assuming that the
𝑖 and 𝑗 constants different from ∞ that appear in item(𝑖 : 𝑆),
items(𝑖+ : 𝑆), contAfter(𝑖+ : 𝑆), cont𝑗

𝑖
(𝑆), and pro𝑗

𝑖
, are smaller

than the input size. This assumption is justified by the observation
that in practical cases these numbers tend to be extremely small in
comparison to the input size.

5.3 Stratification and Transformation in
Canonical Guarded DNF

Stratification. We say that a schema is stratified when every schema
argument of every ITO is a variable, so that pattReq(𝑎 : x ∧ y) is
not stratified while pattReq(𝑎 : w) is stratified.

During stratification, for every ITO that has a subschema 𝑆 in its
syntax, such as cont𝑗

𝑖
(𝑆), when 𝑆 is not a variable, we create a new

variable 𝑥 : 𝑆 , we substitute 𝑆 with x, and we apply not-completion,
not-elimination and ROBDD reduction to 𝑥 : 𝑆 (Figure 1(c)).

Stratification of a schema of size 𝑁 produces an equivalent sche-
ma of size 𝑂 (𝑁 ) [9].

Guarded Disjunctive Normal Form (GDNF). A schema is in GDNF if
it has the shape ∨(∧(𝑆1,1, . . . , 𝑆1,𝑛1 ), . . . ,∧(𝑆𝑙,1, . . . , 𝑆𝑙,𝑛𝑙 )) and ev-
ery 𝑆𝑖, 𝑗 is a TO. To transform an environment 𝐸 into a correspond-
ing one 𝐸𝐺 in GDNF, we just substitute every variable that is not
in the scope of an ITO with its body, a process that is guaranteed
to terminate, thanks to the guardedness condition on 𝐸, and we
bring the result in DNF by distributivity of ∧ and ∨ (Figure 1(d));
hereafter, for brevity, we use {S1, . . . , Sn} to indicate a conjunction
𝑆1 ∧ . . . ∧ 𝑆𝑛 . Reduction to GDNF can lead to an exponential ex-
plosion, and is actually a very expensive phase, according to our
experiments (Section 7): observe, in Figure 1(d), how the size of rcx
is the product of the sizes of 𝑟 and that of co(x).

Canonicalization. We say that a conjunction that contains exactly
one assertion type(𝑇 ) and a set of ITOs of that same type 𝑇 is a
typed group of type𝑇 ; canonicalization splits every conjunct of the
GDNF into a set of typed groups (Figure 1(e), where we also applied
elementary equivalences, such as idempotence of ∨).

By construction, every phase described in this section trans-
forms a JSON Schema document into an equivalent one.

Property 1 (Eqivalence). The phases of not-elimination, strat-
ification, transformation into Canonical GDNF, transform a JSON
Schema document into an equivalent one.



⟨⟨x ⟩⟩𝐴 = 𝐴(𝑥)
⟨⟨ifBoolThen(𝑏) ⟩⟩𝐴 = {| 𝐽 | 𝐽 ∈ JVal (Bool) ⇒ 𝐽 = 𝑏 |}
⟨⟨props(r : 𝑆) ⟩⟩𝐴 = {| 𝐽 | 𝐽 = {(𝑘1 : 𝐽1), . . . , (𝑘𝑛 : 𝐽𝑛) } ⇒

∀𝑖 ∈ {1..𝑛}. 𝑘𝑖 ∈ 𝐿 (𝑟 ) ⇒ 𝐽𝑖 ∈ ⟨⟨𝑆 ⟩⟩𝐴 |}
⟨⟨item(𝑙 : 𝑆) ⟩⟩𝐴 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛 ] ⇒

𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ ⟨⟨𝑆 ⟩⟩𝐴 |}
⟨⟨items(𝑖+ : 𝑆) ⟩⟩𝐴 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛 ] ⇒

∀𝑗 ∈ {1..𝑛}. 𝑗 > 𝑖 ⇒ 𝐽𝑗 ∈ ⟨⟨𝑆 ⟩⟩𝐴 |}
⟨⟨cont𝑗

𝑖
(𝑆) ⟩⟩𝐴 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛 ] ⇒

𝑖 ≤ | {| 𝑙 | 𝐽𝑙 ∈ ⟨⟨𝑆 ⟩⟩𝐴 |} | ≤ 𝑗 |}
⟨⟨𝑆1 ∧ 𝑆2 ⟩⟩𝐴 = ⟨⟨𝑆1 ⟩⟩𝐴 ∩ ⟨⟨𝑆2 ⟩⟩𝐴
⟨⟨𝑆1 ∨ 𝑆2 ⟩⟩𝐴 = ⟨⟨𝑆1 ⟩⟩𝐴 ∪ ⟨⟨𝑆2 ⟩⟩𝐴
⟨⟨pattReq(𝑟 : 𝑆) ⟩⟩𝐴 = {| 𝐽 | 𝐽 = {| (𝑘1 : 𝐽1), . . . , (𝑘𝑛 : 𝐽𝑛) |} ⇒

∃𝑖 ∈ {1..𝑛}. 𝑘𝑖 ∈ 𝐿 (𝑟 )) ∧ 𝐽𝑖 ∈ ⟨⟨𝑆 ⟩⟩𝐴 |}
⟨⟨contAfter(𝑖+ : 𝑆) ⟩⟩𝐴 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛 ] ⇒

∃𝑙 . 𝑙 > 𝑖 ∧ 𝐽𝑙 ∈ ⟨⟨𝑆 ⟩⟩𝐴 |}

Figure 2: Rules for assignment evaluation.

6 PREPARATION AND GENERATION
6.1 Assignments and bottom-up semantics
We define an assignment 𝐴 for an environment 𝐸 as a function
mapping each variable of 𝐸 to a set of JSON values. An assignment
is sound when it maps each variable 𝑦 to a subset of its semantics
[[𝑦]]𝐸 , which denotes the set of JSON values that satisfy 𝑦 in 𝐸.

Definition 2 (Assignments, Soundness). An assignment 𝐴 for an
environment 𝐸 is a function mapping each variable of 𝐸 to a set of
JSON values. An assignment𝐴 for 𝐸 is sound iff for all𝑦 ∈ Vars(𝐸):
𝐴(y) ⊆ [[𝑦]]𝐸 .

Given a schema 𝑆 defs (𝐸) and an assignment 𝐴 for 𝐸, we can
evaluate 𝑆 using 𝐴 to interpret any variable in 𝑆 , by applying the
rules exemplified in Figure 2 (see [9] for a complete list), where uni-
versal quantification on an empty set is true, the set {1..0} is empty,
and JVal(Bool) is the set of JSON values of type Bool. For exam-
ple, if 𝐴(𝑥) = {|𝐽 |}, and if 𝑆 = {type(Arr), items(0+ : 𝑥), cont21 (t)},
then ⟨⟨𝑆⟩⟩𝐴 = {| [𝐽 ], [𝐽 , 𝐽 ] |}. Intuitively, ⟨⟨𝑆⟩⟩𝐴 uses the witnesses
collected by 𝐴 in order to build bigger witnesses for 𝑆 .

Hence, the repeated application of these rules, starting from
an empty assignment A0

𝐸
, defines a sequence of assignments A𝑖

𝐸
containing more and more witnesses, whose limit A∞

𝐸
defines a

bottom-up semantics for JSON Schema.

Definition 3 (A𝑖
𝐸
,A∞

𝐸
). For a given positive environment 𝐸, the

sequence of assignments A𝑖
𝐸
is defined as:

∀𝑦 ∈ Vars(𝐸) : A0
𝐸
(𝑦) = ∅

∀𝑦 ∈ Vars(𝐸) : A𝑖+1
𝐸

(𝑦) = ⟨⟨𝐸 (𝑦)⟩⟩A𝑖
𝐸

The assignment A∞
𝐸

is defined as
⋃︁

𝑖∈NA𝑖
𝐸
.

The function [[𝑆]]𝐸 described in the full paper [9] corresponds
to the official semantics, and is based on the top-down substitution
of variables with their definitions during the validation of a JSON
value. In [9], we show that, on positive schemas, the bottom-up
interpretation ⟨⟨𝑆⟩⟩A∞

𝐸
corresponds to [[𝑆]]𝐸 .

Any JSON value 𝐽 has a depth 𝛿 (𝐽 ), that is the number of levels
of its tree representation, formally defined as follows.

Definition 4 (Depth 𝛿 (𝐽 ), Jd ). The depth of a JSON value 𝐽 , 𝛿 (𝐽 ),
is defined as follows, where max({| |}) is defined to be 0:

𝐽 belongs to a base type : 𝛿 (𝐽 ) = 1
𝐽 = [𝐽1, . . . , 𝐽𝑛] : 𝛿 (𝐽 ) = 1 +max({|𝛿 (𝐽1), . . . , 𝛿 (𝐽𝑛) |})
𝐽 = {a1 : 𝐽1, . . . , an : 𝐽𝑛} : 𝛿 (𝐽 ) = 1 +max({|𝛿 (𝐽1), . . . , 𝛿 (𝐽𝑛) |})

Jd is the set of all JSON values 𝐽 with 𝛿 (𝐽 ) ≤ 𝑑 .

The assignment A𝑖
𝐸
includes all witnesses of depth 𝑖: for any

depth 𝑖 , it can be proved that ( [[𝑦]]𝐸 ∩ J i) ⊆ A𝑖
𝐸
(𝑦).

6.2 Bottom-up iterative witness generation
Since 𝑆 defs (𝐸) is equivalent to 𝑥 defs (𝑥 : 𝑆, 𝐸), we will discuss
here, for simplicity, generation for the 𝑥 defs (𝐸) case.

Our algorithm for bottom-up iterative witness generation for a
schema 𝑥 defs (𝐸) produces a sequence of finite assignments 𝐴𝑖 ,
each approximating the assignment A𝑖

𝐸
, until we reach either a

witness for 𝑥 or an “unsatisfiability fix-point”, which is a notion
that we will introduce shortly.

𝐴𝑖 is built as follows: 𝐴0 = A0
𝐸
; then, at step 𝑖 , for each 𝑦 ∈

Vars(𝐸), we compute a set of new values for𝑦 based on the current
assignment 𝐴𝑖 by using a generation algorithm Gen(𝐸 (𝑦), 𝐴𝑖 ) that
computes a subset of ⟨⟨𝐸 (𝑦)⟩⟩𝐴𝑖 ; formally,𝐴𝑖+1 (𝑦) = Gen(𝐸 (𝑦), 𝐴𝑖 ).
Our specific Gen algorithm is defined in the next section, but we
show now that any generic algorithm𝑔 can be used to approximate
⟨⟨𝐸 (𝑦)⟩⟩𝐴𝑖 , provided that 𝑔 is sound and generative.

We first introduce a notion of 𝑖-witnessed assignment 𝐴: if a vari-
able 𝑦 has a witness 𝐽 with 𝛿 (𝐽 ) ≤ 𝑖 , then 𝑦 has a witness in an
𝑖-witnessed assignment 𝐴.

Definition 5 (𝑖-witnessed). For a given environment 𝐸, and an
assignment 𝐴 for 𝐸, we say that 𝐴 is 𝑖-witnessed if:

∀𝑦 ∈ Vars(𝐸). ( [[𝑦]]𝐸 ∩ J i) ≠ ∅ ⇒ 𝐴(𝑦) ≠ ∅

Generativity of 𝑔 means that, if 𝐴 is 𝑖-witnessed, then the as-
signment computed using 𝑔 is (𝑖+1)-witnessed, so that, by repeated
application of 𝑔 starting from 𝐴0, every non-empty variable will
be eventually “witnessed” (Property 2).

Hereafter, we say that a triple (𝑆, 𝐸,𝐴) is coherent if 𝐸 is guarded
and closing for 𝑆 , and if Vars(𝐸) = Vars(𝐴).

Definition 6 (Soundness of 𝑔). A function 𝑔(_, _) mapping each
pair assertion-assignment to a set of JSON values is sound iff, for
every coherent (𝑆, 𝐸,𝐴), if 𝐴 is sound for 𝐸, then 𝑔(𝑆,𝐴) ⊆ [[𝑆]]𝐸 .

Definition 7 (Generativity of𝑔). A function𝑔(_, _) mapping each
pair assertion-assignment to a set of JSON values is generative for
an assertion 𝑆 iff for any 𝐸 and 𝐴 such that (𝑆, 𝐸,𝐴) is coherent:

(1) if ( [[𝑆]]𝐸 ∩ J1) ≠ ∅, then 𝑔(𝑆,𝐴) ≠ ∅;
(2) for any 𝑖 ≥ 1, if 𝐴 is 𝑖-witnessed, and if ( [[𝑆]]𝐸 ∩ J i+1) ≠ ∅,

then 𝑔(𝑆,𝐴) ≠ ∅.
𝑔 is generative for 𝐸 if it is generative for 𝐸 (𝑦) for each 𝑦.

We can now define our bottom-up algorithm (Algorithm 1).
Prepare(E) rewrites 𝐸 and prepares all the extra variables needed

for generation, as explained later. Then, we initialize 𝐴0 as the
empty assignment 𝜆𝑦. ∅. We repeatedly execute a pass that sets
𝐴𝑖 (𝑦) = Gen(𝐸 (𝑦), 𝐴𝑖−1) for any 𝑦 such that𝐴𝑖−1 (𝑦) = ∅ —we call
it “pass 𝑖”. We say that a pass 𝑖 is useful if there exists 𝑦 such that



Algorithm 1: Bottom-up witness generation
1 BottomUpGenerate(x,E)
2 Prepare (E);
3 ∀𝑦. 𝐴 [𝑦 ] := nextA[𝑦 ] := ∅ ;
4 while A[x] == ∅ do
5 for y in vars(E) where A[y] == ∅ do
6 nextA[𝑦 ] := Gen(E(y),A)
7 if (∀𝑦. nextA[y] == A[y]) then return (unsatisfiable);
8 else
9 ∀𝑦. 𝐴 [𝑦 ] := nextA[𝑦 ];

10 return (𝐴 [𝑥 ]);

𝐴𝑖 (𝑦) ≠ ∅ while 𝐴𝑖−1 (𝑦) = ∅, and we say that pass 𝑖 was useless
otherwise. Before each pass 𝑖 , if ⟨⟨𝑥⟩⟩𝐴𝑖−1 ≠ ∅, then the algorithm
stops with success. After pass 𝑖 , if the pass was useless, the algo-
rithm stops with “unsatisfiable”.

Property 2 (Soundness and completeness). If Gen is sound
and is generative for 𝐸 after preparation, then Algorithm 1 enjoys the
following properties.

(1) If the algorithm terminates with success after step 𝑖 , then𝐴𝑖 (𝑥)
is not empty and is a subset of [[𝑥]]𝐸 .

(2) If the algorithm terminates with “unsat.”, then [[𝑥]]𝐸 = ∅.
(3) The algorithm terminates after at most |Vars(𝐸) | + 1 passes.

Proof sketch. Property (1) is immediate. For (2), we first prove
the following property: if the algorithm terminates with “unsatisfi-
able” after step 𝑗 , then, for every variable𝑦:𝐴 𝑗 (𝑦) = ∅ ⇒ [[𝑦]]𝐸 =

∅. Assume, towards a contradiction, that there is a non empty set
of variables 𝑌 such that 𝑦 ∈ 𝑌 ⇒ (𝐴 𝑗 (𝑦) = ∅ ∧ [[𝑦]]𝐸 ≠ ∅). Let
𝑑 be the minimum depth of

⋃︁
𝑦∈𝑌 [[𝑦]]𝐸 , and let𝑤 be a variable in

𝑌 and such that 𝑑 is the minimum depth of the values in [[𝑤]]𝐸 .
Minimality of 𝑑 implies that every variable 𝑧 with a value in [[𝑧]]𝐸
whose depth is less than 𝑑 − 1 has a witness in 𝐴 𝑗 , hence, since
the step 𝑗 was useless, every such 𝑧 has a witness in 𝐴 𝑗−1, hence
𝐴 𝑗−1 is (𝑑 − 1)-witnessed, hence, by generativity,𝑤 should have a
witness generated during step 𝑗 , which contradicts the hypothesis.

If the algorithm terminates with “unsatisfiable”, this means that
⟨⟨𝑥⟩⟩𝐴 𝑗−1 = ∅, hence ⟨⟨𝑥⟩⟩𝐴 𝑗 = ∅ since the step 𝑗 was useless, hence
[[𝑥]]𝐸 = ∅, since we proved that 𝐴 𝑗 (𝑦) = ∅ ⇒ [[𝑦]]𝐸 = ∅.

Property (3) holds since at every useful pass the number of vari-
ables such that 𝐴𝑖 (𝑦) ≠ ∅ diminishes by at least 1. □

We finally describe the phases of preparation and generation for
object groups, corresponding to the functions Prepare and Gen of
Algorithm 1, respectively. For reasons of spacewe leave the descrip-
tion of preparation and generation for arrays in the full paper [9],
where we also detail generation for strings and numbers.

Preparation is a crucial phase, where we make explicit the inter-
actions between different object or array operators, and we create
new variables to manage these interactions.

6.3 Object group preparation and generation
6.3.1 Constraints and requirements. We say that an assertion 𝑆 =

props(𝑟 : x) or 𝑆 = pro𝑀0 is a constraint. A constraint has the fol-
lowing features: (a) { } ∈ [[𝑆]]𝐸 and (b) {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛, 𝑘𝑛+1 :
𝐽𝑛+1} ∈ [[𝑆]]𝐸 ⇒ {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛} ∈ [[𝑆]]𝐸 — constraints

can prevent the addition of members, but they never require the
presence of a member, similarly to a for all fields quantifier.

We say that an assertion 𝑆 = pattReq(𝑟 : x) or 𝑆 = pro∞𝑚 with
𝑚 > 0 is a requirement. A requirement 𝑆 has the following features:
(a) { } ∉ [[𝑆]]𝐸 and (b) {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛} ∈ [[𝑆]]𝐸 ⇒ {𝑘1 :
𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛, 𝑘𝑛+1 : 𝐽𝑛+1} ∈ [[𝑆]]𝐸 — requirements can require
the addition of a member, but they never prevent adding a member,
similarly to an exists field quantifier.

6.3.2 Preparation and generation. For a typical object group, where
every pattern is trivial and where each type in each pattReq is
just 𝑥t (which we use to indicate the only variable whose body
is t), object generation is very easy. Consider the following group:

{ type(Obj), props("a" : x), pattReq("a" : 𝑥t), pattReq("c" : 𝑥t) }
In order to generate a witness, we just need to generate a mem-

ber k : 𝐽 for each required key, respecting the corresponding props
constraint if present. Hence, here we generate a member "a" : 𝐽
where 𝐽 ∈ 𝐴𝑖 (x), and a member "c" : 𝐽 ′, where 𝐽 ′ is arbitrary.

Unfortunately, in the general case where we have non-trivial
patterns and where the pattReq operator specifies a non-trivial
schema for the required member, the situation is much more com-
plex, and we must keep into account the following issues:

(1) need to compute the intersections between patterns of dif-
ferent assertions;

(2) need to generate new variables when patterns intersect;
(3) possibility for one member to satisfy many requirements.
To exemplify the first two problems, consider the following ob-

ject group: { type(Obj), props(p : x), pattReq(r : y), pro11 }.
There are two distinct ways of producing a witness { k : 𝐽 } for

the object above: either we generate a 𝑘 that matches r ⊓ p , and
a witness 𝐽 for y, or we generate a 𝑘 that matches r ⊓ p, and a
witness 𝐽 for x ∧ y. This exemplifies the first two issues above:

(1) patterns: we need to compute which of the combinations
r⊓ p and r⊓p have a non-empty language, in order to know
which approaches are viable w.r.t. to pattern combination;

(2) new variables: we need a new variable whose body is x ∧ y,
in order to generate a witness for this conjunctive schema.

Let us say that a member 𝑘 : 𝐽 has shape 𝑟 : 𝑆 when 𝑘 ∈ 𝐿(𝑟 )
and 𝐽 is a witness for 𝑆 . Then, we can rephrase the example above
by saying that an object { k : 𝐽 } satisfies that object group iff k : 𝐽
either has shape (r ⊓ p : y) or (r ⊓ p : x ∧ y).

To exemplify the last problem— onemember possibly satisfying
many requirements — consider the following object group:

{ type(Obj), pattReq(r1 : y1), pattReq(r2 : y2), pro𝑀𝑎𝑥
𝑚𝑖𝑛 }

In order to satisfy both requirements, we have two possibilities:
(1) producing just one member with shape r1 ⊓ r2 : y1 ∧ y2 ;
(2) producing two members, with shapes r1 : y1 and r2 : y2 .
In order to explore all possible ways of generating a witness,

we need to consider both possibilities. But, in order to consider
the first possibility, we need a new variable whose body is y1 ∧ y2 .

We solve all these issues by transforming, during the prepara-
tion phase, every object into a form where all possible interactions
between assertions are made explicit, and we create a fresh new
variable for every conjunction of variables that is relevant for wit-
ness generation.



6.3.3 Object group preparation. Consider a generic object group

{ type(Obj), props(p1 : x1), . . . , props(pm : x𝑚),
pattReq(r1 : y1), . . . , pattReq(rn : y𝑛), pro𝑀𝑎𝑥

𝑚𝑖𝑛
}

We use 𝐶𝑃 (constraining part) to denote the set of props asser-
tions {|props(pi : x𝑖 ) | 𝑖 ∈ 1..𝑚 |} and 𝑅𝑃 (requiring part) to denote
the set of pattReq assertions. Any witness for this object group is
a collection of fields (𝑘, 𝐽 ) where every field satisfies every con-
straint props(pi : x𝑖 ) such that 𝑘 ∈ 𝐿(𝑝𝑖 ), and such that every re-
quirement pattReq(rj : y𝑗 ) is satisfied by a matching field. Hence,
every field is associated to a set 𝐶𝑃 ′ ⊆ 𝐶𝑃 of constraints and to a
set 𝑅𝑃 ′ ⊆ 𝑅𝑃 of requirements. Only some pairs of sets (𝐶𝑃 ′, 𝑅𝑃 ′)
make sense, because of pattern compatibility. Object preparation
generates all, and only, the pairs (actually, the triples, as wewill see)
that will be useful to the task of exploring all ways of generating
a witness.

Formally, to every pair (𝐶𝑃 ′, 𝑅𝑃 ′), where 𝐶𝑃 ′ ⊆ 𝐶𝑃 and 𝑅𝑃 ′ ⊆
𝑅𝑃 , we associate a characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′) that describes
all strings (maybe none) thatmatch every pattern in (𝐶𝑃 ′, 𝑅𝑃 ′) and
no pattern in (𝐶𝑃 \𝐶𝑃 ′, 𝑅𝑃 \ 𝑅𝑃 ′), as follows.

Definition 8 (Characteristic pattern). Given an object group
{type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑎𝑥

𝑚𝑖𝑛
} and two subsets𝐶𝑃 ′ ⊆ 𝐶𝑃 and 𝑅𝑃 ′ ⊆

𝑅𝑃 , the characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′) is defined as follows:

𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)
= (⨅︁props(p:_) ∈𝐶𝑃 ′ 𝑝 ) ⊓ (⨅︁props(p:_) ∈(𝐶𝑃\𝐶𝑃 ′) 𝑝 )

⊓ (⨅︁(pattReq(r :_) ∈𝑅𝑃 ′ 𝑟 ) ⊓ (⨅︁(pattReq(r :_) ∈(𝑅𝑃\𝑅𝑃 ′) 𝑟 )

Consider for example the following object group, correspond-
ing, modulo variable names, to a fragment of our running example
(Figure 1(d)):

{type(Obj), props("b" : x), pattReq("a" : 𝑦1), pattReq("a.∗" : y2)}
For space reason, we adopt the following abbreviations for the

assertions that belong to 𝐶𝑃 and 𝑅𝑃 :

𝑝𝑏 = props("b" : x), 𝑟𝑎 = pattReq("a" : y1),
𝑟𝑎𝑠 = pattReq("a.∗" : y2)

Here we have 23 pairs (𝐶𝑃 ′, 𝑅𝑃 ′) that are elementwise included
in (𝐶𝑃, 𝑅𝑃), each pair defining its own characteristic pattern; for
each pattern we indicate an equivalent extended regular expres-
sion (“.+” stands for any non-empty string) or ∅ when the pattern
has an empty language:

𝑐𝑝 ({| |}, {| |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑏 ⊓ 𝑎.∗
𝑐𝑝 ({| |}, {|𝑟𝑎 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅
𝑐𝑝 ({| |}, {|𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑎.+
𝑐𝑝 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑎

𝑐𝑝 ({|𝑝𝑏 |}, {| |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑏

𝑐𝑝 ({|𝑝𝑏 |}, {|𝑟𝑎 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅
𝑐𝑝 ({|𝑝𝑏 |}, {|𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅
𝑐𝑝 ({|𝑝𝑏 |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅

All different pairs (𝐶𝑃 ′, 𝑅𝑃 ′) define languages that are mutually
disjoint by construction, but many of these are empty, as in this ex-
ample. The non-empty languages cover all strings, by construction,
hence they always define a partition of the set of all strings.

Consider now a member k : 𝐽 which we may use to build a wit-
ness of the object group. The key𝑘 matches exactly one non-empty

characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′), hence 𝐽 must be a witness for
all variables xi such that props(pi : x𝑖 ) ∈ 𝐶𝑃 ′, but, as far as the
assertions pattReq(rj : y𝑗 ) ∈ 𝑅𝑃 ′ are concerned, there is much
more choice. If 𝐽 is a witness for every such y𝑗 , then this member
satisfies all requirements in 𝑅𝑃 ′. But it may be the case that some
of these y𝑗 ’s are mutually exclusive, hence we must choose which
ones will be satisfied by 𝐽 . Or, maybe, none of the y𝑗 is satisfied
by 𝐽 , but we may still use k : 𝐽 in order to satisfy a pro∞𝑚 require-
ment with 𝑚 ≠ 0. Hence, in order to explore all different ways
of generating a member (k : 𝐽 ) for a witness of the object group,
we must choose a pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′), and a subset 𝑅𝑃 ′′ of 𝑅𝑃 ′
that we require 𝐽 to satisfy. Hence, we define a choice to be a triple
(𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′), with 𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′. The (𝐶𝑃 ′, 𝑅𝑃 ′, _) part specifies
the pattern that is satisfied by 𝑘 , while the (𝐶𝑃 ′, _, 𝑅𝑃 ′′) part, with
𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′, specifies the variables that 𝐽 must satisfy.

We also distinguish R-choices, where 𝑅𝑃 ′′ is not empty, hence
they are useful in order to satisfy some requirements in 𝑅𝑃 , and
non-R-choices, where 𝑅𝑃 ′′ is empty, hence they can only be used
to satisfy a pro∞𝑚 requirement. The only choices that may describe
a member are those where 𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)) is not empty; we call
them non-cp-empty choices.

Definition 9 (Choice, R-Choice, cp-empty choice). Given an object
group { type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑚 } with constraining part 𝐶𝑃 =

{|props(pi : x𝑖 ) | 𝑖 ∈ 1..𝑚 |} and 𝑅𝑃 = {|pattReq(rj : y𝑗 ) | 𝑗 ∈ 1..𝑛 |},
a choice is a triple (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) such that 𝐶𝑃 ′ ⊆ 𝐶𝑃 , 𝑅𝑃 ′′ ⊆
𝑅𝑃 ′ ⊆ 𝑅𝑃 . The characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) of a choice
is defined by its first two components, as follows:

𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) = 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)
The schema of the choice 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) is defined by the first
and the third component, as follows:

𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) =
⋀︂

props(p:x) ∈𝐶𝑃 ′
x ∧

⋀︂
pattReq(r :y) ∈𝑅𝑃 ′′

y

A choice is cp-empty if 𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′)) is empty, is non-cp-
empty otherwise.

A choice is an R-choice if 𝑅𝑃 ′′ ≠ {| |}, is a non-R-choice otherwise.

In the object group of our previous example we have 4 non-
cp-empty pairs, ({| |}, {| |}), ({|𝑝𝑏 |}, {| |}), ({| |}, {|𝑟𝑎𝑠 |}), ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}),
which correspond to the following 8 non-cp-empty choices – for
each, we indicate the corresponding schema.

𝑠 ({| |}, {| |}, {| |}) = xt non-R-choice
𝑠 ({|𝑝𝑏 |}, {| |}, {| |}) = x non-R-choice
𝑠 ({| |}, {|𝑟𝑎𝑠 |}, {| |}) = xt non-R-choice
𝑠 ({| |}, {|𝑟𝑎𝑠 |}, {|𝑟𝑎𝑠 |}) = y2 R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {| |}) = xt non-R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {|𝑟𝑎 |}) = y1 R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {|𝑟𝑎𝑠 |}) = y2 R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}) = y1 ∧ y2 R-choice

The schema of a choice is always a conjunction of variables, say
𝑥1∧. . .∧𝑥𝑛 . During bottom-up generation, we need to knowwhich
non-cp-empty choices have a witness in the current assignment𝐴𝑖 ,
hence we need to associate every non-cp-empty choice with just
one variable, not with a conjunction. Hence, we need to create a
new variable𝑦 for each conjunction 𝑥1∧. . .∧𝑥𝑛 that we have never



seen before, thenwe execute GDNF normalization over 𝑥1∧. . .∧𝑥𝑛 ,
transforming it into a guarded disjunction of typed groups 𝑆 , then
we add 𝑦 : 𝑆 to the current environment and we apply preparation
again to this new variable; we call this process and-completion. In
the example above, this may be the case for 𝑦1∧𝑦2, unless 𝑦1∧𝑦2
is Boolean-equivalent to some variable that already exists.

Preparation can be regarded as a sophisticated form of and-elimi-
nation. Here, and-completion plays the same role that not-comple-
tion plays for not-elimination: it creates the new variables that we
need in order to push conjunction through the object group opera-
tors. But, crucially, and-completion is lazy: we do not pre-compute
every possible conjunction, but only those that are really needed by
some specific non-cp-empty choice. This laziness is crucial for the
practical feasibility of the algorithm: when different constraints,
or requirements, are associated to disjoint patterns, we have very
few non-cp-empty choices, and in most cases they do not need any
fresh variable, as in the example. Despite laziness, this prepare-
generate-normalize-prepare loop can still generate a huge number
of variables. We keep their number under control using the ROBD-
DTab data structure that we introduced in Section 5.1, which allows
us to create a new variable only when none of the existing vari-
ables is boolean-equivalent to its body; this crucial optimization
also ensures that this phase can never generate an infinite loop.

Hence, object preparation proceeds as follows:
(1) determine the set of non-cp-empty pairs (𝐶𝑃 ′, 𝑅𝑃 ′), that is

the pairs such that 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′) is not empty;
(2) for each non-cp-empty pair (𝐶𝑃 ′, 𝑅𝑃 ′) compute the corre-

sponding choices (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) and, if the variable inter-
section 𝑣𝑖 = 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) has no equivalent variable in
the environment, add a new variable 𝑥 : 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) to
the environment, apply GDNF reduction to 𝑣𝑖 , apply prepa-
ration to the GDNF-reduced conjunction.

Step (1) has, in the worst case, an exponential cost, but in prac-
tice it is much cheaper: in the common case where every pattern
matches a single string, a set of 𝑛 properties and requirements gen-
erates at most 𝑛 + 1 non-empty pairs (one for each string plus one
for the complement of the string set), 𝑛 R-choices, and 𝑛 + 1 non-
R-choices. Since before preparation we have at most𝑂 (𝑁 ) distinct
variables (where 𝑁 is the input size), step (2) may generate at most
𝑂 (2𝑁 ) new variables, each of which has a body which can be pre-
pared in time 𝑂 (2poly (N ) ). Hence, the global cost of this phase
is still 𝑂 (2poly (N ) ). In our implementation we use an algorithm,
sketched in the full paper [9], that runs in polynomial time in the
common case when the number of non-cp-empty pairs is actually
polynomial in the size of the object group, and our experiments
show that this cost is, for most real-world schemas, tolerable.

Property 3. Object preparation can be performed in𝑂 (2poly (N ) )
time.

6.3.4 Witness generation from a prepared object group. After the
object group has been prepared once for all, at each pass of bottom-
up witness generation we use the following sound and generative
algorithm, listed as Algorithm 2, to compute a witness for the pre-
pared object group starting from the current assignment 𝐴𝑖 .

In a nutshell, we (1) pick a list of choices that contains enough R-
choices to satisfy all requirements — each choicewill correspond to
one field in the generated object, and vice versa; (2) we verify that

the list is pattern-viable, i.e., that it does not require two fields with
the same name; (3) to satisfy any unfulfilled pro∞𝑚 requirement, we
add some non-R-choices, still keeping the choice list pattern-viable,
as defined above. In order to keep the search space in𝑂 (2poly (N ) ),
we limit ourselves to the subset of the disjoint solutions, and we
prove that it is big enough to have a complete algorithm.

In greater detail, consider a generic object group with the form
{ type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑚 } and assume that the corresponding
non-cp-empty choices have been prepared.

To generate an object, we first choose a list of choices that sat-
isfies all of 𝑅𝑃 . To reduce the search space, we first observe that a
single object can be described by many different choice lists. For
example, assume that ‘1’ belongs to both [[𝑥]]𝐸 and [[𝑦]]𝐸 and as-
sume that:

𝑟𝑥 = pattReq("a|b" : x)
𝑟𝑦 = pattReq("a|b" : y)
𝑅𝑃 = { 𝑟𝑥, 𝑟𝑦 }

then { "a" : 1, "b" : 1 } is described by each the following four
choice lists (and by others), where every choice could be used to
generate/describe each of the two members:

𝐶𝐿1 = [ ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑦 |}) ]
𝐶𝐿2 = [ ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {| |}) ]
𝐶𝐿3 = [ ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}) ]
𝐶𝐿4 = [ ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥 |}) ]

This example shows that we do not need to explore any possible
choice list, but just enough choice lists to generate all witnesses. To
this aim, we focus on disjoint solutions, defined as follows, whose
completeness will be proved in Theorem 12.

Definition 10 (Disjoint solution, Minimal disjoint solution). Fixed
a set 𝑅𝑃 , a size limit 𝑀 , and a set of choices C, a multiset C′ =

{|(𝐶𝑙 , 𝑅′
𝑙
, 𝑅′′

𝑙
) | 𝑙 ∈ 𝐿 |} with elements in C is a solution iff:⋃︂

𝑙 ∈𝐿
𝑅′′
𝑙
= 𝑅𝑃 and |C′ | ≤ 𝑀

The solution is disjoint if: 𝑖 ≠ 𝑗 ⇒ 𝑅′′
𝑖
∩ 𝑅′′

𝑗
= ∅.

The solution is minimal if every choice in C′ is an R-choice.

In the previous example, only𝐶𝐿1 and𝐶𝐿2 are disjoint, and only
𝐶𝐿1 is disjoint and minimal.

Object generation depends on the current assignment 𝐴𝑖 . We
say that a variable 𝑥 is Witnessed (in 𝐴𝑖 ) when 𝐴𝑖 (𝑥) ≠ ∅, and
is NonWitnessed otherwise. We say that a choice is Witnessed, or
NonWitnessed, when its schema variable is Witnessed, or is Non-
Witnessed. In order to generate a witness, we first generate a dis-
joint minimal solution for 𝑅𝑃 with bound 𝑀 , only using R-choices
that are Witnessed. Then, in order to deal with the constraint that
all names in an object are distinct, we check that the solution is
pattern-viable. Informally, pattern-viability ensures that, if we have
𝑛 choices in the solution with the same characteristic pattern 𝑐𝑝 ,
then the language of 𝑐𝑝 has at least𝑛 different strings, which can be
used to build𝑛 different members corresponding to those𝑛 choices.
We will exemplify the issue after the definition.

Definition 11. A set of choices C is pattern-viable iff for every
pair (𝐶𝑃 ′, 𝑅𝑃 ′), the number of choices inCwith shape (𝐶𝑃 ′, 𝑅𝑃 ′, _)



is smaller than the number of words in 𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)):
∀𝐶𝑃 ′, 𝑅𝑃 ′.
|{| (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) | (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) ∈ C|}| ≤ |𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)) |

For example, the following choice list C is not viable since it
describes an object with two members that share the same charac-
teristic pattern "a" that only contains one string:

𝑟𝑥 = pattReq("a" : x), 𝑟𝑦 = pattReq("a" : y)
C = [ ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑦 |}) ]

But it would be viable if the pattern "a" were substituted by "a|b".
Finally, for each viable disjoint solution, we check whether it

also satisfies the pro∞𝑚 requirement (line 6 of Algorithm 2). If it
does not, we try and extend the solution by adding someWitnessed
non-R-choices (line 7). Observe that the disjoint solution contains
each R-choice (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) at most once, because of disjoint-
ness; however, we can add the same non-R-choice as many times
as we need in order to reach 𝑚 members. A non-R-choice 𝐶 can
only be added if the result remains viable; hence, a minimal dis-
joint solution C may have a viable extension C′ of length 𝑚, ob-
tained by adding a multiset of non-R-choices (lines 6-13), or it may
not have such a viable extension, and then we need to start from
a different minimal solution. If no viable disjoint solution admits
a viable extension of length at least𝑚, then the algorithm returns
“no witness” (according to the current assignment). Otherwise, we
use the extended solution C′ to build a witness: for each choice
𝐶 ∈ C′, we generate a name 𝑘 satisfying 𝑐𝑝 (𝐶), we pick a value
𝐽 from 𝐴𝑖 (𝑣𝑎𝑟 (𝐶)), and the set of members 𝑘 : 𝐽 that we obtain
is a witness for the object group. When 𝑛 different choices inside
C′ have the same characteristic pattern, we generate 𝑛 different
names, which is always possible since the solution is viable.

Algorithm 2: Object witness generation
1 Gen(RPart, WitRChoices,WitNonRChoices, min, Max,)
2 for Solution in minDisjointSols (WitRChoices,RPart,Max) do
3 if (viable(Solution)) then
4 missing := min — size(Solution);
5 nonViableChoices := ∅;
6 while (missing > 0 and nonViableChoices !=WitNonRChoices)

do
7 choose NRC from (WitNonRChoices-nonViableChoices);
8 if (viable([NRC]++Solution)) then
9 Solution := [NRC]++Solution;
10 missing := missing-1;
11 else nonViableChoices := [NRC]++nonViableChoices;
12 if (missing == 0) then
13 return (“Witnessed”, WitnessFrom(Solution));
14 return (“NonWitnessed”);

Theorem 12 (Soundness and generativity). Algorithm Gen is
sound and generative.

Proof sketch. Proving soundness is trivial, as our algorithm
is sound by construction. For generativity, assume that the group
𝑆 = { type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑎𝑥

𝑚𝑖𝑛
} has a witness of depth 𝑑 + 1

in [[𝑆]]𝐸 . Assume that 𝐴 is 𝑑-witnessed for 𝐸. We want to prove
that Gen, applied to 𝑆 and 𝐴, will generate at least one witness.
Let 𝐽 = {a1 : 𝐽1, . . . , al : 𝐽𝑙 } be a witness for 𝑆 in 𝐸 with depth
𝑑 + 1. We can extract from the fields of 𝐽 a multiset of choices

C = (𝐶 ′
𝑖
, 𝑅′

𝑖
, 𝑅′′

𝑖
) with 𝑖 ∈ {1..𝑙}, that describes these fields, as de-

tailed in [9]. We prove that all these choices are Witnessed in 𝐴,
by exploiting the fact that 𝐽 has depth 𝑑 + 1, hence every 𝐽𝑖 that
appears in the witness has depth 𝑑 at most, and 𝐴 is 𝑑-witnessed.
Finally, we prove that our algorithm would generate at least one
solution for the group. To this aim, we first remove every non-R-
choice fromC, hence obtaining aminimal disjoint solution, and we
then add non-R-choices back if required by a pro∞𝑚 requirement,
and we observe that this is a viable solution, hence our algorithm
would find it. □

Property 4 (Complexity). Given a schema of size 𝑁 , each run
of the Gen algorithm has a complexity in 𝑂 (2poly (N ) ).

6.4 Completeness and correctness
The algorithm described in this paper is correct and complete.

Theorem 13 (Correctness and completeness). The witness
generation algorithm is correct and complete: it returns a witness if,
and only if, the schema admits a witness, and otherwise it indicates
that the schema is not satisfiable

Proof sketch. This follows from Property 1, Property 2, and
Theorem 12 (more details in [9]).

□

7 EXPERIMENTAL ANALYSIS
7.1 Implementation and experimental setup
We implemented our algorithm in Java 11, employing the Brics
library [24] to generate witnesses from patterns, and the jdd li-
brary [29] for ROBDDs. Our experiments were run on a virtual-
ized machine deployed on a server with a 12-core Intel Xeon Silver
2.40GhZ CPU, 64 GB of RAM, running Debian GNU/Linux 11. Wit-
nesses were validated by an external tool [2], and additionally by
hand, since the external tool reported false negatives in a few cases.
Each schema is processed by a single thread, and all reported times
are measured for a single run. Our reproduction package [3] can
be used to confirm our results.

7.2 Tools for comparative experiments
Due to the lack of equivalent tools, we compare our tool against a
Data Generator and a Containment Checker.

Data generator (DG). We use an open source test data genera-
tor for JSON Schema [16] (version 0.4.6). This Java implementation
pursues a try-and-fail approach: an example is first generated, then
validated against the schema, and potentially refined if validation
fails, exploiting the error message. This tool lends itself to a com-
parison although it is not able to detect schema emptiness: given
an unsatisfiable schema, it will always return an (invalid) instance.

Containment checker (CC).We compare our tool against the con-
tainment checker by Habib et al. [20] (version 0.0.5), described
in [22], and designed to check interoperability of data transforma-
tion operators [15].



7.3 Schema collections
We conduct experiments with different schema collections. Table 1
states the respective numbers of satisfiable/unsatisfiable schemas.

Real-world schemas. For the GitHub collection, we retrieved vir-
tually all files from GitHub that present the features of JSON Sche-
ma, based on a BigQuery search on the GitHub public dataset. We
downloaded the 80K identified schemas (shared online [13]). We
performed duplicate-elimination and data cleaning (see [9]), arriv-
ing at 6,427 schemas, 40 of which are unsatisfiable (according to
our tool and confirmed by direct inspection). We renamed all oc-
currences of uniqueItems, treating it as a user-defined keyword.

The three remaining real-world collections correspond to speci-
fications of standards for deploying applications (Kubernetes [23]),
ruling interactions within a specific system (Snowplow [4]), and
describing data produced by content management systems (Wash-
ington Post [27]). To increase the number of processable schemas,
we inlined references to external schemas. An earlier version of
these collections where already used in [22] to check inclusion. Al-
most all schemas are satisfiable, except 5 from Kubernetes.

Hand-written schemas. Real-world schemas reflect real usage,
and can be quite big, but they focus on the commonest operators
and combination of operators. Hence, for stress-testingwe inserted
in our reproduction packages 235 handwritten schemas that are
small but have been crafted to exemplify complex interactions be-
tween the language operators. To illustrate such an interaction,
consider the following schema.

{ 𝑟 : props(𝑎 : x) ∧ props(a.∗ : y) ∧ req(a),
𝑥 : type(Str) ∧ pattern(𝑎(𝑐 |𝑒)),
𝑦 : type(Str) ∧ pattern(𝑎(𝑏 |𝑐)) }

Here we have an interaction between two props and a req with
overlapping patterns, and associated with two different variables
𝑥 and 𝑦 whose schemas present non-trivial overlapping.

Array operators also present interactions, as in the following
example.

{ 𝑟 : item(1 : 𝑥) ∧ cont11 (𝑦),
𝑥 : type(Arr) ∧ cont∞2 (𝑡),
𝑦 : cont∞1 (type(Num) ∧mulOf (3))}

This example describes an array with schema 𝑟 that contains
another array with schema 𝑥 ∧ 𝑦, this one having at least two ele-
ments (because of cont∞2 (𝑡)), one of which is multiple of 3.

The collection has been built by systematically considering op-
erators for objects, arrays, strings and numbers, following software
engineering principles for testing complex programs. Ultimately,
this collection has proved particularly helpful in debugging.

Synthesized schemas. We include schemas that are neither real-
world nor hand-written, but they are synthesized, that is, they are
generated from the reference test suite for JSON Schema valida-
tion [25], designed to cover all language operators. The deriva-
tion is described in [5, 6], and yields triples (𝑆1, 𝑆2, 𝑏) where the
Boolean 𝑏 specifies whether 𝑆1 ⊆ 𝑆2 holds for schemas 𝑆1, 𝑆2. Here,
we restrict ourselves to schemas in Draft-04, since the CC tool is re-
stricted to this version. We excluded selected schemas that contain
features that we do not yet support, such as the format keyword
(a mere technicality) or references to external files.

We check a containment 𝑆1 ⊆ 𝑆2 by trying to generate a wit-
ness for the schema 𝑆1 ∧ ¬𝑆2, which is unsatisfiable if, and only
if, 𝑆1 ⊆ 𝑆2 holds; we thus obtain both satisfiable and unsatisfiable
schemas. The CC tool accepts two schemas as input and does not
need this encoding. We also test the DG tool, where comparison is
only meaningful for pairs where 𝑆1 ∧ ¬𝑆2 is satisfiable, since the
DG tool cannot recognize unsatisfiable schemas.

7.4 Research hypotheses
We test the following hypotheses: (H1) correctness of our implemen-
tation, that we test with the help of an external tool that verifies
the generated witnesses; (H2) completeness of our implementation,
that we test by using an ample and diverse test-set; (H3) it can be
used to fulfill some specific tasks better than existing tools; (H4) it
can be implemented to run in acceptable time on sizable real-world
schemas, despite its asymptotic complexity. We test the latest hy-
pothesis by applying our tool to a vast set of real-world schemas.

7.5 Experimental results
7.5.1 Correctness and completeness. When testing each tool, we
distinguish four outcomes: success, when a result is returned and it
is correct; failure: when the code raises a run-time error or a time-
out, that we set to 3,600 secs; logical error on satisfiable schema,
when the input schema 𝑆 is satisfiable but the code returns either
“unsatisfiable” or a witness that does not actually satisfy 𝑆 ; logical
error on unsatisfiable schema, when the input schema is unsatisfi-
able but a presumed witness is nevertheless returned.

We summarize the results of the experiments in Table 1. Our
tool produces no logical error in any of our schema collections.
With the GitHub schemas, it fails with “timeout” for 0.44% of sche-
mas (28 schemas), with a “ref-expansion" for 0.01% (1 schema), and
with “out of memory”, when calling the automata library, for 0.36%
of schemas (23 schemas). No failures arise in the other schema
collections, supporting hypothesis H1.

TheDG tool successfully handles 94.20% of the GitHub schemas,
and has similar correctness ratio for the other real-world schemas
but it performs poorly regarding correctness on handwritten sche-
mas, and cannot be really used for inclusion checking, since it does
not detect unsatisfiability. It is difficult to compare run-times be-
tween tools. Essentially, on most schemas the two tools have com-
parable times, evident when looking at the median times, but there
is a small percentage of files where our tool takes a very long time,
and this is reflected on our disproportionately high average time.

The synthesized schemas show that our tool supports a much
wider range of language features (hypothesis H2), which is natural
since the CC tool targets a language subset, while completeness is
core to our work.

We can conclude that our tool advances the state-of-the-art for
containment checking and witness generation, especially for sche-
mas that present aspects of complexity (hypothesis H3).

7.5.2 Runtime on real-world schemas. We next test hypothesis H4.
In each of the three biggest collections, 95% of the files are elab-
orated in less than 4.0 secs, with median ≤65 ms, and average
≤5 secs. The smaller Washington Post collection presents higher
times, which will be discussed in Section 7.6. These results are co-
herent with hypothesis H4.



Table 1: Schema collections, correctness and completeness results, median/95th percentile/average runtime (in seconds).

Collection #Total #Sat/
#Unsat

Size (KB)
Avg/Max Tool Success Failure Errors

sat.
Errors
unsat.

Med.
Time

95%
-tile

Avg.
Time

GitHub 6,427 6,387/40 8.7/1,145 Ours 99.19% 0.81% 0% 0% 0.019 s 0.749 s 4.289 s
DG 94.2% 2.86% 2.43% 0.51% 0.021 s 0.082 s 0.190 s

Kubernetes 1,092 1,087/5 24.0/1,310.7 Ours 100% 0% 0% 0% 0.013 s 0.510 s 0.577 s
DG 99.54% 0% 0% 0.46% 0.023 s 0.069 s 0.031 s

Snowplow 420 420/0 3.8/54.8 Ours 99.52% 0.48% 0% no unsat 0.065 s 3.864 s 2.071 s
DG 94.76% 0% 5.24% no unsat 0.024 s 0.078 s 0.032 s

WashingtonPost 125 125/0 21.1/141.7 Ours 100% 0% 0% no unsat 0.042 s 132.690 s 23.349 s
DG 96.8% 0% 3.2% no unsat 0.030 s 0.079 s 0.042 s

Handwritten 235 197/38 0.1/109.4 Ours 100% 0% 0% 0% 0.070 s 3.063 s 2.593 s
DG 8.51% 34.04% 49.36% 8.09% 0.023 s 0.132 s 0.049 s

Containment-draft4 1,331 450/881 0.5/2.9 Ours 100% 0% 0% 0% 0.004 s 0.038 s 0.011 s
DG 28.78% 30.88% 0.07% 40.27% 0.020 s 0.034 s 0.019 s
CC 35.91% 62.96% 0.15% 0.98% 0.003 s 0.096 s 0.036 s

7.6 Qualitative Insights
Several interesting insights can be extracted from an analysis of the
size-time relationship for the GitHub collection, represented by the
scatterplot in Figure 3. The histograms at the top and at the right-
hand side indicate that schema size and run-time are distributed
along 6 orders of magnitude, with a strong concentration on the
low part of both axes, which forced us to use a log-log scale. In the
log-log plot, we observe a cloud with a slope of about 1, suggest-
ing a linear correlation, but we also observe that every file-size ex-
hibits many outliers, and that long-running schemas can be found
everywhere along the file-size axis. This clearly indicates that the
runtime is affected more by the presence of specific combinations
of operators, which may take little space but cause exponential
runtime, than by schema size.

Indeed, our complexity analysis shows that exponential com-
plexity is triggered by some specific operations, such as (1) object
preparation, when different patterns overlap, requiring the gener-
ation of an exponential number of choices and of new variables;
(2) reduction to DNF; and (3) pattern manipulation.

We tried to complement this theoretical knowledge with obser-
vations on the data. We applied data-mining techniques to corre-
late features of the schemas with the run-time. The feature that
correlates more clearly with very long run-time is the presence
of a "maxLength": 𝑛 statement with 𝑛 > 65, 000, which induces the
creation of a large automaton. Other features with a strong correla-
tion with high run-time are the presence of "enum" with extremely
long lists of arguments, that may then cause the generation of very
big terms during DNF reduction, and of "oneOf" with long lists of
arguments, which again can generate big terms during DNF.

The Washington Post collection requires a specific analysis to
explain its high 95% percentile time and average time. It is a small-
ish collection (125 schemas), where 20% of the files require around
130 secs for their elaboration, while all the others require less than 1
sec, with a global median of 42 ms. All the “slow” files are very sim-
ilar, with more than 2K nodes in their syntax trees. By selectively
deleting specific subtrees, we concluded that the high time is due to
pattern overlapping between an instance of "patternProperties"
and a corresponding instance of "properties", confirming our the-
oretical knowledge of the strong influence of pattern overlapping
over the complexity of object preparation. The small number of

files in this collection and their high homogeneity explains the
anomaly of the result.
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Figure 3: File size vs. runtime for GitHub schemas; log-log
scatterplot with histograms, highlighting the medians. Top
right, the sizes of the files causing timeouts are shown.

8 CONCLUSIONS
In this paper we have described an algorithm for witness genera-
tion, designed for the specific features of JSON Schema object and
array operators. Our extensive experimental evaluation proves the
practical viability of the approach, and provides insight into the ac-
tual behavior of the algorithm on real-world schemas.

We have left the implementation of the uniqueItems operator
out of the scope of the current paper in order to keep the size and
complexity of this work under control, but the fundamental tech-
niques that we have designed, for object and array preparation and
generation, still apply, with some important generalizations that
we believe deserve a dedicated analysis.

Another possible development is to move from “witness gener-
ation”, where the only goal is to generate any witness that proves
satisfiability, to “example generation”, where we generate a set of
witnesses designed to satisfy some criterion of “completeness” or
“realism”, for applications ranging from schema explanation to test-
set and workload generation.
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