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Witness Generation for JSON Schema

JSON Schema is a schema language for JSON documents, based on a complex combination of structural operators, Boolean operators (negation included), and recursive variables. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These problems can be reduced to witness generation: given a schema, generate an element of the schema -if it exists -and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation, and study its effectiveness and efficiency in experiments over several schema collections, including thousands of real-world schemas.

INTRODUCTION

JSON Schema is a schema language based on a set of assertions that describe features of the JSON values described and on logical and structural combinators for these assertions.

While validation of a JSON value 𝐽 with respect to a schema 𝑆, denoted 𝐽 ⊨ 𝑆, is a well-understood problem for which the JSON Schema Test Suite [START_REF]JSON Schema Test Suite[END_REF] lists over 50 validator tools at the time of writing, for the main static analysis problems, which we describe below, we still lack well-principled tools.

Inclusion 𝑆 ⊆ 𝑆 ′ : does, for each value 𝐽 , 𝐽 ⊨ 𝑆 ⇒ 𝐽 ⊨ 𝑆 ′ ? Checking schemas for inclusion (or containment) is of great practical importance: if the output format of a tool is specified by a schema 𝑆, and the input format of a different tool by a schema 𝑆 ′ , the problem of format compatibility is equivalent to schema inclusion 𝑆 ⊆ 𝑆 ′ ; given the high expressive power of JSON Schema, design of a complete algorithm that is practical, that is, of an algorithm that is correct and complete by design, but is also able to run in a reasonable time over the vast majority of real-world schemas.

Contributions. The main contribution of this paper is an original sound and complete algorithm for checking the satisfiability of an input schema 𝑆, generating a witness 𝐽 when the schema is satisfiable. Our algorithm supports the whole language without uniqueItems. While the existence of an algorithm for this specific problem follows from the results in [START_REF] Bourhis | JSON: Data model, Query languages and Schema specification[END_REF], where the problem is proved to be EXPTIME-complete, we are the first to explicitly describe an algorithm, and specifically one that has the potential to work in reasonable time over schemas of realistic size. Our algorithm is based on a set of formal manipulations of the schema, some of which, such as preparation, are unique to JSON Schema, and have not been proposed before in this form. Particularly relevant in this context is the notion of lazy and-completion, which we will describe later. In this paper, we detail each algorithm phase, show that each is in 𝑂 (2 poly (N ) ), and focus on preparation and generation of objects, the phases completely original to this work.

The practical applicability of our algorithm is proved by our experimentation, which is another contribution of this work. Our experiments are based on four real-world datasets, on a synthetic dataset, and on a handwritten dataset. Real-world datasets comprise 6,427 unique schemas extracted, through an extensive data cleaning process, from a large corpus of schemas crawled from GitHub [START_REF] Baazizi | A JSON Schema Corpus. A corpus of over 80thousand JSON Schema documents, collected from open source GitHub repositories, using Google BigQuery[END_REF] and curated by us for errors and redundancies; the other datasets, already used in [START_REF] Habib | Finding Data Compatibility Bugs with JSON Subschema Checking[END_REF], are related to specific application domains and originated from Snowplow [START_REF]Iglu Central[END_REF], The Washington Post [27], and Kubernetes [START_REF] Kubernetes | Kubernetes JSON Schemas[END_REF]. The synthetic dataset is synthesized from the standard schemas provided by JSON Schema Org [START_REF]JSON Schema Test Suite[END_REF], from which we derive schemas that are known to be satisfiable or unsatisfiable by design [START_REF] Attouche | A Test Suite for JSON Schema Containment[END_REF]. The handwritten dataset is specifically engineered to test the most complex aspects of the JSON Schema language. The experiments show that our algorithm is complete, and that, despite its exponential complexity, it behaves quite well even on schemas with tens of thousands of nodes.

Paper outline. In Section 2 we review related work. In Section 3 we describe our algebraic representation of JSON Schema. In Sections 4-6, we describe the algorithm. In Section 7 we present our experimental evaluation. We conclude in Section 8.

RELATED WORK

Overviews over schema languages for JSON can be found in [START_REF] Baazizi | Schemas And Types For JSON Data[END_REF][START_REF] Baazizi | Schemas and Types for JSON Data: From Theory to Practice[END_REF][START_REF] Bourhis | JSON: Data model, Query languages and Schema specification[END_REF][START_REF] Pezoa | Foundations of JSON Schema[END_REF]. Pezoa et al. [START_REF] Pezoa | Foundations of JSON Schema[END_REF] introduced the first formalization of JSON Schema and showed that it cannot be captured by MSO or tree automata because of the uniqueItems constraints. While they focused on validation and proved that it can be decided in 𝑂 (|𝐽 | 2 |𝑆 |) time, they also showed that JSON Schema can simulate tree automata. Hence, schema satisfiability is EXPTIME-hard.

In [START_REF] Bourhis | JSON: Data model, Query languages and Schema specification[END_REF] Bourhis et al. refined the analysis of Pezoa et al. They mapped JSON Schema onto an equivalent modal logic, called recursive JSL, and proved that satisfiability is EXPTIME-complete for recursive schemas without uniqueItems, and it is in 2EXPTIME for recursive schemas with uniqueItems. Their work is extremely important in establishing complexity bounds. Since they map JSON Schema onto recursive JSL logic, and provide a specific kind of alternating tree automata for this logic, they already provide an indirect indication of an algorithm for witness generation. However, classical reachability algorithms for alternating automata are designed to prove complexity upper bounds, not as practical tools. They are typically based on the exploration of all subsets of the state set of the automaton [START_REF] Hubert Comon | Tree Automata Techniques and Applications[END_REF], hence on a sequence of complex operations on a set of sets whose dimension may be in the realm of 2 10,000 . While exponentiality cannot be avoided in the worst case, it is clear that we need a different approach when designing a practical algorithm.

To the best of our knowledge, the only tool that is currently available to check the satisfiability of a schema is the containment checker described by Habib et al. [START_REF] Habib | Finding Data Compatibility Bugs with JSON Subschema Checking[END_REF]. While it has been designed for schema containment checking, e.g., 𝑆 1 ⊆ 𝑆 2 , it can also be exploited for schema satisfiability since 𝑆 is satisfiable if and only if 𝑆 ⊈ 𝑆 ′ , where 𝑆 ′ is an empty schema. The approach of Habib et al. bears some resemblances to ours, e.g., schema canonicalization has been first presented there, but its ability to cope with negation is very limited as well as its support for recursion.

Several tools (see [START_REF] Blackler | JSON Generator[END_REF] and [START_REF]JSON Schema Faker[END_REF]) for example generation exist. They generate JSON data starting from a schema. These tools, however, are based on a trial-and-error approach and cannot detect unsatisfiable schemas. We compare our tool with [START_REF] Blackler | JSON Generator[END_REF] in our experiments.

Own prior work. In our technical report [START_REF] Baazizi | Negation-Closure for JSON Schema[END_REF], we discuss negation-completeness for JSON Schema, that is, we show how pairs of schema operators such as "patternProperties"-"required" and "items"-"contains" are almost dual under negation, as ∧-∨ or ∀-∃ are, but not exactly. In the process, we define an algorithm for not-elimination.

A preliminary version of the algorithm described in the current paper has been presented in [START_REF] Baazizi | Not Elimination and Witness Generation for JSON Schema[END_REF]. In that paper we provided an hint on the different phases of the algorithm, while here we go in much more detail. An earlier prototype implementation has been presented in tool demos [START_REF] Attouche | A Tool for JSON Schema Witness Generation[END_REF][START_REF] Attouche | Un Outil de Génération de Témoins pour les schémas JSON A Tool for JSON Witness Generation[END_REF][START_REF] Fruth | New Workflows in NoSQL Schema Management[END_REF].

This paper is accompanied by a full version [START_REF] Attouche | Witness Generation for JSON Schema[END_REF], containing detailed proofs and additional experiments.

JSON SCHEMA AND THE ALGEBRA 3.1 JSON data model

Each JSON value belongs to one of the six JSON Schema types: nulls, Booleans, decimal numbers Num, strings Str, objects, arrays.

𝐽 ::= 𝐵 | 𝑂 | 𝐴 JSON expr 𝐵 ::= null | true | false | 𝑞 | 𝑠 𝑞 ∈ Num, 𝑠 ∈ Str Basic values 𝑂 ::= {𝑙 1 : 𝐽 1 , . . . , 𝑙 𝑛 : 𝐽 𝑛 } 𝑛 ≥ 0, 𝑖 ≠ 𝑗 ⇒ 𝑙 𝑖 ≠ 𝑙 𝑗 Objects 𝐴 ::= [𝐽 1 , . . . , 𝐽 𝑛 ] 𝑛 ≥ 0 Arrays
Definition 1 (JSON objects). We interpret a JSON object {𝑙 1 : 𝐽 1 , . . . , 𝑙 𝑛 : 𝐽 𝑛 } as a set of pairs (members) {(𝑙 1 , 𝐽 1 ), . . . , (𝑙 𝑛 , 𝐽 𝑛 )}, where 𝑖 ≠ 𝑗 ⇒ 𝑙 𝑖 ≠ 𝑙 𝑗 , and an array [𝐽 1 , . . . , 𝐽 𝑛 ] as an ordered list; JSON value equality is defined accordingly, that is, by ignoring member order when comparing objects.

JSON Schema

We base our work on JSON Schema Draft-06 [START_REF] Wright | JSON Schema Validation: A Vocabulary for Structural[END_REF], as it supports virtually all schemas that we could crawl from GitHub [START_REF] Baazizi | A JSON Schema Corpus. A corpus of over 80thousand JSON Schema documents, collected from open source GitHub repositories, using Google BigQuery[END_REF]. The successive Draft 2019-09 [START_REF] Wright | JSON Schema Validation: A Vocabulary for Structural Validation of JSON -draft-handrews-json-schema-validation-02[END_REF] made validation dependent on annotations, a questionable semantic shift that we prefer not to embrace for now. However, we include in our algebra the operators "minContains" and "maxContains" introduced with Draft 2019-09, since they are very interesting in the context of witness generation, and their semantics does not depend on annotations.

JSON Schema uses JSON syntax. A schema is a JSON object that collects assertions that are members, i.e., name-value pairs, where the name indicates the assertion and the value collects its parameters, as in "minLength" : 3, where the value is a number, or in "items" : {"type" : ["boolean"]}, where the value for "items" is an object that is itself a schema. We next describe JSON Schema by giving its translation into an algebra.

The core and the positive algebras

In JSON Schema, the meaning of some assertions is modified by the surrounding assertions, making formal manipulation much more difficult. Moreover, the language is rich in redundant operators. In our implementation, we therefore map an input schema onto an algebraic representation based on a core algebra, an algebraic version of JSON Schema with less redundant operators. We then eliminate negative expressions through not-elimination (Section 5.2), by using a positive algebra without negation but with three new operators: notMulOf(𝑛), pattReq(𝑟 : 𝑆), and contAfter(𝑖 + : 𝑆).

Our algebras extend JSON Schema regular expressions with external intersection and complement operators 𝑟 ⊓ 𝑟 ′ and 𝑟 ; this extension is discussed in Section 3.4. The syntax of the two algebras, core and positive, is presented below.

𝑚 ∈ Num -∞ , 𝑀 ∈ Num ∞ , 𝑙 ∈ N >0 , 𝑖 ∈ N, 𝑗 ∈ N ∞ , 𝑞 ∈ Num, 𝑘 ∈ Str 𝑇 ::= Arr | Obj | Null | Bool | Str | Num 𝑟 ::= Any regular expression | 𝑟 | 𝑟 1 ⊓ 𝑟 2 𝑏 ::= true | false 𝑆 ::= ifBoolThen(𝑏) | pattern(𝑟 ) | betw 𝑀 𝑚 | xBetw 𝑀 𝑚 | mulOf (𝑞) | props(r : 𝑆) | req(k) | pro 𝑗 𝑖 | item(𝑙 : 𝑆) | items(𝑖 + : 𝑆) | cont 𝑗 𝑖 (𝑆) | type(𝑇 ) | x | 𝑆 1 ∧ 𝑆 2 | 𝑆 1 ∨ 𝑆 2 core: | ¬𝑆 positive: | notMulOf (𝑞) | pattReq(𝑟 : 𝑆) | contAfter(𝑖 + : 𝑆) 𝐸 ::= 𝑥 1 : 𝑆 1 , . . . , 𝑥 𝑛 : 𝑆 𝑛 𝐷 ::= 𝑆 defs (𝐸)
Num -∞ are the decimal numbers extended with -∞, and similarly for Num ∞ and N ∞ . N >0 is N without 0, used in item(𝑙 : 𝑆).

We distinguish Boolean operators (∧, ∨ and ¬), variables (x), and Typed Operators (TO -all the others). All TOs different from type(𝑇 ) have an implicative semantics: "if the instance belongs to the type 𝑇 then . . . ", so that they are trivially satisfied by every instance not belonging to type 𝑇 . We say that they are implicative typed operators (ITOs).

The operators of the core algebra strictly correspond to those of JSON Schema, and in particular to their implicative semantics.

Informally, an instance 𝐽 of the core or positive algebra satisfies an assertion 𝑆 if:

• ifBoolThen(𝑏): if the instance 𝐽 is a boolean, then 𝐽 = 𝑏. The three operators added in the positive algebra do not directly correspond to JSON Schema operators, but can still be expressed in JSON Schema, through the negation of mulOf, props, and items, as follows, where 𝑆 1 ⇒ 𝑆 2 is an abbreviation for ¬𝑆 1 ∨ 𝑆 2 :

notMulOf (𝑛)
= type(Num) ⇒ ¬mulOf (𝑛) pattReq(𝑟 : 𝑆) = type(Obj) ⇒ ¬props(r : ¬𝑆) contAfter(𝑖 + : 𝑆) = type(Arr) ⇒ ¬items(𝑖 + : ¬𝑆)

In [START_REF] Attouche | Witness Generation for JSON Schema[END_REF] we formalize the official JSON Schema semantics by defining a function [[𝑆]] 𝐸 that associates a set of JSON values to any assertion 𝑆 whose variables are defined by the guarded schema 𝐸, also in cases of mutual recursion under negation.

Hereafter we will often use the redundant operators t and f, where t is satisfied by any JSON value, and f is satisfied by none.

About regular expressions

3.4.1 Mapping JSON Schema regular expressions onto standard REs. Following the example of [START_REF] Bourhis | JSON: Data model, Query languages and Schema specification[END_REF], we represent JSON Schema regular expressions (REs) using standard REs. In practice, in our implementation we map every JSON Schema RE into a standard RE, using a simple incomplete algorithm, 1 and we are currently able to translate more than 97% of the distinct patterns in our corpus. The others mostly contain look-ahead and look-behind.

Extending REs with external complement and intersection.

In our algebra, we use a form of externally extended REs (EEREs), where the two extra operators are not first class RE operators, so that one cannot write (𝑟 ) * , but they can be used at the outer level:

𝑟 ::= Any regular expression | 𝑟 | 𝑟 1 ⊓ 𝑟 2
This extension does not affect the expressive power of regular expressions but affects their succinctness, hence the complexity of problems such as emptiness checking. We are going to exploit this expressive power in four different ways:

(1) in order to translate "additionalProperties" : 𝑆 as props( (𝑟 1 | . . . |𝑟 𝑚 ) : ⟨𝑆⟩) (Section 3.5); (2) in order to translate "propertyNames" : 𝑆 (Section 3.5);

(3) during not-elimination (Section 5.2), where pattern(𝑟 ) is used to rewrite ¬pattern(𝑟 ); (4) during object preparation (Section 6.3.3), where we must express the intersection and the difference of patterns that appear in props(𝑟 : 𝑆) and pattReq(𝑟 : 𝑆) operators. During the final phases of our algorithm (Section 6.3), we need to solve the following 𝑖-enumeration problem (which generalizes emptiness) for our EEREs: for a given EERE 𝑟 and for a given 𝑖, either return 𝑖 words that belong to 𝐿(𝑟 ), where 𝐿(𝑟 ) is the language of 𝑟 , or return "impossible" if |𝐿(𝑟 )| < 𝑖. It is well-known that emptiness of REs extended (internally) with negation and intersection is non-elementary [START_REF] Stockmeyer | The Complexity of Decision Problems in Automata Theory and Logic[END_REF]. However, in the full paper [START_REF] Attouche | Witness Generation for JSON Schema[END_REF] we show that for our external-only extension 𝑖-enumeration and emptiness can be solved in time 𝑂 (𝑖 2 × 2 𝑛 ).

From JSON Schema to the Algebra

The translation from JSON Schema to the algebra is rather intuitive, and is described in [START_REF] Attouche | Witness Generation for JSON Schema[END_REF]. Essentially, each JSON Schema assertion is translated into the corresponding algebraic assertion. However, attention must be paid to certain families of assertions, which must be grouped and translated together:

• if, then, else, translated using Boolean operators;

• property assertions additionalProperties, properties, and patternProperties (here indicated as adPr, pr, and paPr): pr, paPr correspond to our props operator, while "adPr" : 𝑆 associates a schema 𝑆 to any name that does not match either pr or paPr arguments, and is translated as props( (𝑟 1 | . . . |𝑟 𝑚 ) :

1 Dominik Freydenberger suggested this algorithm to us, in personal communication.

𝑆), where 𝑟 1 , . . . , 𝑟 𝑚 are patterns that represent all arguments of all pr or paPr that occur in the same schema; • additionalItems, items, translated using the algebra assertion items( 𝑗 + : 𝑆), item(𝑙 : 𝑆); • minContains, maxContains, contains, which are translated as cont 𝑀 𝑚 (. . .). Some redundant operators are mapped to simpler operators:

• "oneOf" : [𝑆 1 , . . . , 𝑆 𝑛 ] requires that a value 𝐽 satisfies one of 𝑆 1 , . . . , 𝑆 𝑛 and violates all the others; it is translated using Boolean operators and variables; • "propertyNames" : S requires that every member name satisfies 𝑆; it is translated as props(PattOfS(¬𝑆) : f), where PattOfS(¬𝑆) is a pattern that uses 𝑟 and ⊓ in order to encode all strings that violate 𝑆; • the "dependencies" assertion specifies that if the instance contains a member with name 𝑘 𝑖 , then it must also satisfy some other assertions; it is translated using req and ⇒; • "const" : 𝐽 and "enum" : [𝐽 1 , . . . , 𝐽 𝑛 ], used to restrict a schema to a finite set of values; they are translated to structural operators as in [START_REF] Habib | Finding Data Compatibility Bugs with JSON Subschema Checking[END_REF]. Finally, the definitions-references mechanism of JSON Schema (the $ref : path operator) is translated into our simpler mechanism, based on variables and environments.

THE STRUCTURE OF THE ALGORITHM

In a recursive algorithm for witness generation, in order to generate a witness for an ITO such as pattReq(𝑟 : 𝑆), one can generate a witness 𝐽 for 𝑆 and use it to build an object with a member whose name matches 𝑟 and whose value is 𝐽 . The same approach can be followed for the other ITOs. For the Boolean operator 𝑆 1 ∨ 𝑆 2 , one recursively generates witnesses of 𝑆 1 and 𝑆 2 .

Negation and conjunction are much less direct: there is no way to generate a witness for ¬𝑆 starting from a witness for 𝑆. Also, given a witness for 𝑆 1 , if it is not a witness for 𝑆 1 ∧𝑆 2 , we may need to try infinitely many others before finding one that satisfies 𝑆 2 as well. We solve this problem as follows. We first eliminate ¬ using not-elimination, then we bring all definitions of variables into DNF so that conjunctions are limited to sets of ITOs that regard the same type (Section 5). We then perform a form of and-elimination over these homogeneous conjunctions (preparation), and we finally use these "prepared" homogeneous conjunctions to generate the witnesses, through a bottom-up iterative process (Section 6).

Preparation is the crucial step: here we make all the interactions between the conjuncted ITOs explicit, which may require the generation of new variables. This phase is delicate because it is exponentially hard in the general case, and we must organize it in order to run fast enough in typical case. Moreover, it may generate infinitely many new variables, which we avoid with a technique based on ROBDDs, that we define in Section 5.1. 

Premise: ROBDD reduction

Two expressions built with variables and Boolean operators are Boolean-equivalent when they can be proved equivalent using the laws of the Boolean algebra. A Reduced Ordered Boolean Decision Diagram (ROBDD) is a data structure that provides the same representation for two such expressions if, and only if, they are Boolean-equivalent [START_REF] Bryant | Graph-Based Algorithms for Boolean Function Manipulation[END_REF]. Hence, whenever we define a variable 𝑥 whose body 𝑆 𝑥 is a Boolean combination of variables, in any phase of the algorithm, we perform the ROBDD reduction: we compute the ROBDD representation of 𝑆 𝑥 , robdd (𝑆 𝑥 ), and we store a pair 𝑥 : robdd (𝑆 𝑥 ) in the ROBDDTab table, unless a pair 𝑦 : robdd (𝑆 𝑦 ) with robdd (𝑆 𝑥 ) = robdd (𝑆 𝑦 ) is already present. In this case, we substitute every occurrence of 𝑥 with 𝑦. This technique makes the entire algorithm more efficient and, crucially, it ensures termination of the preparation phase (Section 6.3.3).

Not-elimination

Not-elimination, described in detail in [START_REF] Baazizi | Negation-Closure for JSON Schema[END_REF], proceeds in two phases: not-completion of variables and not-rewriting.

During not-completion of variables, for every variable 𝑥 𝑛 : 𝑆 𝑛 we define a corresponding 𝑛𝑜𝑡_𝑥 𝑛 : ¬𝑆 𝑛 . After not-completion, every variable has a complement variable co(x i ) = 𝑛𝑜𝑡_𝑥 𝑖 and co(not_x i ) = 𝑥 𝑖 . The complement co(x) is used for not-elimination.

During not-rewriting, we rewrite every expression ¬𝑆 into an expression where the negation has been pushed inside, by applying the rules reported in [START_REF] Baazizi | Negation-Closure for JSON Schema[END_REF], which include the following (Fig. 1(b)):

¬(pattern(𝑟 )) = type(Str) ∧ pattern(𝑟 ) ¬(props(r : 𝑆)) = type(Obj) ∧ pattReq(r : ¬𝑆) ¬(pattReq(𝑟 : 𝑆)) = type(Obj) ∧ props(𝑟 : ¬𝑆) ¬(item(𝑙 : 𝑆)) = type(Arr) ∧ item(𝑙 : ¬𝑆 𝑖 ) ∧ cont ∞ 𝑙 (t) ¬(items(𝑖 + : 𝑆)) = type(Arr) ∧ contAfter(𝑖 + : ¬𝑆) ¬(contAfter(𝑖 + : 𝑆)) = type(Arr) ∧ items(𝑖 + : ¬𝑆) ¬(x) = co(x)
Not-elimination of a schema of size 𝑁 produces an equivalent schema of size 𝑂 (𝑁 ) [START_REF] Baazizi | Negation-Closure for JSON Schema[END_REF]; hereafter, we use 𝑁 to indicate the size of the abstract syntax tree of the original schema, where numbers and strings are represented in binary notation, assuming that the 𝑖 and 𝑗 constants different from ∞ that appear in item(𝑖 : 𝑆), items(𝑖 + : 𝑆), contAfter(𝑖 + : 𝑆), cont 𝑗 𝑖 (𝑆), and pro 𝑗 𝑖 , are smaller than the input size. This assumption is justified by the observation that in practical cases these numbers tend to be extremely small in comparison to the input size.

Stratification and Transformation in

Canonical Guarded DNF Stratification. We say that a schema is stratified when every schema argument of every ITO is a variable, so that pattReq(𝑎 : x ∧ y) is not stratified while pattReq(𝑎 : w) is stratified.

During stratification, for every ITO that has a subschema 𝑆 in its syntax, such as cont 𝑗 𝑖 (𝑆), when 𝑆 is not a variable, we create a new variable 𝑥 : 𝑆, we substitute 𝑆 with x, and we apply not-completion, not-elimination and ROBDD reduction to 𝑥 : 𝑆 (Figure 1(c)).

Stratification of a schema of size 𝑁 produces an equivalent schema of size 𝑂 (𝑁 ) [START_REF] Attouche | Witness Generation for JSON Schema[END_REF].

Guarded Disjunctive Normal Form (GDNF).

A schema is in GDNF if it has the shape ∨(∧(𝑆 1,1 , . . . , 𝑆 1,𝑛 1 ), . . . , ∧(𝑆 𝑙,1 , . . . , 𝑆 𝑙,𝑛 𝑙 )) and every 𝑆 𝑖,𝑗 is a TO. To transform an environment 𝐸 into a corresponding one 𝐸 𝐺 in GDNF, we just substitute every variable that is not in the scope of an ITO with its body, a process that is guaranteed to terminate, thanks to the guardedness condition on 𝐸, and we bring the result in DNF by distributivity of ∧ and ∨ (Figure 1(d)); hereafter, for brevity, we use {S 1 , . . . , S n } to indicate a conjunction 𝑆 1 ∧ . . . ∧ 𝑆 𝑛 . Reduction to GDNF can lead to an exponential explosion, and is actually a very expensive phase, according to our experiments (Section 7): observe, in Figure 1(d), how the size of rcx is the product of the sizes of 𝑟 and that of co(x).

Canonicalization. We say that a conjunction that contains exactly one assertion type(𝑇 ) and a set of ITOs of that same type 𝑇 is a typed group of type 𝑇 ; canonicalization splits every conjunct of the GDNF into a set of typed groups (Figure 1(e), where we also applied elementary equivalences, such as idempotence of ∨).

By construction, every phase described in this section transforms a JSON Schema document into an equivalent one. Property 1 (Eqivalence). The phases of not-elimination, stratification, transformation into Canonical GDNF, transform a JSON Schema document into an equivalent one. 

⟨⟨x ⟩⟩ 𝐴 = 𝐴(𝑥) ⟨⟨ifBoolThen(𝑏) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 ∈ JVal (Bool) ⇒ 𝐽 = 𝑏 |} ⟨⟨props(r : 𝑆) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 = { (𝑘 1 : 𝐽 1 ), . . . , (𝑘 𝑛 : 𝐽 𝑛 ) } ⇒ ∀𝑖 ∈ {1..𝑛 }. 𝑘 𝑖 ∈ 𝐿 (𝑟 ) ⇒ 𝐽 𝑖 ∈ ⟨⟨𝑆 ⟩⟩ 𝐴 |} ⟨⟨item(𝑙 : 𝑆) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 = [𝐽 1 , . . . , 𝐽 𝑛 ] ⇒ 𝑛 ≥ 𝑙 ⇒ 𝐽 𝑙 ∈ ⟨⟨𝑆 ⟩⟩ 𝐴 |} ⟨⟨items(𝑖 + : 𝑆) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 = [𝐽 1 , . . . , 𝐽 𝑛 ] ⇒ ∀𝑗 ∈ {1..𝑛 }. 𝑗 > 𝑖 ⇒ 𝐽 𝑗 ∈ ⟨⟨𝑆 ⟩⟩ 𝐴 |} ⟨⟨cont 𝑗 𝑖 (𝑆) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 = [𝐽 1 , . . . , 𝐽 𝑛 ] ⇒ 𝑖 ≤ | {| 𝑙 | 𝐽 𝑙 ∈ ⟨⟨𝑆 ⟩⟩ 𝐴 |} | ≤ 𝑗 |} ⟨⟨𝑆 1 ∧ 𝑆 2 ⟩⟩ 𝐴 = ⟨⟨𝑆 1 ⟩⟩ 𝐴 ∩ ⟨⟨𝑆 2 ⟩⟩ 𝐴 ⟨⟨𝑆 1 ∨ 𝑆 2 ⟩⟩ 𝐴 = ⟨⟨𝑆 1 ⟩⟩ 𝐴 ∪ ⟨⟨𝑆 2 ⟩⟩ 𝐴 ⟨⟨pattReq(𝑟 : 𝑆) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 = {| (𝑘 1 : 𝐽 1 ), . . . , (𝑘 𝑛 : 𝐽 𝑛 ) |} ⇒ ∃𝑖 ∈ {1..𝑛 }. 𝑘 𝑖 ∈ 𝐿 (𝑟 )) ∧ 𝐽 𝑖 ∈ ⟨⟨𝑆 ⟩⟩ 𝐴 |} ⟨⟨contAfter(𝑖 + : 𝑆) ⟩⟩ 𝐴 = {| 𝐽 | 𝐽 = [𝐽 1 , . . . , 𝐽 𝑛 ] ⇒ ∃𝑙 . 𝑙 > 𝑖 ∧ 𝐽 𝑙 ∈ ⟨⟨𝑆 ⟩⟩ 𝐴 |}

PREPARATION AND GENERATION 6.1 Assignments and bottom-up semantics

We define an assignment 𝐴 for an environment 𝐸 as a function mapping each variable of 𝐸 to a set of JSON values. An assignment is sound when it maps each variable 𝑦 to a subset of its semantics [[𝑦]] 𝐸 , which denotes the set of JSON values that satisfy 𝑦 in 𝐸.

Definition 2 (Assignments, Soundness). An assignment 𝐴 for an environment 𝐸 is a function mapping each variable of 𝐸 to a set of JSON values. An assignment 𝐴 for 𝐸 is sound iff for all 𝑦 ∈ Vars(𝐸):

𝐴(y) ⊆ [[𝑦]] 𝐸 .
Given a schema 𝑆 defs (𝐸) and an assignment 𝐴 for 𝐸, we can evaluate 𝑆 using 𝐴 to interpret any variable in 𝑆, by applying the rules exemplified in Figure 2 (see [START_REF] Attouche | Witness Generation for JSON Schema[END_REF] for a complete list), where universal quantification on an empty set is true, the set {1..0} is empty, and JVal(Bool) is the set of JSON values of type Bool. For example, if 𝐴(𝑥) = {|𝐽 | }, and if 𝑆 = {type(Arr), items(0

+ : 𝑥), cont 2 1 (t)}, then ⟨⟨𝑆⟩⟩ 𝐴 = {| [𝐽 ], [𝐽, 𝐽 ]| }.
Intuitively, ⟨⟨𝑆⟩⟩ 𝐴 uses the witnesses collected by 𝐴 in order to build bigger witnesses for 𝑆.

Hence, the repeated application of these rules, starting from an empty assignment A 0 𝐸 , defines a sequence of assignments A 𝑖 𝐸 containing more and more witnesses, whose limit A ∞ 𝐸 defines a bottom-up semantics for JSON Schema.

Definition 3 (A 𝑖 𝐸 , A ∞ 𝐸 ).
For a given positive environment 𝐸, the sequence of assignments A 𝑖 𝐸 is defined as:

∀𝑦 ∈ Vars(𝐸) : A 0 𝐸 (𝑦) = ∅ ∀𝑦 ∈ Vars(𝐸) : A 𝑖+1 𝐸 (𝑦) = ⟨⟨𝐸 (𝑦)⟩⟩ A 𝑖 𝐸
The assignment A ∞ 𝐸 is defined as

⋃︁ 𝑖 ∈N A 𝑖 𝐸 .

The function [[𝑆]]

𝐸 described in the full paper [START_REF] Attouche | Witness Generation for JSON Schema[END_REF] corresponds to the official semantics, and is based on the top-down substitution of variables with their definitions during the validation of a JSON value. In [START_REF] Attouche | Witness Generation for JSON Schema[END_REF], we show that, on positive schemas, the bottom-up interpretation ⟨⟨𝑆⟩⟩ A ∞ 𝐸 corresponds to [[𝑆]] 𝐸 . Any JSON value 𝐽 has a depth 𝛿 (𝐽 ), that is the number of levels of its tree representation, formally defined as follows. The assignment A 𝑖 𝐸 includes all witnesses of depth 𝑖: for any depth 𝑖, it can be proved that ([[𝑦]] 𝐸 ∩ J i ) ⊆ A 𝑖 𝐸 (𝑦).

Bottom-up iterative witness generation

Since 𝑆 defs (𝐸) is equivalent to 𝑥 defs (𝑥 : 𝑆, 𝐸), we will discuss here, for simplicity, generation for the 𝑥 defs (𝐸) case.

Our algorithm for bottom-up iterative witness generation for a schema 𝑥 defs (𝐸) produces a sequence of finite assignments 𝐴 𝑖 , each approximating the assignment A 𝑖 𝐸 , until we reach either a witness for 𝑥 or an "unsatisfiability fix-point", which is a notion that we will introduce shortly.

𝐴 𝑖 is built as follows: 𝐴 0 = A 0 𝐸 ; then, at step 𝑖, for each 𝑦 ∈ Vars(𝐸), we compute a set of new values for 𝑦 based on the current assignment 𝐴 𝑖 by using a generation algorithm Gen(𝐸 (𝑦), 𝐴 𝑖 ) that computes a subset of ⟨⟨𝐸 (𝑦)⟩⟩ 𝐴 𝑖 ; formally, 𝐴 𝑖+1 (𝑦) = Gen(𝐸 (𝑦), 𝐴 𝑖 ). Our specific Gen algorithm is defined in the next section, but we show now that any generic algorithm 𝑔 can be used to approximate ⟨⟨𝐸 (𝑦)⟩⟩ 𝐴 𝑖 , provided that 𝑔 is sound and generative.

We first introduce a notion of 𝑖-witnessed assignment 𝐴: if a variable 𝑦 has a witness 𝐽 with 𝛿 (𝐽 ) ≤ 𝑖, then 𝑦 has a witness in an 𝑖-witnessed assignment 𝐴.

Definition 5 (𝑖-witnessed). For a given environment 𝐸, and an assignment 𝐴 for 𝐸, we say that 𝐴 is 𝑖-witnessed if:

∀𝑦 ∈ Vars(𝐸). ([[𝑦]] 𝐸 ∩ J i ) ≠ ∅ ⇒ 𝐴(𝑦) ≠ ∅
Generativity of 𝑔 means that, if 𝐴 is 𝑖-witnessed, then the assignment computed using 𝑔 is (𝑖+1)-witnessed, so that, by repeated application of 𝑔 starting from 𝐴 0 , every non-empty variable will be eventually "witnessed" (Property 2).

Hereafter, we say that a triple (𝑆, 𝐸, 𝐴) is coherent if 𝐸 is guarded and closing for 𝑆, and if Vars(𝐸) = Vars(𝐴). Definition 6 (Soundness of 𝑔). A function 𝑔(_, _) mapping each pair assertion-assignment to a set of JSON values is sound iff, for every coherent (𝑆, 𝐸, 𝐴), if 𝐴 is sound for 𝐸, then 𝑔(𝑆, 𝐴) ⊆ [[𝑆]] 𝐸 .

Definition 7 (Generativity of 𝑔). A function 𝑔(_, _) mapping each pair assertion-assignment to a set of JSON values is generative for an assertion 𝑆 iff for any 𝐸 and 𝐴 such that (𝑆, 𝐸, 𝐴) is coherent:

(

1) if ([[𝑆]] 𝐸 ∩ J 1 ) ≠ ∅, then 𝑔(𝑆, 𝐴) ≠ ∅; (2) for any 𝑖 ≥ 1, if 𝐴 is 𝑖-witnessed, and if ([[𝑆]] 𝐸 ∩ J i+1 ) ≠ ∅, then 𝑔(𝑆, 𝐴) ≠ ∅. 𝑔 is generative for 𝐸 if it is generative for 𝐸 (𝑦) for each 𝑦.
We can now define our bottom-up algorithm (Algorithm 1). Prepare(E) rewrites 𝐸 and prepares all the extra variables needed for generation, as explained later. Then, we initialize 𝐴 0 as the empty assignment 𝜆𝑦. ∅. We repeatedly execute a pass that sets 𝐴 𝑖 (𝑦) = Gen(𝐸 (𝑦), 𝐴 𝑖-1 ) for any 𝑦 such that 𝐴 𝑖-1 (𝑦) = ∅ -we call it "pass 𝑖". We say that a pass 𝑖 is useful if there exists 𝑦 such that 𝐴 𝑖 (𝑦) ≠ ∅ while 𝐴 𝑖-1 (𝑦) = ∅, and we say that pass 𝑖 was useless otherwise. Before each pass 𝑖, if ⟨⟨𝑥⟩⟩ 𝐴 𝑖-1 ≠ ∅, then the algorithm stops with success. After pass 𝑖, if the pass was useless, the algorithm stops with "unsatisfiable".

Property 2 (Soundness and completeness). If Gen is sound and is generative for 𝐸 after preparation, then Algorithm 1 enjoys the following properties.

(1) If the algorithm terminates with success after step 𝑖, then 𝐴 𝑖 (𝑥) is not empty and is a subset of Minimality of 𝑑 implies that every variable 𝑧 with a value in [[𝑧]] 𝐸 whose depth is less than 𝑑 -1 has a witness in 𝐴 𝑗 , hence, since the step 𝑗 was useless, every such 𝑧 has a witness in 𝐴 𝑗-1 , hence 𝐴 𝑗-1 is (𝑑 -1)-witnessed, hence, by generativity, 𝑤 should have a witness generated during step 𝑗, which contradicts the hypothesis.

[[𝑥]] 𝐸 . ( 2 
If the algorithm terminates with "unsatisfiable", this means that ⟨⟨𝑥⟩⟩ 𝐴 𝑗 -1 = ∅, hence ⟨⟨𝑥⟩⟩ 𝐴 𝑗 = ∅ since the step 𝑗 was useless, hence

[[𝑥]] 𝐸 = ∅, since we proved that 𝐴 𝑗 (𝑦) = ∅ ⇒ [[𝑦]] 𝐸 = ∅.
Property (3) holds since at every useful pass the number of variables such that 𝐴 𝑖 (𝑦) ≠ ∅ diminishes by at least 1. □

We finally describe the phases of preparation and generation for object groups, corresponding to the functions Prepare and Gen of Algorithm 1, respectively. For reasons of space we leave the description of preparation and generation for arrays in the full paper [START_REF] Attouche | Witness Generation for JSON Schema[END_REF], where we also detail generation for strings and numbers.

Preparation is a crucial phase, where we make explicit the interactions between different object or array operators, and we create new variables to manage these interactions. 

Object group preparation and generation

𝐽 𝑛+1 } ∈ [[𝑆]] 𝐸 ⇒ {𝑘 1 : 𝐽 1 , . . . , 𝑘 𝑛 : 𝐽 𝑛 } ∈ [[𝑆]] 𝐸 -constraints
can prevent the addition of members, but they never require the presence of a member, similarly to a for all fields quantifier.

We say that an assertion 𝑆 = pattReq(𝑟 : x) or 𝑆 = pro ∞ 𝑚 with 𝑚 > 0 is a requirement. A requirement 𝑆 has the following features:

(a) { } ∉ [[𝑆]] 𝐸 and (b) {𝑘 1 : 𝐽 1 , . . . , 𝑘 𝑛 : 𝐽 𝑛 } ∈ [[𝑆]] 𝐸 ⇒ {𝑘 1 : 𝐽 1 , . . . , 𝑘 𝑛 : 𝐽 𝑛 , 𝑘 𝑛+1 : 𝐽 𝑛+1 } ∈ [[𝑆]
] 𝐸 -requirements can require the addition of a member, but they never prevent adding a member, similarly to an exists field quantifier. 6.3.2 Preparation and generation. For a typical object group, where every pattern is trivial and where each type in each pattReq is just 𝑥 t (which we use to indicate the only variable whose body is t), object generation is very easy. Consider the following group:

{ type(Obj), props("a" : x), pattReq("a" : 𝑥 t ), pattReq("c" : 𝑥 t ) }

In order to generate a witness, we just need to generate a member k : 𝐽 for each required key, respecting the corresponding props constraint if present. Hence, here we generate a member "a" : 𝐽 where 𝐽 ∈ 𝐴 𝑖 (x), and a member "c" : 𝐽 ′ , where 𝐽 ′ is arbitrary.

Unfortunately, in the general case where we have non-trivial patterns and where the pattReq operator specifies a non-trivial schema for the required member, the situation is much more complex, and we must keep into account the following issues:

(1) need to compute the intersections between patterns of different assertions; (2) need to generate new variables when patterns intersect;

(3) possibility for one member to satisfy many requirements. To exemplify the first two problems, consider the following object group: { type(Obj), props(p : x), pattReq(r : y), pro 1 1 }. There are two distinct ways of producing a witness { k : 𝐽 } for the object above: either we generate a 𝑘 that matches r ⊓ p, and a witness 𝐽 for y, or we generate a 𝑘 that matches r ⊓ p, and a witness 𝐽 for x ∧ y. This exemplifies the first two issues above:

(1) patterns: we need to compute which of the combinations r ⊓ p and r ⊓p have a non-empty language, in order to know which approaches are viable w.r.t. to pattern combination; (2) new variables: we need a new variable whose body is x ∧ y, in order to generate a witness for this conjunctive schema. Let us say that a member 𝑘 : 𝐽 has shape 𝑟 : 𝑆 when 𝑘 ∈ 𝐿(𝑟 ) and 𝐽 is a witness for 𝑆. Then, we can rephrase the example above by saying that an object { k : 𝐽 } satisfies that object group iff k : 𝐽 either has shape (r ⊓ p : y) or (r ⊓ p : x ∧ y).

To exemplify the last problem -one member possibly satisfying many requirements -consider the following object group: { type(Obj), pattReq(r 1 : y 1 ), pattReq(r 2 : y 2 ), pro 𝑀𝑎𝑥 𝑚𝑖𝑛 } In order to satisfy both requirements, we have two possibilities: (1) producing just one member with shape r 1 ⊓ r 2 : y 1 ∧ y 2 ;

(2) producing two members, with shapes r 1 : y 1 and r 2 : y 2 . In order to explore all possible ways of generating a witness, we need to consider both possibilities. But, in order to consider the first possibility, we need a new variable whose body is y 1 ∧ y 2 .

We solve all these issues by transforming, during the preparation phase, every object into a form where all possible interactions between assertions are made explicit, and we create a fresh new variable for every conjunction of variables that is relevant for witness generation.

Object group preparation. Consider a generic object group

{ type(Obj), props(p 1 : x 1 ), . . . , props(p m : x 𝑚 ), pattReq(r 1 : y 1 ), . . . , pattReq(r n : y 𝑛 ), pro 𝑀𝑎𝑥 𝑚𝑖𝑛 } We use 𝐶𝑃 (constraining part) to denote the set of props assertions {|props(p i : x 𝑖 ) | 𝑖 ∈ 1..𝑚| } and 𝑅𝑃 (requiring part) to denote the set of pattReq assertions. Any witness for this object group is a collection of fields (𝑘, 𝐽 ) where every field satisfies every constraint props(p i : x 𝑖 ) such that 𝑘 ∈ 𝐿(𝑝 𝑖 ), and such that every requirement pattReq(r j : y 𝑗 ) is satisfied by a matching field. Hence, every field is associated to a set 𝐶𝑃 ′ ⊆ 𝐶𝑃 of constraints and to a set 𝑅𝑃 ′ ⊆ 𝑅𝑃 of requirements. Only some pairs of sets (𝐶𝑃 ′ , 𝑅𝑃 ′ ) make sense, because of pattern compatibility. Object preparation generates all, and only, the pairs (actually, the triples, as we will see) that will be useful to the task of exploring all ways of generating a witness.

Formally, to every pair (𝐶𝑃 ′ , 𝑅𝑃 ′ ), where 𝐶𝑃 ′ ⊆ 𝐶𝑃 and 𝑅𝑃 ′ ⊆ 𝑅𝑃, we associate a characteristic pattern 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ) that describes all strings (maybe none) that match every pattern in (𝐶𝑃 ′ , 𝑅𝑃 ′ ) and no pattern in (𝐶𝑃 \ 𝐶𝑃 ′ , 𝑅𝑃 \ 𝑅𝑃 ′ ), as follows.

Definition 8 (Characteristic pattern). Given an object group {type(Obj), 𝐶𝑃, 𝑅𝑃, pro 𝑀𝑎𝑥 𝑚𝑖𝑛 } and two subsets 𝐶𝑃 ′ ⊆ 𝐶𝑃 and 𝑅𝑃 ′ ⊆ 𝑅𝑃, the characteristic pattern 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ) is defined as follows:

𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ) = ( ⨅︁ props(p:_) ∈𝐶𝑃 ′ 𝑝 ) ⊓ ( ⨅︁ props(p:_) ∈ (𝐶𝑃 \𝐶𝑃 ′ ) 𝑝 ) ⊓ ( ⨅︁ (pattReq(r:_) ∈𝑅𝑃 ′ 𝑟 ) ⊓ ( ⨅︁ (pattReq(r:_) ∈ (𝑅𝑃 \𝑅𝑃 ′ ) 𝑟 )
Consider for example the following object group, corresponding, modulo variable names, to a fragment of our running example (Figure 1(d)): {type(Obj), props("b" : x), pattReq("a" : 𝑦1), pattReq("a. * " : y2)} For space reason, we adopt the following abbreviations for the assertions that belong to 𝐶𝑃 and 𝑅𝑃: 𝑝𝑏 = props("b" : x), 𝑟𝑎 = pattReq("a" : y1), 𝑟𝑎𝑠 = pattReq("a. * " : y2)

Here we have 2 3 pairs (𝐶𝑃 ′ , 𝑅𝑃 ′ ) that are elementwise included in (𝐶𝑃, 𝑅𝑃), each pair defining its own characteristic pattern; for each pattern we indicate an equivalent extended regular expression (".+" stands for any non-empty string) or ∅ when the pattern has an empty language:

𝑐𝑝 ({|| }, {|| }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ 𝑏 ⊓ 𝑎. * 𝑐𝑝 ({|| }, {|𝑟𝑎| }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ ∅ 𝑐𝑝 ({|| }, {|𝑟𝑎𝑠 | }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ 𝑎.+ 𝑐𝑝 ({|| }, {|𝑟𝑎, 𝑟𝑎𝑠 | }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ 𝑎 𝑐𝑝 ({|𝑝𝑏 | }, {|| }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ 𝑏 𝑐𝑝 ({|𝑝𝑏 | }, {|𝑟𝑎| }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ ∅ 𝑐𝑝 ({|𝑝𝑏 | }, {|𝑟𝑎𝑠 | }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ ∅ 𝑐𝑝 ({|𝑝𝑏 | }, {|𝑟𝑎, 𝑟𝑎𝑠 | }) = 𝑏 ⊓ 𝑎 ⊓ 𝑎. * ≡ ∅ All different pairs (𝐶𝑃 ′ , 𝑅𝑃 ′ )
define languages that are mutually disjoint by construction, but many of these are empty, as in this example. The non-empty languages cover all strings, by construction, hence they always define a partition of the set of all strings.

Consider now a member k : 𝐽 which we may use to build a witness of the object group. The key 𝑘 matches exactly one non-empty characteristic pattern 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ), hence 𝐽 must be a witness for all variables x i such that props(p i : x 𝑖 ) ∈ 𝐶𝑃 ′ , but, as far as the assertions pattReq(r j : y 𝑗 ) ∈ 𝑅𝑃 ′ are concerned, there is much more choice. If 𝐽 is a witness for every such y 𝑗 , then this member satisfies all requirements in 𝑅𝑃 ′ . But it may be the case that some of these y 𝑗 's are mutually exclusive, hence we must choose which ones will be satisfied by 𝐽 . Or, maybe, none of the y 𝑗 is satisfied by 𝐽 , but we may still use k : 𝐽 in order to satisfy a pro ∞ 𝑚 requirement with 𝑚 ≠ 0. Hence, in order to explore all different ways of generating a member (k : 𝐽 ) for a witness of the object group, we must choose a pattern 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ), and a subset 𝑅𝑃 ′′ of 𝑅𝑃 ′ that we require 𝐽 to satisfy. Hence, we define a choice to be a triple (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ), with 𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′ . The (𝐶𝑃 ′ , 𝑅𝑃 ′ , _) part specifies the pattern that is satisfied by 𝑘, while the (𝐶𝑃 ′ , _, 𝑅𝑃 ′′ ) part, with 𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′ , specifies the variables that 𝐽 must satisfy.

We also distinguish R-choices, where 𝑅𝑃 ′′ is not empty, hence they are useful in order to satisfy some requirements in 𝑅𝑃, and non-R-choices, where 𝑅𝑃 ′′ is empty, hence they can only be used to satisfy a pro ∞ 𝑚 requirement. The only choices that may describe a member are those where 𝐿(𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ )) is not empty; we call them non-cp-empty choices. Definition 9 (Choice, R-Choice, cp-empty choice). Given an object group { type(Obj), 𝐶𝑃, 𝑅𝑃, pro 𝑀 𝑚 } with constraining part 𝐶𝑃 = {|props(p i :

x 𝑖 ) | 𝑖 ∈ 1..𝑚| } and 𝑅𝑃 = {|pattReq(r j : y 𝑗 ) | 𝑗 ∈ 1..𝑛| }, a choice is a triple (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) such that 𝐶𝑃 ′ ⊆ 𝐶𝑃, 𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′ ⊆ 𝑅𝑃.
The characteristic pattern 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) of a choice is defined by its first two components, as follows:

𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) = 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ )
The schema of the choice 𝑠 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) is defined by the first and the third component, as follows:

𝑠 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) = ⋀︂ props(p:x) ∈𝐶𝑃 ′ x ∧ ⋀︂ pattReq(r:y) ∈𝑅𝑃 ′′ y A choice is cp-empty if 𝐿(𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ )) is empty, is non-cp- empty otherwise. A choice is an R-choice if 𝑅𝑃 ′′ ≠ {|| }, is a non-R-choice otherwise.
In the object group of our previous example we have 4 noncp-empty pairs, ({|| }, {|| }), ({|𝑝𝑏 | }, {|| }), ({|| }, {|𝑟𝑎𝑠 | }), ({|| }, {|𝑟𝑎, 𝑟𝑎𝑠 | }), which correspond to the following 8 non-cp-empty choices -for each, we indicate the corresponding schema.

𝑠 ({|| }, {|| }, {|| }) = x t non-R-choice 𝑠 ({|𝑝𝑏 | }, {|| }, {|| }) = x non-R-choice 𝑠 ({|| }, {|𝑟𝑎𝑠 | }, {|| }) = x t non-R-choice 𝑠 ({|| }, {|𝑟𝑎𝑠 | }, {|𝑟𝑎𝑠 | }) = y2 R-choice 𝑠 ({|| }, {|𝑟𝑎, 𝑟𝑎𝑠 | }, {|| }) = x t non-R-choice 𝑠 ({|| }, {|𝑟𝑎, 𝑟𝑎𝑠 | }, {|𝑟𝑎| }) = y1 R-choice 𝑠 ({|| }, {|𝑟𝑎, 𝑟𝑎𝑠 | }, {|𝑟𝑎𝑠 | }) = y2 R-choice 𝑠 ({|| }, {|𝑟𝑎, 𝑟𝑎𝑠 | }, {|𝑟𝑎, 𝑟𝑎𝑠 | }) = y1 ∧ y2 R-choice
The schema of a choice is always a conjunction of variables, say 𝑥 1 ∧. . .∧𝑥 𝑛 . During bottom-up generation, we need to know which non-cp-empty choices have a witness in the current assignment 𝐴 𝑖 , hence we need to associate every non-cp-empty choice with just one variable, not with a conjunction. Hence, we need to create a new variable 𝑦 for each conjunction 𝑥 1 ∧. . .∧𝑥 𝑛 that we have never seen before, then we execute GDNF normalization over 𝑥 1 ∧. . .∧𝑥 𝑛 , transforming it into a guarded disjunction of typed groups 𝑆, then we add 𝑦 : 𝑆 to the current environment and we apply preparation again to this new variable; we call this process and-completion. In the example above, this may be the case for 𝑦1 ∧𝑦2, unless 𝑦1 ∧𝑦2 is Boolean-equivalent to some variable that already exists.

Preparation can be regarded as a sophisticated form of and-elimination. Here, and-completion plays the same role that not-completion plays for not-elimination: it creates the new variables that we need in order to push conjunction through the object group operators. But, crucially, and-completion is lazy: we do not pre-compute every possible conjunction, but only those that are really needed by some specific non-cp-empty choice. This laziness is crucial for the practical feasibility of the algorithm: when different constraints, or requirements, are associated to disjoint patterns, we have very few non-cp-empty choices, and in most cases they do not need any fresh variable, as in the example. Despite laziness, this preparegenerate-normalize-prepare loop can still generate a huge number of variables. We keep their number under control using the ROBD-DTab data structure that we introduced in Section 5.1, which allows us to create a new variable only when none of the existing variables is boolean-equivalent to its body; this crucial optimization also ensures that this phase can never generate an infinite loop.

Hence, object preparation proceeds as follows:

(1) determine the set of non-cp-empty pairs (𝐶𝑃 ′ , 𝑅𝑃 ′ ), that is the pairs such that 𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ) is not empty; (2) for each non-cp-empty pair (𝐶𝑃 ′ , 𝑅𝑃 ′ ) compute the corresponding choices (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) and, if the variable intersection 𝑣𝑖 = 𝑠 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) has no equivalent variable in the environment, add a new variable 𝑥 : 𝑠 (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) to the environment, apply GDNF reduction to 𝑣𝑖, apply preparation to the GDNF-reduced conjunction.

Step (1) has, in the worst case, an exponential cost, but in practice it is much cheaper: in the common case where every pattern matches a single string, a set of 𝑛 properties and requirements generates at most 𝑛 + 1 non-empty pairs (one for each string plus one for the complement of the string set), 𝑛 R-choices, and 𝑛 + 1 non-R-choices. Since before preparation we have at most 𝑂 (𝑁 ) distinct variables (where 𝑁 is the input size), step (2) may generate at most 𝑂 (2 𝑁 ) new variables, each of which has a body which can be prepared in time 𝑂 (2 poly (N ) ). Hence, the global cost of this phase is still 𝑂 (2 poly (N ) ). In our implementation we use an algorithm, sketched in the full paper [START_REF] Attouche | Witness Generation for JSON Schema[END_REF], that runs in polynomial time in the common case when the number of non-cp-empty pairs is actually polynomial in the size of the object group, and our experiments show that this cost is, for most real-world schemas, tolerable. Property 3. Object preparation can be performed in 𝑂 (2 poly (N ) ) time.

6.3.4

Witness generation from a prepared object group. After the object group has been prepared once for all, at each pass of bottomup witness generation we use the following sound and generative algorithm, listed as Algorithm 2, to compute a witness for the prepared object group starting from the current assignment 𝐴 𝑖 .

In a nutshell, we (1) pick a list of choices that contains enough Rchoices to satisfy all requirements -each choice will correspond to one field in the generated object, and vice versa; (2) we verify that the list is pattern-viable, i.e., that it does not require two fields with the same name; (3) to satisfy any unfulfilled pro ∞ 𝑚 requirement, we add some non-R-choices, still keeping the choice list pattern-viable, as defined above. In order to keep the search space in 𝑂 (2 poly (N ) ), we limit ourselves to the subset of the disjoint solutions, and we prove that it is big enough to have a complete algorithm.

In greater detail, consider a generic object group with the form { type(Obj), 𝐶𝑃, 𝑅𝑃, pro 𝑀 𝑚 } and assume that the corresponding non-cp-empty choices have been prepared.

To generate an object, we first choose a list of choices that satisfies all of 𝑅𝑃. To reduce the search space, we first observe that a single object can be described by many different choice lists. For example, assume that '1' belongs to both [[𝑥]] 𝐸 and [[𝑦]] 𝐸 and assume that: 𝑟𝑥 = pattReq("a|b" : x) 𝑟𝑦 = pattReq("a|b" : y) 𝑅𝑃 = { 𝑟𝑥, 𝑟𝑦 } then { "a" : 1, "b" : 1 } is described by each the following four choice lists (and by others), where every choice could be used to generate/describe each of the two members:

𝐶𝐿 1 = [ ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥 | }), ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑦| }) ] 𝐶𝐿 2 = [ ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥, 𝑟𝑦| }), ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|| }) ] 𝐶𝐿 3 = [ ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥, 𝑟𝑦| }), ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥, 𝑟𝑦| }) ] 𝐶𝐿 4 = [ ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥, 𝑟𝑦| }), ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥 | }) ]
This example shows that we do not need to explore any possible choice list, but just enough choice lists to generate all witnesses. To this aim, we focus on disjoint solutions, defined as follows, whose completeness will be proved in Theorem 12.

Definition 10 (Disjoint solution, Minimal disjoint solution). Fixed a set 𝑅𝑃, a size limit 𝑀, and a set of choices C, a multiset

C ′ = {|(𝐶 𝑙 , 𝑅 ′ 𝑙 , 𝑅 ′′ 𝑙 ) | 𝑙 ∈ 𝐿| } with elements in C is a solution iff: ⋃︂ 𝑙 ∈𝐿 𝑅 ′′ 𝑙 = 𝑅𝑃 and |C ′ | ≤ 𝑀 The solution is disjoint if: 𝑖 ≠ 𝑗 ⇒ 𝑅 ′′ 𝑖 ∩ 𝑅 ′′ 𝑗 = ∅. The solution is minimal if every choice in C ′ is an R-choice.
In the previous example, only 𝐶𝐿 1 and 𝐶𝐿 2 are disjoint, and only 𝐶𝐿 1 is disjoint and minimal.

Object generation depends on the current assignment 𝐴 𝑖 . We say that a variable 𝑥 is Witnessed (in 𝐴 𝑖 ) when 𝐴 𝑖 (𝑥) ≠ ∅, and is NonWitnessed otherwise. We say that a choice is Witnessed, or NonWitnessed, when its schema variable is Witnessed, or is Non-Witnessed. In order to generate a witness, we first generate a disjoint minimal solution for 𝑅𝑃 with bound 𝑀, only using R-choices that are Witnessed. Then, in order to deal with the constraint that all names in an object are distinct, we check that the solution is pattern-viable. Informally, pattern-viability ensures that, if we have 𝑛 choices in the solution with the same characteristic pattern 𝑐𝑝, then the language of 𝑐𝑝 has at least 𝑛 different strings, which can be used to build 𝑛 different members corresponding to those 𝑛 choices. We will exemplify the issue after the definition. Definition 11. A set of choices C is pattern-viable iff for every pair (𝐶𝑃 ′ , 𝑅𝑃 ′ ), the number of choices in C with shape (𝐶𝑃 ′ , 𝑅𝑃 ′ , _) is smaller than the number of words in 𝐿(𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ )):

∀𝐶𝑃 ′ , 𝑅𝑃 ′ . |{|(𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) | (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) ∈ C| }| ≤ |𝐿(𝑐𝑝 (𝐶𝑃 ′ , 𝑅𝑃 ′ ))|
For example, the following choice list C is not viable since it describes an object with two members that share the same characteristic pattern "a" that only contains one string: 𝑟𝑥 = pattReq("a" : x), 𝑟𝑦 = pattReq("a" : y) C = [ ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑥 | }), ({|| }, {|𝑟𝑥, 𝑟𝑦| }, {|𝑟𝑦| }) ] But it would be viable if the pattern "a" were substituted by "a|b".

Finally, for each viable disjoint solution, we check whether it also satisfies the pro ∞ 𝑚 requirement (line 6 of Algorithm 2). If it does not, we try and extend the solution by adding some Witnessed non-R-choices (line 7). Observe that the disjoint solution contains each R-choice (𝐶𝑃 ′ , 𝑅𝑃 ′ , 𝑅𝑃 ′′ ) at most once, because of disjointness; however, we can add the same non-R-choice as many times as we need in order to reach 𝑚 members. A non-R-choice 𝐶 can only be added if the result remains viable; hence, a minimal disjoint solution C may have a viable extension C ′ of length 𝑚, obtained by adding a multiset of non-R-choices (lines 6-13), or it may not have such a viable extension, and then we need to start from a different minimal solution. If no viable disjoint solution admits a viable extension of length at least 𝑚, then the algorithm returns "no witness" (according to the current assignment). Otherwise, we use the extended solution C ′ to build a witness: for each choice 𝐶 ∈ C ′ , we generate a name 𝑘 satisfying 𝑐𝑝 (𝐶), we pick a value 𝐽 from 𝐴 𝑖 (𝑣𝑎𝑟 (𝐶)), and the set of members 𝑘 : 𝐽 that we obtain is a witness for the object group. When 𝑛 different choices inside C ′ have the same characteristic pattern, we generate 𝑛 different names, which is always possible since the solution is viable. Theorem 12 (Soundness and generativity). Algorithm Gen is sound and generative.

Proof sketch. Proving soundness is trivial, as our algorithm is sound by construction. For generativity, assume that the group 𝑆 = { type(Obj), 𝐶𝑃, 𝑅𝑃, pro 𝑀𝑎𝑥 𝑚𝑖𝑛 } has a witness of depth 𝑑 + 1 in [[𝑆]] 𝐸 . Assume that 𝐴 is 𝑑-witnessed for 𝐸. We want to prove that Gen, applied to 𝑆 and 𝐴, will generate at least one witness. Let 𝐽 = {a 1 : 𝐽 1 , . . . , a l : 𝐽 𝑙 } be a witness for 𝑆 in 𝐸 with depth 𝑑 + 1. We can extract from the fields of 𝐽 a multiset of choices C = (𝐶 ′ 𝑖 , 𝑅 ′ 𝑖 , 𝑅 ′′ 𝑖 ) with 𝑖 ∈ {1..𝑙 }, that describes these fields, as detailed in [START_REF] Attouche | Witness Generation for JSON Schema[END_REF]. We prove that all these choices are Witnessed in 𝐴, by exploiting the fact that 𝐽 has depth 𝑑 + 1, hence every 𝐽 𝑖 that appears in the witness has depth 𝑑 at most, and 𝐴 is 𝑑-witnessed. Finally, we prove that our algorithm would generate at least one solution for the group. To this aim, we first remove every non-Rchoice from C, hence obtaining a minimal disjoint solution, and we then add non-R-choices back if required by a pro ∞ 𝑚 requirement, and we observe that this is a viable solution, hence our algorithm would find it. □ Property 4 (Complexity). Given a schema of size 𝑁 , each run of the Gen algorithm has a complexity in 𝑂 (2 poly (N ) ).

Completeness and correctness

The algorithm described in this paper is correct and complete.

Theorem 13 (Correctness and completeness). The witness generation algorithm is correct and complete: it returns a witness if, and only if, the schema admits a witness, and otherwise it indicates that the schema is not satisfiable Proof sketch. This follows from Property 1, Property 2, and Theorem 12 (more details in [START_REF] Attouche | Witness Generation for JSON Schema[END_REF]). □

EXPERIMENTAL ANALYSIS 7.1 Implementation and experimental setup

We implemented our algorithm in Java 11, employing the Brics library [START_REF] Møller | brics.automaton -Finite-State Automata and Regular Expressions for Java[END_REF] to generate witnesses from patterns, and the jdd library [START_REF] Vahidi | JDD[END_REF] for ROBDDs. Our experiments were run on a virtualized machine deployed on a server with a 12-core Intel Xeon Silver 2.40GhZ CPU, 64 GB of RAM, running Debian GNU/Linux 11. Witnesses were validated by an external tool [START_REF]JSON schema validator[END_REF], and additionally by hand, since the external tool reported false negatives in a few cases. Each schema is processed by a single thread, and all reported times are measured for a single run. Our reproduction package [START_REF]Reproduction Package on GitHub[END_REF] can be used to confirm our results.

Tools for comparative experiments

Due to the lack of equivalent tools, we compare our tool against a Data Generator and a Containment Checker.

Data generator (DG).

We use an open source test data generator for JSON Schema [START_REF] Blackler | JSON Generator[END_REF] (version 0.4.6). This Java implementation pursues a try-and-fail approach: an example is first generated, then validated against the schema, and potentially refined if validation fails, exploiting the error message. This tool lends itself to a comparison although it is not able to detect schema emptiness: given an unsatisfiable schema, it will always return an (invalid) instance.

Containment checker (CC). We compare our tool against the containment checker by Habib et al. [20] (version 0.0.5), described in [START_REF] Habib | Finding Data Compatibility Bugs with JSON Subschema Checking[END_REF], and designed to check interoperability of data transformation operators [START_REF] Baudart | LALE: Consistent Automated Machine Learning[END_REF].

Schema collections

We conduct experiments with different schema collections. Table 1 states the respective numbers of satisfiable/unsatisfiable schemas.

Real-world schemas. For the GitHub collection, we retrieved virtually all files from GitHub that present the features of JSON Schema, based on a BigQuery search on the GitHub public dataset. We downloaded the 80K identified schemas (shared online [START_REF] Baazizi | A JSON Schema Corpus. A corpus of over 80thousand JSON Schema documents, collected from open source GitHub repositories, using Google BigQuery[END_REF]). We performed duplicate-elimination and data cleaning (see [START_REF] Attouche | Witness Generation for JSON Schema[END_REF]), arriving at 6,427 schemas, 40 of which are unsatisfiable (according to our tool and confirmed by direct inspection). We renamed all occurrences of uniqueItems, treating it as a user-defined keyword.

The three remaining real-world collections correspond to specifications of standards for deploying applications (Kubernetes [START_REF] Kubernetes | Kubernetes JSON Schemas[END_REF]), ruling interactions within a specific system (Snowplow [START_REF]Iglu Central[END_REF]), and describing data produced by content management systems (Washington Post [27]). To increase the number of processable schemas, we inlined references to external schemas. An earlier version of these collections where already used in [START_REF] Habib | Finding Data Compatibility Bugs with JSON Subschema Checking[END_REF] to check inclusion. Almost all schemas are satisfiable, except 5 from Kubernetes.

Hand-written schemas. Real-world schemas reflect real usage, and can be quite big, but they focus on the commonest operators and combination of operators. Hence, for stress-testing we inserted in our reproduction packages 235 handwritten schemas that are small but have been crafted to exemplify complex interactions between the language operators. To illustrate such an interaction, consider the following schema. Array operators also present interactions, as in the following example.

{ 𝑟 : item(1 : 𝑥) ∧ cont 1 1 (𝑦), 𝑥 : type(Arr) ∧ cont ∞ 2 (𝑡), 𝑦 : cont ∞ 1 (type(Num) ∧ mulOf( 3 
))} This example describes an array with schema 𝑟 that contains another array with schema 𝑥 ∧ 𝑦, this one having at least two elements (because of cont ∞ 2 (𝑡)), one of which is multiple of 3. The collection has been built by systematically considering operators for objects, arrays, strings and numbers, following software engineering principles for testing complex programs. Ultimately, this collection has proved particularly helpful in debugging.

Synthesized schemas. We include schemas that are neither realworld nor hand-written, but they are synthesized, that is, they are generated from the reference test suite for JSON Schema validation [START_REF]JSON Schema Test Suite[END_REF], designed to cover all language operators. The derivation is described in [START_REF] Attouche | Reproduction package: A Test Suite for JSON Schema Containment[END_REF][START_REF] Attouche | A Test Suite for JSON Schema Containment[END_REF], and yields triples (𝑆 1 , 𝑆 2 , 𝑏) where the Boolean 𝑏 specifies whether 𝑆 1 ⊆ 𝑆 2 holds for schemas 𝑆 1 , 𝑆 2 . Here, we restrict ourselves to schemas in Draft-04, since the CC tool is restricted to this version. We excluded selected schemas that contain features that we do not yet support, such as the format keyword (a mere technicality) or references to external files.

We check a containment 𝑆 1 ⊆ 𝑆 2 by trying to generate a witness for the schema 𝑆 1 ∧ ¬𝑆 2 , which is unsatisfiable if, and only if, 𝑆 1 ⊆ 𝑆 2 holds; we thus obtain both satisfiable and unsatisfiable schemas. The CC tool accepts two schemas as input and does not need this encoding. We also test the DG tool, where comparison is only meaningful for pairs where 𝑆 1 ∧ ¬𝑆 2 is satisfiable, since the DG tool cannot recognize unsatisfiable schemas.

Research hypotheses

We test the following hypotheses: (H1) correctness of our implementation, that we test with the help of an external tool that verifies the generated witnesses; (H2) completeness of our implementation, that we test by using an ample and diverse test-set; (H3) it can be used to fulfill some specific tasks better than existing tools; (H4) it can be implemented to run in acceptable time on sizable real-world schemas, despite its asymptotic complexity. We test the latest hypothesis by applying our tool to a vast set of real-world schemas.

Experimental results

7.5.1 Correctness and completeness. When testing each tool, we distinguish four outcomes: success, when a result is returned and it is correct; failure: when the code raises a run-time error or a timeout, that we set to 3,600 secs; logical error on satisfiable schema, when the input schema 𝑆 is satisfiable but the code returns either "unsatisfiable" or a witness that does not actually satisfy 𝑆; logical error on unsatisfiable schema, when the input schema is unsatisfiable but a presumed witness is nevertheless returned.

We summarize the results of the experiments in Table 1. Our tool produces no logical error in any of our schema collections. With the GitHub schemas, it fails with "timeout" for 0.44% of schemas (28 schemas), with a "ref-expansion" for 0.01% (1 schema), and with "out of memory", when calling the automata library, for 0.36% of schemas (23 schemas). No failures arise in the other schema collections, supporting hypothesis H1.

The DG tool successfully handles 94.20% of the GitHub schemas, and has similar correctness ratio for the other real-world schemas but it performs poorly regarding correctness on handwritten schemas, and cannot be really used for inclusion checking, since it does not detect unsatisfiability. It is difficult to compare run-times between tools. Essentially, on most schemas the two tools have comparable times, evident when looking at the median times, but there is a small percentage of files where our tool takes a very long time, and this is reflected on our disproportionately high average time.

The synthesized schemas show that our tool supports a much wider range of language features (hypothesis H2), which is natural since the CC tool targets a language subset, while completeness is core to our work.

We can conclude that our tool advances the state-of-the-art for containment checking and witness generation, especially for schemas that present aspects of complexity (hypothesis H3). 7.5.2 Runtime on real-world schemas. We next test hypothesis H4. In each of the three biggest collections, 95% of the files are elaborated in less than 4.0 secs, with median ≤65 ms, and average ≤5 secs. The smaller Washington Post collection presents higher times, which will be discussed in Section 7.6. These results are coherent with hypothesis H4. 

Qualitative Insights

Several interesting insights can be extracted from an analysis of the size-time relationship for the GitHub collection, represented by the scatterplot in Figure 3. The histograms at the top and at the righthand side indicate that schema size and run-time are distributed along 6 orders of magnitude, with a strong concentration on the low part of axes, which forced us to use a log-log scale. In the log-log plot, we observe a cloud with a slope of about 1, suggesting a linear correlation, but we also observe that every file-size exhibits many outliers, and that long-running schemas can be found everywhere along the file-size axis. This clearly indicates that the runtime is affected more by the presence of specific combinations of operators, which may take little space but cause exponential runtime, than by schema size. Indeed, our complexity analysis shows that exponential complexity is triggered by some specific operations, such as (1) object preparation, when different patterns overlap, requiring the generation of an exponential number of choices and of new variables;

(2) reduction to DNF; and (3) pattern manipulation.

We tried to complement this theoretical knowledge with observations on the data. We applied data-mining techniques to correlate features of the schemas with the run-time. The feature that correlates more clearly with very long run-time is the presence of a "maxLength": 𝑛 statement with 𝑛 > 65, 000, which induces the creation of a large automaton. Other features with a strong correlation with high run-time are the presence of "enum" with extremely long lists of arguments, that may then cause the generation of very big terms during DNF reduction, and of "oneOf" with long lists of arguments, which again can generate big terms during DNF.

The Washington Post collection requires a specific analysis to explain its high 95% percentile time and average time. It is a smallish collection (125 schemas), where 20% of the files require around 130 secs for their elaboration, while all the others require less than 1 sec, with a global median of 42 ms. All the "slow" files are very similar, with more than 2K nodes in their syntax trees. By selectively deleting specific subtrees, we concluded that the high time is due to pattern overlapping between an instance of "patternProperties" and a corresponding instance of "properties", confirming our theoretical knowledge of the strong influence of pattern overlapping over the complexity of object preparation. The small number of files in this collection and their high homogeneity explains the anomaly of the result. 

CONCLUSIONS

In this paper we have described an algorithm for witness generation, designed for the specific features of JSON Schema object and array operators. Our extensive experimental evaluation proves the practical viability of the approach, and provides insight into the actual behavior of the algorithm on real-world schemas.

We have left the implementation of the uniqueItems operator out of the scope of the current paper in order to keep the size and complexity of this work under control, but the fundamental techniques that we have designed, for object and array preparation and generation, still apply, with some important generalizations that we believe deserve a dedicated analysis.

Another possible development is to move from "witness generation", where the only goal is to generate any witness that proves satisfiability, to "example generation", where we generate a set of witnesses designed to satisfy some criterion of "completeness" or "realism", for applications ranging from schema explanation to testset and workload generation.
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 1 Figure 1: (a) Original term. (b) After not-elimination. (c) After stratification, omitting unaffected variables. (d) After transformation to GDNF. (e) After canonicalization.
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 2 Figure 2: Rules for assignment evaluation.

Definition 4 (

 4 Depth 𝛿 (𝐽 ), J d ). The depth of a JSON value 𝐽 , 𝛿 (𝐽 ), is defined as follows, where max({| | }) is defined to be 0: 𝐽 belongs to a base type : 𝛿 (𝐽 ) = 1 𝐽 = [𝐽 1 , . . . , 𝐽 𝑛 ] : 𝛿 (𝐽 ) = 1 + max({|𝛿 (𝐽 1 ), . . . , 𝛿 (𝐽 𝑛 )| }) 𝐽 = {a 1 : 𝐽 1 , . . . , a n : 𝐽 𝑛 } : 𝛿 (𝐽 ) = 1 + max({|𝛿 (𝐽 1 ), . . . , 𝛿 (𝐽 𝑛 )| }) J d is the set of all JSON values 𝐽 with 𝛿 (𝐽 ) ≤ 𝑑.

Algorithm 1 : 2 Prepare (E); 3 ∀𝑦. 8 else 9 ∀𝑦.

 12389 Bottom-up witness generation 1 BottomUpGenerate(x,E) 𝐴 [𝑦 ] := nextA[𝑦 ] := ∅ ; 4 while A[x] == ∅ do 5 for y in vars(E) where A[y] == ∅ do 6 nextA[𝑦 ] := Gen(E(y),A) 7 if (∀𝑦. nextA[y] == A[y]) then return (unsatisfiable); 𝐴 [𝑦 ] := nextA[𝑦 ]; 10 return (𝐴 [𝑥 ]);

  ) If the algorithm terminates with "unsat. ", then [[𝑥]] 𝐸 = ∅. (3) The algorithm terminates after at most |Vars(𝐸)| + 1 passes. Proof sketch. Property (1) is immediate. For (2), we first prove the following property: if the algorithm terminates with "unsatisfiable" after step 𝑗, then, for every variable 𝑦: 𝐴 𝑗 (𝑦) = ∅ ⇒ [[𝑦]] 𝐸 = ∅. Assume, towards a contradiction, that there is a non empty set of variables 𝑌 such that 𝑦 ∈ 𝑌 ⇒ (𝐴 𝑗 (𝑦) = ∅ ∧ [[𝑦]] 𝐸 ≠ ∅). Let 𝑑 be the minimum depth of ⋃︁ 𝑦 ∈𝑌 [[𝑦]] 𝐸 , and let 𝑤 be a variable in 𝑌 and such that 𝑑 is the minimum depth of the values in [[𝑤]] 𝐸 .

6. 3 . 1

 31 Constraints and requirements. We say that an assertion 𝑆 = props(𝑟 : x) or 𝑆 = pro 𝑀 0 is a constraint. A constraint has the following features: (a) { } ∈ [[𝑆]] 𝐸 and (b) {𝑘 1 : 𝐽 1 , . . . , 𝑘 𝑛 : 𝐽 𝑛 , 𝑘 𝑛+1 :

Algorithm 2 : 2 for 9 Solution

 229 Object witness generation 1 Gen(RPart, WitRChoices,WitNonRChoices, min, Max,) Solution in minDisjointSols (WitRChoices,RPart,Max) do 3 if (viable(Solution)) then 4 missing := min -size(Solution); 5 nonViableChoices := ∅; 6 while (missing > 0 and nonViableChoices !=WitNonRChoices) do 7 choose NRC from (WitNonRChoices-nonViableChoices); 8 if (viable([NRC]++Solution)) then

{

  𝑟 : props(𝑎 : x) ∧ props(a. * : y) ∧ req(a), 𝑥 : type(Str) ∧ pattern(𝑎(𝑐 |𝑒)), 𝑦 : type(Str) ∧ pattern(𝑎(𝑏 |𝑐)) } Here we have an interaction between two props and a req with overlapping patterns, and associated with two different variables 𝑥 and 𝑦 whose schemas present non-trivial overlapping.

Figure 3 :

 3 Figure 3: File size vs. runtime for GitHub schemas; log-log scatterplot with histograms, highlighting the medians. Top right, the sizes of the files causing timeouts are shown.

𝑥 𝑛 : 𝑆 𝑛 ): 𝐽 satisfies 𝑆 when every 𝑥 𝑖 is interpreted as an alias for the corresponding 𝑆 𝑖 . Variables in 𝐸 = 𝑥 1 : 𝑆 1 , . . . , 𝑥 𝑛 : 𝑆 𝑛 are mutually recursive, but we require recursion to be guarded. Let us say that 𝑥 𝑖 directly depends on 𝑥 𝑗 if some occurrence of 𝑥 𝑗 appears in the definition of

  • pattern(𝑟 ): if 𝐽 is a string, then 𝐽 matches 𝑟 . • betw 𝑀 𝑚 : if 𝐽 is a number, then 𝑚 ≤ 𝐽 ≤ 𝑀. xBetw 𝑀 𝑚 is the same with extreme excluded. • mulOf(𝑞): if 𝐽 is a number, then 𝐽 = 𝑞 × 𝑖 for some integer 𝑖. 𝑞 is any number, i.e., any decimal number (Section 3.1). • props(r : 𝑆) if 𝐽 is an object and if (𝑘, 𝐽 ′ ) is a member of 𝐽 where 𝑘 matches the pattern 𝑟 , then 𝐽 ′ satisfies 𝑆. Hence, it is satisfied by any instance that is not an object and also by any object where no member name matches 𝑟 . • req(k): if 𝐽 is an object, then it contains at least one member whose name is 𝑘. • pro 𝑗 𝑖 : if 𝐽 is an object, then it has between 𝑖 and 𝑗 members. • item(𝑙 : 𝑆): if 𝐽 is an array [𝐽 1 , . . . , 𝐽 𝑛 ] (𝑛 ≥ 0) and if 𝑙 ≤ 𝑛, then 𝐽 𝑙 satisfies 𝑆. Hence, it is satisfied by any 𝐽 that is not an array and also by any array that is strictly shorter than 𝑙: it does not force the position 𝑙 to be actually used. • items(𝑖 + : 𝑆): if 𝐽 is an array [𝐽 1 , . . . , 𝐽 𝑛 ], then 𝐽 𝑙 satisfies 𝑆 for every 𝑙 > 𝑖. Hence, it is satisfied by any 𝐽 that is not an array and by any array shorter than 𝑖. • cont 𝑗 𝑖 (𝑆): if 𝐽 is an array, then the total number of elements that satisfy 𝑆 is included between 𝑖 and 𝑗. • type(𝑇 ) is satisfied by any instance belonging to the predefined JSON type 𝑇 (Str, Num, Bool, Obj, Arr, and Null). • x is equivalent to its definition in the environment 𝐸 associated with the expression. • 𝑆 1 ∧ 𝑆 2 : both 𝑆 1 and 𝑆 2 are satisfied. • 𝑆 1 ∨ 𝑆 2 : either 𝑆 1 , or 𝑆 2 , or both, are satisfied. • ¬𝑆: 𝑆 is not satisfied. • notMulOf(𝑛): if 𝐽 is a number, then is not a multiple of 𝑛. • pattReq(𝑟 : 𝑆): if 𝐽 is an object, then it contains at least one member (𝑘, 𝐽 ) where 𝑘 matches 𝑟 and 𝐽 satisfies 𝑆 • contAfter(𝑖 + : 𝑆): if 𝐽 is an array [𝐽 1 , . . . , 𝐽 𝑛 ], then it contains at least one element 𝐽 𝑗 with 𝑗 > 𝑖 that satisfies 𝑆. • 𝐷 = 𝑆 defs (𝑥 1 : 𝑆 1 , . . . , 𝑥 𝑖 without being in the scope of an ITO. Recursion is not guarded if the transitive closure of the relation "directly depends on" contains a reflexive pair (𝑥, 𝑥). Informally, recursion is guarded iff every cyclic chain of dependencies traverses an ITO. An environment 𝐸 = 𝑥 1 : 𝑆 1 , . . . , 𝑥 𝑛 : 𝑆 𝑛 is guarded if recursion is guarded in 𝐸. An environment 𝐸 = 𝑥 1 : 𝑆 1 , . . . , 𝑥 𝑛 : 𝑆 𝑛 is closing for 𝑆 if all variables in 𝑆 1 , . . . , 𝑆 𝑛 and in 𝑆 are included in 𝑥 1 , . . . , 𝑥 𝑛 .

Table 1 :

 1 Schema collections, correctness and completeness results, median/95th percentile/average runtime (in seconds).

	Collection	#Total	#Sat/ #Unsat	Size (KB) Avg/Max	Tool Success Failure	Errors sat.	Errors unsat.	Med. Time	95% -tile	Avg. Time
	GitHub	6,427	6,387/40	8.7/1,145	Ours DG	99.19% 94.2%	0.81% 2.86%	0% 2.43%	0% 0.51%	0.019 s 0.021 s	0.749 s 0.082 s	4.289 s 0.190 s
	Kubernetes	1,092	1,087/5	24.0/1,310.7	Ours DG	100% 99.54%	0% 0%	0% 0%	0% 0.46%	0.013 s 0.023 s	0.510 s 0.069 s	0.577 s 0.031 s
	Snowplow	420	420/0	3.8/54.8	Ours	99.52%	0.48%	0% no unsat	0.065 s	3.864 s	2.071 s
					DG	94.76%	0%	5.24% no unsat	0.024 s	0.078 s	0.032 s
	WashingtonPost	125	125/0	21.1/141.7	Ours	100%	0%	0% no unsat	0.042 s 132.690 s	23.349 s
					DG	96.8%	0%	3.2% no unsat	0.030 s	0.079 s	0.042 s
	Handwritten	235	197/38	0.1/109.4	Ours DG	100% 8.51%	0% 34.04%	0% 49.36%	0% 8.09%	0.070 s 0.023 s	3.063 s 0.132 s	2.593 s 0.049 s
	Containment-draft4	1,331	450/881	0.5/2.9	Ours DG CC	100% 28.78% 35.91%	0% 30.88% 62.96%	0% 0.07% 0.15%	0% 40.27% 0.98%	0.004 s 0.020 s 0.003 s	0.038 s 0.034 s 0.096 s	0.011 s 0.019 s 0.036 s

TRANSFORMATION IN POSITIVE, STRATIFIED, GROUND, CANONICAL DNFWe will illustrate the preliminary phases of our algorithm by exploiting the running example of Figure1.
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