
HAL Id: hal-03946251
https://hal.science/hal-03946251v1

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Empirical Study on the ”Usage of Not” in
Real-World JSON Schema Documents

Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani,
Stefanie Scherzinger

To cite this version:
Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, Stefanie Scherzinger. An
Empirical Study on the ”Usage of Not” in Real-World JSON Schema Documents. 40th International
Conference on Conceptual Modeling ER 2021, Oct 2021, St. John’s, NL (Virtual), Canada. pp.102-
112, �10.1007/978-3-030-89022-3_9�. �hal-03946251�

https://hal.science/hal-03946251v1
https://hal.archives-ouvertes.fr

An Empirical Study on the “Usage of Not”
in Real-World JSON Schema Documents

Mohamed-Amine Baazizi1, Dario Colazzo2, Giorgio Ghelli3, Carlo Sartiani4,
and Stefanie Scherzinger5B

1 Sorbonne Université, LIP6 UMR 7606, France baazizi@ia.lip6.fr
2 Université Paris-Dauphine, PSL Research University, France

dario.colazzo@dauphine.fr
3 Dipartimento di Informatica, Università di Pisa, Italy ghelli@di.unipi.it

4 DIMIE, Università della Basilicata, Italy carlo.sartiani@unibas.it
5 University of Passau, Passau, Germany stefanie.scherzinger@uni-passau.de

Abstract. We study the usage of negation in JSON Schema data mod-
eling. Negation is a logical operator rarely present in type systems and
schema description languages, since it complicates decision problems:
many software tools, but also formal frameworks for working with JSON
Schema, do not fully support negation. This motivates us to study whether
negation is actually used in practice, for which aims, and whether it could
— in principle — be replaced by simpler operators. We have collected a
large corpus of 80k open source JSON Schema documents from GitHub.
We perform a systematic analysis, quantify usage patterns of negation,
and also qualitatively analyze schemas. We show that negation is indeed
used, albeit infrequently, following a stable set of patterns.

Keywords: Empirical Study · Conceptual Modeling · JSON Schema.

1 Introduction

JavaScript Object Notation (JSON) has become one of the most popular for-
mats for data exchange. While many schema languages for JSON have been pro-
posed [3], JSON Schema [16] is receiving considerable attention. The theoretical
properties of this language have been recently studied [4,7,17]. In this language,
a schema is a logical combination of assertions, describing classes of constraints
on objects, arrays, and base values. JSON Schema is constantly evolving and
new drafts always introduce new features. The language is increasingly used for
defining domain-specific data exchange formats [13] and as a meta-language for
defining other languages; a subset of JSON Schema serves as the schema language
inside MongoDB [15]. As a consequence, an active and quite broad development
community is releasing JSON Schema tools (validators [1], in particular).

JSON Schema is powerful but complex, and its semantics is based on an
intricate interplay among logical assertions. A distinctive feature is the not op-
erator, whereby negation can be applied to any assertion. Negation is quite rare
in type and schema languages, as it poses severe challenges.

2 M. Baazizi, D. Colazzo, et al.

(a
) 1 { "not ":

2 { " required ": [" DisplaceModules "] }
3 }

(b
)

1 { " description ": "..." ,
2 " @errorMessages ":
3 { "not ": " Invalid target : ..." },
4 "not ": { " pattern ": "..." } ... }

(c
)

1 { " title " : " Object w/ required foo .",
2 "type ": " object ",
3 " properties ": {
4 "foo ": { "type ": " integer " },
5 "bar ": { "type ": " string " } },
6 " patternProperties ": {
7 "f.*o": { "type ": " integer " } },
8 " required ": [" foo "]
9 }

Fig. 1. Snippets of JSON Schema documents.

Example 1. One usage of not that startles novices (as discussed on StackOver-
flow [18]) is in combination with the keyword required, as shown in Figure 1(a).
While “not required” may sound like “optional”, it enforces that the object must
violate the assertion, so member "DisplaceModules" must be absent.

Indeed, the not-operator is often not fully supported, whether in academic
prototype tools [10], commercial tools (e.g., [15]), or even formal frameworks [11].
This inspired us to investigate the usage of this operator in real-world schemas,
in a principled analysis of 80k JSON Schema documents crawled from GitHub.
We formulate these research questions: (1) how frequent is negation in practice,
(2) how is negation used, and (3) what are common usage patterns?

Contributions. We summarize the highlights of our systematic empirical study
on the usage of not, which we describe in full detail in our extended technical
report [5]. Along our journey towards understanding not, we gained a general
understanding of JSON Schema modeling in practice. In particular:
– We establish a method for the collection and preparation of JSON Schema

documents, and we make our corpus of schemas available (https://doi.
org/10.5281/zenodo.5141199), as well as a docker container populated
with data and pre-defined pattern queries for interactive, ad-hoc analysis in
follow-up studies (https://doi.org/10.5281/zenodo.5141378).

– We measure the frequency of use of JSON Schema operators and of paths
that include not, and quantify main patterns of use.

– We identify well-supported jargons, i.e., common uses of not that have the
potential to mature into JSON Schema design patterns.

2 Preliminaries

JSON data model. The grammar below captures the syntax of JSON values,
which are basic values, objects, or arrays. Basic values B include the null value,
booleans, numbers n, and strings s. Objects O represent sets of members, each
member being a name-value pair, and arrays A represent sequences of values.

J ::= B | O | A JSON expressions
B ::= null | true | false | n | s n ∈ Num, s ∈ Str Basic values
O ::= {l1 : J1, . . . , ln : Jn} n ≥ 0, i 6= j ⇒ li 6= lj Objects
A ::= [J1, . . . , Jn] n ≥ 0 Arrays

https://doi.org/10.5281/zenodo.5141199
https://doi.org/10.5281/zenodo.5141199
https://doi.org/10.5281/zenodo.5141378

“Usage of Not” in Real-World JSON Schema Documents 3

JSON Schema. JSON Schema is a language for defining the structure of JSON
documents. JSON Schema uses JSON syntax, its semantics has been formalized
in [17] (following Draft-04). We limit ourselves to discussing the main keywords,
and continue with two illustrative examples:
Assertions include required, enum, const, pattern and type, and indicate a

test that is performed on the corresponding instance.
Applicators include the boolean operators anyOf, allOf, oneOf, not, the ob-

ject operators properties, patternProperties, additionalProperties,
the array operator items, and the reference operators $ref. Applicators in-
dicate a request to apply a different operator to the same instance or to a
component of the current instance.

Annotations include title, description, and $comment, they do not affect
validation, but they indicate an annotation that should be associated with
the instance. Since we are mostly interested in validation, and since, more-
over, annotations are removed by the not operator, we will ignore them.

Example 2. In the schema in Figure 1(c), inspired from [1], line 1 carries an anno-
tation. In defining an object (line 2), applicators define constraints on properties
(lines 3), and the type of the properties matching a pattern (see line 6). Using
an assertion, it is possible to indicate required properties (line 8).

Example 3. JSON Schema is an open standard: In Figure 1(b), @errorMessages
is a user-defined keyword whose value is an object that describes the error, and
not a JSON Schema assertion (link to schema 32451 in our schema corpus,
available in the PDF). Hence, not in line 3 is just a member name, whereas
negation does occur in line 4. The same string token has different semantics,
depending on its context, which complicates parsing.

2.1 Pattern Queries
To study which keywords occur below an instance of the not operator, we in-
troduce a simple path language. A path such as .∗∗.not.required matches any
path that ends with an object field named required found inside an object
field whose name is not. Paths are expressed using the following language. Path
matching is defined as in JSONPath [9].

p ::= step | step p step ::= .key | . ∗ | [∗] | .∗∗

The step .∗ retrieves all member values of an object, [∗] retrieves all items of
an array, and .∗∗ is the reflexive and transitive closure of the union of .∗ and [∗],
navigating to all nodes of the JSON tree to which it is applied.

Complex sub-schemas. We say that not has a complex sub-schema, when its
object argument contains more than one keyword. In this case, we say these
keywords co-occur in the negated schema; otherwise, a sub-schema is simple.
As an example, consider the schema of Figure 3(b) (link to schema 3460): the
argument of not is complex, and we match the paths .not.enum and .not.type.

https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_32451.json
https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_32451.json
https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_3460.json

4 M. Baazizi, D. Colazzo, et al.

3 Methodology

Context. We used the cloud service Google BigQuery to search for open source
JSON Schema documents (excluding the schemas defining the JSON Schema
drafts) on GitHub. We identified 91,6k URLs in July 2020, of which 85,6k could
be retrieved (using wget). Discarding files with invalid syntax yields 82k files.

For each retrieved file, we analyzed the $schema declarations to identify the
version of JSON Schema. Draft 2019-09 (also known as Draft-08) is still quite
new, and not really represented. Draft-04 is declared in the vast majority of the
files (79%), while Draft-07, Draft-06, and the old Draft-03 are each below 5%.
An analysis of the file contents showed that the actual version that a schema
follows is often different from the version declared.

Data Preparation. As a first data preparation step, we renamed all references
($ref) by a new keyword $eref, with the target of the reference as its child. Note
that we did not expand references recursively. We expanded references to external
documents, provided that we were able to locate the referenced document (e.g.,
either contained within our corpus, or by downloading the document). References
were renamed to $fref when expansion failed. We observed that by expanding
references we lose the conceptual information encoded in the reference path itself.
Thus, $ref is often more than just a syntactic macro.

The schema corpus contains a large share of near-duplicate schemas, with
small variations in syntax. We performed duplicate elimination by comparing
compact schema signatures, defined as a function that maps each JSON Schema
keyword to the number of its occurrences in the schema (encoded as a vector
of keyword counts); we assumed that two schemas with the same signature are,
with high probability, versions of the same schema, and we retained just one.

As illustrated in Example 3, correctly recognizing keywords can be a chal-
lenge. For this reason, we renamed all property names to avoid confusion when
searching for patterns that involve the keyword not. As schema authors can
define their own keywords, we have no way to know whether their value should
be interpreted as an assertion. We experimented with two approaches: a “strict”
approach in which we renamed everything that was inside a user-defined key-
word, hence making it inaccessible by the analysis, and a “lax” approach in
which we kept the content of any user-defined keyword, so that all instances of
not in Figure 1(b) would be counted as keywords. With the strict approach,
some interesting usage patterns are lost, and keyword usage is under-estimated.
With the lax approach, we risk “false positives”, and hence over-estimation. We
decided that the over-estimation of the lax approach was preferable.

Analysis Process. The bulk of our effort is actually invested in data preparation.
After experimenting with different data analysis platforms, we resorted to a
relational encoding of the JSON Schema documents in PostgreSQL. This setup
met our performance expectations, and allowed us to write queries in plain SQL.

Artifact Availability. Our schema corpus, as well as a docker image with our data
analysis setup, are available on Zenodo (see the DOIs linked in the Introduction).

“Usage of Not” in Real-World JSON Schema Documents 5

ty
pe

de
sc
rip
tio
n

$r
ef

pr
op
er
tie
s

re
qu
ire
d

on
eO

f
en
um

ite
m
s

tit
le

ad
dP
ro
p. id

de
fa
ul
t

pa
tte
rn

m
ax
Le
ng
th

m
in
Le
ng
th

$s
ch
em
a

m
in
im
um

an
yO

f
m
in
Ite
m
s

m
ax
im
um

m
ax
Ite
m
s

un
iq
ue
Ite
m
s

de
fin
iti
on
s

al
lO

f

pa
tte
rn
Pr
op
.

ex
am

pl
es$id

ad
d.
Ite
m
s

re
ad
On

ly
not
co
ns
t

ex
clu
siv
eM

in
.

m
in
Pr
op
er
tie
s

de
pe
nd
en
cie
s

m
ul
tip
leO

f

$c
om

m
en
t

ex
clu
siv
eM

ax
. if

th
en

m
ax
Pr
op
er
tie
s

de
pr
ec
at
ed

pr
op
er
ty
Na
m
es

co
nt
ain

s
el

se

wr
ite
On

ly
$d
efs

100

101

102

103

104

105

106

N
um

be
r
of

M
at
ch
es

#Occ

100

101

102

103

104

105

106

#Files

Fig. 2. Number of total occurrences (#Occ), and number of files (#Files), where a
JSON Schema keyword appears. Boolean operators are highlighted.

4 Results of the Study

4.1 RQ1: How frequent is negation in practice?
We study the frequency of JSON Schema keywords within our corpus, and the
Boolean operators (among them, negation). The reported absolute values are
mainly interesting as indicators as to the relative occurrences of operators. Fig-
ure 2 visualizes the results. From left-to-right, we sort keywords by their number
of occurrence (note the log-scaled vertical axes). We also show the number of
files in which keywords occur, as a further indicator of keyword relevance.

The operator not appears in approx. 3% of all schemas, and occupies the 30th
position, out of 46 keywords analyzed. Thus, it is a comparatively rare operator.
The most common Boolean operator is oneOf, more frequent than anyOf. allOf
is even less common. The Boolean operator if-then-else is even less common
than not, but was only been introduced in Draft-07.

Results. We found the dissemination of oneOf surprising, since the exclusive-
disjunctive semantics of oneOf is more complicated than the purely disjunctive
anyOf: oneOf takes as argument a collection of subschemas S1, . . . , Sn, and a
value J satisfies oneOf only if it matches exactly one subschema; anyOf is satis-
fied by any value J that matches at least one of the subschemas. Our hypothesis
is that the description of a class as a oneOf-combination of a set of “subclasses” is
familiar from the exclusive-subclassing mechanism of object-oriented languages.

The operator not appears 787 times in 298 different files out of 11,500. While
not very frequent, its usage nevertheless merits a systematic study.

4.2 RQ2: How is negation used in practice?
We evaluated pattern queries to identify keywords below not. Table 1 summa-
rizes the results. Consider the left half. We match the path .**.not.* 840 times

6 M. Baazizi, D. Colazzo, et al.

Table 1. Occurrences of not.k paths (overall #Occ, and counting #Files).

Path #Occ #Files

not.* 840 289

required 28.6 % 29.1 %

items 15.0 % 9.3 %

type 7.4 % 17.7 %

properties 8.5 % 16.3 %

$eref 11.1 % 9.7 %

enum 7.3 % 18.0 %

allOf 2.7 % 8.0 %

pattern 5.6 % 9.7 %

anyOf 5.4 % 12.5 %

description 0.5 % 1.4 %

title 0.2 % 0.7 %

$schema 0.0 % 0.0 %

$fref 3.2 % 4.8 %

oneOf 0.7 % 1.4 %

additionalProperties 1.3 % 3.8 %

patternProperties 1.8 % 5.2 %

const 0.7 % 0.4 %

definitions 0.0 % 0.0 %

id 0.0 % 0.0 %

dependencies 0.0 % 0.0 %

not 0.0 % 0.0 %

$ref 0.0 % 0.0 %

$comment 0.1 % 0.4 %

Path #Occ #Files

not.$eref.* 338 28

required 10.7 % 53.6 %

items 0.0 % 0.0 %

type 15.1 % 71.4 %

properties 11.8 % 64.3 %

$eref 0.0 % 0.0 %

enum 3.6 % 28.6 %

allOf 11.2 % 17.9 %

pattern 0.0 % 0.0 %

anyOf 0.6 % 7.1 %

description 12.1 % 25.0 %

title 11.5 % 25.0 %

$schema 12.1 % 32.1 %

$fref 0.0 % 0.0 %

oneOf 5.3 % 10.7 %

additionalProperties 2.7 % 25.0 %

patternProperties 0.0 % 0.0 %

const 0.0 % 0.0 %

definitions 0.9 % 10.7 %

id 0.6 % 7.1 %

dependencies 0.6 % 7.1 %

not 0.6 % 7.1 %

$ref 0.6 % 7.1 %

$comment 0.0 % 0.0 %

(#Occ) in 289 files (#Files). Below the top summary row, we list the individual
keywords, breaking down shares of matches in percent (visualized by progress
bars). The right half of the table provides statistics for sub-schemas that are
negated and referenced, and therefore reachable via a path .**.not.$eref.*.

In the following, we will omit the prefix “.**” from path queries, assuming
the context is clear to our readers. We sorted the table on the total number
of not.k+not.$eref.k occurrences (see [5] for the absolute values), and it is
interesting to compare the weight of different keywords in both parts.

A not may not correspond to any not.* pattern, when followed by { }. We
found 16 such occurrences, expressing the schema false, which is not satisfied
by any instance. This use of not is a consequence of the fact that false has only
been introduced with Draft-06.

Complex arguments. Table 1 indicates a total of 840 occurrences of not.*, Fig-
ure 2 reported 787 occurrences of not. The values differ since the negated sub-
schema can be complex. Most instances of not have a simple sub-schema. Most
negated complex schemas have two keywords, but some have three or four.

“Usage of Not” in Real-World JSON Schema Documents 7

(a
)

"not ": {
"enum ": [" markdown ",

"code",
"raw "] }

(b
) "not ": {

"enum ": [" generic - linux "],
"type ": " string " }

(c
)

"not ": {
" items ": {

"not ": {
"type ": " string ",
"enum ": [

" Dataset ", " Image ",
" Video ", " Sound ",
"Text"] } }

(d
)

{ "type" : " object ",
" oneOf ": [

{ " properties ":
{ "when ": {" enum ": [" delayed "]}} ,

" required ": [" when "," start_in "] },
{ " properties ":

{ "when ": { "not ": {" enum ": [" delayed "]}
}}}] }

(e
)

{ "type ": " object ",
"if ": {

" required ": [" when "],
" properties ":

{ "when ": {" enum ": [" delayed "]} }},
"then ": {

" properties ":
{ "when ": {" enum ": [" delayed "] }},

" required ": [" when", " start_in "] }}

Fig. 3. JSON Schema snippets exemplifying real-world usage patterns.

The situation is very different with $eref, i.e., references expanded in pre-
processing. Here, 93 occurrences of not.$eref correspond to 338 occurrences of
not.$eref.*. Thanks to the mediation of $eref, the schema designer implicitly
applies negation to a complex argument, with an average of 3-4 members.

Results. The most common argument of negation is required. The pattern
not.items is second-most common, followed by not.type and not.properties.

While not.required dominates the not.* case, the two most common cases
of the not.$eref group are not.$eref.type, whose value is object in 80% of the
cases, and not.$eref.properties, which indicates that not.$eref is mostly used
to negate complex object definitions. This explains the much higher occurrence
of descriptive keywords inside the referenced argument.

4.3 RQ3: What are common real-world usage patterns?

Field and value exclusion. Field exclusion via not.required is the most frequent
path, and this usage was already discussed in Example 1.

We discuss the paths not.enum and not.const together, as both are used to
exclude values. Snippets of example schemas are shown in Figures 3(a) and (b).
Such schemas have an obvious interpretation: the instance may have any type
and must be different from the string or strings listed. In the majority of cases,
the sub-schema is simple, as in Figure 3(a) (link to schema 89480). In the complex
cases, enum is always paired with a "type" : "string" assertion, as in Figure 3(b)
(link to schema 3458). This assertion is redundant, since all values listed by enum
are strings. This co-occurrence is not specific to negation, since also in positive
schemas, enum is paired with a type assertion in the vast majority of cases.

Paraphrasing contains. The pattern not.items is among the most common
not-paths. All such schemas have either the structure not.items.not (as in Fig-
ure 3(c), link to schema 88916) or not.items.enum.

https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus//pp_89480.json
https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_3458.json
https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_88916.json

8 M. Baazizi, D. Colazzo, et al.

The items assertion is verified by any instance that is not an array, or that
is an empty array, or that is an array where every element satisfies the schema
associated with items. Hence, it is only violated by instances that are arrays,
and which contain at least one element that violates the schema. While items
specifies a universally quantified property, not.items can be used to specify
an existentially quantified property, as does the contains keyword (as we will
discuss shortly). The jargon not.items.enum specifies that the array must con-
tain at least one value that is not listed in the argument of enum. The jargon
not.items.not specifies that the instance is an array that contains at least one
value that satisfies S, according to the following equivalence:

"not": { "items": { "not": S } } ⇔ {"type": "array", "contains": S }
These two cases cover, with minimal variations, all occurrences of not.items.

(In fact, all these schemas originate from just two groups of schema designers.)
To sum up, not.items can be used to express contains. This is an instance

of a pattern that may be replaced by a single (and thus simpler) operator.

Paraphrasing Discriminated Unions. The schema snippet in Figure 3(d) (link
to schema 90970) allows interesting observations about the use of oneOf. JSON
Schema specifications do not prescribe that the branches of oneOf are mutually
exclusive, but they state that a value must match a single branch only. However,
the two branches of oneOf happen to be mutually exclusive: if "when" is absent,
then only the second branch holds. If it is present, then it is associated to com-
plementary types in the two branches, so here, oneOf is actually anyOf. Applying
equivalent rewritings (from ¬a ∨ b to a ⇒ b, and pushing down negation), the
schema can be rewritten as shown in Figure 3(e). Now the specification is more
clear: if "when" has the value "delayed", then "start_in" is required.

This suggests that oneOf is used to express a form of discriminated unions.
In discriminated unions, also known as tagged unions or labeled unions, each
branch is labeled with a unique label (or tag), and any value matching the union
must be prefixed by the label of the only branch it matches.

Results. Certain usage patterns are quite common: field exclusion, value exclu-
sion from sets of strings, and field mutual exclusion. Field exclusion is so common
that one may imagine to add an ad-hoc operator to the JSON Schema language.

5 Discussion

In our analysis, we learned that negation is used in many different ways, some of
which are extremely creative. In the following, we discuss our key observations.

Redundancy. Schema designers tend to overspecify by adding redundant asser-
tions. A quantitative follow-up study, based on structured interviews, would help
to understand their motivation. For instance, redundancy might be introduced
to improve schema readability.

https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_90970.json
https://github.com/sdbs-uni-p/json-schema-corpus/blob/main/json_schema_corpus/pp_90970.json

“Usage of Not” in Real-World JSON Schema Documents 9

Comprehensibility. A general lesson learned is that JSON Schema semantics
can be subtle, and the JSON notation can create readability problems. Educa-
tional tools for analyzing JSON Schema semantics, such as rewriting schemas to
eliminate negation or even generate witnesses to schemas [2, 4], may help.

Language Extensions. We observed that negation is often used in order to ex-
press, in a cumbersome way, the discriminated unions pattern, where the value
of one field determines the presence/absence and the type of the others. This
may trigger reflections about schema design.

not.required is heavily used to forbid the presence of properties. One may
imagine adding a "forbidden": ["k1 ", . . . , "kn"] operator as a simpler way to
specify that properties "k1 ", . . . , "kn" cannot be present.

Benchmarks. Some of the most popular jargons found in our study are not
reflected in the JSON Schema Test Suite [1], a collection of synthetic schemas for
benchmarking JSON Schema validators. At the time of this writing (commit hash
#09fd353 of the test suite), the test schemas only include the paths not.type,
not.properties, not followed by { }, not.true, as well as not.false. We
hope that our study may help extend such test suites by popular usage patterns.

6 Related Work

We provide more details on the usage of not in our extended technical report [5].
We can safely claim that our collection of real-world JSON Schema docu-

ments is so far the most diverse: In an earlier empirical study [13], we analyzed
schemas from SchemaStore,6 a curated collection of real-world JSON Schema
documents (150 at that time). This study targeted a comparatively coarse-
grained classification of the occurrences of language operators, e.g., all Boolean
operators were treated as a single group.

There is an established tradition of empirical studies on schema languages for
semi-structured data (e.g., [6, 8, 12, 14]). In hindsight, these studies have guided
researchers towards addressing the relevant language features. Understanding
how negation is used is also relevant for building practical tools, e.g., for valida-
tion [7], containment checking [2, 11], or witness generation [2].

7 Summary

In our study on the usage of not in JSON Schema, we identified three cases:
(a) We found that one reason for using not is that schema designers are missing
certain negative dual operators, such as a forbidden would be the missing dual
to required. (b) Another case that we encountered is that not is used to encode
implication (so a ⇒ b may be encoded as ¬a ∨ b). (c) Finally, negation is used
for subtraction, e.g., to specify integers that are not multiples of 2.
6 SchemaStore, at https://www.schemastore.org/json/, last accessed 21-Apr-2021.

https://www.schemastore.org/json/

10 M. Baazizi, D. Colazzo, et al.

In case (c), we regard negation as useful, whereas for the other cases, we
would prefer to see suitable extensions to the language.
Acknowledgments. This contribution was partly funded by Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) grant #385808805. The schemas were re-
trieved using Google BigQuery, supported by Google Cloud. We thank Thomas Pilz
(OTH Regensburg) for his help in making the research artifacts available. We thank
Michael Fruth (University of Passau) for feedback on an earlier draft.

References
1. JSON Schema Test Suite. Available at: https://github.com/json-schema-org/

JSON-Schema-Test-Suite, version of commit hash #09fd353. (2021)
2. Attouche, L., Baazizi, M.A., Colazzo, D., Falleni, F., Ghelli, G., Landi, C., Sartiani,

C., Scherzinger, S.: A Tool for JSON Schema Witness Generation. In: Proc. EDBT
2021 (2021), demo paper.

3. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: Schemas and types for JSON
data: From theory to practice. In: Proc. SIGMOD 2019. pp. 2060–2063 (2019)

4. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: Not Elimina-
tion and Witness Generation for JSON Schema. In: Proc. BDA 2020 (2020)

5. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: An Empiri-
cal Study on the “Usage of Not” in Real-World JSON Schema Documents (Long
Version). CoRR (2021), https://arxiv.org/abs/2107.08677

6. Bex, G.J., Neven, F., den Bussche, J.V.: DTDs versus XML Schema: A Practical
Study. In: Proc. WebDB 2004 (2004)

7. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: Data model, Query lan-
guages and Schema specification. In: Proc. PODS 2017. pp. 123–135 (2017)

8. Choi, B.: What are real DTDs like? In: Proceedings of the Fifth International
Workshop on the Web and Databases (WebDB). pp. 43–48 (2002)

9. Friesen, J.: Extracting JSON Values with JsonPath, pp. 299–322. Apress, Berkeley,
CA (2019)

10. Fruth, M., Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.:
Challenges in Checking JSON Schema Containment over Evolving Real-World
Schemas. In: Proc. EmpER 2021. pp. 220–230 (2020)

11. Habib, A., Shinnar, A., Hirzel, M., Pradel, M.: Finding data compatibility bugs
with JSON subschema checking. In: Proc. ISSTA ’21. pp. 620–632 (2021)

12. Laender, A.H., Moro, M.M., Nascimento, C., Martins, P.: An X-ray on Web-
available XML Schemas. SIGMOD Rec. 38(1), 37–42 (Jun 2009)

13. Maiwald, B., Riedle, B., Scherzinger, S.: What Are Real JSON Schemas Like? —
An Empirical Analysis of Structural Properties. In: Proc. EmpER 2019. pp. 95–105
(2019)

14. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and Complexity
of XML Schema. ACM Trans. Database Syst. 31(3), 770–813 (Sep 2006)

15. MongoDB, Inc.: MongoDB Manual: $jsonSchema (Version 4.4) (2021), https://
docs.mongodb.com/manual/reference/operator/query/jsonSchema/

16. json-schema org: JSON Schema (2021), available at https://json-schema.org
17. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON

Schema. In: Proc. WWW. pp. 263–273 (2016)
18. StackOverflow: JSON Schema – valid if object does *not* contain a partic-

ular property. Available at:https://stackoverflow.com/questions/30515253/
json-schema-valid-if-object-does-not-contain-a-particular-property

https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://arxiv.org/abs/2107.08677
https://docs.mongodb.com/manual/reference/operator/query/jsonSchema/
https://docs.mongodb.com/manual/reference/operator/query/jsonSchema/
https://json-schema.org
https://stackoverflow.com/questions/30515253/json-schema-valid-if-object-does-not-contain-a-particular-property
https://stackoverflow.com/questions/30515253/json-schema-valid-if-object-does-not-contain-a-particular-property

	An Empirical Study on the ``Usage of Not'' in Real-World JSON Schema Documents

