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An Imprecise Label Ranking Method for
Heterogeneous Data

Tathagata Basu, Sébastien Destercke and Benjamin Quost

Abstract Learning to rank is an important problem in many sectors rang-
ing from social sciences to artificial intelligence. However, it remains a rather
difficult task to perform. Therefore, in some cases, it is preferable to per-
form cautious inference. For this purpose, we look into the possibility of
an imprecise probabilistic approach for the Plackett-Luce model, a popular
probabilistic model for label ranking. We aim at extending current Bayesian
inference techniques for the Plackett-Luce model to an imprecise probabilis-
tic setting so that we can deal with heterogeneous data by means of cautious
mixture modelling. To achieve this, we perform a robust Bayesian analysis
over a set of imprecise Dirichlet priors, which allows us to perform cautious
label ranking. Finally, we use a synthetic dataset to illustrate our imprecise
estimation method.

1 Introduction

Ranking objects is an important problem in many areas, such as social sci-
ences, stock markets, e-commerce, etc. Sometimes, such rankings proceed
from pairwise comparisons between the objects: one such treatment can be
found in the model defined by Bradley and Terry (1952). This model natu-
rally extends to the Plackett-Luce model in the case of multiple comparisons,
as suggested by Plackett (1975) and Luce (1959). Several frequentist and
Bayesian estimation methods have been developed based on these models.

Once the ranking model has been constructed, it can be used to estimate
an optimal ranking between the objects. However, estimation of this ranking
requires the data to be homogeneous, i.e. the objects are compared by a sub-
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population of rankers which are assumed to be consistent with each other. In
reality this might not be the case as we may gather this ranking data from
different sources making the data heterogeneous. In such cases, mixtures of
ranking models allow us to capture the sample information efficiently and also
opens up the possibility of predicting a ranking after observing the ranker.

One of the first works on heterogeneous data was done by Gormley and
Murphy (2006) where they suggested a mixture model using the Plackett-
Luce model. Later, Caron et al. (2014) suggested a Bayesian alternative using
a Dirichlet process model, where infinitely many models are assumed to be
present in the mixture. A similar idea involving a finite mixture was proposed
by Mollica and Tardella (2016) for partially ranked data. Recently, Adam
et al. (2020) proposed an imprecise probabilistic approach for the Plackett-
Luce model where imprecise estimation was carried out using likelihood cuts.

In this paper, we discuss the notion of robust Bayesian analysis for the
Plackett-Luce model. Section 2 presents our approach, very similar to that
of Mollica and Tardella (2016). In our approach we overcome the difficulty
of obtaining closed forms for the imprecise estimates by using a non-linear
optimiser for certain parameter estimates. Section 3 illustrates our approach
on a synthetic dataset. Section 4 concludes the paper along with a discussion
on future works.

2 The Plackett-Luce Model

The Plackett-Luce model (Plackett (1975)) is a simple and intuitive prob-
abilistic model which gives us a probability for any observed ranking of 𝑝
objects. Each object is associated with a strength parameter _, which deter-
mines its probability of being preferred over others when drawing a sequence
of objects. This model gives the probability of 𝑛 independent rankings as

𝑃(𝑋 | _) =
𝑛∏
𝑖=1

𝑝𝑖−1∏
𝑗=1

_𝑥𝑖 𝑗∑𝑝𝑖
𝑚= 𝑗

_𝑥𝑖𝑚
. (1)

where 𝑝𝑖 ≤ 𝑝 is the number of objects in the 𝑖-th ranking, _ B (_1, · · · , _𝑝) is
the vector of strength parameters, and 𝑋 B [𝑥𝑖 𝑗 ] is the 𝑛× 𝑝 matrix contain-
ing the rankings (i.e., 𝑥𝑖 𝑗 is the rank of the 𝑗th object or participant in the
𝑖th observed ranking, with 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑝𝑖). Note that Eq. (1)
may be called the Plackett-Luce distribution because of its probabilistic for-
mulation.

Example 1 Table 1 displays 𝑛 = 2 rankings observed over 𝑝 = 4 different
objects ‘A’, ‘B’, ‘C’ and ‘D’; where A and B have rank 4 and 1 in the first
observed ranking (𝑥12 = 1 and 𝑥11 = 4). The probability of these data is given
by Eq. (2):
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Obj. 1 Obj. 2 Obj. 3 Obj. 4
Ranking 1 B D C A
Ranking 2 B A C –

Table 1 Toy example with 𝑛 = 2 rankings of 𝑝 = 4 objects

𝑃(𝑋 | _) =
[

_𝐵

_𝐵 + _𝐷 + _𝐶 + _𝐴

· _𝐷

_𝐷 + _𝐶 + _𝐴

· _𝐶

_𝐶 + _𝐴

]
·
[

_𝐵

_𝐵 + _𝐴 + _𝐶
· _𝐴

_𝐴 + _𝐶

]
. (2)

We aim to estimate the strength parameters which maximise this probability.

2.1 Hierarchical model

We follow Mollica and Tardella (2016) to construct our hierarchical mixture
model. Though, we interpret a partial ordering involving 𝐾 ≤ 𝑝 objects as a
top-𝐾 ordering, assuming the remaining objects to be absent from the model.
This also simplifies the expression of the PL distribution, which is beneficial
for faster computation.

Assuming a total of 𝐺 components in the mixture, the model can be writ-
ten as

𝑋𝑖 | _, 𝜔 ∼
𝐺∑︁
𝑔=1

𝜔𝑔PL(𝑋𝑖 | _𝑔), PL(𝑋𝑖 | _𝑔) =
𝑝𝑖−1∏
𝑗=1

_𝑔,𝑥𝑖 𝑗∑𝑝𝑖
𝑚= 𝑗

_𝑔,𝑥𝑖𝑚
.

We associate each observation with a unique latent membership indicator 𝑧𝑖,
which follows a categorical distribution

𝑧𝑖 | 𝜔 ∼ Cat(𝜔1, · · · , 𝜔𝐺),

with 𝜔𝑔 being the weight of the 𝑔-th mixture component. For a full Bayesian
treatment, we assign a set of imprecise Dirichlet priors on these weights:

𝜔 | 𝑠, 𝛼 ∼ Dir(𝑠;𝛼1, · · · , 𝛼𝐺),

where 𝛼
𝑔
≤ 𝛼𝑔 ≤ 𝛼𝑔 for 𝑔 = 1, · · · , 𝐺, with in addition

∑
𝑔 𝛼𝑔 = 1 and 𝑠 > 0.

For the data augmentation process, we follow Mollica and Tardella (2016)
and use exponentially distributed variables 𝑦𝑖 𝑗 so that

𝑦𝑖 𝑗
ind∼ Exp

(
𝐺∏
𝑔=1

(
𝑝𝑖∑︁

𝑚= 𝑗

_𝑔,𝑥𝑖𝑚

) 𝑧𝑖𝑔 )
.
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Finally, we specify the strength parameters _ using gamma priors:

_𝑔𝑘 ∼ Gamma(𝑎𝑔𝑘 , 𝑏𝑘),

with 𝑎
𝑔𝑘

≤ 𝑎𝑔𝑘 ≤ 𝑎𝑔𝑘 , for 1 ≤ 𝑔 ≤ 𝐺 and 1 ≤ 𝑘 ≤ 𝑝.

2.2 Parameter Estimation

To discuss parameter estimation, we first look at the following iterative steps.
These formulas can be obtained by adding log-prior components to the com-
plete data log-likelihood given by Gormley and Murphy (2006). Since details
are provided in this latter reference, we omit them here.

�̂�
(𝑡+1)
𝑖𝑔

=
𝜔

(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 )∑︁

𝑔

𝜔
(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

, 𝜔
(𝑡+1)
𝑔 =

𝑠 𝛼𝑔 − 1 + ∑
𝑖 �̂�

(𝑡+1)
𝑖𝑔

𝑠 − 𝐺 + 𝑁 ,

_̂
(𝑡+1)
𝑔𝑘

=
𝑎𝑔𝑘 − 1 + ∑

𝑖 �̂�
(𝑡+1)
𝑖𝑔

𝑢𝑖𝑘

𝑏𝑔 +
∑︁
𝑖

�̂�
(𝑡+1)
𝑖𝑔

∑︁
𝑗

𝛿𝑖 𝑗𝑘∑𝑝𝑖
𝑚= 𝑗

_̂
(𝑡)
𝑔,𝑥𝑖𝑚

, (3)

where 𝑢𝑖𝑘 = I𝑘∈{𝑥𝑖1 , · · · ,𝑥𝑖 (𝑝𝑖−1) } and 𝛿𝑖 𝑗𝑘 = I𝑘∈{𝑥𝑖 𝑗 , · · · ,𝑥𝑖𝑝𝑖 }. Note that, to start
this iterative process we need suitable initial guesses for _𝑔 and 𝜔𝑔.

2.2.1 Imprecise Estimates

In order to compute imprecise estimates, we need to calculate the bounds
of the parameters in Eq. (3) over the sets of all possible values of 𝛼 B
(𝛼1, · · · , 𝛼𝐺). From the iterative formula of the posterior membership prob-
ability (̂𝑧𝑖𝑔), we have

�̂�
(𝑡+1)
𝑖𝑔

=
𝜔

(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 )∑

𝑔 𝜔
(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

=
1

1 +
∑

𝑔′≠𝑔 𝜔
(𝑡 )
𝑔′ PL(𝑋𝑖 |_̂(𝑡 )

𝑔′ )

𝜔
(𝑡 )
𝑔 PL(𝑋𝑖 |_̂(𝑡 )

𝑔 )

≥ 1

1 +

∑
𝑔′≠𝑔 max

𝜔
(𝑡 )
𝑔′ ,_̂

(𝑡 )
𝑔′

{
𝜔

(𝑡)
𝑔′ PL(𝑋𝑖 | _̂

(𝑡)
𝑔′ )

}
min

𝜔
(𝑡 )
𝑔 ,_̂

(𝑡 )
𝑔

{
𝜔

(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

}
.

Now, let
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PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) B min
_̂
(𝑡 )
𝑔

{
PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

}
, PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) B max

_̂
(𝑡 )
𝑔

{
PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

}
such that _̂

(𝑡)
𝑔𝑘

≤ _̂
(𝑡)
𝑔𝑘

≤ _̂
(𝑡)
𝑔𝑘 for 1 ≤ 𝑘 ≤ 𝑝. Then, the lower bound of the

posterior membership probability is given by:

�̂�
𝑖𝑔

=
𝜔

(𝑡)
𝑔
PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

𝜔
(𝑡)
𝑔
PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) + ∑

𝑔′≠𝑔 𝜔
(𝑡)
𝑔′ PL(𝑋𝑖 | _̂

(𝑡)
𝑔′ )

, (4)

and similarly the upper bound is given by:

�̂�𝑖𝑔 =
𝜔

(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 )

𝜔
(𝑡)
𝑔 PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) + ∑

𝑔′≠𝑔 𝜔
(𝑡)
𝑔′ PL(𝑋𝑖 | _̂

(𝑡)
𝑔′ )

, (5)

where the lower and upper bounds 𝜔 (𝑡)
𝑔

and 𝜔
(𝑡)
𝑔 on the mixture weights 𝜔 (𝑡)

𝑔

is obtained from Eq. (3), so that

𝜔
(𝑡)
𝑔

=
𝑠𝛼

𝑔
− 1 + ∑

𝑖 �̂�
(𝑡)
𝑖𝑔

𝑠 − 𝐺 + 𝑁 and 𝜔
(𝑡)
𝑔 =

𝑠𝛼𝑔 − 1 + ∑
𝑖 �̂�

(𝑡)
𝑖𝑔

𝑠 − 𝐺 + 𝑁 . (6)

Even though the update equations for these parameter bounds can be derived
easily, computing these bounds is difficult and we need to employ an optimiser

to compute PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) and PL(𝑋𝑖 | _̂ (𝑡)𝑔 )
We face similar issues for the strength parameters as well, as _̂ (𝑡+1)

𝑔𝑘
are not

monotone with respect to �̂� (𝑡+1)
𝑖𝑔

’s. As a result, in order to compute _̂
(𝑡+1)
𝑔𝑘

and

_̂
(𝑡+1)
𝑔𝑘 ; we need to solve the following multiobjective optimisation problems:

min
(
_̂
(𝑡+1)
1𝑘 , _̂

(𝑡+1)
2𝑘 , · · · , _̂ (𝑡+1)

𝐺𝑘

)
and max

(
_̂
(𝑡+1)
1𝑘 , _̂

(𝑡+1)
2𝑘 , · · · , _̂ (𝑡+1)

𝐺𝑘

)
, (7)

such that �̂�
𝑖𝑔

≤ �̂�
𝑖𝑔

≤ �̂� 𝑖𝑔, for 1 ≤ 𝑔 ≤ 𝐺 and 1 ≤ 𝑖 ≤ 𝑁.

3 Illustration

We illustrate our approach using a synthetic dataset, which allows us to
assess the performance of our method in estimating the strength parame-
ters. We consider a set of 𝑝 = 8 objects, together with two different sets
of strengths _: in one case, (_1,1, _1,2, · · · _1,8) = (8, 7, · · · , 1), and in the
other case (_2,1, _2,2, · · · _2,8) = (1, 2, · · · , 8). These strengths correspond to
two ranking processes which order the objects in an exactly opposite way.
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We use these parameters to randomly generate our ranking dataset using
the generative model suggested by Caron and Doucet (2012). Then, we pick
60% samples from the first set, and the remaining 40% from the second one.
Note that, this is a randomised generative process and in the estimation the
orderings of the components may not be estimated based on this generation.

Results

To show our results, we consider two different settings. In the first case, we
consider the weights of the Dirichlet model to be precise and equal. In the
second case, we define imprecise initial weights, such that 0.5 ≤ 𝛼1 ≤ 0.7 and
0.3 ≤ 𝛼2 ≤ 0.5. In both cases, we set our initial estimates for 𝑎𝑔𝑘 , so that they
satisfy the orderings of _𝑔𝑘 estimated from a precise estimation process. This

initialisation step is crucial to avoid _̂ (𝑡)𝑔 taking extreme values, which would
be problematic for the convergence of the iterative algorithm. Moreover, in

each iteration, we need to enforce orderings of these _̂ (𝑡)
𝑔𝑘

estimates whilst

computing PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) and PL(𝑋𝑖 | _̂ (𝑡)𝑔 ) using the optimiser. Nevertheless,
to ensure robustness, we take a large interval for each 𝑎𝑔𝑘 for capturing the
imprecision in the data.
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value (log−scale)

λ

8

7

6

4

2

5

3

1

0.07 0.08 0.10
value (log−scale)

λ

Fig. 1 Strength parameter estimates for 𝛼1 = 𝛼2 = 0.5 and 𝑠 = 5.

For precise and equal initial weights, we get estimated mixture weights
𝜔1 ∈ [0.36; 0.63] and 𝜔2 ∈ [0.37; 0.64]. The corresponding strengths are
displayed in Fig. 1 (first component on left and the second one on right).
We notice that the strength parameters follow a strict ordering for the first
component, which is not the case for the second one1: in this latter case, we
notice that ‘2’ and ‘5’ are not comparable, which leads to a partial ordering.

1 We consider, object 𝑖 is preferred to object 𝑗 if _𝑖 > _ 𝑗 and _𝑖 > _ 𝑗 .
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Fig. 2 Strength parameter estimates for 0.3 ≤ 𝛼1 ≤ 0.5; 0.5 ≤ 𝛼2 ≤ 0.7 and 𝑠 = 5.

We notice a similar outcome for imprecise initial weights (Fig. 2). In
this case, we obtain mixture weight estimates 𝜔1 ∈ [0.21; 0.62] and 𝜔2 ∈
[0.38; 0.78]. We can observe from the figure that the intervals tend to be
larger than the intervals in the first case, confirming the initial imprecise
prior. Furthermore, we see that the estimated ranking from the first compo-
nent is the same as in the precise initialisation case (see Fig. 1). However,
the estimates are slightly different for the second component: then, ‘2’ is not
comparable to both ‘4’ and ‘5’, though ‘5’ is strictly preferred to ‘4’.

We also notice that our choice of ordered imprecise weights gives us better
estimates for the mixture weights, which is not the case for starting with
equal weights. This happens as for the equal weights, the imprecision in the
data is only captured through our ignorance about the size of the mixture
components whereas for the ordered weights, our model tends to assign mem-
bership probabilities more efficiently and can also capture the imprecision in
rankings.

4 Conclusion

In this article, we investigate inferring a probabilistic ranking model from het-
erogeneous data: we assume the data to come from several sub-populations,
each of which can be associated with a Plackett-Luce ranking model. We pro-
pose a robust Bayesian approach to estimate the strength parameters of the
resulting mixture of PL models. We notice that estimating the model is com-
putationally expensive, since it requires to repeatedly calculate the bounds of
each PL distribution — which involves solving nonlinear optimisation prob-
lems.

We illustrate our method using a synthetic dataset, in order to study its
efficiency in inferring a mixture of rankings. The experiments show that im-
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precise initial mixture weights tend to produce wider intervals for the strength
estimates, which reflects our methods ability to showcase the inherent impre-
cision in scarce data. This is extremely important for cautious ranking as we
may want to abstain from ordering in certain scenarios.

A major issue remaining to be addressed is the high computation time
of the estimation procedure. This motivates us to find tight approximate
bounds to ensure monotonicity. Hopefully, this will help us to reduce the
computation cost significantly, while allowing us to investigate problems with
a high number of mixture components.

Acknowledgements This research was funded by the project PreServe (ANR Grant
ANR-18-CE23-0008).

References

Adam L, Van Camp A, Destercke S, Quost B (2020) Inferring from an Im-
precise Plackett–Luce Model: Application to Label Ranking. In: Springer
(ed) 14th International Conference on Scalable Uncertainty Management
(SUM 2020), Bolzano, Italy, Lecture Notes in Computer science, vol 12322,
pp 98–112

Bradley RA, Terry ME (1952) Rank Analysis of Incomplete Block Designs:
I. The Method of Paired Comparisons. Biometrika 39(3/4):324–345

Caron F, Doucet A (2012) Efficient Bayesian Inference for Generalized
Bradley—Terry Models. Journal of Computational and Graphical Statis-
tics 21(1):174–196

Caron F, Teh YW, Murphy TB (2014) Bayesian nonparametric Plack-
ett–Luce models for the analysis of preferences for college degree pro-
grammes. The Annals of Applied Statistics 8(2):1145 – 1181, DOI
10.1214/14-AOAS717

Gormley IC, Murphy TB (2006) Analysis of Irish third-level college appli-
cations data. Journal of the Royal Statistical Society: Series A (Statis-
tics in Society) 169(2):361–379, DOI https://doi.org/10.1111/j.1467-
985X.2006.00412.x

Luce RD (1959) Individual Choice Behavior: A Theoretical analysis. Wiley,
New York, NY, USA

Mollica C, Tardella L (2016) Bayesian Plackett–Luce mixture models for
partially ranked data. Psychometrika 82(2):442–458, DOI 10.1007/s11336-
016-9530-0

Plackett RL (1975) The Analysis of Permutations. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 24(2):193–202, DOI
https://doi.org/10.2307/2346567


