
HAL Id: hal-03946227
https://hal.science/hal-03946227v1

Submitted on 19 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges in Checking JSON Schema Containment over
Evolving Real-World Schemas

Michael Fruth, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, Stefanie Scherzinger

To cite this version:
Michael Fruth, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, et al.. Chal-
lenges in Checking JSON Schema Containment over Evolving Real-World Schemas. 39th International
Conference on Conceptual Modeling ER (Workshops) 2020, Nov 2020, Vienna, Austria. pp.220-230,
�10.1007/978-3-030-65847-2_20�. �hal-03946227�

https://hal.science/hal-03946227v1
https://hal.archives-ouvertes.fr

Challenges in Checking JSON Schema
Containment over Evolving Real-World Schemas

Michael Fruth1, Mohamed-Amine Baazizi2, Dario Colazzo3, Giorgio Ghelli4,
Carlo Sartiani5, and Stefanie Scherzinger1

1 University Passau, Passau, Germany
{michael.fruth, stefanie.scherzinger}@uni-passau.de

2 Sorbonne Université, LIP6 UMR 7606, France baazizi@ia.lip6.fr
3 Université Paris-Dauphine, PSL Research University, France

dario.colazzo@dauphine.fr
4 Dipartimento di Informatica, Università di Pisa, Italy ghelli@di.unipi.it

5 DIMIE, Università della Basilicata, Italy carlo.sartiani@unibas.it

Abstract. JSON Schema is maturing into the de-facto schema language
for JSON documents. When JSON Schema declarations evolve, the ques-
tion arises how the new schema will deal with JSON documents that still
adhere to the legacy schema. This is particularly crucial in the mainte-
nance of software APIs. In this paper, we present the results of our em-
pirical study of the first generation of tools for checking JSON Schema
containment which we apply to a diverse collection of over 230 real-
world schemas and their altogether 1k historic versions. We assess two
such special-purpose tools w.r.t. their applicability to real-world schemas
and identify weak spots. Based on this analysis, we enumerate specific
open research challenges that are based on real-world problems.

Keywords: JSON Schema Containment · Empirical Study.

1 Introduction

With the proliferation of JSON as a data exchange format, there is a need for
a schema language that describes JSON data: By relying on schema languages,
software developers can reduce the burden of defensive programming, since they
can trust their input to adhere to certain constraints [9]. Among various pro-
posals for a JSON schema language (see [1] for an overview), JSON Schema
(link available in the PDF) is on its way to standardization. First results on the
theoretical properties of this language have already been published [4,11].

When schemas evolve as part of larger software projects, the question arises
how the new schema version compares to the previous version. For instance,
developers will want to know whether the new API (described by a schema)
will still accept input from legacy clients; if not, developers risk runtime errors.
Decisions on JSON Schema containment, e.g., whether the language declared
by one schema is a subset of the other, require tool support. One such tool
is json-schema-diff-validator (link available in PDF). The 1.7k–14k weekly

https://json-schema.org/
https://www.npmjs.com/package/json-schema-diff-validator

2 M. Fruth, et al.

1 { "properties":{
2 "fruit":{
3 "enum":[

4 "apple",

5 - "pear"

6] } } }
7

{ "properties":{
"fruit":{
"enum":[

"apple",

+ "pear",

+ "banana"

] } } }

Fig. 1: JSON Schema document E1 (left) is a sub-schema of E2 (right).

downloads from npmjs since 5-Jan-2020 confirm a strong demand. JSON Schema
containment has recently also been explored in academic research [8].

In this paper, we conduct an empirical study on tools for checking JSON
Schema containment, which we refer to as JSC-tools: We apply JSC-tools on
a diverse collection of JSON Schema documents. In particular, we set out to
identify weak spots in these tools which are rooted in genuine research challenges.

Contributions. Our paper makes the following contributions:
– We apply state-of-the-art JSC-tools to schemas hosted on SchemaStore (link

available in the PDF), where developers share real-world JSON Schema doc-
uments for re-use. As of today, SchemaStore is the largest collection of its
kind. From the GitHub repository backing this website, we analyze over 230
schemas, with a total of over 1k historical versions.

– We investigate three research questions: (RQ1) We assess the applicability
on JSC-tools on real-world schemas, i.e., the share of schemas that can be
correctly processed. (RQ2) We ask which real-world language features are dif-
ficult to handle. (RQ3) We further determine the degree of consensus among
JSC-tools applied to the same input, as an indicator whether classification
decisions can be relied upon.

– Based on the insights thus gained, we identify open research challenges.
– We publish our fully automated analysis pipeline, to allow fellow researchers

to build upon and reproduce our results.
Structure. In Section 2, we motivate that checking JSON Schema containment is
not trivial. In Section 3, we describe our methodology. We address our research
questions and present our results in Section 4, with a discussion of research
opportunities in Section 5. We cover potential threats to validity in Section 6,
and discuss related work in Section 7. Section 8 concludes.

2 Examples of JSON Schema Containment

We motivate that checking JSON Schema containment is not trivial. Our exam-
ples are based on instances of JSON Schema evolution that we have observed
on SchemaStore. We basic assume familiarity with JSON syntax and otherwise
refer to [4] for an introduction to the JSON data model.

Conditional semantics. Let us consider schema E1, shown left in Figure 1. The
JSON Schema language employs a conditional semantics, demanding that if a

https://www.schemastore.org/json/

Challenges in Checking JSON Schema Containment 3

1 { "properties":{
2 "address":{
3 - "type": "string"

4 } } }
5

6

7

{ "properties":{
"address":{

+ "properties":{
+ "street": { "type": "string" },
+ "number": { "type": "integer" },
+ "city": { "type": "string" } }
} } }

Fig. 2: JSON Schema document S1 (left) is a sub-schema of S2 (right).

JSON value is an object, and if that object has a property named fruit, then its
value must be either the string "apple" or "pear". Hence, {"fruit": "banana"}

is invalid, yet the raw string value "banana" is valid, since it is not an object. Ob-
jects without a property fruit are also valid, such as {"vegetable": "potato"}.

Extending enumerations. Let us assume that the schema is changed to E2, as
shown in Figure 1 (right). We employ a diff-based notation, showing the original
and the changed schema side-by-side. Removed lines are prefixed with minus,
added lines are prefixed with plus. In line 5, a comma is added at the end of the
line, and item banana is added in line 6. The document {"fruit": "banana"}

is now valid w.r.t. schema E2. We say schema E1 is a sub-schema of E2, since
the language it defines is a subset of the language defined by E2.

Introducing objects. Schema S1 in Figure 2 (left) specifies that if a JSON docu-
ment is an object with a property named address, then the value of this property
is of type string. Thus, document D : {"address": "Burbank California"}

is valid w.r.t. S1. We now refactor the schema to S2, as shown. Document D is
still valid w.r.t. the new schema S2, as the conditional semantics only imposes
restrictions if the type of the address is an object. On the other hand, a JSON
document with an address structured as an object is not valid w.r.t. schema S1,
which expects a string. Hence, S1 is a sub-schema of S2.

Adding new properties. We continue with schema S2 and extend the address
properties by "zip": {"type": "integer"} (inserted after line 6 in Figure 2
on the right), declaring that ZIP codes must be integer values. We refer to
this new schema as S3. Schema S2 allows any type for the ZIP code (e.g.
string: "zip": "1234"), as additional properties are allowed by default. Thus,
schema S3 is more restrictive than S2 and therefore a sub-schema of S2.

Summary. Reasoning whether schema containment holds is not trivial, even for
toy examples. With real-world schemas, which can be large and complex [10],
we absolutely need the support of well-principled tools. Assessing the state-of-
the-art in such JSC-tools is the aim of our upcoming empirical study.

4 M. Fruth, et al.

3 Methodology

3.1 Context Description

Schema collection. We target the JSON Schema documents hosted on Schema-
Store, a website backed by GitHub, as of 19-Jun-2020 (commit hash c48c727).

JSC-Tools. The JSC-tool json-schema-diff-validator, mentioned in the In-
troduction, only compares syntactic changes: nodes added, removed, and re-
placed are considered breaking changes. This can lead to incorrect decisions re-
garding schema containment, e.g., for the schemas from Figure 2. We therefore
exclude this tool from our analysis.

Instead, we consider two tools that perform a semantic analysis, one tool
from academia, and another from an open source development project. Since
the tools have rather similar names, we refer to them as Tool A and Tool B:
– Tool A is called jsonsubschema (link available in the PDF) and is an aca-

demic prototype implemented in Python, based on well-principled theory [8].
Based on the authors’ recommendation (in personal communication), we use
the GitHub version with commit hash 165f893.
Tool A supports JSON Schema Draft 4 without recursion, and has only
limited support for negation (not) and union (anyOf).

– Tool B, is-json-schema-subset (link available in the PDF) is also open
source and implemented in TypeScript. We use the most recent version avail-
able at the time of our analysis (version 1.1.15). Tool B supports JSON
Schema Drafts 5 and higher. No further limitations are stated.

3.2 Analysis Process

Our data analysis pipeline is fully automated. The Python 3.7 scripts for our data
preparation and analysis pipeline, as well as the raw input data, are available for
reproduction analysis.6 We use the Python modules jsonschema (version 3.2.0)
and jsonref (version 0.2) for JSON Schema validation and dereferencing.

Obtaining schema versions. We retrieve the historic versions of all JSON Schema
documents hosted on SchemaStore from the master branch of its GitHub repos-
itory (link available in the PDF), provided that they are reachable by path
src/schemas/json/. This yields 248 schemas. About half of them have not
changed since their initial commit, while some schemas count over 60 historic
versions. In total, we obtain 1,069 historic schema versions which we have vali-
dated to ensure they are syntactically correct JSON Schema documents.

Excluding schema versions from analysis. One practical challenge is that the
JSC-tools considered support non-overlapping drafts of JSON Schema, while
we need to process the same document with both tools. As a workaround, we
determine the subset of documents that are both valid w.r.t. Draft 4, Draft 6,
and Draft 7, thereby excluding four documents.

6 https://github.com/michaelfruth/jsc-study

https://bitbucket.org/atlassian/json-schema-diff-validator/
https://github.com/IBM/jsonsubschema
https://www.npmjs.com/package/is-json-schema-subset
https://github.com/Julian/jsonschema
https://github.com/gazpachoking/jsonref
https://github.com/SchemaStore/schemastore
https://github.com/SchemaStore/schemastore
https://github.com/michaelfruth/jsc-study

Challenges in Checking JSON Schema Containment 5

Table 1: Comparing both JSC-tools in two separate experiments: (a) Table 1a
shows reflexivity of schema equivalence (≡) for all 1,028 schemas (⊥ denotes
runtime errors). Table rows show results for Tool A, columns for Tool B. (b) Ta-
ble 1b states results of checking 796 pairs of successive schema versions w.r.t.
equivalence, strict containment (⊂,⊃), incomparability (||), and runtime errors.

(a) Schema reflexivity.

Tool B

T
o
o
l
A ≡ ⊥ Σ

≡ 36.9% 0.2% 37.1%
⊥ 48.2% 14.7% 62.9%
Σ 85.1% 14.9% 100.0%

(b) Succeeding schema versions.

Tool B

T
o
o
l
A

≡ ⊂ ⊃ ‖ ⊥
≡ 9.5% 0.3% 0.3% 0.4% 0.0%
⊂ 3.0% 2.9% 0.3% 1.6% 0.0%
⊃ 5.7% 0.0% 1.0% 1.1% 0.0%
‖ 3.4% 0.6% 0.5% 2.6% 0.4%
⊥ 25.9% 3.3% 0.5% 17.1% 19.7%

Regarding drafts, we need to take further care: JSON Schema is designed
as an open standard, which means that a validator will accept/ignore unknown
language elements that are introduced in a future draft. Then, running both tools
on the same schema document constitutes an unfair comparison, since the tools
will have to treat these elements differently. We therefore search for keywords
introduced/changed after Draft 4 (e.g., const or if-then-else). In total, we
thus exclude 41 documents, a choice that we also discuss in Section 6.

Overall, we obtain 1,028 JSON Schema documents, where approx. 10% con-
tain recursive references. We count 232 schemas in their latest version and 796
pairs of documents that are two versions of the same schema, ordered by the time
of their commits, where no other commit has changed the schema in between.
In the following, we refer to such pairs as successive schema versions.

4 Detailed Study Results

4.1 RQ1: What is the real-world applicability of JSC-tools?

We are interested in the share of real-world schemas that the JSC-tools can reli-
ably process. This is an indicator whether these tools are operational in practice.
To this end, we perform a basic check: Given a valid JSON Schema document S,
equivalence is reflexive (S ≡ S). Given this ground truth, we compare each
schema version with itself.

The results are shown in Table 1a. The first row states the percentage of
documents that Tool A recognizes as equivalent. The second row states the
percentage of documents where Tool A fails (denoted “⊥”). “Σ” shows sums
over rows/columns. The results for Tool B are shown in columns. The top left
entry states that for less than half of the documents, both tools agree they are
equivalent to itself. About 15% of documents cannot be checked by either tool.

6 M. Fruth, et al.

0% 20% 40% 60% 80%

Attribute

Recursion

Schema

Other

58.9%

18.4%

10.5%

12.2%

(a) Tool A.

0% 20% 40% 60% 80%

Recursion

JsonRef

Error

Other

77.1%

21.6%

1.3%

0%

(b) Tool B.

Fig. 3: Error distribution (in %) for the experiment from Table 1a.

Results. We observe a high failure rate for Tool A. In the experiments conducted
by Habib et al. [8], the authors of Tool A, Tool B performs comparatively worse
than Tool A. Further investigations, performing experiments with the exact same
version of Tool B as used in [8], have revealed that the applicability of Tool B
has meanwhile improved. Moreover the experiments in [8] consider a different
schema collection, as we also discuss in Section 7.

Since not all real-world language features are supported by Tool A, our first
experiment is evidently setting up Tool A for failure. We next look more closely
into which language features are problematic.

4.2 RQ2: Which language features are difficult to handle?

We are interested in which properties of real-world schemas cause JSC-tools to
fail, either because not yet supported or incorrectly handled. As a first step,
we inspect the error messages for documents that cannot be processed in the
first experiment. Figure 3 visualizes the distribution of the top-3 runtime errors.
While the tools use different names in error reporting, it is obvious that recursion
and reference errors are frequent.

To further investigate which operators of JSON Schema are problematic, we
consider subsets of our document collection, where we exclude schemas with
certain language features. In particular, we check pairs of successive schema ver-
sions for containment. We register when a tool decides that the schema versions
are equivalent; if not, whether the language declared by the predecessor version
is a sub-set of the language declared by the successor version, or a super-set. In
all remaining non-error cases, we consider the versions incomparable.

In Figure 4, we show the relative results for (i) the entire collection, (ii) a
subset where all references are non-recursive, contain only document-internal ref-
erences or references to URLs, which can be resolved, (iii) a subset without not,
and (iv) the combination of all these restrictions. For Tool A, the classification
decisions remain identical throughout, only the error rate decreases. This means
we have indeed excluded the problematic schema documents. With Tool B, the
classification decisions vary slightly, but we see the error rate decrease to ca. 2%.

Results. Recursion and negation are obvious challenges for JSC-tools. While
Tool A explicitly does not support recursion, and negation only to some extent,

Challenges in Checking JSON Schema Containment 7

EC RF NF RF+NF
0%

20%

40%

60%

80%

100%
X

⊥
‖
⊃
⊂
≡

(a) Tool A.

EC RF NF RF+NF
0%

20%

40%

60%

80%

100%

(b) Tool B.

Fig. 4: Checking pairs of successive schemas on (i) the entire collection (EC: 796
pairs), (ii) a subset where all references are non-recursive, document-internal or
URLs, and can be resolved (RF: 652 pairs), (iii) without not (NF: 572 pairs),
and (iv) the combination of (ii) and (iii) (RF+NF: 451 pairs). “X” represents
excluded schema documents. Reporting decisions in % of the entire collection.

Tool B (where no limitations are specified) struggles with these language con-
structs as well. However, recursion and negation do occur in real-world JSON
Schema documents, and we refer to Section 5 for a discussion of which use cases
for JSON Schema are affected when these features are not supported.

4.3 RQ3: What is the degree of consensus among JSC-tools?

To assess how well both tools agree, we compare successive schema versions
w.r.t. the classification decisions of both tools. Table 1b summarizes the results.
Again, results for Tool A are shown in rows, results for Tool B in columns. In
an ideal world, the JSC-tools completely agree, so we expect a diagonal matrix
(with zeroes in all cells except on the diagonal). However, the tools disagree
considerably. For instance, for 5.7% of the pairs, Tool A claims that the first
schema version declares a super-language of the second, while Tool B regards
both versions as equivalent (row ⊃/column ≡). The tools agree on only approx.
50% of subset of inputs that both tools can process without a runtime error.

Results. Evidently, the degree of consensus is low. Since developers cannot yet
rely on JSC-tools, they are forced to visually compare evolving schemas, near-
impossible for the complex and large schemas encountered in the real world
(some schemas on SchemaStore take up over 10MB stored on disk [10]). In the
upcoming discussion, we discuss open research questions in this context.

5 Discussion of Results and Research Opportunities

Summary. Our experiments show that the first generation of JSC-tools is still in
an early stage where recursion and negation in schemas are not yet well covered.

8 M. Fruth, et al.

In earlier work [10], we have manually categorized all SchemaStore schemas
depending on their purpose: data schemas use JSON primarily as a data for-
mat. meta schemas define markup for other schemas. For instance, there are
JSON meta schemas for every JSON Schema Draft. conf schemas describe JSON
documents that configure services. app schemas are used for data exchange be-
tween applications.7 This categorization provides a general overview how JSON
Schema is employed in practice. Aligning the documents excluded in the exper-
iments from Figure 4 reveals that by ignoring recursive schemas, we primarily
exclude conf and meta schemas. By ignoring schemas with negation, we again
mainly exclude conf schemas. In summary, the JSC-tools best cover data and
app schemas, while on SchemaStore, conf schemas constitute the largest group.

Research Opportunities. Making JSC-tools operable for production is more than
just an engineering effort, and we see several opportunities for impactful research:
– Handling recursion and negation in checking JSON Schema containment is

still unresolved. As recursion combined with negation is a general challenge
in database theory, e.g., when specifying sound semantics for Datalog, we
may expect some concepts to transfer (as also proposed in [4]).

– Not only do practitioners need robust and complete tools for inclusion check-
ing, they also need to understand why containment holds/does not hold:
• This could be done by means of instance generation, i.e., generating a

small example document that captures why the schemas differ. A first
proposal for witness generation is sketched in [2].

• Alternatively, pointing to the positions in the schema declarations that
cause containment checks to fail would also provide some degree of ex-
plainability for developers comparing schemas.

– Having reliable JSC-tools at hand would allow us to build editors that assist
with schema refactoring. Then, a JSC-tool can confirm that the refactored
schema is still equivalent to its original (while the new version may be easier
to comprehend, easier to validate, or simply more succinct).

– We have come to realize that the data management community is in need
of a dedicated micro-benchmark for JSC-tools, with small yet realistic doc-
uments where we know the ground truth w.r.t. schema containment. Such a
benchmark would certainly benefit researchers and practitioners alike.

6 Potential Threats to Validity

Supported JSON Schema drafts. As stated in Section 3, the JCS-tools employed
in this study support different drafts of JSON Schema: Tool A handles Draft 4,
Tool B handles Draft 5+. Due to the open standard policy of JSON Schema, a
keyword introduced in Draft 5+ is ignored by Tool A, but will carry meaning for
Tool B. As discussed, in order to level the playing field, we exclude affected doc-
uments from our analysis: We have diligently checked for keywords, and regard
the risk that we may have overlooked problematic documents as minor.

7 Naturally, such a classification is always subjective, and not necessarily unique, as
also remarked in the original work on DTDs [5] that inspired this categorization.

Challenges in Checking JSON Schema Containment 9

Recursion in schemas. We noticed minor differences in reporting recursion errors
in the Python-based Tool A and the TypeScript-based Tool B, which we trace
back to the different programming languages and their libraries. Specifically,
we noticed spurious, non-deterministic behavior in the jsonschema module for
recursive schemas. However, this affects only a handful of JSON Schema docu-
ments and is a minor threat to our results at large.

Renaming schema files. In our analysis, we consider all historic versions of a
schema based on git commits. For git to recognize that a file is renamed, the
content of the file must remain the same. Due to (so far) 13 renamings in the
history of SchemaStore, our collection contains 13 duplicate schema versions.
Since this is a small number in the context of over 1k schema versions analyzed,
this again is a minor threat.

Mining git and GitHub. In mining git repositories, we face the usual and well
understood threats [3]. Our analysis is based on a specific schema collection.
One threat to validity is that the historic schema versions in this collection are
skewed: Only eight schemas account for almost one third of all historic schema
versions. Nevertheless, SchemaStore is to date the largest and also most diverse
collection of JSON Schema documents, and thus highly suitable for our purposes.

7 Related Work

There is a mature body of work on schema containment for XML schemas (such
as DTDs and XML Schema), e.g. [9], based on automata as the formal vehicle [7].
Other approaches exist that rather relay on a particular class of constraints to
check inclusion between XML schemas like Extended DTDs featuring regular
expressions with interleaving and counting [6].

First theoretical properties of the JSON Schema language have been stud-
ied recently [4,11]. To the best of our knowledge, the tool by Habib et al. [8]
(“Tool A” in our study) is the first academic exploration of JSON Schema con-
tainment. Their experiments are closest to our work, since they also compare
Tools A and B on real-world JSON Schema documents, but they use a differ-
ent baseline. In particular, the authors choose three sources for JSON Schema
documents, while SchemaStore hosts schemas from over 200 different sources.

It seems plausible that the schema collection studied by us is not only larger
in terms of the number of distinct schemas (each with its historic versions),
but overall also more diverse, while skewed towards schemas for configuring ser-
vices [10]. This may explain some of the differences in our respective experiments
regarding the successful applicability to real-world schemas, plus the fact that
Tool B has meanwhile been improved (see our discussion in Section 4.1).

In general, checking JSON Schema containment is not a trivial task: As
JSON Schema is not an algebraic language, syntactic and semantic interactions
between different keywords in the same schema object complicate programmatic
handling. In [2], we therefore propose a dedicated algebra for JSON Schema,
which has the potential to serve as a formal foundation for new approaches to
checking JSON Schema containment.

10 M. Fruth, et al.

8 Conclusion

In this paper, we evaluate a first generation of tools for checking JSON Schema
containment. Our analysis shows that this is still a very young field, with open
research opportunities that have immediate practical relevance.

In particular, we recognize the need for a micro-benchmark for JSC-tools.
While there is a well-adopted benchmark for JSON Schema validation, the JSON
Schema Test Suite (link available in the PDF), no comparable benchmark exists
for checking JSON Schema containment, with pairs of documents for which
containment was determined manually, for a particular operator or a logical
group of operators. Such a micro-benchmark could be inspired by real-world
schemas found on SchemaStore. We plan to address this in our future work.

Acknowledgments: This project was partly supported by the Deutsche Forschungs-

gemeinschaft (DFG, German Research Foundation), grant #385808805.

References

1. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: Schemas and Types for JSON
Data: From Theory to Practice. In: Proceedings of the 2019 International Confer-
ence on Management of Data (SIGMOD). pp. 2060–2063 (2019)

2. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: Not Elimina-
tion and Witness Generation for JSON Schema. In: BDA ’20 (2020)

3. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., Devanbu, P.T.:
The promises and perils of mining git. In: Proceedings of the 6th International
Working Conference on Mining Software Repositories (MSR). pp. 1–10 (2009)

4. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: Data model, Query lan-
guages and Schema specification. In: Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS). pp. 123–
135 (2017)

5. Choi, B.: What are real DTDs like? In: Proceedings of the Fifth International
Workshop on the Web and Databases (WebDB). pp. 43–48 (2002)

6. Colazzo, D., Ghelli, G., Pardini, L., Sartiani, C.: Efficient asymmetric inclusion of
regular expressions with interleaving and counting for XML type-checking. Theor.
Comput. Sci. 492, 88–116 (2013)

7. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications. Available
on: http://tata.gforge.inria.fr/ (2007), release October, 12th 2007

8. Habib, A., Shinnar, A., Hirzel, M., Pradel, M.: Type Safety with JSON Subschema.
CoRR abs/1911.12651v2 (2020), http://arxiv.org/abs/1911.12651v2

9. Lee, T.Y.t., Cheung, D.W.l.: XML Schema Computations: Schema Compatibil-
ity Testing and Subschema Extraction. In: Proceedings of the 19th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM). p. 839–848
(2010)

10. Maiwald, B., Riedle, B., Scherzinger, S.: What Are Real JSON Schemas Like? - An
Empirical Analysis of Structural Properties. In: Advances in Conceptual Modeling
- ER 2019 Workshop EmpER. pp. 95–105 (2019)

11. Pezoa, F., Reutter, J.L., Suárez, F., Ugarte, M., Vrgoc, D.: Foundations of JSON
Schema. In: Proceedings of the 25th International Conference on World Wide Web
(WWW). pp. 263–273 (2016)

https://github.com/json-schema-org/JSON-Schema-Test-Suite
https://github.com/json-schema-org/JSON-Schema-Test-Suite
http://tata.gforge.inria.fr/
http://arxiv.org/abs/1911.12651v2

	Challenges in Checking JSON Schema Containment over Evolving Real-World Schemas

