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Generalised Lyapunov functions for discrete-time
Lurie systems with slope-restricted nonlinearities

R. Drummond and G. Valmorbida

Abstract—A class of Lyapunov functions for discrete-time
Lurie systems with monotonic non-linearities is proposed. The
Lyapunov functions are composed of quadratic terms on the
states and of the system’s non-linearities as well as Lurie-
Postnikov type integral terms. Crucially, positive definiteness
of the matrix in the generalised quadratic form and positivity
of the scaling terms of the Lurie-Postnikov integrals are relaxed
in the stability conditions. Furthermore, they are used for re-
gional stability analysis and performance assessment. Numerical
examples show that the proposed Lyapunov function structure
matches or outperforms existing ones for these systems.

Index Terms—Lurie systems, discrete-time absolute stabil-
ity, Lyapunov functions.

I. Introduction

Several recent applications, including the stability anal-
ysis of neural network-based control policies [24, 17, 5]
and the convergence analysis of first-order optimisation
algorithms [12, 8], can be understood within the context of
discrete-time Lurie systems. The impact these applications
have found has motivated a revisit of the absolute stability
problem in discrete-time to further develop methods for
the stability analysis of Lurie systems with slope-restricted
nonlinearities. However, the stability analysis of discrete-
time Lurie systems remains underdeveloped compared to
those for continuous-time systems; for example, the widely
adopted formulation of the Popov criterion in discrete-
time requires additional conditions on the non-linearity,
including monotonicity [21]. Back in 1963 [19, Discussion],
Szegö identified the disconnect between the continuous
and discrete absolute stability problems:

“Even if we have now some fairly good results on this
problem, the status of stability theory for sampled-data
systems has still not reached a satisfactory stage as in the
continuous case. Further work is needed an improvements
can be achieved by using the new method of Popov and
very likely by using some more sophisticated Lyapunov
functions.”

Adopting more sophisticated Lyapunov functions should
allow more complex applications modelled as discrete-time
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systems to be analysed whilst generating less conserva-
tive performance certificates. As a step in this direction,
this paper explores the stability analysis of discrete-time
Lurie systems with slope-restricted non-linearities. A new
class of Lyapunov functions is proposed with a simplified
structure than the current state-of-the-art [15, 3] and
conditions are developed for the regional stability analysis
and bounding input-output gains of these systems.

Problem Set-up

Consider a single-input single-output discrete-time
Lurie system described by the feedback interconnection
of a strictly proper, linear system, with transfer function
G(z), and a function φ : R→ R, as illustrated in Figure 1.

G(z)

φ
y

+

Figure 1: Feedback representation of a Lurie system.

Here, G(z) is assumed to admit a minimal state-space
realisation

x[k + 1] = Ax[k] +Bφ(y[k]), (1a)

y[k] = Cx[k], (1b)

with A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n.
The non-linearity φ is assumed to be static, φ(0) = 0

and sector bounded with sector [δ, δ]

(δσ − φ(σ))(φ(σ)− δσ) ≥ 0, ∀σ ∈ R, (2a)

as in φ(σ)/σ ∈ [δ, δ] for some δ ∈ R, δ ∈ R satisfying
δ < δ. If δ > 0 the sector is said to be strict.

We say the non-linearity is slope restricted if

φ(σ1)− φ(σ2)

σ1 − σ2
∈ [β, β], ∀σ1, σ2 ∈ R (2b)

for some β, β ∈ R and monotonic if β ≥ 0. Note that
monotonicity can always be obtained by loop transforma-
tions whenever the non-linearity is slope-bounded.

The following analysis is restricted to single-input
single-output (SISO) Lurie systems where φ : R → R
instead of multiple-input multiplier-output (MIMO) ones
where φ : Rm → Rm. The two main reasons for considering
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this simpler problem set-up here are: i) it simplifies the
connections to the multiplier methods, which are typically
posed for SISO Lurie systems, e.g. in [22], and ii) it reduces
the notational burden. However, it is stressed that, with
some minor modifications, the presented results can be
readily generalised to MIMO Lurie systems, similarly to
the presentation of [15].

Paper structure: The paper is structured as follows. Sec-
tion II introduces the proposed class of Lyapunov func-
tion. Section III presents the main results of the paper:
Section III-A exploits the proposed Lyapunov function to
formulate global stability conditions, III-B presents local
sector and slope inequalities and formulates regional sta-
bility conditions, finally, Section III-C extends the analysis
to an input/output setting. Section IV presents several
numerical examples to support the theory.

Notation: We use square bracket to denote the value of a
discrete-time signal y at instant k, e.g. y[k]. The forward
difference ∆ acting on a function V : Rn → R≥0 along
the solution of a discrete-time system x[k + 1] = f(x)
is defined as ∆V [k] := V (x[k + 1]) − V (x[k]). The set
of non-negative real numbers is denoted R≥0. The basis
vector eNj ∈ RN is composed of zeros everywhere except
a 1 at element j. Symmetric matrices of dimension n are
Sn and symmetric positive definite matrices of dimension
n are Sn�0. The set of upper-triangular matrices with non-
negative entries is UN≥0. For a matrix A ∈ Rn×n, we denote

He(A) = A>+A. The block-diagonal matrix composed of
blocks A ∈ Rn×n and B ∈ Rm×m is denoted diag(A,B).
The notation E(V, ρ) is used to define the level-sets of a
function V , as in the set E(V, ρ) = {x : V (x) = ρ}.

II. Generalised quadratic and integral
Lyapunov functions

A new class of Lyapunov functions for discrete-time
Lurie systems is proposed. We use the proposed function
in Theorem 1, the main result of the paper, to study
the stability of systems with monotone non-linearities.
Importantly, the parameters of the considered function,
namely a matrix in a generalized quadratic form and the
scaling terms in integrals, need not be positive definite.

A. Proposed Lyapunov Function

Given a function φ : R → R, define the vector function
ν : Rn → RN+1, χ 7→ ν(χ), with νj denoting the jth

element of ν as

νj(χ) =

{
Cχ, j = 0,

CAjχ+
∑j
i=1 CA

j−iBφ(νi−1), 1 ≤ j ≤ N.
(3)

From the above definition, we have that νj(χ) is the
jth-step propagation of y in (1) from x[0] = χ. Let us also
introduce the vector function ξN : Rn → Rn+N+1

ξN (χ) =
[
χ>, φ(ν0(χ)), . . . , φ(νN (χ))

]>
. (4)

Linear subsystem

G

(.)φ

M

M
-1

Nonlinear subsystem

+

+

y

δ
-1

y-

δ
-1

Figure 2: Stability of the Lurie system can be shown via passivity
of the above feedback system, where G is the linear system, M is the
multiplier and φ(.) is the non-linearity.

For a fixed N ∈ N∪{0}, we can thus define the function
V : Rn → R, x 7→ V (x)

V (x) =

V0(x)︷ ︸︸ ︷
ξN (x)>PξN (x) +

N∑
j=0

λj

∫ νj(x)

0

φ(s) ds (5)

with λ ∈ RN+1, and P ∈ Sn+N+1. In the rest of the paper,
we may omit the dependence on x of ξN and νj to simplify
the notation and may also avoid denoting explicitly the
dependence of V (x) on N .

The above function is composed of a generalised
quadratic term V0(x) and the integral terms. It will be used
as a Lyapunov candidate function to show stability of (1).
Namely, we will formulate inequalities imposing conditions
on its parameters P and λ for the stability of the origin
of (1).

B. Discussion on the Proposed Function

We now discuss the structure of the above function and
its connection to the Popov-type stability criteria for both
continuous- and discrete-time Lurie systems.

Firstly, it is noted how the function generalizes the
Tsypkin Lyapunov function for discrete-time systems

VTsyp(x) = x>P0x+ η

∫ Cx

0

φ(σ) dσ (6)

which is obtained after setting N = 0 in (5). The above
VTsyp first appeared in [18] with P0 ∈ Sn and parameter
η ∈ R (not sign-defined).
1) Continuous-time systems: It can also be observed

that (6) also appears from the derivation of Popov-type
stability criteria of continuous-time Lurie systems using
passivity. Roughly speaking, this stability criterion consid-
ers the loop-transformed Lurie system of Figure 2. It fol-
lows from passivity (under some additional assumptions,
see [11, Chapter 6] for details) that the stability of this
system can be inferred as long as both the upper linear
subsystem and the lower non-linear subsystem can be
shown to be passive. Since the upper subsystem is linear,
it admits a quadratic storage function, but the passivity
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of the non-linear subsystem requires exploiting the sector
bounds.

Indeed, with the Popov multiplier M(s) = (1+ηs) in the
linear branch, passivity for the non-linear branch can be
shown provided there exists a storage function S : R→ R
satisfying

dS(t)

dt
≤ φ(y(t))

(
y(t) + η

dy(t)

dt

)
.

Since the non-linearity φ lies within the sector [0, δ], we
have φ(y)y ≥ 0. To verify the above inequality, it thus
suffices to obtain a function S : R→ R satisfying

dS(y(t))

dt
= ηφ(y(t))

dy(t)

dt

or, in its integral form,

S(y(T ))− S(y(0)) = η

∫ T

0

φ(y(t))
dy(t)

dt
dt

= η

∫ y(T )

y(0)

φ(σ) dσ

= η

∫ y(T )

0

φ(σ) dσ − η
∫ y(0)

0

φ(σ) dσ.

(7)

Thus, by identifying terms in the above equation, we
can use the function S(y) = η

∫ y
0
φ(σ) dσ as a storage

function for the non-linear branch of the loop-transformed
system, and, since y = Cx, S can be expressed as the
mapping x 7→ S(Cx). The sum of a quadratic function as
the storage function certifying the passivity of the linear
subsystem and the integral term as the storage function
for the non-linear subsystem gives VTysp as a candidate
Lyapunov function for the continuous-time Lurie system.

2) Discrete-time systems: The following introduces a
similar passivity-based analysis on the use of the function
but for discrete-time Lurie systems. For these systems,
with an equivalent feedback structure to Figure 2, it is
usual to substitute the continuous-time multiplier (1+ηs)
by a discrete-time Popov multiplier M(z) = (1 + η(1 −
z−1)) [10, 16]. By replacing the structure of this multiplier
by M(z) = 1+η

∑N
i=0 ciz

i for some real coefficients ci, the
passivity of the non-linear subsystem can be shown if we
can find a function S : R→ R satisfying

S(y[k])− S(y[k − 1]) = η

(
N∑
i=0

ciy[k + i]

)
φ(y[k]),

or, in its summation form,

S(y[K])− S(y[0]) = η

K∑
k=1

(
N∑
i=0

ciy[k + i]

)
φ(yk),

= −η
∞∑

k=K+1

(
N∑
i=0

ciy[k + i]

)
φ(yk)

+ η

∞∑
k=0+1

(
N∑
i=0

ciy[k + i]

)
φ(yk).

By identifying terms, the infinite sum S(y[`]) =

−η
∑∞
k=`+1

(∑N
i=0 ciy[k + i]

)
φ(yk+1) can be identified as

a storage function. However, note that the above contrasts
with (7) since to compute the values of S for a given time
instant, that is S(y[`]), the signal y from the solution of
the system must be known. For the continuous-time case,
the integral in (7) allows for the dependence on time of
the output signal y to be dropped.

It follows that adding a quadratic storage function
Slin(x) = x>P0x, P0 ∈ Sn�0 for the linear subsystem
to the above expression (below we also replace y in the
above sum by ν since we have νj = y[j] from (3)), the
corresponding Lyapunov function structure should be

VPop(x) := xTP0x− η
∞∑
k=1

(
N∑
i=0

ciνk+i(x)

)
φ(νk) (8)

which contains a sum, not an integral as in (6).

By rearranging terms in the double sum and regrouping
the terms νk+i into a single index j = k + i, we obtain
scalars c̃j , such that

∞∑
k=1

(
N∑
i=0

ciνk+i(x)

)
φ(νk) =

N∑
j=1

c̃jνjφ(νj)+

∞∑
j=N+1

c̃jνjφ(νj).

The first term above can be written as a quadratic
form in ξN (x) namely

∑N
j=1 c̃jνjφ(νj) = ξN (x)>PT ξN (x),

with PT ∈ Sn+N+1. Hence, adding this first term to the
quadratic function x>P0x, we obtain a term as in V0(x)
of (5). We are left with the sum

∑∞
j=N+1 c̃jνjφ(νj). In the

case this remaining term is bounded, we can then consider
the integrals of (5) as approximations of this infinite sum.
Thus, (5) gives an approximation of the function in (8).

In the above discussion, the storage function showing
the passivity of the non-linear branch of the continuous-
time system was obtained using only the sector informa-
tion. Unfortunately, when the sums are replaced by the
integral terms for the discrete-time problem, it is no longer
possible to carry out the stability analysis considering
only sector information since the integrals need to be
bounded by quadratic terms using slope information as
in [20, 10, 16]. We thus have to assume monotonicity of
the non-linearity hereafter and will use Lemma 1 below to
bound integrals.

C. Related work

Remark 1: We now show that V (x) in (5) includes the
recently developed Lyapunov function of [15] as a special
case when N = 1. To show this, consider the Lyapunov
function V̂ (x) from [15] which can be expressed as

V̂ (x) = V1(x) + V2(x) + V3(x) + V ′3(x) (9)

with parameters P̄ ∈ S2n+2
>0 , {m1, m2, n1, n2, n3, n4} ∈

R≥0 defining V1(x) = ζ>P̄ ζ ζ =
[
x>, x[k + 1]>,

φ(ν0(x)), φ(ν1(x))
]
, and

3



V2(x) = 2m1

∫ ν1(x)

ν0(x)

φ(σ)− φ(ν0(x))dσ

+ 2m2

∫ ν1(x)

ν0(x)

β(σ − ν0(x))− (φ(σ)− φ(ν0(x))dσ,

= 2m1

(∫ ν1

0

φ(σ)dσ −
∫ ν0

0

φ(σ)dσ

− φ(ν0)(ν1 − ν0)

)

+ 2m2

(
β

2
(ν21 − 2ν0ν1 + ν20)−

∫ ν1

0

φ(σ)dσ

+

∫ ν0

0

φ(σ)dσ + φ(ν0)(ν1 − ν0)

)
,

V3(x) = 2n1

∫ ν0(x)

0

φ(σ)dσ + 2n2

∫ ν0(x)

0

δσ − φ(σ) dσ,

= 2n1

∫ ν0

0

φ(σ)dσ + 2n2

(
δν0(x)2

2
−
∫ ν0

0

φ(σ) dσ

)
,

V ′3(x) = 2n3

∫ ν1(x)

0

φ(σ)dσ + 2n4

∫ ν1(x)

0

δσ − φ(σ) dσ,

= 2n3

∫ ν1

0

φ(σ)dσ + 2n4

(
δν1(x)2

2
−
∫ ν1

0

φ(σ) dσ

)
.

Collecting terms in the integrals of V2, V3, and V ′3 above
shows that V̂ can be written as (5) with N = 1. Indeed,
we obtain λ0 = 2(−m1 + m2 + n1 − n2), λ1 = 2(m1 −
m2 + n3 − n4). Finally, noting that ζ = Mξ2 with M =[
0 0 In 0 0
0 0 A B 0
0 0 0 1 0
0 0 0 0 1

]
, ν0 = [ 0 0 C 0 0 ] ξ1, ν1 = [ 0 0 CA CB 0 ] ξ1, and

φ(ν0) = [ 0 1 0 ] ξ1. The matrix P in (5) can be retrieved as a
function of coefficients P̄ , m1, m2, n2 and n4 by identifying
terms in the expression below

ξ>1 Pξ1 = ξ>1 M
>P̄Mξ1 − 2m1φ(ν0)(ν1 − ν0)

+ 2m2

(
β

2
(ν21 − 2ν0ν1 + ν20) + φ(ν0)(ν1 − ν0)

)
+ n2δν

2
0 + n4δν

2
1 .

?

It is further noted that another stability test was stated
in [4, Thm 5(a), Sec 7, Chap VI] which does not require
monotonicity of φ, instead only that φ satisfy a strict
sector condition with δ > 0. As far as the authors are
aware, no equivalent formulation in terms of Lyapunov
functions for this result is known.

The recent paper [25] obtained a Lyapunov function by
applying the KYP Lemma to FIR Zames-Falb multipliers.
Interestingly, the obtained function was also parameterised
on an integer related to the order of the multiplier. How-
ever, that Lyapunov function is differentiated from the one
proposed here by the number of terms used to parametrise
it. Indeed, in [25, Appendix] the presented conditions for

global stability, for the SISO case, contain a term analo-
gous to V0 in (5) with a matrix P of dimensions (using the
notation in our paper) (N + 1)(n+ 1) instead of n+N + 1
as in (5). Moreover, by relaxing the positivity conditions of
the function of this paper, the number of integral terms can
be reduced with respect to [25, Appendix] using a similar
approach as that applied to [15] above. Finally, it is also
noted that the presented results differentiate themselves
to [25, Appendix] by treating the regional stability and the
induced gain computation, with the numerical examples
demonstrating that increasing N for these problems can
lead to stronger results.

III. Main results

Stability conditions using (5) as the candidate Lyapunov
function are now stated for the discrete-time Lurie sys-
tem (1) with a monotonic non-linearity. We first introduce
some quadratic constraints related to the sector-bounded
and slope-restricted, monotone, non-linearities. For a non-
linearity with sector bounds [δ, δ], we define

ssec(σi) :=
(
δσi − φ(σi)

)
(φ(σi)− δσi) ≥ 0 (11)

∀σi ∈ R. The relation below exploits (2b) and monotonic-
ity of φ,

sslo(σi, σj) :=
(
β(σi − σj)− (φi − φj)

)
((φi − φj)) ≥ 0,

(12)

∀σi, σj ∈ R, with φi = φ(σi) and φj = φ(σj). The above in-
equality is obtained, from (2b) and monotonicity since we

have
σi−σj

φi−φj
≥ 1

β
, which gives

(σi−σj)(φi−φj)
2

(φi−φj)
≥ (φi−φj)

2

β
.

The inequalities in the lemma below are obtained using
the slope restrictions

Lemma 1 ([14, Lemma 1]): If φ is slope restricted (2b)
with β ≥ 0 then ∀σi, σj ∈ R

L(σj , σi) ≤
∫ σi

σj

φ(σ)dσ ≤ U(σj , σi) (13)

where

L(σj , σi) = φ(σj)(σi − σj) +
1

2β
(φ(σi)− φ(σj))

2,

U(σj , σi) = φ(σi)(σi − σj)−
1

2β
(φ(σi)− φ(σj))

2.

The bounds (13) give the inequality below

λpL(σj , σi)− λnU(σj , σi) ≤ (λp − λn)

∫ σi

σj

φ(s) ds (15)

≤ λpU(σj , σi)− λnL(σj , σi)

that will be used to upper and lower bound the integral
terms in the Lyapunov inequalities.

A. Global Stability Analysis

With the inequalities (11), (12), and (15) in hand, global
stability conditions with the Lyapunov function V (x) can
be formulated.

Theorem 1: Consider the Lurie system of (1) with
the non-linearity φ both sector bounded (2a) and slope
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restricted (2b) with β ≥ 0. If there exist P ∈
Sn+N+1, {λp, λn} ∈ RN+1

≥0 , {τ sec, ψsec, θsec} ∈ RN+1
≥0 ,

{τ slo, ψslo, θslo} ∈ UN+1
≥0 , ε2 ≥ ε1 > 0, and ε3 > 0 such

that, ∀x ∈ Rn \ {0}

ε1‖x‖2 ≤ V (x), (16a)

V (x) ≤ ε2‖x‖2, (16b)

∆V (x) ≤ −ε3‖x‖2, (16c)

with

V (x) =V0(ξN ) +

N∑
j=0

λpjL(0, νj)− λnj U(0, νj)

−
N∑
j=0

τ secj ssec(νj)−
N−1∑
j=0

N∑
g=j+1

τ sloj,g sslo(νj , νg),

(17a)

V (x) =V0(ξN ) +

N∑
j=0

λpjU(0, νj)− λnj L(0, νj)

+

N∑
j=0

ψsec
j ssec(νj) +

N−1∑
j=0

N∑
g=j+1

ψslo
j,gsslo(νj , νg),

(17b)

∆V (x) =∆V0(ξN ) +

N∑
j=0

λpjU(νj , νj+1)− λnj L(νj , νj+1)

+

N+1∑
j=0

θsecj ssec(νj) +

N∑
j=0

N+1∑
g=j+1

θsloj,gsslo(νj , νg),

(17c)

then (1) is globally exponentially stable and x[k] ∈
E(V, V (x[0])) with V as in (5) with λ = λp − λn.
Proof. From the quadratic bounds (11), (12) and the

lower bound to the integral term in (15), it follows that
V (x) ≤ V (x) ∀x, with V defined by λ = λp − λn in (5).
Thus (16a) implies ε1‖x‖ ≤ V (x). Similarly, we show
that V (x) is an upper bound to V (x) thus (16b) implies
V (x) ≤ ε2‖x‖, hence

ε1‖x‖2 ≤ V (x) ≤ ε2‖x‖2. (18a)

We have

∆V (x[k]) =V0(ξN (x[k + 1]))− V0(ξN (x[k]))

+

N∑
i=0

λi

∫ νi+1

νi

φ(s)ds.

Using the inequalities (11), (12) and both bounds to the
integral terms in (15) we conclude that ∆V (x) ≤ ∆V (x),
hence the satisfaction of ∆V (x) < −ε2‖x‖2 implies

∆V (x) < −ε2‖x‖2. (18b)

To conclude, if the conditions of the theorem are satisfied,

we use (18) to obtain ‖x[k]‖2 ≤ ε2
ε1

(
1− ε3

ε2

)k
‖x[0]‖2. �

Remark 2: Since the inequalities that need to be checked

in Theorem 1 are quadratic expressions, they can be cast
as linear matrix inequalities (LMIs). Specifically, the terms
of (17a), (17b) can be cast as quadratic forms on the vec-
tor ξN , and (17c) is a quadratic form on the vector ξN+1.
These LMIs are detailed in (33) in the Appendix and
they are solved to obtain the numerical results reported
in Section IV. ?

Remark 3: A key feature of Theorem 1 is related
to the set of parameters defining V in (5). Note that
the positivity of the elements of λ in V are relaxed in
Theorem 1 since λ = λp − λn with λp and λn being non-
negative vectors. The sign definiteness of the matrix P in
(5) is also relaxed in Theorem 1 by exploiting the sector
and slope conditions. These relaxations parallel the results
by the authors for continuous-time Lurie systems [23] and
those with rational vector fields [6] where the positivity of
the LF parameters have also been relaxed. ?

B. Regional Stability Analysis

In many cases, a regional stability analysis is often
desired since global stability may not be achieved for non-
linear systems. This is the case when the domain of the
non-linearity is not R (e.g. with φ(σ) = ln(1+σ)) or when
the region of attraction of the origin is some set R0 ⊂ Rn
with 0 ∈ R0. The previous section demonstrated how the
function (5) could be used for a global stability analysis
of a Lurie system, corresponding to a region of attraction
of the origin given by Rn.

This section follows a similar approach to [23] where the
regional stability for continuous-time systems was studied,
and provides conditions to obtain estimates of the region
of attraction of the origin using (5). Such estimates will be
invariant sets given by level sets of the Lyapunov function.
We guarantee the inclusion of these level sets within a
subset of the state space where (local) sector and slopes
bounds for the non-linearities hold. We characterize these
sets by considering scalars y ≤ 0, y ≥ 0 that define

X0 = {x ∈ Rn : (y − ν0(x))(ν0(x)− y) ≥ 0},

that is, ∀x ∈ X0, ν0(x) ∈
[
y, y
]
. The values y, y give the

interval of the domain of the non-linearity φ in (1), where
sector and slope bounds will be assumed to hold.

We thus assume that ∀σi ∈
[
y, y
]
, we have

ssec,loc(σi) :=(
δloc(y, y)σi − φ(σi)

) (
φ(σi)− δloc(y, y)σi

)
≥ 0 (19)

with δ ≤ δloc(y, y) ≤ δloc(y, y) ≤ δ, with the global sector

bounds as in (2a) satisfied with δ and δ. Similarly, we
assume ∀σi, σj ∈

[
y, y
]

sslo,loc(σi, σj) :=
(
βloc(y, y)(σi − σj)− (φi − φj)

)
×

((φi − φj)− βloc
(y, y)(σi − σj)) ≥ 0, (20)

with 0 ≤ β
loc

(y, y) ≤ βloc(y, y) ≤ β, with the global sector

bounds as in (2b) satisfied with β = 0 and β. The use of
sector and slope bounds depending on y and y can help
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reduce the conservatism in the estimates of the region of
attraction obtained, as the numerical examples below will
illustrate.

To guarantee that the above sector and slope inequali-
ties are verified for all trajectories starting in an invariant
level set of (5), we should establish a condition for the
inclusion of a level set of (5) in a given set X0 ⊂ Rn. The
lemma below provides this inclusion condition.

Lemma 2: Given a function W : Rn → R, if there exists
a scalar α > 0 such that

α(y − ν0(x))(ν0(x)− y) ≥ ρ−W (x), (21)

then the following set inclusion holds

E(W,ρ) ⊆ X0.

Proof. If (21) holds, then whenever W (x) ≤ ρ, we have
that the inequality (y − ν0(x))(ν0(x)− y) ≥ 0 is satisfied.
Hence, x ∈ E(W,ρ) ⊆ X0, giving the set inclusion. �

The inclusion condition of Lemma 2 and the stability
conditions of Theorem 1 are combined in the following
regional stability analysis result.

Theorem 2: Consider the Lurie system of (1) with
the non-linearity φ both sector bounded (2a) and slope
restricted (2b) with β ≥ 0 and bounds on the non-linearity
y, y defining the set X0 and sector and slope bounds as

δloc(y, y), δloc(y, y), β
loc

(y, y), βloc(y, y) in (19)-(20).

If there exist P ∈ Sn+N+1, {λp, λn} ∈ RN+1
≥0 ,

{τ sec, ψsec, θsec} ∈ RN+1
≥0 , {τ slo, ψslo, θslo} ∈ UN+1

≥0 and
ε2 ≥ ε1 > 0, and ε3 > 0 such that, ∀x ∈ Rn \ {0}, the
inequalities in (16) hold with

V (x) =V0(ξN ) +

N∑
j=0

λpjL(0, νj) − λnj U(0, νj)

−
N∑
j=0

τ secj ssec,loc(νj) −
N−1∑
j=0

N∑
g=j+1

τ sloj,gsslo,loc(νj , νg),

(22a)

V (x) =V0(ξN ) +

N∑
j=0

λpjU(0, νj) − λnj L(0, νj)

+

N∑
j=0

ψsec
j ssec,loc(νj) +

N−1∑
j=0

N∑
g=j+1

ψslo
j,gsslo,loc(νj , νg),

(22b)

∆V (x) =∆V0(ξN ) +

N∑
j=0

λpjU(νj , νj+1) − λnj L(νj , νj+1)

+

N+1∑
j=0

θsecj ssec,loc(νj) +
N∑
j=0

N+1∑
g=j+1

θsloj,gsslo,loc(νj , νg),

(22c)

and a scalar α > 0 such that

α(y − ν0(x))(ν0(x)− y) ≥ ρ− V (x), ∀x ∈ Rn \ {0} (23)

holds, then all solutions of (1) satisfying x[0] ∈ E(V, ρ) ⊆
X0, with V defined by P and λ = λp − λn, also satisfy
E(V (x[k]), ρ) ⊆ X0 for all k ∈ N. Moreover, the origin

of (1) is (locally) exponentially stable.

Proof. Since we have V (x) ≥ V (x), then V (x) ≤ ρ
implies V (x) ≤ ρ hence E(V, ρ) ⊆ E(V , ρ). Following
Lemma 2, if (23) holds, we conclude that E(V , ρ) ⊆ X0

thus implying E(V, ρ) ⊆ X0.

Note also that if (16) holds, we have V (x) > 0, giving
V (x[0]) > 0 and ∆V (x) < 0 gives ∆V (x[k]) < 0 ∀k ∈ N.
Thus, for V (x[0]) ≤ ρ we get 0 < V (x[k]) ≤ ρ ∀k ∈ N.
Since V (x) ≤ V (x), we also have that V (x[k]) ≤ ρ ∀k ∈
N. Hence, the set E(V, ρ) is invariant and is contained in
the set where ∆V (x) is strictly negative with an upper
quadratic bound as in (16c). Exponential stability of the
origin within the set E(V, ρ) can then be concluded. �

Remark 4: The following particular case of the func-
tion (5) has been proposed in [7]

VGJD(x) = xTPx+ λν0φ(ν0)

for the regional analysis of Lurie systems. Interestingly,
with the above structure the stability analysis can be
carried out using only sector bounds. Also, the level
sets of the above function can be disconnected therefore
yielding disconnected level sets for estimates of the region
of attraction.

Linear subsystem

G(z)

(.)φ

z

z

Nonlinear subsystem

-

y -1
( z)

-1z

2'

1
'

y

w

Figure 3: Feedback system used in the passivity analysis
of VGJD(x).

On the other hand, the above function does not appear
to be more effective than a quadratic function when
assessing global stability in numerical experiments. To
understand this apparent conservatism in using VGJD for
global stability analysis, let us consider the feedback loop
of Figure 3 where the multipliers z−1 and λz (as well
as their inverses) have been added to the Lurie system
of 1. The passivity analysis of this reformulated feedback
system is now considered, with the Lyapunov function
VGJD being constructed from the sum of each subsystem’s
storage function, as done in Section II-B2. Focussing firstly
on the lower, nonlinear subsystem Σ′2, the corresponding
supply rate is

w[k]ζ[k] = λφ(y[k + 1])y[k + 1]. (24)

The term Spass(y[k]) = λy[k]φ(y[k]) (corresponding to the
term λν0φ(ν0) using the notation of (3)) in VGJD(x[k]) can
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then be used as a storage function for this subsystem, since

∆Spass(y[k]) = λ (φ(y[k + 1])y[k + 1]− φ(y[k])y[k]) ,
(25a)

≤ λφ(y[k + 1])y[k + 1], (25b)

= w[k]ζ[k], (25c)

thus showing the passivity of this subsystem.

For the upper, linear subsystem Σ′1, the system is passive
if λzz−1G(z) = λG(z) is strictly positive real. The key
feature here is the cancellation of the two multipliers for
the linear system, denying the multipliers any phase shift
on G(z). Since positive-realness of λG(z) is equivalent to
G(z) when λ ≥ 0, this approach will be equivalent to the
circle criterion, whose satisfaction implies the existence of
a quadratic Lyapunov function x[k]TPx[k]. Thus, for a
global analysis, the benefit of including the second term
in VGJD(x) may be limited, although the inequality (25b)
in the above analysis prevents a direct equivalence between
the use of VGJD and the circle criterion. However, the
regional analysis using VGJD, may prove beneficial when
the basin of attraction is a complex set and not Rn. ?

C. Input-Output Analysis

This section considers the open Lurie system

x[k + 1] = Ax[k] +Bφ(y[k]) +Bww[k], (26a)

y[k] = Cx[k], (26b)

z[k] = Czx[k], (26c)

with the input given by an external disturbance w ∈ W ⊆
`2, and z a performance output signal to be assessed. To
evaluate the impact of the input signals w in z, in this
section, we propose a strategy to compute gains yielding
worst-case bounds of the form ‖z‖2 6 γ‖w‖2.

To compute the input-output induced gains, we use the
storage function given by V as in (5). It is important to
observe that (5) does not depend on w, since νi, i ∈ {1, N}
in (3) and the vector ξN in (4) defining the expression
V (x) depend only on its argument x and not on w. On
the other hand, to analyse the input-output gains of (26),
the forward difference ∆V (x[k]) = V (x[k + 1]) − V (x[k])
has to be computed using x[k + 1] as in (26). To obtain
V (x[k+1]) we use (3) and (26a) to arrive at the expressions

νj(x[k + 1]) =
C (Ax[k] +Bφ(Cx[k]) +Bww[k]) j = 0
CAj (Ax[k] +Bφ(Cx[k]) +Bww[k])

+
∑j
i=1 CA

j−iBφ(νi−1(x[k + 1])), 1 ≤ j ≤ N.

It is observed that νj(x[k + 1]) depends on w[k] which is
different from νj+1(x[k]). Let us define ν+j (x[k], w[k]) :=
νj(x[k+ 1]) that will help avoid expressions with multiple

indexing. Using the above expression, we obtain

ν+j (x,w) =
C (Ax+Bφ(ν0) +Bww) , j = 0,

CAj (Ax+Bφ(ν0) +Bww) +
∑j
i=1 CA

j−iBφ(ν+i−1),

1 ≤ j ≤ N,

and ξ+N (x[k], w[k]) := ξN (x[k + 1]), that is

ξ+N (x,w) =
[
x+>, φ(ν+0 ), . . . , φ(ν+N )

]
. (27)

Theorem 3: Consider the open Lurie system of (26)
with the non-linearity φ both sector bounded (2a) and
slope restricted (2b) with β ≥ 0. If there exist P ∈
Sn+N+1, {λp, λn} ∈ RN+1

≥0 , {τ sec, ψsec, θsec, θsec+} ∈
RN+1
≥0 , {τ slo, ψslo, θslo, θslo+} ∈ UN+1

≥0 ε2 ≥ ε1 > 0, and
ε3 > 0 such that, ∀x ∈ Rn \ {0}, (16a)-(16b) hold with
(17a)-(17b), and ∆V (x) ≤ −(γ−2)z2 + w2, with ∆V (x)
given by

∆V (x) =ξ+N (x)>Pξ+N (x) − ξN (x)>PξN (x)

+

N∑
j=0

λpjU(νj , ν
+
j ) − λnj L(νj , ν

+
j )

+

N∑
j=1

θsecj ssec(νj) + θsec+j ssec(ν
+
j )

+

N−1∑
j=1

N∑
g=j+1

θsloj,gsslo(νj , νg) + θslo+j,g sslo(ν+j , ν
+
g ) (28)

then

‖z‖2 ≤ γ‖w‖2, ∀w ∈ `2. (29)

Moreover, for x[0] = 0, we have that V (x[k]) ≤ ‖w‖22,
∀k ∈ N.

Proof. Since ∆V ≤ ∆V (x) then the conditions of the
theorem imply ∆V (x[k]) ≤ −(γ−2)z[k]2 + w[k]2 ∀k ∈ N.
Summing this expression from to 0 to k gives

V (x[k])− V (x[0]) ≤ −(γ−2)
k∑
i=0

‖z‖2 +
k∑
i=0

‖w‖2 ∀k.

Letting k → ∞, we get (γ−2)‖z‖22 ≤ V (x[0]) + ‖w‖22 and
since the bias term V (x[0]) satisfies V (x[0]) ≥ 0, then

‖z‖2 ≤ γ‖w‖2.

That is, the input-output induced `2 gain is bounded by γ.

Moreover, we have that

V (x[k]) +

k∑
i=0

(γ−2)‖z[i]‖2 ≤ V (x[0]) +

k∑
i=0

‖w[i]‖2, ∀k

and since ‖z[i]‖ ≥ 0 ∀i, if x[0] = 0 (thus V (x[0]) = 0), we
obtain

V (x[k]) ≤
k∑
i=0

‖w[i]‖2 ≤
∞∑
i=0

‖w[i]‖2 = ‖w‖22, ∀k.

We thus conclude that, if ‖w‖22 ≤ ρ, that is, if the `2
norm of the input is bounded by a scalar

√
ρ, we have

that ∀k ∈ N, x[k] ∈ E(V, ρ). �
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IV. Numerical examples

The proposed Lyapunov function structure is now eval-
uated through three numerical examples i) assessing the
maximal achievable sector for a global analysis using
benchmark LTI systems from the literature ii) computing
estimates of the region of attraction, and iii) computing
bounds for the worst-case input-output gains. The LMIs
corresponding to each stability conditions were solved
using YALMIP [13] and MOSEK [2].

A. Maximum Achievable Sector

We first evaluate the conditions for global stability of
system (1) using (5) on minimal realizations of the seven
systems given in Table I with equal sector and slope
bounds, as in δ = β = 0, and β = δ. We then look

for the maximum value of δ for which stability could be
verified. The tests were carried out by using a sequence of
increasing values of the integer N .

Table II compares the maximum achievable δ obtained
by solving the inequalities in Theorem 1 against other
modern methods, including the Zames-Falb multipliers
of [3] and [22], and the Lyapunov functions of [15] and [1].

For G2(z), G3(z) and G4(z), the proposed Lyapunov
function V (x) provides less conservative sector bounds δ
than the Lyapunov function V̂ (x) from [15], as in (9).
Furthermore, as discussed in Remark 1, the sector bounds
obtained with V (x) and N = 1 match those obtained
with V̂ (x). Thus showing that V could encompass and
generalise V̂ . For G2(z), G3(z) and G4(z), extending the
horizon length N of V beyond N = 1 led to some
conservatism reduction in the achievable sector δ, with
the horizon length yielding the maximum achievable sector
(N∗) reported in Table II. Figure 4 illustrates the effect of
the horizon length N on the achievable sector by showing
the maximum achievable sector bound δ̄∗ for G4(z) as a
function of the horizon length N , with a clear increase
at N = 3. It must also be said that the Zames-Falb
multipliers of [3] and [22] could still achieve superior
sector bounds for G4(z), G5(z) and G7(z), however, the
Lyapunov function approach for stability analysis consid-
ered in this paper still offers advantages. In particular,
Lyapunov functions provide a more natural framework to
conduct a regional analysis.
Remark 5: Since the number of decision variables in (16)

scales with O((n + N)2), computational limitations were
not found to be a major issue when verifying Theorem 1
for modestly sized problems. In fact, for the examples of
Table I, the maximum time taken to solve the LMIs of
Theorem 1 on a standard laptop (with 16GB of RAM
and an Intel(R) Core(TM) i7-1185G7 processor) was 5.46s
which corresponded to G4(z) with N = 20. However,
the O((n + N)2) scaling may limit the extension of the
results presented here for MIMO problems or for large
dimensional systems. ?

B. Regional Analysis

The second numerical example uses V (x) from (5) to
estimate the region of attraction of the Lurie system (1).

Example Plant

G1(z) [1] 0.1z
z2−1.8z+0.81

G2(z) [1] z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209

G3(z) [1] − z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209

G4(z) [1] z4−1.5z3+0.5z2−0.5z+0.5
4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5

G5(z) [1] −0.5z+0.1
z3−0.9z2+0.79z+0.089

G6(z) [9] 2z+0.092
z2−0.5z

G7(z) [3] 1.341z4−1.221z3+0.6285z2−0.5618z+0.1993
z5−0.935z4+0.7697z3−1.118z2+0.6917z−0.1352

Table I: Various linear systems used as tests in the numer-
ical examples. Set of examples taken from [3].

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

Figure 4: Maximum sector δ obtained by Theorem 1 for G4(z) as
a function of N ∈ [1, 10]. Also plotted are the bounds from the Circle
criterion, the Tsypkin Lyapunov function and the function from [15].
The upper limit set by the Nyquist gain is also plotted.

Consider a balanced realization of the plant G6(z) from
Table I, the polynomial

p(σ) = cσ(σ − r1)(σ + r1)(σ − r2)(σ + r2),

and

β
p
(y, y) = min

σ∈[y,y]

dp(σ)

dσ

defining the non-linearity

φ(σ) = p(σ)− β
p
(y, y)σ.

Note that φ above is monotonic in the interval
[
y, y
]

and it is sector bounded and slope restricted with

δloc(y, y) = min
σ∈[y,y]

φ(σ)

σ
, δloc(y, y) = max

σ∈[y,y]

φ(σ)

σ
,

β
loc

(y, y) = 0, βloc(y, y) = max
σ∈[y,y]

dφ(σ)

dσ
.

Since the non-linearity φ is a polynomial, the terms
φ(νj(x)) in the vector ξN and the integrals of (5) also
become polynomials on the variable x. In the following,
the parameters of the non-linearity and the interval were
set to r1 = 1, r2 = 2, c = 8× 10−3 and y = −y = 5.28.

We formulate a semi-definite program using the in-
equalities in Theorem 2. To optimise the estimates of the
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Maximum sector δ

Plant G1(z) G2(z) G3(z) G4(z) G5(z) G6(z) G7(z)

Lyapunov functions

Circle criterion [20] 0.7934 0.1984 0.1379 1.5313 1.0273 0.6510 0.1069

Tspkin criterion [10] 3.8000 0.2427 0.1379 1.6911 1.0273 0.6510 0.1069

Ahmad et. al. [1] 12.4309 0.7261 0.3027 2.5904 2.4475 0.9067 0.1695

Park et al. [15] 12.9960 0.7397 0.3054 2.5904 2.4475 0.9108 0.1695

Zames-Falb multipliers

Best in [22] 3.9043 0.4365 0.2063 3.0192 2.4451 1.0236 0.2337

Best in [3] 13.0283 0.8027 0.3120 3.8240 2.4475 0.9115 0.4922

New theorem

Theorem 1, N = 1 12.9960 0.7397 0.3054 2.5903 2.4475 0.9108 0.1695

Theorem 1 (N∗) 12.9960(1) 0.7935(7) 0.3119(8) 3.2663(3) 2.4475(1) 0.9108(1) 0.1696(19)

Upper limit

Nyquist gain 36.1000 2.7455 0.3126 7.9070 2.4475 1.0870 1.1766

Table II: Achievable maximum sector bounds δ for various tests. N∗ is the value of N in V (x) of (5) giving the
maximum sector.

region of attraction, we used the trace of the quadratic
matrix defining V as the cost function. Figure 5 shows the
estimates of the obtained region of attractions - denoted by
the blue curves in the figure- obtained for horizon lengths
N = 1 (dark blue) and N = 4 (light blue), with the blue
dashed lines being sublevel sets of the corresponding V (x).
The red area displays the set of initial values generating
trajectories that did not converge to the origin and the
black dashed lines correspond to {x : ν0(x) = y, ν0(x) =
y}. The figure shows that increasing the horizon length N
in V (x) can generate non-convex estimates of the region of
attraction with larger volumes than those obtained using
ellipsoidal sets.

C. Bounding the Worst Case Input-Output Gain

The final numerical example highlights the use of V (x)
in (5) for bounding the worst-case input-output gain of
the Lurie system (26). Consider a balanced realization
(A,B,C) of G4(z) from Table I and assume a global
analysis (so X0 = Rn). Furthermore, assume that the non-
linearity is bounded by δ = β = 2.55 and δ = β = 0 and
take Bw = B (as in the input vector of the disturbance
equals that of the non-linearity) and, similarly, Cz = C.

Figure 6 shows the computed values of γ from Theo-
rem 3 defining the worst-case bound ‖z‖2 ≤ γ‖w‖2 for all
‖w‖2 ∈ `2 as a function of the horizon length N of V (x).
As N increased, there was a significant drop in γ, going
from 6.08×103 with N = 1 to 3.13× 101 at N = 4 before
reaching a plateau. This noticeable drop in γ suggests
that longer horizons N in V (x) may prove important for
generating tight bounds of the input-output gains of Lurie
systems. These significant improvements with long horizon
lengths N contrast with the results of the maximum sector
analysis of Section IV-A, where the impact of increasing
N were less noticeable.

Figure 5: Regional stability of the second numerical example.
Positive invariant sets of the Lyapunov function V (x) from (5) are
shown in blue, with blue dashed lines corresponding to sub-level sets.
Light blue corresponds to N = 4 and dark blue to N = 1. Black
dashed lines denote the limits {x : ν0(x) = y, ν0(x) = y}. Initial
conditions from the red region did not converge to the origin.

1 2 3 4 5 6 7
10
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Figure 6: Worst-case input output gain γ bounding ‖z‖2 ≤ γ‖w‖2
as a function of the horizon length N in V (x).
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Conclusions

The absolute stability problem for discrete-time Lurie
systems with monotonic non-linearities was considered. A
class of Lyapunov functions composed of a generalised
quadratic term plus a sum of Lurie-Postnikov type integral
terms was proposed. It was shown that sign-definiteness of
both the quadratic matrix of the Lyapunov function and
the scalars in front of the various integral terms could be
relaxed. It was also shown that the proposed Lyapunov
function generalised existing Lyapunov function structures
and its derivation from applying passivity theory to the
feedback Lurie system was discussed. Numerical examples
demonstrated the value of the proposed candidate Lya-
punov functions for i) increasing the maximum achievable
sector bound for verifying global stability, ii) estimating
the region of attraction of the Lurie system, and iii)
bounding the worst-case input-output gain of the system.

Appendix

We present below the matrix inequalities allowing
the conditions of Theorem 1 to be verified. We have
that (16a), (16b) and (16c) hold if, respectively,

P − diag(ε1In, 0N×N ) + Ω0
LU(N,λp, λn)

− Ωsec(N, τ
sec)− Ωslo(N, τ slo) ≥ 0, (30)

diag(ε2In, 0N×N )− P − Ω0
UL(N,λp, λn)

− Ωsec(N,ψ
sec)− Ωslo(N,ψslo) ≥ 0, (31)

−(Ω̌>P Ω̌−diag(P, 0)−diag(ε3In, 0N+1×N+1)+ΩUL(N,λp, λn)

+ Ωsec(N + 1, θsec) + Ωslo(N + 1, θslo)) ≥ 0, (32)

where

Ω̌ =

[
A

[
B 0n×N

]
0N×n

[
0N×1 IN

]]
and where the matrices Ω0

LU, Ω0
UL, ΩUL, Ωsec, and Ωslo are

detailed in (33).
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N∑
j=0

τ secj ssec(νj) = ξ>NΩsec(N, τ
sec)ξN Ωsec(N, τ

sec) =
1

2

N∑
j=0

τ secj He (Ωsec,j) (33a)

Ωsec,j =

 0n+j×n+N+1[
(δ + δ)

[
CAj CAj−1B . . . CA0B

]
−1 01×N+1−j

]
0n+(N−j)×n+N+1



− δδ




(CAj)>

(CAj−1B)>

...
(CA0B)>


0N−j×1


[[
CAj CAj−1B . . . CA0B

]
01×N−j

]
; (33b)

N−1∑
j=0

N∑
g=j+1

τ sloj,g sslo(νj , νg) = ξ>NΩslo(N, τ slo)ξN Ωslo(N, τ slo) =
1

2

N−1∑
j=0

N∑
g=j+1

τ sloj,gHe (Ωslo,j,g) (33c)

Ωslo,j,g =

 0n+j×n+N+1[
β
[
CAj CAj−1B . . . CA0B

]
01×N−j

]
0n+(N−j)×n+N+1

−

 0n+g×n+N+1[
β
[
CAg CAg−1B . . . CA0B

]
01×N−g

]
0n+(N−g)×n+N+1


−

 0n+j×n+N+1[
01×n e

(N+1)>
j+1

]
0n+(N−j)×n+N+1


>

−

 0n+g×n+N+1[
01×n e

(N+1)>
g+1

]
0n+(N−g)×n+N+1


>


 0n+j×n+N+1[

01×n e
(N+1)>
j+1

]
0n+(N−j)×n+N+1

−

 0n+g×n+N+1[
01×n e

(N+1)>
g+1

]
0n+(N−g)×n+N+1


 ; (33d)

N∑
j=0

λpjL(0, νj)− λnj U(0, νj) = ξ>NΩ0
LU(N,λp, λn)ξN Ω0

LU(N,λp, λn) =
1

2

N∑
j=0

He
(
Ω0

LU,j

)
(33e)

Ω0
LU,j =

 0n+j×n+N+1[
−λnj

[
CAj CAj−1B . . . CA0B

]
1
2β

(λpj + λnj ) 01×N−j
]

0n+(N−j)×n+N+1

 ; (33f)

N∑
j=0

λpjU(0, νj)− λnj L(0, νj) = ξ>NΩ0
UL(N,λp, λn)ξN Ω0

UL(N,λp, λn) =
1

2

N∑
j=0

He
(
Ω0

UL,j

)
(33g)

Ω0
UL,j =

 0n+j×n+N+1[
λpj
[
CAj CAj−1B . . . CA0B

]
− 1

2γ (λpj + λnj ) 01×N−j
]

0n+(N−j),×n+N+1

 ; (33h)

N∑
j=0

λpjU(νj , νj+1)− λnj L(νj , νj+1) = ξ>NΩUL(N,λp, λn)ξN ΩUL(N,λp, λn) =
1

2

N∑
j=0

He (ΩUL,j) (33i)

ΩUL,j =


0n+j×n+N+1[

−λnj
[
C(Aj+1 −Aj) C(Aj −Aj−1)B . . . C(A− In)B

]
−λnj CA0B − 1

2β
(λpj + λnj ) 1

β
(λpj + λnj ) 01×N−j

][
λpj
[
C(Aj+1 −Aj) C(Aj −Aj−1)B . . . C(A− In)B CA0B

]
− 1

2β
(λpj + λnj ) 01×N−j

]
0n+(N−j)×n+N+1

 .
(33j)
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