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Abstract

Mesh saliency, the process of detecting visually important

regions in 3D meshes, is a significant component in computer

graphics, that can be used in various applications such as de-

noising and simplification. In this paper, we propose a new 3D

mesh saliency measure that can identify sharp geometric features

in meshes. A local normal-based descriptor is built for each ver-

tex thanks to a spiral path within a k-hop neighborhood. First,

a geometric-based saliency is computed as the mean local align-

ment between the spiral descriptors. Second, a spectral-based

saliency is computed from the structure tensor total variation of

each vertex structure tensor with the gradient defined from the

spiral descriptor alignments. The final saliency is then defined as

the vertex roughness weighted by the sum of geometric ans spec-

tral saliencies. This single-scale saliency can be extended to a

multi-scale saliency by decimating the mesh at several scales. The

approach presents competitive results with the state-of-the-art.

Introduction

Nowadays, thanks to 3D scanners, it is easy to create digital

3D content. As such, 3D meshes are widely used in application

fields such as computer graphics and games. Many problems in

computer graphics can take advantage of knowing which regions

from a mesh are the most important. For example, in a mesh sim-

plification algorithm, the importance of the vertices can be used to

guide the decimation. Mesh saliency is such a measure that wants

to capture the importance of a region on a 3D mesh, hopefully,

close to human visual perception.

Our objective is to define a measure of saliency that can op-

erate on 3D meshes. To do so, we locally study the geometry of

the mesh vertices’ normals. To have a robust measure, the study

should not be based on measures made by the sole vertex nor-

mals. Indeed, to well describe the geometry at a given vertex, its

neighborhood has to be taken into account: a flat region being less

salient that an abrupt one. This requires the definition of a local

descriptor extracted at each vertex and that accounts for the nor-

mals’ variations within a k-hop neighborhood similarly to patches

for images. Most descriptors of the literature have adapted fea-

tures from the 2D case (LBP, histograms) to the 3D case, and used

it either in the spatial or spectral domains. Here we propose a de-

scriptor specifically designed for 3D meshes. This descriptor is a

local normal-based spiral descriptor built for each vertex thanks to

a spiral path within a k-hop neighborhood. This descriptor serves

as a building block for comparing two vertices. This enables to

identify sharp geometric areas in the mesh that are considered as

being salient. From this, saliency measures are derived in both

the spatial and spectral domains, and are combined into a global

saliency measure.

Local spiral hop descriptors
A mesh is represented by a graph G= (V,E) that consists in

a finite set V= {v1, . . . ,vm} of vertices and a finite set E⊂ V×V

of edges. We assume G to be undirected, with no self-loops and

no multiple edges. Let (vi,v j) be the edge of E that connects two

vertices vi and v j of V. The notation vi ∼ v j is used to denote two

adjacent vertices. The set N (vi) = {v j,v j ∼ vi} gives the set of

all the adjacent vertices to vi within a 1-hop (vertices that can be

reached in one walk). In [8], Lim et al. have proposed local spiral

hop operators. The principle is that the surrounding vertices of

one vertex can be enumerated by following a spiral, as illustrated

in Figure 1.
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Figure 1. Example of a local spiral 2-hop descriptor for a node vi of a mesh.

To define local spiral hop descriptors, we introduce the fol-

lowing definitions for local spiral hop operators:

R0(vi) = {vi}

R(k+1)(vi) = N (R(k)(vi))\ k-disk(vi)

k-disk(vi) =
⋃

l=0,...,k

Rl(vi)

k-rings(vi) = k-disk(vi)\{vi}

Given a vertex vi and a radius size k, a k-disk(vi) is the set of ver-

tices that can be reached from vi in 0 to k walks. As this includes

vi, the set k-rings(vi) is the same set without vi. Rk(vi) is the k-

ring (also called k-hop): an ordered set of vertices whose shortest

path to vi is exactly k-hops long. Then, R(k+1)(vi) is the set of

vertices that can be reached in 1 walk from Rk(vi) without going

through its k-disk (that contains vertices that can be reached from

vi in 0 to k walks). Rk
j(vi) denotes the j-th element in the k-ring.

Obviously one has R1(vi) = N (vi) and R0
1(vi) = vi. From these



operators, we can define the local spiral hop operator Sp(vi,k) as

an ordered sequence from the concatenation of the ordered rings:

Sp(vi,k) = (vi,1-ring(vi), . . . ,k-ring(vi))

=
(

R0
1(vi),R

1
1(vi),R

1
2(vi), . . . ,R

k
|Rk |(vi)

)

This operator has two degrees of freedom: the direction (clock-

wise or counterclockwise) of the rings and the first chosen vertex

R1
1(vi) (shown by the black arrow in Figure 1). The rest of vertices

are ordered inductively. To suppress both freedom degrees, we fix

the orientation clockwise and choose the initial vertex R1
1(vi) as

the one in the direction of the shortest geodesic path to vi:

R1
1(vi) = arg min

v j∈N (vi)
dG (vi,v j)

where dG is the geodesic distance between two vertices on the

graph G. This enables the operator to become invariant to rota-

tions of the neighborhoods. Such a choice has also been consid-

ered in [2] for the definition of spiral convolution on graphs. The

local hop spiral operator has been used in [8, 2] and provided com-

petitive results for shape correspondence. However, as the size of

the operator Sp(vi,k) varies for the vertices (as all the vertices do

not have the same number of neighbors), both these approaches

have considered only fixed-size spiral. They either truncate or

zero-pad each spiral depending on its size. This obviously does

not enable to well capture the similarities between two different

spirals. Therefore, we proceed differently. Given a graph signal F

on G, with F :V→R
d , we define the difference between the spiral

descriptors of two vertices as the sum of the differences between

their respective k-rings:

d(Sp(vi,k),Sp(v j,k)) =
k

∑
l=0

d(Rl(vi),R
l(v j))

Two k-rings are compared by mapping the vertices of the largest

ring to the smallest one:

d(Rl(vi),R
l(v j)) =

|Rl(vi)|

∑
n=0

d(Rl
n(vi),R

l
n′(v j))

with n′ =
⌊

n·|Rl(v j)|
|Rl(vi)|

⌋

and |Rl(vi)| > |Rl(v j)|. The distance be-

tween two vertices is then the distance between their graph signal

vectors:

d(Rl
n(vi),R

l
m(v j)) = ‖F(Rl

n(vi))−F(Rl
m(v j))‖2

The whole process is illustrated in Figure 2: vertices of the largest

k-hop are mapped to these of the smallest k-hop. The graph sig-

nal F can be spatial coordinates or normal vectors. In this work

we will consider normal vectors: F(vi) = n(vi). Faces’ normals

n̂ j are defined on each triangle t j of a mesh as the vector orthog-

onal to triangle’s plane. Vertices’ normals n(vi) are computed

as a weighted average of incident face normals with angle-based

weighting [1]:

n(vi) =

∑
j∈N f (vi)

α jn̂ j

‖ ∑
j∈N f (vi)

α jn̂ j‖2

First vertex descriptor Second vertex descriptor

0-hop

1-hop

2-hop

Figure 2. Comparison of two local spiral 2-hop descriptors.

with N f (vi) the faces incident with vi and αi the incident angle.

Figure 3 shows an example where the local spiral 2-hop de-

scriptor of a vertex vs is compared with the one of all the other

vertices. The distance d(Sp(vs,2),Sp(v j,2)) is then affected to

each vertex v j and displayed. As it can be seen this enables to

well capture the similarity between similar vertices. We will use

this descriptor as the basis for comparing vertices to define geo-

metric and spectral saliencies.

Figure 3. Comparison of the spiral 2-hop descriptors of a selected vertex vs (shown

in the black rectangle) with all the other vertices. Warm colors mean high values of

d(Sp(vs,2),Sp(v j ,2)).

Roughness
In [3], it was shown that curvature plays an important role

for the detection of saliency. In [6], Lee et al. proposed the first

mesh saliency approach and used differences between Gaussian-

weighted mean curvatures. Indeed, for saliency detection, it is

preferable to consider the variation of the curvature instead of the

curvature itself [5]. This enables to avoid detecting high-curvature

smooth areas as salient regions. Therefore, we consider instead

the notion of roughness proposed by Wang et al. [15] that we

extend to rings instead of local neighborhoods.

First, for each vertex vi of the mesh, we compute its mean

curvature. The two principal curvatures (k1(vi),k2(vi)) at a ver-

tex on a mesh measure how much the surface bends in different

directions. They correspond to the maximal and minimal curva-

ture at a given vertex of the surface. The approach of Panozzo et

al. [11] is used to compute the two principal curvatures. In the

2-rings(vi) neighborhood around every vertex vi, a best-fit quadric

is found and principal curvature values are analytically computed

on this quadric. Then, the mean curvature is the average of the

principal curvatures [9]:

κ(vi) =
1

2
(k1(vi)+ k2(vi))

Values are close to 0 for flat surface, positive in convex areas and

negative in concave areas. The roughness at a vertex vi is de-

fined as the difference between the curvature of a vertex and its

neighbors (weighted by its Laplacian). In [15], the definition con-

sidered only the direct neighbors N (vi). To have a more precise



measure, we consider larger neighborhoods γ-rings(vi) and take

the γ power of the Laplacian to create weights between vertices

that are γ walks far. The roughness is defined as:

R(vi) =

∣

∣

∣

∣

∣

∣

∣

κ(vi)−

∑
v j∈γ-rings(vi)

L
γ
i j ·κ(v j)

∑
v j∈γ-rings(vi)

L
γ
i j

∣

∣

∣

∣

∣

∣
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with L the cotangent Laplacian:

Li j =















cotαi j + cotβi j v j ∈ N (vi),

0 j /∈ N (vi),

− ∑
k 6=i

Lik i = j,

αi j and βi j are the angles opposite to edge (vi,v j).

Geometric and Spectral saliencies
We define the gradient at a given vertex vi as the (nonlocal)

vector of all the distances between the spiral descriptors of vi and

its neighbors within its γ-rings(vi):

∇f(vi) =
[

d(Sp(vi,k),Sp(v j,k)),v j ∈ γ-rings(vi)
]T

From this nonlocal gradient, we define geometric and spec-

tral saliencies. The geometric saliency is the normalized L1 norm

of the gradient:

GS(vi) =
1

|γ-rings(vi)|
‖∇f(vi)‖1

=
1

|γ-rings(vi)|
∑

v j∈γ-rings(vi)

d(Sp(vi,k),Sp(v j,k))

This definition of geometric saliency is similar to the one pro-

posed in [10] where a patch descriptor is used instead of our local

spiral hop descriptor. The geometric saliency will have high val-

ues for vertices that are very different from their neighbors as the

spiral distances will be high.

The structure tensor J is the outer product of the gradient:

J(vi) = ∇T f(vi) ·∇f(vi). It is a |γ-rings(vi)| × |γ-rings(vi)| posi-

tive semi-definite matrix: J(vi) ∈ S
|γ-rings(vi)|
+ . It summarizes the

dominant directions of the gradient in the γ-rings(vi) of a vertex vi.

The importance of the structure tensor lies in its eigenvalues that

provide a rich and discriminative description of the local geometry

by summarizing the distribution of the gradients in the γ-rings(vi)
neighborhood. Its spectral decomposition is J(vi) = UΛU

T with

U its eigenvectors and Λ its eigenvalues. The eigenvalues of the

structure tensor can be more informative of the local structures of

the mesh than the gradient magnitude, that is very smooth (see

Figure 4). This leads us to define the spectral saliency from the

Structure Tensor Total Variation (STTV) [7]. It is defined as:

SS(vi) =

√

√

√

√

|γ-rings(vi)|

∑
j=1

λ2
j

with λ j = Λ( j, j). Since the structure tensor can capture first-

order information in the γ-rings(vi) neighborhood, the spectral

saliency based on SSTV can provide more robust measures of

Figure 4. Robustness to noise. Original (top) and noisy (bottom) mesh with their

geometric and spectral saliencies (from left to right) on 3-rings with 2-hop spiral de-

scriptors.

variation. Figure 4 shows the robustness and accuracy of both the

geometric and spectral saliencies. As it can be seen they can iden-

tify sharp geometric features of the mesh even under strong noise

(on the mesh vertices’ coordinates).

Given the roughness, the geometric and spectral saliencies of

a given vertex, we now introduce the computation of the saliency.

As the roughness is based on differences of curvatures, it tends

to be very sensitive to small changes. In contrast the geometric

saliency is smooth, and the spectral saliency very localized. They

both provide different salient informations on the mesh. To merge

these informations altogether into a single saliency measure, we

weight the roughness by the sum of the normalized geometric and

spectral saliencies:

S(vi) = Kσ

(

R(vi) ·
(

GS(vi)+SS(vi)
))

This definition enables to have a saliency measure that puts for-

ward areas with high values of roughness, geometric and spectral

saliencies. Kσ is a Gaussian smoothing in the γ-rings(vi) neigh-

borhood with σ = 0.002 ·B where B is the length of the diagonal

of the bounding box of the mesh (as in [12]). The geometric and

spectral saliencies are normalized between 0 and 1 beforehand

with S(vi) =
S(vi)−min(S)

max(S)−min(S)
.

Results
To illustrate the benefits of our proposed mesh saliency

method, several experiments are led. In Figure 5, we show the

resulting mesh roughness R(vi), mesh geometric saliency GS(vi),
mesh spectral saliency SS(vi), and the final saliency S(vi) com-

bining them altogether. The roughness is a good starting point for

saliency. However, it tends to perform a lot of over-detection in ar-

eas that are not salient, and to be saturated in areas that are highly

salient. On the contrary, the geometric saliency is very smooth

and detects more finely some sharp geometric features (such as

the eyes of the centaur or the dress of the angel). The spectral

saliency also detects finely sharp geometric features but is much

less smooth and more localized on strong variations. The final

combinaison enables to put forward only the most salient parts of

the mesh, while smooth or flat areas are not detected as salient.
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Figure 5. Saliency computation on 3-rings with 2-hop spiral descriptors Sp(vi,2).

Warm colors mean high values of saliency.

To further test our approach, we have considered the meshes

from Chen et al. [3] where a pseudo ground truth is provided

from eye fixation maps. Figure 6 shows a gallery of our saliency

detection results. We use the same parameter settings for all the

meshes. As the latter are of relatively small size (between 5K and

15K vertices), we consider 2-rings with 1-hop spiral descriptors.

As it can be seen, our results are largely consistent with the ground

truths. However, on some of the meshes, the ground truth salient

regions are in smooth areas, and are not detected by our approach

(such as the head of the octopus) as it is based on the principle

that salient regions should be different from their surrounding.

Finally, we compare our method with the state of the art.

Figure 8 compares our results with those from [12, 13, 14]. Our

approach produces much more fine results than those of [14] and

[12] that are very coarse and often fail to detect small salient ar-

eas. The approach of [13] produces more fine results but tends to

over-detect saliency in smooth areas. This is not the case with our

approach. In addition, some approaches using spectral decompo-

sition (such as [14]) compute the saliency on a decimated mesh

to accelerate the processing, this is not the case of our approach.

Nevertheless, we can also benefit from computing the saliency at

different scales. To do so, we use the Qslim algorithm [4] to dec-

imate the mesh into three scales (the original one and two other

versions with respectively 50% and 25% of the vertices). Once

the saliency is computed on a decimated mesh, it is mapped back

to the original one by mapping the saliency of each decimated

vertex onto their birth vertex. The other vertices get their saliency

from averaging those of the birth vertices in their neighborhood.

On these decimated meshes we run exactly the same algorithm but

diminish the size of the rings for the computation of the saliency

(from 3 to 2 and 1 rings), as the size of the salient areas becomes

rougher. Results are shown in Figure 8. Importantly, the salien-

cies (although simplified) remain consistent across the scales (see

the columns 5 to 7) and close to the eye tracker ground truth. Fi-

nally, we have tried to combine these three saliency maps into

Figure 6. A gallery of mesh saliency where warm color denotes high saliency.

Above results computed by our method. Below corresponds to pseudo ground truths

provided in [3]. These models are courtesy of the Watertight Models of SHREC 2007.

Saliency computation was made on 2-rings with 1-hop spiral descriptors Sp(vi,1).

a single one with a basic max rule. The result is shown in the

last column of Figure 8. Although very basic, this enables to re-

cover in the fusion salient regions that have disappeared during

the mesh decimation (such as the navel of the man or the eye of

the horse). In the future we plan to investigate more elaborate

fusion schemes.

As a last experiment, we show the result of our (multi-scale)

saliency detection on 3D meshes obtained from the scanning of

real objects. Figure 7 shows these results. Whatever the scanned

object (the drill, the shoe or the persons), the most salient parts of

the objects are well captured.

Conclusion

In this paper we have proposed a new 3D mesh saliency ap-

proach. To accurately detect salient regions (that are different

from their surrounding), we consider a local normal-based de-

scriptor that is built for each vertex according to a spiral path

within a k-hop neighborhood. This descriptor is then be used to

define a nonlocal gradient for each vertex. The normalized L1

norm of this gradient defines a geometric saliency measure while

the structure tensor total variation defines a spectral saliency mea-

sure. Both are combined altogether with a vertex roughness mea-

sure. Experimental results show the interest of the approach.
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Figure 8. From left to right : Ground truth [3], saliency detection methods of [14], [13], [12], Ours (first scale), Ours (second scale), Ours (third scale), Ours (fusion of the scales

by max)


