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Abstract

This work addresses the event-triggered control (ETC) of discrete-time piecewise affine systems.
We propose a method to design a triggering strategy relying on an implicit representation of piece-
wise affine systems. Thanks to this implicit representation based on ramp functions, we propose a
partition-dependent piecewise quadratic functions to define the trigger criterion and use a piecewise
quadratic Lyapunov function candidate to derive conditions to certify the global exponential stabil-
ity of the origin under the ETC strategy. Since the stability conditions can be expressed as linear
matrix inequalities constraints, we propose a convex optimization solution to design the triggering
function parameters and to compute the Lyapunov function to ensure the closed-loop stability and
a reduction on the control updates. The approach is illustrated by numerical examples.
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1. Introduction

Many physical applications can be described by piecewise affine systems (PWA) such as nonlinear
circuits [1–3], and systems with saturation and deadzones nonlinearities [4]. Moreover, smooth
nonlinearities appearing in dynamical systems can be approximated by piecewise affine functions
leading to PWA models. In the context of model predictive control (MPC) for linear systems with
affine constraints and quadratic costs, the optimal solution can be expressed as a piecewise affine
control law [5], leading to a PWA closed-loop system. Neural networks with Rectifier Linear Unit
(ReLU) activation functions (i.e. ramp functions) can also be modeled by PWA systems. Moreover,
the class of PWA systems encompasses the one of piecewise linear (PWL) systems [6, 7].

PWA systems are in general described by an explicit representation [8]. In this case, the piecewise
dynamics is associated to a partition of the state space and the sets of the partition are described
by the intersection of halfspaces [9–13] or by cone rays and vertices representations [14, 15]. Im-
plicit representations instead do not have separate description for the sets in the partition and the
dynamics defined in each set. Among the implicit representations, we can cite the max-min-plus-
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scaling (MMPS), which is equivalent to other models discussed in [16]. More recently, an implicit
representation, based on vector valued ramp functions has been proposed in [17].

Most of the works addressing the stability analysis of discrete-time PWA systems consider an
explicit representation and piecewise quadratic (PWQ) Lyapunov functions [10–13], where to each
set of the partition a different quadratic function is associated. The main drawback of these methods
is the need of enumerating the possible transitions between sets in the partition when evaluating
the decrease of the Lyapunov function. To reduce conservatism, a reachability analysis should
be performed to eliminate from the analysis transitions that never occur [10]. This drawback
can be overcome with implicit representations to describe both the system dynamics and PWQ
Lyapunov functions. In [17], we introduced an LMI-based method that avoids the enumeration of
the transitions to compute the Lyapunov function parameters.

In the context of networked control systems, bandwidth and energy consumption constraints
have motivated the development of event-triggered control (ETC) policies [18, 19]. Differently from
time-triggered strategies, ETC updates the control law only when some criterion is satisfied, as
means of avoiding unnecessary data transmission [20]. In a continuous-time framework, the trigger-
ing rule can be implemented by continuously [21] or periodically [22, 23] monitoring some systems
variables. Considering discrete-time models the triggering rule is evaluated at each discrete-time
instant, which corresponds in general to a periodic sampling strategy. Regarding linear systems,
we can cite in this context the works [24], [25] and [26].

Event triggered control has also been studied in the context of switched and switching affine
systems [27, 28]. In these references, the problem is significantly different from the one regarding
PWA systems, since the changes on the dynamics is given by an external signal (switching signal),
which can also be used for control purposes [29]. For the class of PWA systems studied in the paper,
the vector field is continuous and each affine dynamics is defined in a set of the partition. In [30],
ETC for PWA discrete-time systems is studied considering an explicit representation and quadratic
Lyapunov functions to assess stability with a classical quadratic relative error triggering criterion
[21] based only on the control signal. Differently from a time-triggered strategy, when an event-
triggered strategy is designed using an explicit representation, the reachability analysis mentioned
above becomes rather convoluted. The reason for the increase on the complexity of the reachability
analysis is that the successor state also depends on the trigger rule and it is not possible to a priori
define in how many instants ahead the control will be effectively updated. In practice, to prove
closed-loop stability, we would have to enumerate and verify the decrease of the Lyapunov function
for all transitions between two regions, which may lead to conservative results [12]. Moreover, since
the dynamics of the system is different in each set of the partition, it is natural to introduce different
triggering functions depending on the partition. Two issues arise if an explicit representation is used
in this case: a) the set where the current state is has to be determined at each instant and the
triggering function associated to each partition evaluated; b) the determination of the parameters
of the trigger rule associated to each set of the partition such that the number of control updates
is effectively reduced.

To tackle the above issues, this paper addresses the event-triggered control for PWA systems
using an implicit representation based on vector-valued ramp functions proposed in [17], which
implicitly capture all possible transitions. One of the main aspects of the implicit representation is
that no reachability analysis is required. Also considering vector-valued ramp functions, we propose
a new PWQ triggering function that implicitly encodes the state partition in the event generator,
leading to a partition-dependent weighted relative criterion. In particular, such a function allows to
efficiently address the issues a) and b) above. Then, using a piecewise quadratic Lyapunov function
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candidate, LMI conditions are derived to assess the global exponential stability of the origin of the
closed-loop system under the event-triggered control strategy. Based on these conditions, we propose
a convex optimization problem to design the triggering function parameters aiming at a reduction
of the control updates with respect to a time-triggered implementation. The approach is illustrated
by some numerical examples.

The paper is organized as follows. In Section 2, the implicit representation of PWA systems
is recalled and the event-triggered control problem is stated. Based on properties of vector-valued
ramp functions and PWQ Lyapunov candidate functions, in Section 3 conditions for the exponential
stability of the origin of the closed-loop system under the proposed ETC strategy are derived. In
Section 4 these conditions are cast as linear matrix inequalities (LMIs) and an optimization problem
is proposed to design the triggering function parameters. In Section 5 some numerical examples
illustrate the application of the proposed approach. Finally, we present some concluding remarks
to summarize the main features of the method.

Notation: Norm ∥M∥ denotes the largest singular value of M and, for square matrices, He{M}≜
M+M⊤. M(i, j) denotes the (i, j) entry of matrix M and v(i) represents the i-th element of the vector
v. The set of symmetric and symmetric positive (negative) definite matrices of dimension n are
denoted, respectively, Sn and Sn

+ (Sn
−). Define the set of diagonal matrices Dn = {M ∈Rn×n | M(i, j) =

0, i ̸= j} and the sets Dn
{0,1} = {M ∈Dn | M(i,i) ∈ {0,1}} and Dn

[0,1] = {M ∈Dn | M(i,i) ∈ [0,1]}. Pn×m =

{M ∈ Rn×m | Mi, j ≥ 0,∀i, j
}
denotes a set of matrices with nonnegative elements. For vectors v,u ∈

Rm, v ⪰ u denotes an elementwise inequality, i.e. v(i) ≥ u(i) for i = 1, . . .m. In and 0n denote the
identity matrix and a square zero matrix of order n, respectively. 0n,m is an n×m matrix of zeros.
Given square matrices M1, M2, diag(M1,M2) denotes a block diagonal matrix composed by these
matrices. The indicator function of a set N ⊆N is defined as I(k,N) = 1 if k ∈ N, I(k,N) = 0 if k /∈ N.
For a set Γ, Int(Γ) and ∂Γ denotes its interior and its boundary, respectively.

2. Problem Statement

2.1. The PWA system

Consider the discrete-time PWA system in closed-loop with a PWA control law and a polyhedral
partition of the state-space given by

x(k+1) = A jx(k)+a j +Bu(k)
u(k) = H jx(k)+h j

∀x(k) ∈ Γ j, j = 1, . . . ,Np, k ∈ N (1)

where x ∈ Rn is the system state and u ∈ Rm is the control input, A j ∈ Rn×n, a j ∈ Rn, B ∈ Rn×m,
H j ∈ Rm×n, h j ∈ Rm, and each partition Γ j is defined as

Γ j = {x ∈ Rn | D jx+ e j ⪰ 0}

with Γ j ⊂ Rn, ∪Np
j=1Γ j = Rn, D j ∈ Rr j×n, e j ∈ Rr j and Int(Γi)∩ Int(Γ j) = /0 for all i ̸= j. We assume

that the vector field is continuous, namely, A jx+a j = Aix+ai for {x ∈ Rn | x ∈ ∂Γ j ∩∂Γi}.
The above expressions provide an explicit representation of the PWA system. In this paper we
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consider instead an implicit representation [17] given by

x(k+1) = F̄1x(k)+ F̄2φ(z(x(k)))+Bu(k) (2a)

z(x(k)) = F̄3x(k)+ F̄4φ(z(x(k)))+ f̄5, (2b)

u(k) = K1x(k)+K2φ(z(x(k))) (2c)

F̄1 ∈ Rn×n, F̄2 ∈ Rn×nz , B ∈ Rn×nu , F̄3 ∈ Rnz×n, F̄4 ∈ Rnz×nz and f̄5 ∈ Rnz , K1 ∈ Rm×n, K2 ∈ Rm×nz .
z ∈ Rnz is the argument of the vector-valued function φ : Rnz → Rnz , defined element-wise by the
ramp function r : R→ R, that is

φ(i)(z) = r(z(i)) =

{
0 if z(i) < 0
z(i) if z(i) ≥ 0

(3)

for each i = 1, ...,nz.
Note that when F̄4 is equal to zero or has an upper (or lower) strict block triangular structure, z

(and therefore φ(z)) can be straightforwardly determined from (2b). However, in the general case,
(2b) is an implicit equation depending on x as f̃ (z) := z− F̄4(φ(z)) = F̄3x+ f̄5. In this case, the
following assumption is made to guarantee the well-posedness of the algebraic loop defined in (2).

Assumption 1. For all ζ ∈ Rnz , there exists a unique solution z ∈ Rnz to the implicit equation z−
F̄4(φ(z)) = ζ .

The lemma below provides a test to verify whether, for a given F̄4, Assumption 1 holds.

Lemma 1. [17] If there exists a matrix X ∈ Dnz such that

−2X +XF̄4 + F̄⊤
4 X < 0, (4)

then the implicit equation z− F̄4(φ(z)) = ζ has a unique solution.

Remark 1. Note that if x ∈ Γ j the elements of φ(z(x)) will be either equal to zero or z(i)(x). In this

case, we can write that φ(z(x)) = ∆ jz(x), with ∆ j ∈ Dnz
{0,1}. Thus, the solution of the algebraic loop

for x ∈ Γ j will be given by

z = (I − F̄4∆ j)
−1(F̄3x+ f̄5). (5)

As a matter of fact, condition (4) ensures that I− F̄4∆ is nonsingular ∀∆ ∈ Dnz
{0,1} [17], [31]. Hence,

using (5), the explicit representation in (1) can be obtained from the implicit representation (2) by
considering the possible values for ∆ ∈ Dnz

{0,1}, as follows:

A j = F̄1 + F̄2∆ j(I − F̄4∆ j)
−1F̄3, a j = F̄2∆ j(I − F̄4∆ j)

−1 f̄5,

K j = K1 +K2∆ j(I − F̄4∆ j)
−1F̄3, h j = K2∆ j(I − F̄4∆ j)

−1 f̄5.

Furthermore, since ∆ j(i,i) = 1 means that z(i) ≥ 0 and ∆ j(i,i) = 0 means that z(i) ≤ 0, or equivalently

−z(i) ≥ 0, by defining ∆̄ j = (2∆ j − Inz), the matrices describing the partition Γ j are recovered as
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follows:

D j = ∆̄ j(I − F̄4∆ j)
−1F̄3, e j = ∆̄ j(I − F̄4∆ j)

−1 f̄5.

Note that the ramp function is a continuous function and r(z(i)) = 0 for z(i) = 0. In fact, for
z(i)(x) = 0, the state x belongs to the boundary of two neighbour regions Γ j (which will be associated
to ∆ j(i,i) = 1) and Γr (which will be associated to ∆r(i,i) = 0).

Remark 2. PWL systems can be seen as a particular class of PWA systems. This corresponds to
the case in which a j and h j are equal to 0 in the explicit representation (1), or equivalently, vector
f̄5 = 0 in our proposed implicit representation (2).

2.2. Event-triggered Control Strategy

In this section, we formally state the ETC strategy to be used and the problem we aim to solve.
We consider an emulation approach for the event-triggering strategy [19, 20]. In this context, we
assume that a stabilizing control law by considering a time-triggered updating of the control signal
has been computed, that is (2c) is given. The main objective is therefore the design of a trigger rule
aiming at reducing the number of control signal updates, while preserving the closed-loop stability.
Hence, the following assumption is considered:

Assumption 2. Matrices K1 and K2 are given and are such that the time-triggered control law (2c)
ensures the global exponential stability of the origin of the closed-loop PWA system (2)

Note that the satisfaction of this assumption can be checked by the conditions proposed in [17].
The discussion of methods for the computation of K1 and K2 satisfying Assumption 2 is out of the
scope of this work. This assumption is satisfied, for instance, when global stabilizing state feedback
time-triggered control laws are designed for systems with input saturation [32] or when some MPC
strategies are used, which are equivalent to PWA control laws [5]. Furthermore, a method for
designing global stabilizing control laws for PWA systems considering the implicit representation,
i.e. the synthesis of K1 and K2 leading to the satisfaction of Assumption 2, has been recently
proposed in [33].

The ETC strategy aims therefore to reduce the number of control updates, with respect to a
time-triggered control law (2c), by changing the value of the control signal only when an event
occurs. The events correspond to a violation of a condition given in terms of a threshold of a
function lt , called the triggering function. The triggering function considered here depends on the
current value of the state and on its value at the last event.

We thus modify the control signal generated by (2c) by considering the expression below

u(k) = u(ni) = K1x(ni)+K2φ(z(x(ni))), ∀k ∈ [ni, ni+1), i ∈ N, (6a)

z(x(ni)) = F̄3x(ni)+ F̄4φ(z(x(ni)))+ f̄5 (6b)

where the values ni ∈ N, i ∈ N indicate the time instants at which an event is triggered. From (6a),
the control signal is kept constant between two successive events, namely in the interval [ni, ni+1),
with the value of u computed at the trigger instant ni.
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Let us define the state degradation

δ (k) = x(k)− x(ni), ∀k ∈ [ni,ni+1), (7)

which measures the difference between the current state and the state at the last event instant [21].
For simplicity of notation, the time dependence is henceforth omitted, that is, x(k) and δ (k)

are simply denoted by x and δ , respectively, and x(ni) = x− δ . Moreover, x(k+ 1) is denoted by
x+. Hence, from (2a), (2b) and (6), the closed-loop dynamics under the ETC is described by the
following equations:

x+=(F̄1 +BK1)x+ F̄2φ(z(x))+BK2φ(z(x−δ ))−BK1δ

z(x) = F̄3x+ F̄4φ(z(x))+ f̄5

z(x−δ ) = F̄3x+ F̄4φ(z(x−δ ))+ f̄5 − F̄3δ

(8)

By defining

y(x,δ ) =
[

z(x)
z(x−δ )

]
, F1 = F̄1 +BK1, F2 =

[
F̄2 BK2

]
,F12 = BK1

F3 =

[
F̄3
F̄3

]
, F4 =

[
F̄4 0nz

0nz F̄4

]
, f5 =

[
f̄5
f̄5

]
, Fδ =

[
0nz,n
F̄3

]
,

we can write the closed-loop dynamics considering the event-triggered control policy as

x+ = F1x+F2φ(y(x,δ ))−F12δ (9a)

y(x,δ ) = F3x+F4φ(y(x,δ ))+ f5 −Fδ δ . (9b)

Note that since F4 has a block diagonal structure depending on F̄4, the well-posedness of the closed-
loop ETC system (9) is ensured by Assumption 1.

The generation of an event is based on the evaluation of a triggering function lt(x,δ ) at each
instant k. The trigger instants are then obtained from the following triggering rule:

ni+1 = min{k > ni such that lt(x(k),δ (k))> 0}. (10)

We consider that lt : Rn ×Rn → R is a piecewise quadratic (PWQ) function defined as follows:

lt(x,δ ) = x⊤Qxx+φ(z(x))⊤Qφ φ(z(x))+δ
⊤Qδ δ (11)

= x⊤Qxx+φ(y(x,δ ))⊤[Inz 0]⊤Qφ [Inz 0]φ(y(x,δ ))+δ
⊤Qδ δ

where Qδ ∈ Sn
+ is a symmetric positive-definite matrix and Qx ∈ Sn and Qφ ∈ Snz are symmetric

matrices such that

x⊤Qxx+φ(z(x))⊤Qφ φ(z(x))≤ 0, ∀x ∈ Rn. (12)

Remark 3. The use of function lt(x,δ ) defined in (11) leads to a piecewise quadratic weighted relative
error threshold trigger criterion. It generalizes the weighted relative error threshold trigger criterion
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based on a quadratic triggering function [21, 34]. Recall that, when the state is in a given partition
set Γ j we have that φ(z(x)) = ∆ j(I− F̄4∆ j)

−1(F̄3x+ f̄5), with the value of ∆ j depending on Γ j . Thus
the triggering function (11) implicitly depends on the set of the partition where the state is at the
current time instant k.

We can now state the problem we aim to solve.

Problem 1. Design the triggering function matrices Qx, Qφ and Qδ such that the origin of the
closed-loop system (9), under the ETC strategy given by (10), is globallly exponentially stable.

To take effective advantage of the ETC strategy, in addition to the stability guarantees, the
computation of Qx, Qφ and Qδ should be carried out aiming to reduce the number of generated
events, i.e. the number of control updates with respect to a time-triggered strategy. We thus
propose an optimization procedure to compute these matrices. This optimization problem takes
into account the stability conditions presented below in its constraints.

3. Stability analysis under the ETC strategy

In this section, we formulate stability conditions to certify the global exponential stability of the
origin of closed-loop piecewise affine systems with the event-triggered strategy described in Section
2.2. For notation simplicity, we may denote y(x,δ ) ∈ R2nz simply by y ∈ Rny , with ny = 2nz.

3.1. Properties of ramp functions

Based on properties of the ramp function, this section states a lemma for the function φ . Such
lemma will be instrumental for the analysis of the stability of PWA systems using the implict
representation (8) and, by consequence, for devising conditions to solve the event-triggered control
design Problem 1.

Since φ is defined elementwise in terms of a ramp function as given in (3), it inherits the following
properties from the ramp function, valid for any vector y ∈ Rny [35], [17]:

φ(i)(y)≥ 0, (13a)

(φ(i)(y)− y(i))≥ 0, (13b)

φ(i)(y)(φ(i)(y)− y(i)) = 0. (13c)

∀i = 1, . . . ,ny.

Remark 4. In [17], the relations (13) were stated using φ(−y) instead of (φ(y)−y). Both forms are
equivalent due to the identity φ(−y) = φ(y)− y.

Based on properties given in (13), let us define

s1(T,y) := φ
⊤(y)T (φ(y)− y) (14)

s2(M,y) :=

 φ(y)
φ(y)− y

1

⊤

M

 φ(y)
φ(y)− y

1

 (15)

and state the following lemma.
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Lemma 2. For any matrix T ∈ Dny and any matrix M ∈ P(1+2ny)×(1+2ny), the function φ : Rny → Rny ,
defined elementwise in (3), satisfies the following relations:

s1(T,y) = 0, ∀y ∈ Rny , (16a)

s2(M,y)≥ 0, ∀y ∈ Rny . (16b)

Proof. Since the elements of φ are ramp functions we have s1(T,y) = ∑
ny
i=1 T(i,i)φ(i)(y)(φ(i)(y)− y(i))

which, using (13c), gives (16a). On the other hand, since φ(y) verifies elementwise properties (13a)
and (13b), ∀y ∈Rny , provided that all elements of M are nonnegative, it directly follows that s2(M,y)
is a nonnegative scalar.

It should be highlighted that relations (16) apply only to vector valued functions φ that are
elementwise defined as ramp functions. This is a key difference with respect to sector-bounded
relations [36], which applies to a broad class of functions.

3.2. Stability conditions

To evaluate the closed-loop stability of the PWA discrete-time systems under the proposed
event-triggered control strategy, we consider the class of continuous piecewise quadratic (PWQ)
Lyapunov function candidates V : Rn → R≥0 defined as follows

V (x) =
[

x
φ(z(x))

]⊤
P
[

x
φ(z(x))

]
, (17)

with P =
[

P1 P2
P⊤

2 P3

]
, P1 ∈ Sn, P2 ∈ Rn×nz , P3 ∈ Snz .

From the implicit representation (9) and a PWQ Lyapunov function candidate given by (17), we
formulate now a condition to certify the global exponential stability of the origin of the closed-loop
system with the trigger instants defined by (10) with lt(x,δ ) given by (11).

To evaluate the variation of the Lyapunov function in one step, namely V (x+)−V (x), we need to
evaluate φ(y+(x,δ )). Following (9b), we have y+(x,δ ) = F3x++F4φ(y+(x,δ ))+ f5−Fδ δ+, i.e. y+(x,δ )
depends on δ+ = δ (k+1). However, note that no dynamics for δ+ can be explicitly obtained since
its values depends on the triggering instants, which can not be defined beforehand. In this case,
the following lemma, that relates the values of δ and δ+ with the values of x and x+, is proposed
to cope with terms presenting δ+.

For this define

s3(S,δ ,x) := δ
+⊤S(δ+−δ + x− x+). (18)

Lemma 3. Consider δ = δ (k) as defined in (7), and δ+ = δ (k+ 1), then for any matrix S ∈ Rn×n

the identity

s3(S,δ ,x) = 0 (19)

is satisfied along the trajectories of system (9) under the triggering rule (10).
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Proof. Recall from (7) that the state degradation is given by δ (k) = x(k)− x(ni). Considering the
trajectories of system (9) under the triggering rule (10), at instant k+1 we have that either δ+ = 0
or (δ+−δ + x− x+) = 0 as detailed in the two cases below:

a) An event is generated. In this case, it follows that ni+1 = k+ 1 and x(ni+1) = x(k+ 1) = x+.
Then,

δ (k+1) = δ
+ = x(k+1)− x(ni+1) = 0

and the identity (19) is satisfied.

b) No event is generated. In this case, one has that δ (k) = x(k)− x(ni) and δ (k+1) = x(k+1)−
x(ni). Hence, it follows that

δ (k)− x(k) = x(k)− x(ni)− x(k) =−x(ni),

δ (k+1)− x(k+1) = x(k+1)− x(ni)− x(k+1) =−x(ni),

that is δ (k)− x(k) = δ (k+1)− x(k+1), thus yielding δ+−δ + x− x+ = 0, which implies that
identity (19) is also satisfied.

We can now state the following Lyapunov-based Theorem.

Theorem 1. Consider the functions V , lt , s1, s2, s3 as defined in (17), (11), (14), (15), and (18)
respectively. If there exist matrices P ∈ S(n+nz), Qδ ∈ Sn

+, Qx ∈ Sn and Qφ ∈ Snz , T1 ∈ Dny , T2 ∈ Dny ,

T3 ∈D2ny , M1 ∈ P(1+2ny)×(1+2ny), M2 ∈ P(1+2ny)×(1+2ny), M3 ∈ P(1+4ny)×(1+4ny) and S ∈Rn×n and positive
scalars η < 1, ε1 and ε2 such that the following inequalities are verified along the trajectories of (9),
for all x ∈ Rn,

lt(x,δ )≤ 0, for δ = 0 (20a)

V (x)− ε1x⊤x+ s1(T1,y)− s2(M1,y)≥ 0 (20b)

−V (x)+ ε2x⊤x+ s1(T2,y)− s2(M2,y)≥ 0 (20c)

(1−η)V (x)−V (x+)+ s1(T3, ỹ)− s2(M3, ỹ)+ s3(S,δ ,x)+ lt(x,δ )≥ 0 (20d)

with ỹ = [y⊤ y+⊤]⊤, then the origin of the closed-loop system (9) under the ETC strategy given by
(10) is globally exponentially stable.

Proof. From Lemma 2, if (20c) and (20b) are satisfied, it follows that

ε1 ∥x∥2 ≤V (x)≤ ε2 ∥x∥2 . (21)

Furthermore, using Lemma 2 and Lemma 3, we have that (20d) implies

V (x+)− (1−η)V (x)≤ lt(x,δ ). (22)
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along the trajectories of system (9).
The remaining of the proof is carried out considering two cases: k = ni and

k ∈ (ni,ni+1).
If k = ni, it means that an event occurs at the time instant k. In this case, it follows that

x(ni) = x(k) and, consequently, δ = 0. Since from (20a) lt(x,δ ) ≤ 0 for δ = 0, it follows from (22)
that ∆V (x)≤−ηV (x) whenever k = ni.

Considering now k ∈ (ni,ni+1), it means that an event does not occur at the time instant k, which
implies from (10) that lt(x,δ )≤ 0, because otherwise an event would have occurred and the control
state would have been updated, leading to the situation analyzed for k = ni. Then, from (22), this
leads to ∆V (x)≤−ηV (x) whenever k ∈ (ni,ni+1).

From both cases, we can conclude that ∆V (x)≤−ηV (x), ∀k ∈N, provided that (20d) is verified.
This fact along with (21) imply the global exponential stability of the origin

4. Design of the triggering function

The proposition below shows that the conditions of Theorem 1 can be expressed as a set of
LMIs.

Proposition 1. If there exist matrices P =
[

P1 P2
P⊤

2 P3

]
∈ S(n+nz), T0 ∈ Dny , T1 ∈ Dny , T2 ∈ Dny , T3 ∈ Dny ,

T4 ∈Dny , M0 ∈P1+2ny , M1 ∈P1+2ny , M2 ∈P1+2ny , M3 ∈P1+4ny , L0 ∈R(1+2n+2ny)×ny , L1 ∈R(1+2n+2ny)×ny ,
L2 ∈R(1+2n+2ny)×ny , L3 ∈R(1+4n+4ny)×2ny , L4 ∈R(1+4n+4ny)×n, S ∈Rn×n, Qδ ∈ Sn

+, Qx ∈ Sn and Qφ ∈ Snz ,
and positive scalars η < 1, ε1 and ε2 such that

Π0 +He{Π2(T0)+L0G1}−Θ
⊤
1 M0Θ1 ≥ 0, (23a)

Π1(ε1)+He{Π2(T1)+L1G1}−Θ
⊤
1 M1Θ1 ≥ 0 (23b)

−Π1(ε2)+He{Π2(T2)+L2G1}−Θ
⊤
1 M2Θ1 ≥ 0 (23c)

−Π3 +He{Π4 +L3G2 +L4G3 +S }−Θ
⊤
2 M3Θ2 +Qt ≥ 0 (23d)

with

Π0 =


−Qx 0n 0n,ny

0n 0n 0n,ny

0ny,n 0ny,n −Q̃φ

 02n+ny,ny+1

0ny+1,2n+ny 0ny+1

 , Π2(Tj) =

 02n,2(n+ny)+1[
0ny,2n Tj −Tj 0ny,1

]
0ny+1,2(n+ny)+1

 j = 0,1,2,

Π1(εi) =


P1 − εiI 0n P̃2

0n 0n 0n,ny

P̃⊤
2 0ny,n P̃3

 02n+ny,ny+1

0ny+1,2n+ny 0ny+1

 i = 1,2,

P̃2 =
[
P2 0n,nz

]
, P̃3 = diag(P3, 0nz), Q̃φ = diag(Qφ , 0nz),
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G1 =
[
−F3 Fδ −F4 Iny − f5

]
, Θ1 =

02ny+1,2n

 Iny 0ny,ny 0ny,1
Iny −Iny 0ny,1

01,ny 01,ny 1

 ,

Π3=





−(1−η)P1 0n 0n 0n −(1−η)P̃2 0n,ny

0n P1 0n 0n 0n,ny P̃2
0n 0n 0n 0n 0n,ny 0n,ny

0n 0n 0n 0n 0n,ny 0n,ny

−(1−η)P̃⊤
2 0ny,n 0ny,n 0ny,n −(1−η)P̃3 0ny

0ny,n P̃⊤
2 0ny,n 0ny,n 0ny P̃3

 04n+2ny,2ny+1

02ny+1,4n+2ny 02ny+1


,

Π4 =


04n,4(n+ny)+1[

02ny,4n

[
T3 0ny −T3 0ny 0ny,1
0ny T4 0ny −T4 0ny,1

]]
02ny+1,4(n+ny)+1

 ,

G2 =

[
−F3 0ny,n Fδ 0ny,n −F4 0ny Iny 0ny − f5
0ny,n −F3 0ny,n Fδ 0ny −F4 0ny Iny − f5

]
,

G3 =
[
−F1 In F12 0n −F2 0n,ny 0n,ny 0n,ny 0n,1

]
,

S =

 03n,4(n+ny)+1[
S −S −S S 04ny+1

]
04ny+1,4(n+ny)+1

 , Θ2 =

04ny+1,4n


Iny 0ny 0ny 0ny 0ny,1
0ny Iny 0ny 0ny 0ny,1
Iny 0ny −Iny 0ny 0ny,1
0ny Iny 0ny −Iny 0ny,1

01,ny 01,ny 01,ny 01,ny 1


 ,

Qt = diag(Qx,0n,Qδ ,0n,diag(Qφ ,0nz),03ny+1),

then the origin of the closed-loop system (9) under the ETC strategy given by (10) is globally
exponentially stable.

Proof. Define the vectors

ξ1 =
[
x⊤ δ⊤ φ(y)⊤ y⊤ 1

]⊤
and ξ2 =

[
x x+⊤ δ⊤ δ+⊤ φ(y)⊤ φ(y+)⊤ y⊤ y+⊤ 1

]⊤
.

If (23a) holds, it follows that

ξ
⊤
1

(
Π0 +He{Π2(T0)+L0G1}−Θ

⊤
1 M0Θ1

)
ξ1 ≥ 0.
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From the algebraic equation (9b) relating y and x, it follows that G1ξ1 = 0. From Lemma 2 note
that ξ⊤

1 Π2(T0)ξ1 = s1(T0,y) = 0. Since all entries of M0 are non-negative, also from Lemma 2 we
have that ξ⊤

1 Θ⊤
1 M0Θ1ξ1 = s2(M0,y)≥ 0. Hence, since ξ⊤

1 Π0ξ1 =−x⊤Qxx−φ(y)⊤Q̃φ φ(y) =−x⊤Qxx−
φ(z(x))⊤Qφ φ(z(x)) we conclude that condition (20a) from Theorem 1 is verified with lt(x,δ ) defined
in (11).

Following the same reasoning with (23b) and (23c), as ξ⊤
1 Π2(T1)ξ1 = s1(T1,y)= 0, ξ⊤

1 Θ⊤
1 M1Θ1ξ1 =

s2(M1,y)≥ 0, ξ⊤
1 Π2(T2)ξ1 = s1(T2,y) = 0, ξ⊤

1 Θ⊤
1 M2Θ1ξ1 = s2(M1,y)≥ 0 and since ξ⊤

1 Π1(εi)ξ1 =V (x)−
εix⊤x, i = 1,2, we conclude that conditions (20b) and (20c) from Theorem 1 are verified provided
that these two LMIs hold.

If (23d) holds, it follows that

ξ
⊤
2 (−Π3 +He{Π4 +L3G2 +L4G3 +S }−Θ

⊤
2 M3Θ2 +Qt)ξ2 ≥ 0.

From the definition of G2 and G3, we also have that G2ξ2 = 0 and G3ξ2 = 0 on the trajectories of
system (9). Again from Lemma 2, note that ξ⊤

2 Π4ξ2 = s1(T3,y)+ s1(T4,y+) = 0 and since all entries
of M3 are non-negative, it follows that ξ⊤

2 Θ⊤
2 M3Θ2ξ2 = s2(M3,ỹ) ≥ 0. Moreover, from Lemma 3,

ξ⊤
2 S ξ2 = s3(S,δ ,x)= 0 along the trajectories of system (9). Furthermore, note that ξ⊤

2 Qtξ2 = lt(x,δ ).
Hence, as ξ⊤

2 Π3ξ2 =V (x+)− (1−η)V (x), we can conclude that the condition (20d) from Theorem
1 is verified on the trajectories of the system (9), which concludes the proof.

Remark 5. If f̄5 ⪯ 0, the function V (x) has a quadratic upper bound given by V (x)≤ ε2∥x∥2, where
ε2 = (∥P1∥+ 2σ ∥P2∥+σ2 ∥P3∥) with σ = max

∆∈D
nz
{0,1}

∥∥∆(I − F̄4∆)−1F̄3
∥∥(see details in [17]). In this

case, LMI (23c) can be dropped from Proposition 1.

Remark 6. Note that if Assumption 2 is not verified the conditions in Theorem 1 and Proposition
1 will not be feasible. Indeed, at the instants in which an event is generated, we have δ = 0. Then,
at these instants, it follows that (9) becomes (2). Thus condition (20d) implies that ∆V < 0 when
x+ is given by (2), which is not possible if Assumption 2 does not hold.

Thanks to the proposed formulation, the triggering function matrices Qδ , Qx and Qφ can be
considered as design parameters, since they appear affinely in the LMIs (23a) and (23d).

We propose below a convex optimization problem to compute the parameters of the triggering
function lt aiming to reduce the trigger activity following an approach similar to the one used in [34].
With this aim, let us define an auxiliary quadratic triggering function lq(x,δ ) = δ⊤Qδ δ +x⊤Qσ x with
Qδ > 0, Qσ < 0, which is used in the following proposition.

Proposition 2. If there exist matrices Qx ∈ Sn, Qφ ∈ Snz , Qσ ∈ Sn
−, Ta ∈ Dny , Ma ∈ P1+2ny and

La ∈ R(1+2n+2ny)×ny such that

Π5 +He{Π6 +LaG1}−Θ
⊤
1 MaΘ1 ≥ 0, (24)
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with

Π5 =


Qσ −Qx 0n 0n,ny 0n,ny 0n,1

0n 0n 0n,ny 0n,ny 0n,1
0ny,n 0ny,n −Q̃φ 0ny,ny 0ny,1
0ny,n 0ny,n 0ny 0ny 0ny,1
01,n 01,n 01,ny 01,ny 01

 , Π6 =

 02n,2(n+ny)+1[
0ny,2n Ta −Ta 0ny,1

]
0ny+1,2(n+ny)+1

 , Q̃φ = diag(Qφ , 0nz).

Then {(x,δ ) ∈ R2n | lt(x,δ )≤ 0} ⊇ {(x,δ ) ∈ R2n | lq(x,δ )≤ 0}.

Proof. Similarly to (23a), the satisfaction of (24) implies that ∀x,δ ,

x⊤Qxx+φ(z(x))⊤Qφ φ(z(x))≤ x⊤Qσ x. (25)

Thus it follows that, ∀x,δ , lt(x,δ ) = x⊤Qxx+φ⊤Qφ φ +δ⊤Qδ δ ≤ x⊤Qσ x+δ⊤Qδ δ = lq(x,δ ). In con-
clusion, if lq(x,δ )≤ 0 then lt(x,δ )≤ 0 and the set inclusion of the claim holds.

Note that matrices Qx and Qφ are symmetric, but no assumptions on their sign definiteness are
made. Thus, provided (25) holds, Qx and Qφ can be sign-indefinite.

The above lemma implies that if a pair (x,δ ) generates an event with lt it also generates an
event using the quadratic triggering function lq. We can then conclude that the number of events
generated with lt is not larger than the number of events generated by a quadratic triggering
function.

To obtain a triggering function that reduces the number of events we aim at enlarging the set
{(x,δ ) ∈ R2n | lt(x,δ ) ≤ 0}, that is, the set of points (x,δ ) ∈ R2n for which an event does not occur.
Hence, from Proposition 2, this can be indirectly carried out by enlarging the set {(x,δ ) ∈ R2n |
lq(x,δ ) ≤ 0}. Recalling that Qδ > 0 and Qσ < 0, the following optimization problem is therefore
proposed:

minimize trace(Qδ −Qσ )

subject to (23), (24)
(26)

5. Numerical Examples

Example I: Consider the piecewise affine system (2), defined by matrices

F̄1 =

[
0.5 0.85
−1 0.5

]
, F̄2 =

[
0.75 0.75

0 0

]
, B = I2

F̄3 =

[
−1 −1
1 −1

]
, F̄4 =

[
0 −1/3
−1 0

]
, f̄5 =

[
0
0

]
,

K1 =

[
0 α

0 0

]
, K2 =

[
α α

0 0

]
,

with α being a scalar. For α = −0.1, the solution to (26), gives the following parameters for the
triggering function (11)
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Qx =

[
−2.2359 −1.0205
−1.0205 −0.5772

]
, Qφ =

[
−0.0350 0.0636
0.0636 0.0491

]
, Qδ =

[
2.7701 0.3361
0.3361 1.3508

]
and the Lyapunov function (17) with

P =


0.0169 −0.0067 −2.3250 −2.3127
−0.0067 0.0162 −2.3127 2.3163
−2.3250 −2.3127 −4.6369 1.5363
−2.3127 2.3163 1.5363 4.6183

 .

To assess the efficiency of the event-triggered strategy in reducing the control updates we carried
out simulations for k ∈ [0,50] of 100 initial conditions evenly distributed in a unitary circle around
the origin. The average number of events over the simulation interval was navg = 27.83. Note that
with a time-trigger policy we would have 51 control updates. The ETC strategy leads therefore to a
reduction of 45.5% in the number of control updates. Simulation results for x0 = [−0.9989 0.0476],
resulting in 26 events is depicted in Figure 1. Considering the set of event instants given by
N = {n0,n1,n2, . . .}, the bottom plots shows the indicator function I(k,N), i.e the value 1 denotes that
an event has been generated at the instant k.

We recall that the triggering function lt(x,δ ) defined in (11) is piecewise quadratic due the
presence of the term φ(z(x))⊤Qφ φ(z(x)). In fact, this term allows to adapt the triggering criterion
according to the dynamics in each region of the partition. This can be seen as a relevant contribution
of the proposed method. To show this, let us consider now a classical quadratic triggering function
by setting Qφ = 0, which corresponds to consider the same triggering criterion in each one of the
regions of the partition. In this case, the following parameters were obtained when solving (26)1:

Qx = Qσ =

[
−0.4268 −0.2126
−0.2126 −0.1063

]
, Qδ =

[
1.0534 0.0030
0.0030 1.0141

]
.

We then carried out simulations for 100 initial conditions evenly distributed in a unitary circle
around the origin. All initial conditions led to 51 events in this case, meaning that an event
happened at every single time instant and therefore the ETC strategy did not reduce the number of
the control updates. This example illustrates that the term φ(y)⊤Qφ φ(y), introducing the piecewise
quadratic terms in the triggering function, efficiently helps to reduce the number events.

In the literature, the results in [30] for ETC of PWA systems use an explicit representation,
a quadratic Lyapunov function and a relative error triggering function that depends only on the
control signal. However, considering the conditions given in [30], no triggering function leading to
stability was obtained for the same system, which reinforces that the proposed conditions are less
conservative.

Example II: Consider the following discrete-time linear system

x+ = Apx+Bpu,

1In this case we can set Qx = Qσ < 0 and drop constraints (23a) and (24)
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Figure 1: Simulation with x0 = [−0.9989 0.0476]: 26 events occurred.

with

Ap =

[
0.7326 −0.0861
0.1722 0.9909

]
and Bp =

[
0.0609
0.0064

]
.

We consider that the control input u is generated by an explicit MPC law computed as in [5], leading
to an explicit PWA representation of the closed-loop system (see Appendix A for the description
of the control law). From this explicit representation reported in that paper, we built the following
compact implicit representation of the closed-loop system (2) with

F̄1 = Ap, F̄2 = 02,4, B = Bp,

F̄3 =


K̃2 − K̃1
K̃1 − K̃2
−K̃1
K̃1

 , F̄4 =


0 0 0 0
1 0 0 0
−1 1 0 0
1 −1 1 0

 , f̄5 =


−0.6423
−0.6423

−2
−2

 ,

K1 = K̃1, K2 =
[
1 −1 1 −1

]
,

with K̃1 =
[
−5.9220 −6.8883

]
and K̃2 =

[
−6.4159 −4.6953

]
.

Solving (26), we obtain the following parameters for the triggering function (11)

Qx =

[
−1.8916 −1.1546
−1.1546 −1.1703

]
, Qδ =

[
16.4579 18.0110
18.0110 21.9858

]
,

Qφ =


0.0705 −0.0135 −0.0054 0.0031
−0.0135 0.0680 −0.0337 −0.0053
−0.0054 −0.0337 0.0432 −0.0024
0.0031 −0.0053 −0.0024 0.0436
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and the PWQ Lyapunov function (17) with

P =


235.7184 162.9185 −13.4113 17.7559 −13.7545 −7.3717
162.9185 322.5319 −34.2679 16.8953 −16.4932 −4.1465
−13.4113 −34.2679 3.2818 −0.5158 2.4523 0.3444
17.7559 16.8953 −0.5158 −10.4631 −3.7240 0.5601
−13.7545 −16.4932 2.4523 −3.7240 2.8074 0.7273
−7.3717 −4.1465 0.3444 0.5601 0.7273 −4.0712

 .

The efficiency of the event-triggered strategy was assessed by simulating 1000 initial condi-
tions generated with uniformly distributed random initial conditions for x1 and x2 in the interval
[−1.5 1.5], for k ∈ [0 25]. The average number of events was navg = 13.50 thus reducing the
number of control updates to almost a half when compared to the number of updates of a time-
triggered policy. Figure 4 presents the trajectories for the initial conditions x0 = [−1.1804 0.4036]
and x0 = [0.7791 − 0.7600]. The simulation results of the of the states and the trigger instants
are shown in Figures 2 and 3 where the bottom plot shows the indicator function of the triggering
instants. A substantial reduction in the number of control updates can be observed, showing the ef-
fectiveness of the proposed ETC strategy. Figure 4 shows the trajectories for both initial conditions
along with the state space partition corresponding to the piecewise affine control law.

Figure 2: Simulation with x0 = [−1.1804 0.4036] : total of 14 events.

6. Conclusions

In this paper an emulation-based design of an ETC strategy for PWA systems was proposed.
The adopted approach relies on an implicit representation of the PWA system, which is based on
vector valued ramp functions. We proposed the use of a piecewise quadratic triggering function that
takes into account the partition information through terms depending also on vector valued ramp
functions. In this context, considering a piecewise quadratic Lyapunov candidate functions and
properties of the ramp function, we derived conditions to ensure the global exponential stability of
the origin under the ETC strategy. These conditions are cast as LMIs and an optimization problem
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Figure 3: Simulation with x0 = [0.7791 −0.7600]: total of 14 events.
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Figure 4: Trajectories from initial conditions x0 = [−1.1804 0.4036] (cyan), and x0 = [0.7791 −0.7600] (magenta)

was formulated to compute the triggering function parameters aiming at stability and reduction of
control updates.

Since the transitions are implicitly defined and do not have to be enumerated, the implicit
representation makes possible the stability assessment without a preliminary reachability analysis
to define the possible transitions between sets in the partition. Moreover, the numerical examples
show that it is possible to effectively reduce the number of events using the proposed strategy. The
numerical results also illustrate that the proposed PWQ triggering function yields better results
than a standard quadratic triggering function.

Appendix A. Control law of Example 2

The explicit MPC law computed in [5] leads to a piecwise affine state feedback, corresponding
to seven partitions of the state space, as described in Table A.1.
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Table A.1: Explicit MPC law: regions of the partition and associated piecewise linear control laws

Region Description u(k)

1.


−5.9220 −6.8883
5.9229 6.8883
−1.5379 6.8296
1.5379 −6.8296

x ≤


2
2
2
2

 [
−5.9220 −6.8883

]
x

2.

−6.4159 −4.6953
−0.0275 0.1220
6.4159 4.6953

x ≤

 1.3577
−0.0357
2.6423

 [
−6.4159 −4.6953

]
x

+0.6423

3.

 6.4159 4.6953
0.0275 −0.1220
−6.4159 −4.6953

x ≤

 1.3577
−0.0357
2.6423

 [
−6.4159 −4.6953

]
x

−0.6423

4.

−3.4155 4.6452
0.1044 0.1215
0.1259 0.0922

x ≤

 2.6341
−0.0353
−0.0267

 2

5.

[
0.0679 −0.0924
0.1259 0.0922

]
x ≤

[
−0.0524
−0.0519

]
2

6.

[
−0.0679 0.0924
−0.1259 −0.0922

]
x ≤

[
−0.0524
−0.0519

]
−2

7.

 3.4155 −4.6452
−0.1044 −0.1215
−0.1259 −0.0922

x ≤

 2.6341
−0.0353
−0.0267

 −2
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