
HAL Id: hal-03945998
https://hal.science/hal-03945998v1

Preprint submitted on 18 Jan 2023 (v1), last revised 20 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Classical charged particle models derived from complex
shift methods

Mark Davidson

To cite this version:
Mark Davidson. Classical charged particle models derived from complex shift methods. 2023. �hal-
03945998v1�

https://hal.science/hal-03945998v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Classical charged particle models derived from

complex shift methods

Mark Davidson

January 18, 2023

Preprint

1

Abstract

Extended charged objects embedded in complex space-time are pro-

posed using the double-copy or complex shift method. Most of the objects

studied are 3D bosonic strings in di�erent shapes. The most detailed case

studied is a static charged open bosonic string. It is found that this can

be interpreted purely electromagnetically. It exhibits the same relation

between charge, mass, angular momentum, and magnetic moment as the

Dirac equation and the Kerr-Newman metric. The spin of the particle

is purely electromagnetic, as is the mass. A gyromagnetic ratio of 2 is

obtained. The �elds in this case are multi-valued, and the singular part

of the �elds can be arranged to be on an unphysical Riemann sheet with

judicious selection of Riemann cut surfaces. The calculations of mass

and angular momentum are done numerically using multi-precision algo-

rithms. The mass calculation agrees with the measured electron mass to

an accuracy of about 3 electron volts.

Particles for knotted or linked strings in 3 space dimensions are also

proposed, and these inherit the topological invariants of the knot or link

they are based on. A liquid drop model with complex shift is also dis-

cussed.

The multi-valued behavior of the solutions, related to that of the Kerr-

Newman metric, can be thought of as the origin of the Einstein-Rosen

bridge, and the conjectures that this is the origin of quantum entangle-

ment, ER=EPR, is therefore supported in this theory. So we have here a

classical theory which has some properties of quantum mechanics. Hope-

fully it can o�er a new phenomenological application of string theory as

a semiclassical model for elementary particles, nuclei, and solitons in con-

densed matter, �uids, and gases.
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2 1 INTRODUCTION
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1 Introduction

Constructing purely electromagnetic particles is an ongoing e�ort in physics.
Electrons and other fundamental charged particles tend to have both spin and
magnetic dipole moments. Here we consider only classical models which have
both of these. Point charges, of course, have divergent electrostatic energy.
Line charges also have in�nite energy, but the divergence is weaker than for
the point charge. It is known that if classical electromagnetism is analytically
continued into complex space-time then the point charge is still divergent [1, 2,
3]. This technique is sometimes called the complex-shift or double-copy method
and it yields many exact solutions to general relativity that have a Kerr-Schild
form of metric [4, 5, 6]. The idea of this paper is to apply the complex shift
method to charged strings and other extended structures in complex space-time.
Open and closed strings are considered, as is a liquid drop model. We study
only static solutions. Most of these are multi-valued and they can have �nite
electromagnetic energy on at least one Riemann sheet. Although the �elds can
be �nite, they have branch point singularities making them multi-valued.

There are several modi�cations to electromagnetism that allow for �nite
electromagnetic energy, the Born-Infeld theory [7] which is nonlinear, and the
Bopp-Podolsky theory [8, 9] which adds higher-order derivative couplings to the
�eld equations. Both of these theories modify the Maxwell equations and are
interesting, but they are not considered in this paper.

Classical charged particle models have historically been constructed for 2D
surfaces, like charged spherical shells, or for 3D blobs of charge [10, 11, 12, 13, 14,
15]. The complex-shifted extended-charge models considered here tend to have
magnetic moments as well as electric charge and hidden angular momentum, and
in the limit that the Kerr-Newman solution is obtained, they have a g factor
of 2, the same as an ideal Dirac electron [16]. They can also have anomalous
magnetic moments. Thus it seems they may be a better classical model of the
electron and other particles than the spherical shell models or other classical
extended charge models.

In general, the solutions we consider can have �nite total electromagnetic
energy as well as �nite electromagnetic angular momentum calculated from the
Poynting vector. Since the underlying theory is relativistically covariant, the
usual �4/3 problem� can be understood and tolerated if the boost to moving
frames is done properly [14, 15, 17, 13]. The stability of these particles is still
an issue and may require some form of binding tension or negative pressure
to oppose the electromagnetic repulsion. As they have electromagnetic charge,
mass, angular momentum, and magnetic moment, there is the opportunity to
search for an explanation for the �ne structure constant which is proportional
to the charge squared divided by the angular momentum of an electron in this
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framework, but the present author has not found an explanation yet.

It is expected by most physicists that the electric quadrupole moment of an
electron must be zero. This is because the Dirac equation does not allow the
construction of a symmetric rank 2 or higher tensor using the Dirac matrices
alone. There is a lingering possibility that the �dressed� electron might nev-
ertheless have some perhaps state-dependent electric quadrupole that must be
phenomenologically added to the wave equation due to its interactions. The
Kerr-Newman particle has a large electric quadrupole [18]. In several of the
simple string models studied below, it is found that the electric quadrupole
moment can be zero while the magnetic dipole is non-zero.

We also consider several models which are not strings. One is a complex-shift
version of the interesting and complete particle model in [13] which includes an
elegant stability mechanism caused by a negative pressure force. We �nd for
this that we can have a �nite mass, angular momentum, and dipole moment,
but that the electric quadrupole moment cannot be zero if there is a dipole
moment. This could perhaps be a model for nuclei, but not for Dirac Fermions
with no quadrupole. We also consider a simple spherical shell model in which all
unwanted multipole moments are exactly zero. This model does not involve a
complex shift, and the �elds are single-valued, but its stability is problematical
because the forces on the shell are not in the radial direction.

In this paper, natural units for particle and atomic physics shall be employed
so that c = 1, ϵ0 = 1, µ0 = 1, ℏ = 1, ke = 1/4π, electron mass =1, and
e =

√
4πα. We deal with the microscopic �elds E and B here exclusively.

2 A discussion of some complex manifold meth-

ods in physics

Complex manifold techniques in general relativity have a long history. The
majority of these works utilize a Hermitian metric. Einstein himself was one
of the �rst [19, 20, 21]. Many others have followed this path [22, 23, 24, 25,
26, 27, 28, 29, 30]. A second method for dealing with complex space-time
utilizes analytic continuation of �elds from the real axes to complex coordinate
axes. This technique was pioneered in general relativity too [31, 32, 3], but
it has been applied to other �elds as well. The idea that elementary particles
might be related to the Kerr-Newman metric solution and string theory has
been championed by Burinskii [16, 33]. Newman has also speculated about this
[6]. Complex space methods have been proposed and applied in Bohmian and
stochastic mechanics [34]. The wormholes of general relativity are related to
complex space-time by the Kerr-Schild metric construction. The wormhole's
origin is the Riemann cut in the Maxwell potentials in complex space-time.
These have been proposed as sources of quantum entanglement �ER=EPR�
[35].

It has been proposed that complex space-time can account for quantum
non-locality [29], a concept championed early on by the radical physicists of
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the Fundamental Fysiks Group [36, 37]. It has also recently been proposed that
complex space-time can provide a novel explanation for observed galaxy rotation
without dark matter [38, 39].

Stability is another issue that needs to be addressed in these models. The
Kerr-Newman solution is stable obviously because of general relativity and grav-
ity. The string shapes we consider, which can be knotted and linked as well as
open, may not be stable unless some tension is added along the string. We
partially address this in a later section. Most of the cases we consider here are
examples of what Wheeler called �Charge without charge� [40]. They deserve
this moniker because the charge is located at coordinates that have non-zero
imaginary parts so that there will be no charge on the real subspace. Devel-
oping an equation of motion for these objects in the presence of an external
electromagnetic �eld is a non-trivial task.

3 Riemann-Silberstein Vector

It is convenient to work with the Riemann-Silberstein vector given by

F(x)) = E(x) + iB(x) (1)

If the �elds are time-dependent, the Maxwell equations in the absence of charges
on the real subspace become simply [41]

i
∂F

∂t
= ∇× F (2)

In the static case, we �nd ∇ × F = 0 and consequently we can write F as a
gradient. In most of the models we consider here, there is no charge on the real
subspace, and it follows that at all real points x where the gradient exists we
have

∇ · F(x) = 0 (3)

and consequently

∇ ·E(x) = ∇ ·B(x) = 0 (4)

The electromagnetic energy density is given by

E = |F|
2

/2 =
(
E2 +B2

)
/2 (5)

the momentum density we assume is equal to the Poynting vector given by

P = (F∗ × F) /2i = E×B (6)

and the angular momentum of the electromagnetic �elds by the integral

J =

�
r×PdV ol (7)
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4 A static line charge in complex space

A straight-line charge is a good starting point. In the complex-shift method, the
arena for physics is complex Minkowski space or C4. Electromagnetism in com-
plex coordinates can be described by two equivalent methods. The �rst utilizes
the Riemann-Silberstein (RS) complex vector [41], and the second utilizes a 4D
complex Faraday tensor and is manifestly covariant. For simplicity, we start
with the RS approach. We introduce a complex potential function ψ = ϕ + iχ
where ϕ is the electrostatic potential and χ the magnetostatic potential in a
vacuum away from charges. We consider a static line charge oriented along the
z-axis. We also choose the imaginary shift to be a constant in the z-direction.
We write

ψL(x) =
1

4π

� L/2

−L/2

ρ(s)√
(x− sẑ− iaẑ)

2
ds (8)

where L is the length of the line charge, ϱ(s) the charge per unit length, and
iaẑ is an imaginary vector representing how far o� the real axis the charge is
shifted, and in which direction, so that a has units of length. So long as ρ(s) is
real, there will be no apparent magnetic monopole charge far from this source.
The observation or �eld point x is real-valued. The Riemann-Silberstein vector
is given by

F(x) = −∇ψL(x) (9)

If we take the limit of a → 0 we get the ordinary line charge which has diver-
gent electrostatic energy. We shall search for systems for which the total energy
and angular momentum are �nite. The magnitude of the angular momentum
will be proportional to the electric charge squared. The proportionality factor
can be compared to the �ne structure constant, and we dare to hope that some
special class of these systems will give an explanation for its value. This model
has two parameters, L and a, with dimension length. Dimensional considera-
tions require that the total angular momentum be a function of the ratio L/a
and not of L and a independently.

4.1 The Kerr-Newman limit

In the limit L →0 we get the familiar point particle with complex shift which
yields the Kerr-Newman solution in general relativity [1, 6, 2, 3]. The complex
potential in this case is simply given by

ψ0(x) =
q

4π

√
(x− iaẑ)

2
(10)

For the Kerr-Newman metric, the angular momentum JKN and the mass mKN

are determined by solving the Einstein �eld equations and examining the metric
behavior far from the source. It is found that a = JKN/mKNc. For an electron
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a = ℏ/(2mec) = λe/(4π) where λe is the Compton wavelength of the electron.
In our unit system, a = 1/2. This well-studied potential function has a ring
singularity perpendicular to the z-axis with a radius a centered at z = 0. Because
of the square root, it is a two-sheeted function. The cut can be chosen to be
across the face of the ring singularity, and so long as we don't pass through this
ring in analytic continuation, the function remains single-valued. This choice of
cut surface is not unique, and any deformation of it which is bounded by the ring
is also a possible cut surface. If we pass through the cut though, the function
exhibits its double-valued nature and we enter another Riemann sheet. This
multi-valued behavior is the origin of the wormhole in general relativity which
is popular in science �ction as a stargate. It is also the origin of the Einstein-
Rosen bridge [42], and it has been proposed that this multi-connectedness of
space-time is the origin of quantum entanglement [35]. The integral of the
electrostatic energy for the potential function in (10) is in�nite, but when the
metric tensor is calculated, the resulting mass of the solution as measured in the
far �eld multipole expansion is �nite. It has also been proposed that elementary
particles might be small Kerr-Newman solutions modi�ed by interaction with
quantum �elds [43, 44, 45]. The possibility that quantum mechanics itself might
be derivable in the context of complex space-time and classical �eld theory has
been explored [46, 47], and this paper is an extension of that exploration.

4.2 What about the mean value theorem and the maxi-
mum principle for harmonic functions?

The Kerr-Newman metric and the solutions that we consider here are derived
from complex potential functions that satisfy Laplace's equation, that are multi-
valued, and that have branch-cut singularities near to the center of the particle.
In order to use the mean value theorem in this case one must choose a bound-
ary for the domain of the theorem which does not include any branch point.
Therefore, the boundary can never enclose the entire particle or soliton, and so
the various �elds can fall o� at large distance on the physical Riemann sheet
without violating the maximum principle. This is clearly true for the Kerr-
Newman case, and it is also true for the cases we consider here as well. A
non-constant single-valued static potential satisfying Laplace's equation every-
where must have in�nite energy because of the maximum principle. But, when
the potential is multi-valued, �nite energy is possible. So multi-valuedness is
critical to most of the solutions we obtain here. This complicates the identi�ca-
tion of the physical domain for volume integration over �eld-derived quantities
like energy, momentum, and angular momentum.

4.3 Evaluation of the complex potential function

Let us consider the simplest case of constant ϱ(s) in (8). The inde�nite integral
is of the form (up to a constant multiplier of q/4πL):
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I(s) =

�
ds√

α+ βs+ γs2
(11)

This integral can be done analytically. The result is a multi-valued function
whose Riemann-cut surfaces are quite complicated. A better way to proceed is
to complete the square of the quadratic under the square root �rst:

α+ βs+ γs2 = γ ∗ (s+ β/(2 ∗ γ))2 +
(
α− β2/(4 ∗ γ)

)
(12)

If we change integration variables to u(s) = s+ β/(2 ∗ γ) then du = ds and the
integral becomes a contour integral in the complex u plane

I(s) =
1
√
γ

�
κ

du√
u2 +

(
α−β2/(4∗γ)

γ

) (13)

where κ is a smooth curve joining the two endpoints u(−L/2) and u(L/2).
De�ne

D =

(
α− β2/(4 ∗ γ)

γ

)
(14)

The parameters {α, β, γ} are determined by α + βs + γs2 = (x− sẑ− iaẑ)
2
,

and so

(x− sẑ− iaẑ)
2
= r2⊥ + (z − s− ia)2, r2⊥ = x2 + y2

α+ βs+ γs2 = r2⊥ + z2 − a2 − i2za− 2zs+ i2as+ s2
(15)

α = r2⊥ + z2 − a2 − i2za
β = −2z + i2a

γ = 1
(16)

α = r2⊥ +
1

4
β2 (17)

From this formula, we see that

D = r2⊥ (18)

u(s) = (s+ β/2) = (s− z + ia) (19)

This integral I(s) becomes

I(s) =
1
√
γ
asinh(u(s)/

√
D) = ±asinh(u(s)/r⊥) (20)

for all values of the �eld position vector x. Note the ambiguity in the sign that
comes from the

√
γ term.

The inverse hyperbolic sine function asinh(ω) has branch points in the com-
plex ω plane at ω = ±i. It is customary to draw the two Riemann cuts along
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the segments from +i to +i∞ and from −i to −i∞. Therefore, I(s) has branch
points whenever by u(s) = ±ir⊥. If a > 0 then the +i branch point maps into
a ring in space de�ned by z = s and r⊥ = a. The Riemann cut from this point
maps into the disk in space bounded by this ring. Let Asinh denote the stan-
dard principal value function for asinh. It is discontinuous across this planar
cut, and Asinh(u(s)/r⊥)will be discontinuous across the cut disk. The Riemann
cut curve is not at all unique, but for any other choice the cut surface would
be curved and with larger area than the minimum planar cut across the disk.
Choosing a di�erent cut surface could change the mass and angular momentum
calculation. The complex potential function is then given by

ψL(x) =
1

4π

q

L
S(x) (asinh(u(L/2)/r⊥)− asinh(u(−L/2)/r⊥)) (21)

S is a sign function that has values ±1. The sign function is determined by the
physical constraint that at large radius the potential must approach a monopole
electric charge. It turns out that this requires a for large r⊥ that we must choose
the principal value form

ψL(x) = − 1

4π

q

L
(Asinh(u(L/2)/r⊥)−Asinh(u(−L/2)/r⊥)) , r⊥ > a or |z| > L/2

(22)
If we use this formula for all values of r⊥ and z, which is equivalent to choosing
the cut planes across the two singular rings at z = ±L/2, then the electrostatic
energy is divergent at the z axis for −L/2 < z < L/2, and as r⊥ → 0. The
resulting electrostatic energy is in�nite, and so is the angular momentum. We
have learned that to avoid these divergence one can choose the cut surface dif-
ferently, as shown in Figure 1 on page 9. This deformation of the Riemann cuts
does not a�ect at all the �elds at large values of r, but it greatly a�ects the near
�eld and makes the total electromagnetic energy and angular momentum �nite
and calculable. We choose the cylindrical shape to facilitate the integration,
but we discuss the non-uniqueness of the cut surface further on in this paper.

It is useful to calculate the value of ψ
L
on the positive z axis. We �nd

ψL(zẑ) = − q

4πL
ln

(
L/2− z + ia

−L/2− z + ia

)
, z > L/2 (23)

The large z expansion of (23) is

ψL(zẑ) =
q

4πz
+

iaq

4πz2
+

(L2/12− a2)q

4πz3
+O(1/r4) (24)

From this expression we can calculate the full multiple expansion of the �elds.

4.4 Multipole expansion for complex line charge

The complex potential function satis�es Laplace's equation, and so it can be
expanded in a spherical harmonic series in analytic domains. Using azimuthal
symmetry, we have the following complex multipole expansion for large r:
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Figure 1:
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ψL(x) =

∞∑
l=0

Bl

rl+1
Pl(cos(θ)) (25)

Along the positive z axis, θ = 0, and Pl(cos(θ)) = 1, where Pl is the Legendre
polynomial, and where θ is the usual polar angle in spherical coordinates. The
Bl are the multipole moments, real values are electric moments and imaginary
values are magnetic moments. If the potential has azimuthal symmetry as it does
for the line charge, then the harmonic expansion coe�cients BL are determined
by the values on the positive z axis. The asymptotic power series for large r for
the complex line charge is found from (24) to be:

ψL(x) =
q

4πr
+
iaqP1(cos(θ))

4πr2
+

(L2/12− a2)qP2(cos(θ))

4πr3
+O(1/r4) (26)

All of the even Legendre-order terms in this series are real and therefore electric,
and all the odd terms are imaginary and magnetic, and in the limit a → 0 all
the odd terms vanish.

The �rst term is the usual Coulomb term. The next term is a magnetic
dipole term and it is exactly the same as in the Kerr-Newman solution. The
third term is an electric quadrupole term. It can be seen that in the limit
L → 0 it approaches the Kerr-Newman result. But, the interesting fact is that
if L =

√
12a then the electric quadrupole moment vanishes. This would be good

for modeling a real electron because it is strongly believed that the electron has
zero electric quadrupole moment, but unfortunately this value gives the wrong
number for the spin and mass of the electron calculated numerically. The higher-
order multipole terms are not zero with this value of L either. We �nd in the
limit L → 0, the usual result for the usual Kerr-Newman electromagnetic �eld
[1] which has a non-zero electric quadrupole is obtained

ψ0(x) =
1

4π

q

r

∞∑
n=0

(
ia

r

)n

Pn(cos (θ)) (27)

4.5 Electromagnetic �elds for complex line charge

We can now derive the electromagnetic �elds starting with the Riemann-Silberstein
vector. We use the principal value function outside the cylinder region de�ned
by the inequalities r⊥ > a or |z| > L/2

F(x) = −∇ψL(x) = ∇ 1

4π

q

L
(Asinh(u(L/2)/r⊥)−Asinh(u(−L/2)/r⊥)) (28)

Inside the cylindrical region we use analytic continuation utilizing the cut sur-
faces in Figure 1 on page 9. The r⊥ → 0 singularity from the left term now
cancel the singularity of the right term for all z ̸= 0. The way this works is that
as we continue into the interior half of the cylinder through the left ring, the
left term changes sign, but the right term does not. This results in cancellation
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of their singularities. The right half cylinder is just the mirror image of this,
and cancellation occurs there too.
Now we use the chain rule in cylindrical coordinates (r⊥, z, ϕ). We can start
with the principal value function outside the cylinder and continue inside after
di�erentiating.

∇Asinh(u/r⊥) =
1√

(u/r⊥)2 + 1
∇
(
u

r⊥

)
=

1√
(u/r⊥)2 + 1

(
∇u
r⊥

− ur̂⊥
r⊥2

)
(29)

Using u(s) = (s− z+ ia) we have ∇u(s) = −ẑ and the �eld expression becomes
(for points x outside the cylindrical region)

F(x) =
1

4π

q

L

[
−ẑ − u(L/2)r̂⊥/r⊥√

u(L/2)2 + r2⊥
− −ẑ − u(−L/2)r̂⊥/r⊥√

u(−L/2)2 + r2⊥

]
(30)

The real part of F(x) gives the electric �eld, and the imaginary part gives the
magnetic �eld. It is convenient to de�ne F+(x) and F−(x) by

F±(x) = ± 1

4π

q

L

[
−ẑ − u(±L/2}r̂⊥/r⊥√

u(±L/2)2 + r2⊥

]
(31)

F = F+ + F− (32)

Assume that a is positive without loss of generality. For z = ±L/2, and r⊥ < a
we �nd that F± is discontinuous across the disk of radius a centered on the z
axis if we analytically continue from one side of the disk to the other without
going through it by continuing around its rim and back again to the other side.
We can determine the �elds in the vicinity of the charged string by analytic
continuation. This reveals two singularity rings of radius |a| centered on the
z-axis at the points z = ±L/2.

The square root function of a complex variable
√
ω has a branch point at

ω = 0. It is customary to draw the Riemann cut from along the negative real
axis {ω ∈ R, ω < 0}. The convention for de�ning the principal value P

√
ω of

√
ω

is that whenever the real part of ω is positive, then the real part of P
√
ω is

also positive. The discontinuity across the Riemann cut is then 2i P
√
|ω| since

the square root must change sign when crossing the cut to land on the other
Riemann sheet. In order to obtain �nite values for the electromagnetic mass,
it is necessary to deform the cut as shown in Figure 1 on page 9. After doing
this deformation, if we approach the z axis anywhere along it, the limit of the
potential is �nite so long as we haven't crossed any part of the cut surface.

4.6 Four Riemann sheets

In (31) we see that F has four Riemann sheets since F+ and F− each have
two. Now consider that the physical Riemann sheet at spatial in�nity might
be any one of these four. Two of them have �eld lines that describe particles
of opposite charge. These could be interpreted as particles and antiparticles.
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Figure 2: Angular momentum plot for total charge e as a function of the
dimensionless ratio a/L in units of ℏ

The existence of antiparticles is normally considered a prediction of relativistic
quantum mechanics. On the other two sheets the �elds give in�nite energy.

4.7 Calculation of (hidden) angular momentum and elec-
tromagnetic energy of complex line charge

We now calculate the electromagnetic angular momentum of the �elds about
this charged string using (7).
This integral must be a function of a/L based solely on dimensional grounds. A
plot of spin J vs L/a is shown in Figure 2 on page 12. The graph is surprisingly
linear considering the complexity of the integral for electromagnetic angular
momentum.

We �nd the following linear curve �t to the data in 2

J(a/L) = A+B(a/L) (33)

A = 6.19898209211405E − 06 (34)

B = 1.14625857799856E − 02 (35)

This is equivalent to the following extremely simple formula with an accuracy
of about 6 decimal places:

J(a/L) =
απ

2

a

L
=
e2

8

a

L
(36)

since in our units e2 = 4πα.
The L=0 limit gives the �elds of the Kerr-Newman metric. Since the angular

momentum and the mass of that solution is �nite in general relativity, it means
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that the e�ects of gravity prevent a divergence of the present string solution as
L tends to zero. The electric quadrupole moment is still non-zero, and in fact
quite large for the Kerr-Newman case [18].

The electron's spin is |J| = 1/2 in our units. We note that the magnetic
dipole moment does not depend on L as can be seen from (26). The volume
integral of the angular momentum was calculated using the multi-precision ca-
pabilities of python. It was found that the �double-exponential� or �tanh-sinh�
quadrature [48, 49] was critical in obtaining good convergence. This algorithm
performs extremely well on integrands which are singular at the boundary of
the integration domain. In the present instance, the singularities occur at
r⊥ = 0 or |a| and z = ±L/2. One must break up the integration domains
into sub-domains which have these singular points on the boundaries only. The
precision value for L/a that was found to give the correct electron spin is:

L/a = 0.0229252943718582 → |J| = 1/2 (37)

In order to have zero electric quadrupole moment, we would need to have
L/a =

√
12 which makes the spin angular momentum much too small to describe

an electron or any other particle.
The electromagnetic mass density is given by (5). This value will depend on

both the a and L parameters in our linear string model.

M =
1

2

�

V

(
E2 +B2

)
dV ol (38)

A numerical calculation of this value for the L/a which gave the correct value of
ℏ/2 for the angular momentum (37) gives a correct mass of the electron to within
three electron volts accuracy for the case a = 1/2. This value of a corresponds
to a magnetic moment which is the same as a Dirac electron, i.e.. a = Je/me

since in our units Je = 1/2 and me = 1. The multiple precision calculated values
are

J = 0.499999999999925 (39)

M = 1.00000560244502 (40)

ME =
1

2

�

V

E2 dV ol = 0.502866789227049 (41)

MB =
1

2

�

V

B2 dV ol = 0.497138813217967 (42)

This is a stunning result. Let's focus on what it means. The Dirac equation
relates the mass, the spin magnitude, and the magnetic dipole moment, and it
is in the framework of quantum mechanics. If you know any two of these param-
eters, then you also know the third. The Kerr-Newman metric solution gives
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Figure 3: Total electromagnetic energy plot for a=1/2

exactly the same relation between mass, spin, and magnetic dipole moment,
but it doesn't require quantum mechanics, but it does require classical general
relativity together with Maxwell electrodynamics. Our charged string model
gives exactly the same relation as these other two methods, but it does not re-
quire quantum mechanics or general relativity to obtain this relation, but rather
only requires Maxwell electrodynamics with complex space-time. Moreover, our
model gives a speci�c description of both spin and mass as being entirely due
to electromagnetic �elds. Why? What is going on here? A graph of calculated
energies vs. J for �xed a = 1/2 is shown in Figure 3 on page 14

Once again we have an extremely linear �t to the equation (in our units)

Mass = 2 ∗ J (43)

Next we consider the electromagnetic Lagrangian which is the volume inte-
gral of the Lagrangian density E2 −B2. For this graph the value of a was held
�xed and L was varied. This shows slight nonlinearity as can be seen in Figure
4 on page 15

Note the scale on the vertical axis. The result is basically quite constant.
Running a curve �tting algorithm reveals the following functional relationship

� (
E2 −B2

)
dvol = A1 +B1 ∗ J + C1/J

2 (44)

A1 = 1.14561398893862E−02; B1 = 2.25114280433020E−10; C1 = −4.70298259004495E−08
(45)

This can be approximated by the simple constant result
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Figure 4: Volume integral of E2 −B2

� (
E2 −B2

)
dvol ≈ π

2
α (46)

The extreme simplicity of these results has caused this author to worry if
perhaps the numerical integrations were somehow giving wrong results, but
persistent checking has not revealed an error.

4.8 Anomalous Magnetic moment correction

The anomalous magnetic moment of the electron is currently reported to have
the experimental value[50]

ae =
g − 2

2
= 0.001159652181643 (47)

In order to incorporate this into our model, we must increase the complex
o�set a from 1/2 to (1 + ae) /2. We must simultaneously increase L by this same
factor in order to maintain the ratio L/a in order that J doesn't change. Di-
mensional analysis mandates in this situation that the electrostatic mass varies
in proportion to 1/a, and since a is increased by this anomalous factor, the mass
will be decreased by it

Manomalous =
M

1 + ae
= 0.9988455432311113 (48)

or

Manomalous −me = −589.9261967225187 eV (49)
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And so the agreement is worse than without the anomalous g factor correction
where the electrostatic mass was only about 3 eV larger than the true electron
mass. This has a positive implication though. the mass de�cit introduced by
the anomalous g factor can be made up by a non-electromagnetic term in the
particle's Lagrangian, such as the string term to improve stability of the model.

4.9 Straightforward application for the muon and tau lep-
tons

It is trivial to apply this model to the muon and tau leptons. All we have to do
is adjust the value of a for the mass of the lepton

amuon =
me

mµ
ae; and atau =

me

mτ
ae (50)

where ae = 1/2 in our units, and mµ is the mass of the muon, and mτ the
mass of the tau. This would automatically give the Dirac relations between
mass, angular momentum, and magnetic moment. Their anomalous magnetic
moments would then allow for a non-electromagnetic term in the Lagrangian to
help to stabilize the particle, as for the electron.

4.10 Stability of string models

For the detailed calculations of the line charge, we found that the electromag-
netic Lagrangian was approximately constant if a was held �xed (46), and this
suggests that in this purely electromagnetic model, there is no tendency for the
string to stretch in this case, but this is not a sti� equilibrium point. If the
length L were to change, there would be no restoring force to bring it back from
a change. This reminds us of geons [51], but gravity is not playing a role in
stability here.

To stabilize the string models, we might choose to add an internal tension
force to the Lagrangian borrowed from string theory. As a candidate for complex
space-time embedding, the most logical choice is the Polyakov action [52, 30, 23].
It might also be of interest in the future to consider the much less well known
Stueckelberg-Horwitz-Piron (SHP) action [53] since this theory generally has
fewer problems with relativistic covariance than more conventional approaches
[54]. We only consider Bosonic strings here, but we keep in mind that fermionic
properties, such as the g factor of 2, can arise from the complex shift technique
as in the Kerr-Newman electron results. There is no requirement (yet) for 26
space-time dimensions in this theory, as there is in standard bosonic string
theory because we are not quantizing the strings, and in fact it is the author's
hope that more features usually attributed to quantum mechanics may emerge
from this classical theory.
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4.11 An action principle

The complex form of the Polyakov action for a string was treated in [30, 23].
The Hermitian metric approach in these theories can be applied to a purely
bosonic as in the case here. For the electromagnetic �eld, we could choose
to work either with the Riemann-Silberstein vector or the manifestly covariant
Faraday tensor. Presumably, they are equivalent. The action for the combined
system is the sum of the string action plus the �eld action plus an interaction
term. The interaction term between the electromagnetic �eld and the charged
string is the tricky part here because the coordinates of the string are complex.
Since there is no actual charge on the real subspace for the string models, we
plausibly can write for the real-valued action [23]

I =

�
dσdσgµν∂σX(σ, σ)∂σX(σ, σ)−

�
d4x

1

4
FαβF

αβ (51)

Fαβ here is the real Faraday tensor calculated by the complex-shift method
for currents that are o� the real subspace using the complexi�ed forms for the
Liénard-Wiechert potentials [47]. The background metric g here is derived from
the Minkowski metric in 4D. σ is the complex conjugate of σ. In the usual
Bosonic string theory, quantization leads to violation of relativistic covariance
except in 26 space-time dimensions. Here we are not quantizing this Lagrangian,
but borrowing it for use in our classical charged particle models. So there is
no problem with it in ordinary 4D Minkowski space. If you want to add more
dimensions though go right ahead. The Hermitian metric g is e�ectively 8 × 8
and given by

gµν = gνµ = ηµν (52)

gµν = gµν = 0 (53)

where η is the real Minkowski metric and the Greek subscripts {µ, µ, ν, ν}are
Lorentz indices.

In this action, the Faraday tensor F must be expressed as a functional of the
string coordinate X(σ, σ) utilizing the complexi�ed Liénard-Wiechert potentials
plus an additional free-�eld solution. The functions to vary would be the string's
world-sheet and the part of the vector potential contribution to F which is not
due to the string current. In this way, we can avoid the problem of an interaction
term of the form jµA

µ which would need to be evaluated at a complex space-
time point. This requires a nonlocal action [55, 56, 57]. So basically, it's pretty
di�cult to work with.

The problem with introducing a jµA
µ term in the action is that there is

not a perfect generalization of the Dirac delta function to complex spaces which
preserves analyticity. There is, however, an imperfect one due to Lindell [58, 59,
60, 61], and perhaps a local action could be developed using this. The complex-
shift method does not use a Hermitian metric. Consider the point particle.

Its potential is q/

√
(x− o)

2
and when o is complex the result is no longer
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real. So you can't use a Hermitian metric to evaluate (x− o)
2
. Rather you

must use analytic continuation. The �elds generated by the string this way are
generally multi-valued. This situation, for point particles, was considered in [47]
where a new mathematical technique called generalized analytic continuation
was applied to the Liénard-Wiechert potentials in complex Minkowski space.
The result of was that you can obtain e�ectively a wave-particle duality from
it.

4.12 Dependence on the choice of the cut surface

For the cut surface found in Figure 1 on page 9, the �elds are discontinuous
across the curved cylindrical cut surface. Because of this, if we make an in-
�nitesimal change in the surface, it will change the result of calculations for
total mass and angular momentum. However, it is found numerically that the
changes in these are in the same ratio as the linear slope relating mass and
angular momentum so that the mass verses angular momentum curve won't
change, and of course it won't a�ect the large distance moments like the mag-
netic moment either. In�nitesimal changes in the shape of the planar cuts at
z=0 do not a�ect the mass or angular momentum either because the two den-
sities are continuous in z there for all values of r > 0. So the main results that
we obtain should allow some variation in the shape of the cut surface before
it leads to noticeable e�ects. The arbitrariness of the cut surface, at least for
small deviations acts a bit like a gauge invariance of this theory.

4.13 Compatibility with the Kerr-Schild metric

A Kerr-Schild metric in general relativity can be expressed in the form

gµν = ηµν + ϕkµkν (54)

where ηµν is the background metric, which in our case is the Minkowski metric.
ϕ is a scalar function and kµa null congruence. The Einstein �eld equations
take the form

Rµν − 1

2
Rgµν + Λgµν =

1

4π

(
FµαF

α
ν +

1

4
gµνFαβF

αβ

)
(55)

A concise necessary condition that must be satis�ed by the electromagnetic
�elds to allow a Kerr-Schild metric is presented in [4]. The condition is that the
�elds in the background metric must satisfy the following constraint.

FµνAν − χAυ = 0, Fµν = ∂µAν − ∂νAµ (56)

χ is a scalar function. If χ ̸= 0 then it follows that A is a null vector. In general,
this is a di�cult condition to test for. Our charged line model provides us with
E and B �elds from which we can construct the Maxwell-Faraday tensor Fµν

and see if it satis�es (56). I've tested the condition numerically. It is found to
be satis�ed in the limit L → 0 as it should because this is the Kerr-Newman
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limit, but for nonzero values of L, it does not allow an exact Kerr-Schild metric
solution. The numerical method used the following approach. First pick a point
x in 3 space. Next calculate Fµν there for the charged line. Next �nd the
eigenvectors which satisfy the equation

Fµ
ν l

ν = λlµ (57)

These produce a null tetrad with two degenerate real and null eigenvectors,
and two complex conjugate null ones. Choose one of the real eigenvectors, do
the eigenvector calculation in a neighborhood of x making sure that the resulting
function lµ(x) varies smoothly in this neighborhood. This smoothness condi-
tion is critical because as there are two real null eigenvectors, if the computer
algorithm selects the wrong one for a neighboring point, then there will be a
discontinuity which will prevent taking derivatives of Aµ. We write

Aµ(x) = χlµ(x) (58)

We determine χ by the condition

χ = A0(x)/l0(x) (59)

where A0(x) is the known electric potential. Then the 3-vector potential to test
is

Atest(x) = χl(x) (60)

and so Btest = ∇ × Atest, and if this agrees with the magnetic �eld that we
started with, then we have met the condition for a Kerr-Schild metric. This was
all done numerically, and it was found that there is a small di�erence between
the magnetic �elds, so a Kerr-Schild metric solution cannot be exact, but it is
approximate, and the deviation could in principle be added as a small pertur-
bation to the Kerr-Schild metric. It is noteworthy that there are two null �elds
to choose from, and they produce vector potentials that have a handedness or
chiral property that distinguish them, although the magnetic and electric �elds
are identical. These two solutions must therefore di�er by a gauge transforma-
tion. This handedness feature could perhaps be related to the two chiral states
of the Dirac equation.

5 Other models

5.1 A curve in complex space with charge density

Let's now consider a curved string parameterized by arclength (of its real part)
s. Let xs denote the realpart of the curve, and let the total length be L with
charge per unit length constant and given by q/L. We shall use the Frenet-Serret
apparatus to describe this curve in terms of tangent, normal, and binormal
vectors. In the static case, we can write ψ as
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ψ(x) =

� L

0

ρ(s)√
(x− x0(s))

2
ds (61)

x0(s) = Xre(s) + it(s)t̂(s) + in(s)n̂(s) + ib(s)b̂(s) (62)

� L

0

ρ(s)ds = q (63)

where Xre(s) is a real curve in space, t̂(s), n̂(s), and b̂(s) are the tangent, nor-
mal, and binormal unit vectors for this curve which is parametrized by arclength
s. The complex shift is characterized by the functions t, n, and b, and where ρ(s)
is the charge per unit length along the curve. Closed as well as open strings
are possible. All knots and links are possible. In general, we would expect
such a structure to be time varying. This would require a complex Minkowski
space to be completely general. The �elds would need to be calculated by using
Liénard-Wiechert potentials suitably generalized, and this is highly non-trivial.

Alternatively, We can write the coordinates of the line charge in of the form

x(s) = Xre(s) + iXim(s) (64)

where Xre and Xim are independent functions of s. In the case of a closed loop,
we could obviously generalize this further by including a line-current contri-
bution to the electromagnetic potential. This model is not generally invariant
under parity, and so it can have a chirality property.

5.2 A simple case of a ring of charge with a complex shift
along the axis of the ring

The simplest case is the following source geometry

x0(s) = Rcos(θ(s))x̂+Rsin(θ(s))ŷ + iaẑ (65)

θ(s) =
s

R
, ρ(s) =

q

2πR
(66)

ψ(x) =
1

4π

� 2πR

0

q/2πR√
(x− x0(s))

2
ds (67)

When we shrink the ring diameter to zero we obtain the Kerr-Newman
source. The integral can be done analytically in terms of Appel hypergeometric
functions. Along the z-axis, the result is trivial.

ψ(x)|x=y=0 =
1

4π

q√
R2+ (z − ia)

2
(68)
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Doing a large-z Taylor expansion we �nd

4πψ(x)| = q/z + qia/z2 − q(2a2 +R2)/2z3 − qi(2a3 + 3 +O(1/z5) (69)

We have azimuthal symmetry here, and since the potential satis�es Laplace's
equation, we then know from this that the Legendre expansion for all angles is

4πψ(x) = q/r+qia/r2P1(cos(θ))−q(a2+R2/2)/r3P2(cos(θ)}−qi(2a3+3+O(1/r5)
(70)

So we can see from this that the monopole and dipole terms are the same as
for the Kerr-Newman case and the line charge above, but the electric quadrupole
moment, that is (a2 + R2/2)/4π, is di�erent, and unfortunately it can never
vanish, so this simple ring charge cannot describe an electron with zero electric
quadrupole moment.

5.3 Another simple case of a barbell of two charges with
complex shift

Consider two charges, each with half the charge, separated by a distance L and
with the same complex shift a in the direction of the separation. For this case,
which also has azimuthal symmetry, we get

4πψ(x) = q/r+qia/r2P1(cos(θ))−q((a2−L2/4))/r3P2(cos(θ))−qi((P4(cos(θ))+O(1/r5)
(71)

We see that the electric quadrupole moment here is (a2 − L2/4), and this
vanishes if L = 2a. We could replace the two charges on the end of the barbell
with short line-charges, and this would allow us to have a large but �nite mass
and angular momentum.

5.4 A composite string model that can describe an elec-
tron

We would like to �nd models that give correct values for four parameters of the
electron: mass, spin, magnetic dipole, and electric quadrupole. The simple line
charge had two parameters, L and a. The ring had two parameters R and a. If
we get lucky, we might �nd a simple model which gives the correct value for all
four parameters with just three degrees of freedom, and this would amount to a
calculation of the �ne structure constant. However, there is no obvious way to
guess what such a structure might be, and so we can in the meantime consider
composite systems with four free parameters to adjust. Here we will consider
one such model of this type with four degrees of freedom. For simplicity, we will
consider models with azimuthal symmetry.

Consider the model of a ring of charge with radius R with a complex shift
utilizing the Frenet apparatus as in (61) with a constant charge density ρ as
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well as constant shift parameters t, n, and b resulting in the potential integral
in (67), but with a more complicated x0(s) of the form

x0(s) = Rcos(θ(s))x̂+Rsin(θ(s))ŷ + itt̂(θ(s)) + inn̂(θ(s)) + ibb̂(θ(s)) (72)

t̂(θ) =
−sin(θ)x̂+ cos(θ)ŷ√

2
(73)

n̂(θ) =
cos(θ)x̂+ sin(θ)ŷ√

2
(74)

b̂(θ) = −ẑ (75)

This model is not invariant under parity so long as the binormal term b is non-
zero. Thus it has chirality depending on the sign of b. This is a property of
Dirac particles. The far �eld expansion on the z-axis is found to be

4πψ(z) = q/z − iq +O(1/z4) (76)

This expression has a monopole charge, a magnetic dipole, and an electric and
magnetic quadrupole term. The electric quadrupole vanishes if the following
condition is satis�ed:

t2 + n2 − 4b2 − 2R2 = 0 (77)

The magnetic quadrupole moment is −23/2qRn, and this can vanish if n =
0, and therefore, it is possible to eliminate both quadrupole moments with
this model. The binormal shift b is determined by the dipole moment alone.
In the limit of R → 0 we approach the Kerr-Newman solution once again,
and therefore the electromagnetic mass will diverge if we don't include metric
curvature. Obviously, for R → ∞, the electromagnetic mass goes to zero.
Consequently, somewhere in between these limits, it will equal the mass of the
electron. If we require that both quadrupole moments be zero, then we can still
get the correct mass, but will have no more parameters to adjust for the angular
momentum, so either it just happens to be the correct one for the electron, i.e.
ℏ/2, or we would have to allow one of the quadrupole moments to be nonzero.
If the correct spin of the electron was derived this way, it would amount to a
mathematical derivation of the �ne structure constant, although we consider
this lucky outcome to be very unlikely. Presumably, it would be more popular
to set the electric quadrupole to zero and allow a nonzero magnetic quadrupole.
Then we should be able to adjust the parameters to give the correct spin. So it
seems likely that this model can describe an electron as a purely electromagnetic
object. It does have a magnetic quadrupole moment though, which might be a
way to test this picture further. Finding the parameters t, n, b, and R is beyond
the scope of this paper. Di�erent sets of parameters could be used for other
charged particles, and so we have here a fairly general-purpose classical charged
model.
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One �nal interesting feature of this model is that although it is based on
a simple ring or unknot, the three complex shifts give it a chirality or two-
handedness feature. If we change the sign of the parameter b and leave every-
thing else the same, we get a mirror image that is not the same, but that has the
same mass, spin, and magnitudes of electric and magnetic multipoles, but with
some sign changes. Since the electron and all Dirac particles have a chirality
property this seems like another advantage of this model. The Kerr-Newman
metric is invariant under parity, and therefore does not have chirality.

5.5 A spherical shell model which has only a charge monopole
and a magnetic dipole

Consider a charged spherical shell of radius a, and no charge except on this.
Assume azimuthal symmetry. The solution for Laplace's equation in spherical
coordinates is:

ψ(x) =

∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos(θ)) (78)

Inside the shell, the Bl terms must vanish, and outside the Al terms must vanish.
Outside the shell, we write

ψ(x) =
q

4πr
+
iq

4π

a1
r2
P1(cos(θ)), r > a (79)

Inside the shell we apply continuity requirements for Maxwell's equation to
obtain

ψ(x) =
iqa1
4π

r
(
−2/a3

)
P1(cos(θ)), r < a (80)

The magnetic dipole moment is M = qa1. This model does not have any
internal chirality. It was analyzed and angular momentum and energy were
calculated in [62], section 3.1. Inside the shell, the magnetic �eld is constant
and directed along ẑ, the symmetry axis, and the electric �eld is zero. This
ensures that the radial component of the magnetic �eld is continuous across the
shell. With these �elds, we can calculate the mass, the angular momentum, and
the magnetic dipole moment. Since the electric �eld is zero inside the shell, the
Poynting vector is zero there too, and so the hidden angular momentum comes
only from the �elds outside of the shell. The �elds are all single-valued, and
therefore the calculations of mass and angular momentum are straightforward.
This model gives zero for all higher multipole moments which is consistent with
a Dirac particle. There are two free parameters, the radius of the sphere a and
the magnetic dipole moment controlling parameter a1. We would like to �t the
mass, angular momentum, and magnetic dipole of the particle. If a1 is chosen
to give the measured dipole moment, then this leaves only the one parameter a
to �t the mass and the angular momentum. The electrostatic energy calculated
from [62] is
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E =
q2

8πa
+

M2

4πa3
=

q2

8πa

(
1 +

2a 2
1

a2

)
(81)

The electromagnetic angular momentum is

J=
q2a

18π

3a1
a2

=
q2

6π

a1
a

(82)

For an electron, this relation becomes

ℏ
2
=
e2

6π

a1
a

(83)

But e2 = 4πα and ℏ = 1 in our units. Therefore

a1
a

=
3

4α
≈ 102.77699 (84)

and then the mass of the electron, which is 1 in our units, is given by

me=1=
α

2a

(
1 + 2

(
3

4α

)2
)

(85)

and from this we can solve for a. In our units, the classical electron radius is
simply α. The radius of the shell is

a =
α

2
+

9

16α
≈ 77.0863985 ≈ 12.26868λe (86)

where λ
e
is the Compton wavelength of the electron. We can see from (81) and

(84) that practically all the mass of the electron in this model is due to the
magnetic �eld.

5.6 An extended �uid drop model with complex shift

We apply the complex shift method to the model in [13]. The particle there was
a soliton in an inviscid charged �uid. The relativistic stress-energy tensor is

Tµν =
1

4π
Fµ

λF
λν + (ρ+ p)uµuν − gµν

(
− 1

16π
FαβF

αβ + p

)
(87)

The �ow is assumed to be adiabatic, and the pressure as a function of the �uid
density η is taken to be

p = −κη6/5 (88)

where this form was selected to allow a simple analytic solution, although other
possibilities might also lead to interesting models. The pressure is negative and
grows more negative the denser the �uid is. This leads to a cohesive force that
balances the electrostatic repulsion. The resulting static electric �eld is found
in [13] to be



25

E =
qr

4π

(
b2 + r

2
)−3/2

, b = (4π/3)
1/2 (

e2/6κ
)5/2

(89)

with potential

ψ =
q

4π

(
b2 + r

2
)−1/2

(90)

Now we make the complex shift along the z-axis so that zorigin → −ia to obtain

ψ =
q

4π

(
b2 + x2 + y2 + (z− ia)

2
)−1/2

(91)

We can analyze the multipole expansion by setting x = y = 0 and calculating
the Taylor-Laurent expansion at large z

ψ|r=zẑ =
q

4π

(
b2 + (z− ia)

2
)−1/2

(92)

ψ|r=zẑ =
q

4π

[
1

z
+
ia

z2
− b2 + 2a2

2z3
−
i
(
3ab2 + 2a3

)
2z4

]
+O(

1

z5
) (93)

From this, we have the usual monopole and magnetic dipole terms. The electric
quadrupole term is nonzero except in the limit a = b = 0. The magnetic
octapole term can be zero if 3ab2 + 2a3=0. This liquid drop model might be
interesting for modeling nuclei.

6 Can wave-particle duality be understood in com-

plex space-time models without formally quan-

tizing them?

Arguments supporting this idea were presented in [47, 46]. First consider the
electromagnetic �eld produced by a moving charge in conventional, i.e. real
space-time. Assuming the particle is moving on a timelike curve, an observer
at some instant sees the particle at exactly one point, which involves a retarded
time calculation that makes the apparent position dependent on the past tra-
jectory of the particle. There is no wave-particle duality here. The electromag-
netic force is our window into reality. The Liénard-Wiechert potentials can be
viewed as de�ning the properties of this window. Let's suppose that our classi-
cal charged particle is describable by a Hamilton-Jacobi (HJ) theory. It's well
known that quantum mechanics can be transformed into HJ theory via Bohmian
mechanics, and the converse is also true. Any HJ classical particle model can
be transformed into a wave equation with a suitable potential function that
may be nonlinear. This is true for multi-particle systems as well. Now suppose
that each particle is moving in complex Minkowski space-time and is guided by
some HJ equations. This problem was studied in [47] for a particular Bohmian
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system. The retarded time calculation is no longer unique. The apparent lo-
cation of the source can now be multi-valued. If you allow a partition of unity
of the particle trajectory and perform an independent analytic continuation of
each partition, then you can obtain wave-particle duality. I called this proce-
dure generalized analytic continuation in [47]. The Liénard-Wiechert potentials,
when utilized in complex space-time, give us a blurry coke-bottle view of reality,
but they produce more than just an apparent distortion because they determine
how a particle interacts electromagnetically with all other particles. Given the
multitude of apparent positions that a single charged particle can have due to
this e�ect, the natural question of causality and locality obviously needs to be
addressed. Modern interpretations of quantum mechanics are moving towards
the inclusion of time-symmetric formulations [63], and of course, quantum en-
tanglement, in general, has suggested the possibility of nonlocal connections in
physics. Since complex space-time is intimately connected with classical gen-
eral relativity and with quantum mechanics, one is led to wonder whether it
could be possible that classical general relativity with electromagnetism could
quantize itself. In other words, could quantum theory be derivable from this
classical �eld theory? This would be a beautiful and unexpected solution to the
quantum-gravity dilemma that physics currently faces, and it would be one that
Einstein would probably be very pleased with. Given the results of this paper,
it would also seem that string theory should play a critical role in this project.

7 Conclusion

The complex-shift method for generating charged electromagnetic particle-like
solutions has been applied to extended charged objects in this paper, and it was
found that several features of elementary particles can be phenomenologically
described in this way. The string models are particularly interesting because
they can have �nite values for mass and angular momentum, they can have
chirality, and they can be knotted and linked in complex and diverse ways.
The linear charged model predicts an electron mass within 3 electron volts of
the measured mass given only the charge, spin, and magnetic moment of the
electron. This result is based entirely on electromagnetism, and it gives the same
relation between mass, spin, and magnetic moment that the Dirac equation
gives, but without quantum theory. The spin in this case is entirely due to
electromagnetic angular momentum. Nothing is rotating. It can be compared
with the expectation of the spin operator in a quantum Pauli equation which
behaves much like a classical angular momentum [64].

A number of phenomena normally associated with quantum mechanics can
be described qualitatively in this framework. These include charged particles
with magnetic dipoles having Dirac g factors of 2 or anomalous g factors, par-
ticles with zero electric quadrupole moments, particles with internal chirality
and topological symmetries related to knots and links, a possible explanation
for wave-particle duality, and A qualitative understanding of the possible ori-
gins of quantum entanglement and nonlocality. These results seem to suggest a
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plausible path to emergent quantum mechanics from classical general relativity
and electromagnetism in complex space-time. Charged string theory in complex
space-time might turn out to be a theory of everything, including quantum me-
chanics itself. Although we can understand the possible origins of wave-particle
duality, we don't have a detailed understanding of how nature might orches-
trate a universe with a large multitude of Riemann sheets superimposed with
one another to give us the laws of quantum mechanics. A statistical mechan-
ics treatment is called for, perhaps one based on Adler's trace dynamics [65].
In place of Many Worlds we have many Riemann sheets. The philosophy of
emergent quantum mechanics is in sharp contrast to the prevailing �ER=EPR�
movement which aims to derive everything, including the space-time manifold,
from quantum theory. The two approaches might be dual in the sense that
quantum mechanics might be emergent from classical theory while the inverse
is also true.
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