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Abstract

Persistence in the literature is the perception of an inherent tradeoff between ecological

conservation and economic harvesting goals. Overexploitation may lead to resource destruction,

including extinction. Conservation measures should be decided and implemented. A standard

ecological response is to impose no-take areas or marine reserves. In this paper, our objective

is to study a harvesting management problem under the constraints of a no-take area, which

we formulate mathematically as a bi-dimensional singular stochastic control problem. Using

dynamic programming theory, we characterise our value function as the unique solution to a

HJB equation. We also describe the optimal harvesting strategy by identifying the harvesting

and non-harvesting regions. We show that setting up reserve area not only leads to a better

ecological conservation but may also increase the economic benefit for fishing industry in the

long run. We further enrich our studies with some numerical analysis, enabling us to get

some insightful understanding on the size of the reserve area where no-take policy should be

implemented.

Keywords : OR in natural resources, fisheries management, marine reserves, stochastic control,

optimal harvesting.

Highlights :

• Optimal harvesting strategy is studied in a bio-economic stochastic growth model.

• The presence of a no-take area is considered to prevent extinction.
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• Value function is characterised theoretically using viscosity solution approach.

• Numerical analysis highlights the economic benefit of no-take areas.

• The optimal policy is to harvest all the net spillover from the reserve area when the fish

population density exceeds a certain threshold.

1 Introduction

Fishing industry provides a highly valuable source of food and nutrition to a significant proportion of

the world population. But overexploitation of living marine resources is causing a dangerous decline

of fish populations. These resources are renewable, i.e. life cycles can replenish the population to

overcome human consumption. However, biological reproduction is not an easy process and the

question of fish resource sustainability is actually an open and primary question for biologists,

industries and policy makers, see among others Scott (1955), Reed (1979), Alvarez and Shepp

(1998), do Val, Guillotreau and Vallée (2019), Ni and Sandal (2019) and Kvamsdal, Maroto, Morán,

and Sandal (2020). As a consequence, the economic and ecological dilemma of how to best catch

fish plays a major role in fishery management.

Questions of interest include: how far can we harvest before putting a population that is cur-

rently healthy in danger of extinction? What is the optimal way to harvest fish in order to maximise

yield while preserving its sustainability? Could we still harvest low-density populations? This is

crucial in commercial fishing for two reasons. First, economically, we want the greatest catch to

supply the demand for fish thus maximising yield. Second, ecologically, we do not want to deplete

the population to keep diversity in the oceans and preserve its sustainability for future harvest.

Similar questions arise for agricultural and forest management, see for instance Constantino and

Martins (2018) and Alvarez-Miranda, Goycoolea, Ljubić, and Sinnl (2020).

Protected marine reserves are gaining popularity as a management option for marine conserva-

tion and fisheries. No-take marine reserves have been shown repeatedly to enhance the abundance,

size, and diversity of species, see for instance Holland and Brazee (1996), Clemens, ReVelle, and

Williams (1999), Sanchirico and Wilen (2001), Halpern (2003), Neubert (2003), Micheli, Halpern,

Botsford, and Warner (2004), Halpern, Lester, and Kellner (2010) and Alvarez-Miranda, Goycoolea,

Ljubić, and Sinnl (2020). A large literature exists about the effects of protected marine reserves

which were highlighted at the 2002 World Summit on Sustainable Development. However, some
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controversies remain about their effects. Different works, for instance Conrad (1999), indicate that

the presence of a no-take marine reserve decreases the value function, i.e. the economic value of

harvesting benefit, corresponding to the view of many fishers that reserves are unnecessary and

costly. On the other side, Grafton, Kompas, and Lindenmayer (2005) highlight that the effect of

protected areas becomes positive in presence of ecological uncertainty, i.e. a random evolution for

fish populations.

Protected areas are predicted to benefit from non-protected areas through the main mechanism

of net fish migration across borders. This effect is sometimes called spillover, see for instance Gell

and Roberts (2003), Halpern (2003), Micheli, Halpern, Botsford and Warner (2004) and Halpern,

Lester and Kellner (2010). Lester et al. (2009) compile a database of studies, based on a compre-

hensive survey of literature, in order to document biological effects of marine reserves and conclude

with a statistically significance that even small reserves can produce significant biological responses,

although more data are needed to test whether reserve effects scale with reserve size.

Motivated by studies on marine reserves, our goal is to study the problem of optimal harvesting

policies maximising expected cumulative discounted harvest in presence of a no-take marine reserve

under stochastic environment. The marine area is split into two parts, the no-take marine reserve

where harvesting is strictly prohibited and no-poaching occurs, and a fishing area, i.e. a free-rule

area where unconstrained harvesting is allowed. The evolution, without harvest, in each area is

assumed to follow the most common Verhulst-Pearl logistic model, that is coherent with the previous

literature, see for instance Alvarez and Shepp (1998). The spillover effect is modelled as a linear

impact proportional to the unbalance between the density in the two areas, i.e. the total spillover

can be split into the proper spillover from the marine reserve to the fishing area minus the proper

spillover from the fishing area to the marine reserve, see Grafton, Kompas and Lindenmayer (2005).

On the mathematical point of view, our problem will be formulated as a bi-dimensional singular

stochastic control problem. In terms of the existing literature, while there is a large literature on

harvesting problem under no-take marine reserve constraints using deterministic approach, see for

instance You and Zhao (2004), Costello and Polasky (2008) and Gonzalez-Olivares and Huincahue-

Arcos (2011), few studies on optimal harvesting strategies are investigated under no-take marine

reserve under stochastic uncertainty, to our best knowledge. Indeed, most stochastic harvesting

problems are studied under the basic framework where no marine reserve is implemented, see for

instance Alvarez and Shepp (1998), Lungu and Oksendal (2001), Yang and Liu (2004) and Alvarez

and Koskella (2007). Alvarez and Shepp (1998) and Yang and Liu (2004) are both uni-dimensional
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singular control problem while Alvarez and Koskella (2007) consider a harvesting problem under

price uncertainty leading therefore to a bi-dimensional singular control problem. However, in Al-

varez and Koskella (2007), both diffusion processes, i.e. fish population and price processes, are

conveniently not coupled and driven by two independent Brownian motions. This will enable the

authors to get full description of the optimal policies. Lungu and Oksendal (2001) study an optimal

harvesting problem and formulate it mathematically as a bi-dimensional singular control problem.

The authors obtain a very nice main result in their Theorem 2.1, but only by making some strong

assumptions in order to get some explicit or quasi-explicit results. They also point out that indeed

explicit solutions may be obtained but only in some degenerate cases. Grafton, Kompas and Lin-

denmayer (2005) is among the very few studies to investigate a bi-dimensional harvesting problem

under no-take marine reserve using stochastic approach and is closely related to our problem. In

their paper, the authors assume their set of harvesting strategies to be absolutely continuous leading

therefore to a regular control problem with a standard associated Hamilton-Jacobi-Bellman (HJB)

equation. They mainly focus on the study of the value function, i.e. the economic reward, but not

on the optimal harvesting strategy, i.e. when/how to fish. As a consequence, their point of view

is more economic than biological. In contrast, in our harvesting problem, which is formulated as a

bi-dimensional singular control problem, our main focus is on the optimal harvesting strategy.

Most multi-dimensional non-degenerate singular control problems similar to our singular control

problem are investigated through the studies of optimal dividend or investment policies, see for

instance Jin, Yin, and Zhu (2012), Pierre, Villeneuve, and Warin (2016), Chevalier, Gaigi, and

Ly Vath (2017), Chevalier, Ly Vath, and Roch (2020) and Zhu, Siu, and Yang (2020). It is well

known that studying these above multi-dimensional non-degenerate singular control problems is a

major challenge when one expects to get beyond the usual viscosity characterisation and obtain

qualitative description of the optimal policies. There are, indeed, no general and easily applicable

methods to completely solve this set of singular control problems as each problem is based on specific

model features leading in general to non-standard HJB equation. Chevalier, Gaigi and Ly Vath

(2017) tackle an optimal dividend problem under liquidity risk constraints via auxiliary functions

which are defined recursively. Each auxiliary function may be characterised as a unique viscosity

solution to its associated HJB equation. These recursive functions give them an implementable

algorithm approximating their problem. Jin, Yin, and Zhu (2012) equally focus on numerical

methods to solve their mixed regular and singular controls for regime-switching models. Chevalier,

Ly Vath and Roch (2020) study an optimal dividend and capital structure problem for a firm,
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which holds a certain amount of debt to which is associated a financial ratio covenant between

the firm and its creditors. The authors are able to give a complete qualitative description of their

problem by specifically introducing an optimal stopping time on a related reflected diffusion process.

Solving this optimal stopping-time problem allows them to fully characterise the optimal issuance

of capital policy. Pierre, Villeneuve, and Warin (2016) formulate their dividend and investment

policies as a bi-dimensional singular control problem and solve their control problem by using a

viscosity solution approach and a verification technique. Quasi-explicit solution may be obtained

in special cases. Zhu, Siu, and Yang (2020) study singular dividend strategies with a stochastic

quasi-hyperbolic discounting function in a linear diffusion model. They adopt a game-theoretic

approach to establish economic equilibrium results.

In the study of our bi-dimensional singular control problem, our objective is twofold. First,

we solve theoretically and rigorously our stochastic optimisation problem using viscosity approach,

see Crandall, Ishii, and Lions (1992), Bayraktar and Young (2011), Chevalier, Ly Vath, Roch, and

Scotti (2015), Cosso, Marazzina and Sgarra (2015), Pierre, Villeneuve, and Warin (2016), and more

recently do Val, Guillotreau and Vallée (2019) and Oliveira and Perkowski (2020). Our contribution

to the literature on the multi-dimensional singular control is our ability to obtain non-trivial results

on the value function, in particular its concavity and more importantly on the optimal strategy,

in particular the study around an optimal threshold x̄y which in turn defines the optimal strategy.

We may indeed characterise the optimal policy by showing that for any given level of population

y in the no-take marine reserve, there exists a population threshold x̄y in the fishing area above

which it is optimal to harvest. This is clearly beyond the usual viscosity characterisation of the

value function in most studies on multi-dimensional singular control problems.

Second, we solve our problem numerically, in order to characterise the optimal policy in an

explicit framework. While Grafton, Kompas and Lindenmayer (2005) study the economic rewards

of the problem and the optimal size of the protected area, we are focusing on the behaviour of the

optimal level of fish population in the fishing area as function of the population density in the reserve

area, i.e. the optimal harvesting strategy. Our findings are new in the literature and insightful as

they clearly show that marine reserve policy may increase both ecological and economics interests.

As such, they clearly contribute to a better understanding on optimal harvesting strategy under

marine reserve constraints. Indeed, the obtained results are completely counter-intuitive as the

optimal policy implies that when there is no extinction or overpopulation risk, i.e. when the fish

population in the reserve area has some intermediate values, the less we have fish in the reserve
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area, the more we have to harvest in the authorised area. This optimal strategy, which consists

in harvesting all spillover from the protected area, clearly indicates that there is no longer any

conflictual relation between ecological and economic interests. The reserve area plays the role of

nursery habitat. Furthermore, comparative statics confirm these phenomena which are magnified

when the transfer rate between the two regions increases, i.e. when the no-take area is highly

connected with the harvesting area. Further computations on the value function show that the

reserve not only has an evident ecological aim but also an economic surplus.

The paper is organised as follows. Section 2 presents the bio-economic bi-dimensional model

and the singular control problem. Section 3 deals with the dynamic programming principle and

the first properties of the value function. We show in particular that the value function is concave.

Section 4 provides the characterisation of the value function as the unique viscosity solution to the

associated HJB equation and defines the associated bang-bang optimal strategy. Section 5 discusses

the numerical method and results, in particular on the optimal threshold beyond which, it is optimal

to harvest. Three patterns are identified and the impact on fish population and economic revenue

is discussed. Our analysis is enriched by detailed comparative statics.

2 The biological-economic model

In our study, we consider the case where a reserve policy is implemented in order to ensure that

the fish stock will never be depleted due to overfishing. The reserve policy is simple: choose a

proportion p, with p ∈ [0, 1], of the marine area and forbid any harvesting in that area. The fish

population in the two areas, Yt in the marine reserve and Xt in the fishing area where harvesting

is allowed, are assumed to follow a coupled Stochastic Differential Equation (SDE) system. The

reserve and fishing areas are assumed to hold respectively a population carrying capacity pK and

(1−p)K. The biomass dynamics is assumed to follow a logistic growth, see for instance Alvarez and

Shepp (1998), for both sub-populations. We consider a spillover function linking both non-reserve

and reserve populations and a spillover parameter θ which determines the connectivity strength.

In order to formalise the problem, let (Ω,F,P) be a probability space equipped with a filtration

F = (Ft)t≥0, satisfying the usual conditions. It is assumed that all random variables and stochastic

processes are defined on the stochastic basis (Ω,F,P). Let W (1) and W (2) be two correlated F–

Brownian motions, with correlation ρ, i.e. d[W (1),W (2)]t = ρdt for all t.

The interaction between both populations is due to the flow of fish transferring from one area to
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another. We assume that the overall spillover is as follows, see Grafton, Kompas and Lindenmayer

(2005):

- the flow from the reserve area to the fishing area is θ(1− p)
(
Yt
pK −

Xt
(1−p)K

)
dt

- the flow from the fishing area to the reserve area is the opposite, i.e.

−θ(1− p)
(
Yt
pK −

Xt
(1−p)K

)
dt

with θ, the transfer rate of fish population from one area to another, assumed to be known. We

now consider a harvesting strategy, H, a F-adapted càd-làg non-decreasing process, which represents

the total cumulative harvested fish, with H0− = 0. We recall that harvesting can be carried out

only in the fishing area. As stated earlier, there is no constraint to the harvesting strategy in the

fishing area, except that it is not possible to harvest more than the quantity of fish available in

the fishing area, i.e. Ht − Ht− ≤ Xt. This last condition defines the set of admissible harvesting

strategies, denoted by A.

We now turn to the processes X and Y , associated to the control process H, which are assumed

to be governed by the following SDE system:
dXt =

[
rXt

(
1− Xt

(1− p)K

)
+ θ(1− p)

(
Yt
pK
− Xt

(1− p)K

)]
dt+ σXtdW

(1)
t − dHt

dYt =

[
rYt

(
1− Yt

pK

)
− θ(1− p)

(
Yt
pK
− Xt

(1− p)K

)]
dt+ σYtdW

(2)
t ,

(2.1)

where r and σ are both constant and respectively represent the rate of mean-reverting and the

volatility of both population processes.

Our objective is to optimise the expected profit that can be extracted from harvesting over an

infinite time horizon:

J(x, y;H) = E
[∫ ∞

0
e−βs dHs

]
over all admissible harvesting strategies H ∈ A, where β > 0 is the constant discount factor.

Accordingly, the value function is defined as:

v(x, y) = sup
H ∈ A

J(x, y;H) (2.2)

3 Properties of the value function

This section deals with the characterisation and the first properties satisfied by the value function.

In particular, we show that the value function is concave, see Proposition 3.2. This result is not
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standard in a bi-dimensional setting and requires an ad hoc proof. The main issue is related to the

absence of control in the variable y, i.e. the evolution of fish population in the marine reserve.

We also show that the value function is continuous, in particular on the domain boundary, see

Proposition 3.2 point (iii). The continuity of a bi-dimensional function is well known to be an

important issue compared to the one-dimensional case.

Finally, we give an explicit affine majorant of the value function, see Corollary 3.1 and the

explicit value function if the discount factor β is bigger than the reproduction rate r, see Proposition

3.3.

We now introduce some notations. We denote by (U, V ), the fish populations in respectively

the fishing and the reserve areas in the absence of any harvesting activity, i.e. the solution to
dUt =

[
rUt

(
1− Ut

(1− p)K

)
+ θ(1− p)

(
Vt
pK
− Ut

(1− p)K

)]
dt+ σUtdW

(1)
t

dVt =

[
rVt

(
1− Vt

pK

)
− θ(1− p)

(
Vt
pK
− Ut

(1− p)K

)]
dt+ σVtdW

(2)
t ,

(3.1)

The associated second order differential operator is denoted L:

Lφ =

[
rx

(
1− x

(1− p)K

)
+ θ(1− p)

(
y

pK
− x

(1− p)K

)]
φx +

1

2
σ2x2 φxx

+

[
ry

(
1− y

pK

)
− θ(1− p)

(
y

pK
− x

(1− p)K

)]
φy +

1

2
σ2 y2φyy + ρσ2xy φxy

To solve our optimisation problem, we shall assume that the following dynamic programming prin-

ciple holds: For all (x, y) ∈ R+ × R+, and all stopping times τ , we have

v(x, y) = sup
H∈A

E
[∫ τ

0
e−βsdHs + e−βτv(Xτ , Yτ )

]
(3.2)

From the above dynamic programming principle, we may derive the HJB equation associated

with the singular control problem (2.2):

min{βv − Lv, vx − 1} = 0, on R+ × R+. (3.3)

This divides the state-space R+ × R+ into a harvesting region

H = {(x, y) ∈ R+ × R+ : vx(x, y) = 1}, (3.4)

and a no harvesting region or a continuation region

NH = {(x, y) ∈ R+ × R+ : vx(x, y) > 1}. (3.5)
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Our objective is to characterise the value function as the unique viscosity solution to the HJB

equation (3.3), then to use this characterisation to obtain either qualitatively or numerically the

two sets of harvesting region H and no harvesting region NH, see Sections 4 and 5.

Remark 3.1 The harvesting region H is the subset of R+ ×R+ where it is optimal to harvest. In

other words, as long as (x, y), where x and y are respectively the fish population in the fishing area

and the reserve area, belongs to H, it is optimal to harvest. The other region NH is the subset

of R+ × R+ where it is not optimal to harvest. In other words, the optimal strategy is to stop

harvesting and let the fish population evolve and grow until it reaches the harvesting region, in

order to carry fishing activities again. As such, the knowledge of both H and NH will give us the

optimal harvesting strategy.

We now state a standard comparison theorem, which says that any smooth function, which is

a supersolution to the HJB equation (3.3), is a majorant of v.

Proposition 3.1 Let ϕ be a nonnegative C2 function, supersolution on R+ × R+ i.e.

min {βϕ(x, y)− Lϕ(x, y) ; ϕx(x, y)− 1} ≥ 0, ∀(x, y) ∈ R+ × R+, (3.6)

Then v(x, y) ≤ ϕ(x, y) ∀(x, y) ∈ R+ × R+.

Proof. Let ϕ ∈ C2(R+,R+) satisfying (3.6). Set τn = min {inf{t ≥ 0 : max{Xt, Yt} ≥ n}, n}.

Applying the Itô’s formula for càd-làg semimartingales between finite stopping times 0 and τn,

we obtain

e−βτnϕ(Xτn , Yτn) = ϕ(x, y) +

∫ τn

0
e−βs(Lϕ− βϕ)(Xs, Ys)ds

+

∫ τn

0
e−βsσ

[
Xsϕx(Xs, Ys)dW

(1)
s + Ysϕy(Xs, Ys)dW

(2)
s

]
−
∫ τn

0
e−βsϕx(Xs, Ys)dH

c
s +

∑
0≤s≤τn

{
ϕ(Xs, Ys)− ϕ(Xs− , Ys)

}
e−βs,

where Hc is the continuous part of the process H. Taking the expectation and noting that the

integrand in the stochastic integral is bounded on [0, τn], we get

E
[
e−βτnϕ(Xτn , Yτn)

]
= ϕ(x, y) + E

[∫ τn

0
e−βs(Lϕ− βϕ)(Xs, Ys)ds

]
−E

[∫ τn

0
e−βsϕx(Xs, Ys)dH

c
s

]
(3.7)

+E

 ∑
0≤s≤τn

e−βs
{
ϕ(Xs, Ys)− ϕ(Xs− , Ys)

} .
9



Since ϕ is continuously differentiable in the first variable on R+, by using (3.6), we obtain

ϕ(Xs− , Ys)− ϕ(Xs, Ys) =

∫ Xs−

Xs

ϕx(u, Ys)du ≥ Xs− −Xs = (Hs −Hs−) = ∆Hs . (3.8)

Combining (3.6) and (3.7), we obtain

E
[
e−βτnϕ(Xτn , Yτn)

]
≤ ϕ(x, y)− E

[∫ τn

0
e−βsdHc

s

]
−

∑
0≤s≤τn

∆Hse
−βs

≤ ϕ(x, y)− E
[∫ τn

0
e−βsdHs

]
,

which gives

ϕ(x, y) ≥ E
[
e−βτnϕ(Xτn , Yτn)

]
+ E

[∫ τn

0
e−βsdHs

]
≥ E

[∫ τn

0
e−βsdHs

]
.

By letting n tend to infinity, we obtain that for any admissible harvesting strategy {Ht}t≥0 ∈ A,

and for all (x, y) ∈ R+ × R+

ϕ(x, y) ≥ E
[∫ ∞

0
e−βsdHs

]
.

As such ϕ(x, y) ≥ v(x, y), which ends the proof. 2

The following result gives us an upper bound of the value function and is a direct result from

Proposition 3.1.

Corollary 3.1 The linear function

ϕM (x, y) = x+ y +
(β − r)2K

4rβ
(3.9)

is a majorant of the value function.

Proof. We apply the previous Proposition 3.1. We have already
∂ϕM
∂x

(x, y) = 1, we need to verify

that [βϕM − LϕM ] (x, y) ≥ 0. A straightforward computation gives us

[βϕM − LϕM ] (x, y) = β

[
x+ y +

(β − r)2K
4rβ

]
−
[
rx

(
1− x

(1− p)K

)
+ ry

(
1− y

pK

)]
=

r

(1− p)K

(
x+

(β − r)(1− p)K
2r

)2

+
r

pK

(
y +

(β − r)pK
2r

)2

≥ 0.

2

Corollary 3.2 In the case when β ≥ r, we have v(x, y) ≤ x+ y.
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Proof. This result may be obtained using the same argument as in the Proof of the previous

Corollary 3.1

We now establish a few properties of the value function v.

Lemma 3.1 For all x1, x2, y ≥ 0, such that x1 ≤ x2, we have

v(x2, y) ≥ x2 − x1 + v(x1, y).

Proof. Using the dynamic programming principle (3.2) and choosing a harvesting strategy which

consists in harvesting the quantity x2−x1 at time 0, we obtain v(x2, y) ≥ x2−x1 + v(x1, y), which

ends the proof. 2

Proposition 3.2 The value function v

(i.) is increasing function in x and y.

(ii.) is concave on R+ × R+ and then locally Lipschitz on R++ × R++.

(ii.) is continuous on R+ × R+, in particular on the boundary {0} × [0,∞) and [0,∞)× {0}.

Proof. (i.) We first prove the strict monotony of the value function.

- the monotonicity in x is a direct consequence of Lemma 3.1.

- Let x ∈ R+ and ya < yb ∈ R+. We study the processes
(
X

(x,ya)
t , Y

(x,ya)
t

)
and

(
X

(x,yb)
t , Y

(x,yb)
t

)
both governed by the same SDE (2.1) but with different initial values, i.e.

(
X

(x,ya)
0− , Y

(x,ya)
0−

)
=

(x, ya) and
(
X

(x,yb)
0− , Y

(x,yb)
0−

)
= (x, yb).

Our objective is to prove that v(x, ya) < v(x, yb). For that purpose, we consider the stopping

time τab = inf{t ≥ 0 : Y
(x,ya)
t ≥ Y (x,yb)

t }. We have τab > 0, and Y (x,ya)
t < Y

(x,yb)
t , for all t ∈ [0, τab).

We set

δ =

∫ τab

0
e−βs

θ(1− p)
p

(
Y

(x,yb)
t − Y (x,ya)

t

)
dt > 0.

We easily obtain that v(x, yb) ≥ v(x, ya) + δ which is associated to the harvesting strategy for the

initial state variable (x, yb), consisting in taking the same optimal or ε-optimal harvesting strategy

when the initial state variable is (x, ya), plus an additional harvesting rate of θ(1−p)p (Y
(x,yb)
t −Y (x,ya)

t ).

This additional harvesting rate corresponds to the extra flow coming from the reserve area with

initial state (x, yb) compared to the flow with initial state (x, ya) . That ends the proof of (i).
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(ii.) We now prove that the value function is concave. Let (xa, ya) and (xb, yb) ∈ R+ × R+. We

need to prove that for any α ∈ [0, 1] we have

αv(xa, ya) + (1− α)v(xb, yb) ≤ v
(
αxa + (1− α)xb, αya + (1− α)yb

)
.

Consider the processes
(
X

(xa,ya)
t , Y

(xa,ya)
t

)
and

(
X

(xb,yb)
t , Y

(xb,yb)
t

)
both governed by the same SDE

(2.1) respectively using harvesting strategies Ha and Hb and with different following initial values,

i.e.
(
X

(xa,ya)
0− , Y

(xa,ya)
0−

)
= (xa, ya) and

(
X

(xb,yb)
0− , Y

(xb,yb)
0−

)
= (xb, yb). From the definition the value

function, we obtain:

αv(xa, ya) + (1− α)v(xb, yb) = sup
Ha ∈ A, X(xa,ya)

t ≥ 0, Y
(x,ya)
t ≥ 0;

Hb ∈ A, X(xb,yb)
t ≥ 0, Y

(xb,yb)
t ≥ 0

αJ(xa, ya, H
a) + (1− α)J(xb, yb, H

b)

Let us introduce the auxiliary process (X̂t, Ŷt) defined as follows X̂t = αX
(xa,ya)
t + (1− α)X

(xb,yb)
t

Ŷt = αY
(xa,ya)
t + (1− α)Y

(xb,yb)
t

After some recombinations, we may obtain its corresponding stochastic differential equation

dX̂t =

[
rX̂t

(
1− X̂t

(1− p)K

)
+ θ(1− p)

(
Ŷt
pK
− X̂t

(1− p)K

)]
dt+ σX̂tdW

(1)
t

−dH(a,b)
t − r α (1− α)

(1− p)K

[(
X

(xa,ya)
t −X(xb,yb)

t

)2]
dt

dŶt =

[
rŶt

(
1− Ŷt

pK

)
− θ(1− p)

(
Ŷt
pK
− X̂t

(1− p)K

)]
dt+ σŶtdW

(2)
t

−r α (1− α)

p K

[(
Y

(xa,ya)
t − Y (xb,yb)

t

)2]
dt,

(3.10)

where H(a,b) = αHa + (1− α)Hb.

We now consider the process (X̃α
t , Ỹ

α
t ) governed by the controlled stochastic differential equation

(2.1), with the initial condition
(
X̃α

0− , Ỹ
α
0−

)
=
(
αxa+(1−α)xb, αya+(1−α)yb

)
and the harvesting

policy H̃α defined as

H̃α
t = H

(a,b)
t +

r α (1− α)

(1− p)K

∫ t

0

[(
X(xa,ya)
s −X(xb,yb)

s

)2]
ds .

We need to compare the process (X̃α
t , Ỹ

α
t ) to (X̂t, Ŷt). Both processes have the same initial condition

and almost same stochastic differential equation except the presence, in the stochastic differential

equation of Ŷ , of the non-positive drift term

−r α (1− α)

p

(
Y

(xa,ya)
t − Y (xb,yb)

t

)2
dt .
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Applying to (X̃α
t , Ỹ

α
t ) the following harvesting strategy dHα

t = dH̃α
t + θ 1−pp (Ỹ α

t − Ŷt)dt, we obtain

that , X̃α
t = X̂t and Ỹ α

t ≥ Ŷt ∀ t ≥ 0 and then Hα ∈ A.

From the definition of the value function, we may easily conclude that

v
(
αxa + (1− α)xb, αya + (1− α)yb

)
≥ αv(xa, ya) + (1− α)v(xb, yb) + E

[∫ ∞
0

e−βsLtdt

]
.

with Lt = r α (1−α)
(1−p)K

(
X

(xa,ya)
t −X(xb,yb)

t

)2
, which is a nonnegative process.

(iii.) The concavity of the value function on R+ × R+ gives us its continuity on R++ × R++. We

therefore turn to the continuity on its boundary {0} × [0,∞) and [0,∞) × {0}. Let y0 ∈ R++,

consider the point (0, y0). Recalling that v is locally Lipschitz on R++×R++. As such, for a given

ε > 0, there exists η > 0, such that ∀ (x1, y1) and (x2, y2) ∈ B(0, y0, 2η) ∩ R++ × R++, where

B(0, y0, 2η) is a neighbourhood of (0, y0) with radius 2η, we have

|v(x1, y1)− v(x2, y2)| < ε (3.11)

Let define τ (η) = inf
{
t > 0,

(
U

(0,y0)
t , V

(0,y0)
t

)
/∈ B(0, y0, η) ∩ {R++ × R++}

}
.

We now apply the dynamic programming principle for the harvesting strategy H0 which consists

in doing nothing between the initial time 0 and τ (η). We may obtain

v(0, y0) ≥ E
[
e−β τ

(η)
v
(
X

(0,y0),H0

τ (η)
, Y

(0,y0),H0

τ (η)

)]
≥ E

[
e−β τ

(η)
v
(
U

(0,y0)

τ (η)
, V

(0,y0)

τ (η)

)]
.

Given the fact that
(
U

(0,y0)

τ (η)
, V

(0,y0)

τ (η)

)
∈ B(0, y0, 2η) ∩ R++ × R++, and using (3.11), we may get

v(0, y0) ≥ E
[
e−β τ

(η)
(v (η, y0)− ε)

]
≥ (v (η, y0)− ε)E

[
e−β τ

(η)
]
.

For an η sufficiently small, we may have v(0, y0) ≥ v (η, y0) − 2ε. Since v is non decreasing in the

first variable, we have v (η, y0) − 2ε ≤ v(0, y0) ≤ v (η, y0). Given the local Lipschitz property of v

as given in (3.11), we obtain, ∀(x, y) ∈ B(0, y0, η) ∩ R++ × R++

v(x, y)− 3ε ≤ v(0, y0) ≤ v(x, y) + ε, (3.12)

Recalling that v is a concave function on {0}×R++, we equally have the continuity of the function

v(0, .) : y → v(0, y) on (0,∞). We may therefore conclude that v is continuous on {0} × (0,∞).

Using the same argument, we may equally obtain the continuity of v on (0,∞)× {0}. 2

The following Proposition gives the explicit solution when the discount rate β is higher than

the reproduction rate r. The optimal policy consists in harvesting all the fish stock in the fishing

area.
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Proposition 3.3 Let β ≥ r, then the optimal strategy consists in immediately harvesting of all the

existing population in the fishing area, i.e. v(x, y) = x+ g(y) with

g(y) = g0(y)

[
c− 2θ(1− p)

σ2Kp

∫ y

0

∫ z

0
[u g1(u) g0(u)]−1 du dz

]
(3.13)

where

g0(y) = yle−yJ
(
l +

2r

σ2
− 2

θ(1− p)
σ2pK

; 2l +
2r

σ2
− 2

θ(1− p)
σ2pK

; − 2r

σ2pK
y

)

l =

√
2β

σ2
+

[
r

σ2
− θ(1− p)

σ2pK
− 1

2

]2
− r

σ2
+
θ(1− p)
σ2pK

+
1

2

g1(y) = y
2
σ2

[
θ(1−p)
pK

−r
]

exp

{
2r

pKσ2
y − 2

∫ y

0

g′0(u)

g0(u)
du

}
where J is the confluent hypergeometric function of first kind and the constant c which depends on

the model parameters.

Proof. The proof is split into two parts, we first deal with the computation of the reward function

J according with the policy consisting in the immediate harvesting of all the existing population

in the fishing area. Secondly, we will show that this function is a supersolution in the sense of

Proposition 3.1 and then it coincides with the value function.

We consider the strategy Ĥ consisting in the immediate harvesting of all the existing population

in the fishing area, i.e. Ĥ0 = x and dĤt = θ(1−p)
pK V̂tdt where V̂ is the process describing the evolution

of the population in the reserve area, see the second equation in (2.1), under the policy Ĥ. It is

easy to check that X̂t = 0, and we have:

dV̂t =

[
rV̂t

(
1− V̂t

pK

)
− θ(1− p) V̂t

pK

]
dt+ σV̂tdWt, V̂0− = y,

The reward function associated with Ĥ reads J(x, y; Ĥ) = x+ g(y) with

g(y) = E
∫ ∞
0

θ(1− p)
pK

e−βtV̂tdt. (3.14)

Applying Feynman-Kac formula, we have that g fulfills

1

2
σ2y2g′′(y) +

[(
r − θ(1− p)

pK

)
y − r

pK
y2
]
g′(y)− βg(y) +

θ(1− p)
pK

y = 0 , (3.15)

with g(0) = 0. Studying the ordinary differential equation (3.15), we start with the analysis of the

autonomous term. It can be reduced to a confluent hypergeometric one using the transformation

g(y) = ylw(y), where l is the positive solution of 1
2σ

2l2 +
(
r − θ(1−p)

pK − 1
2σ

2
)
l−β = 0. We consider
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only the positive solution since g(0) = 0 is well defined. We now search a particular solution of the

non-homogenous ordinary differential equation (3.15) using the method of constant variation that

gives, adapting the argument in Appendice B in Chevalier, Ly Vath, Roch, and Scotti (2015), the

expression of g(y) as in (3.13). Note that in computing the expectation g(y) as defined in (3.14)

by solving the second-order ODE (3.15) with only one explicit Dirichlet boundary condition, i.e.

g(0) = 0, we obtain indeed an explicit solution in (3.13), with a “free” constant c.

We will now show that J(x, y; Ĥ) is a supersolution. Following Theorem V.39 page 312 in

Protter (2004), we define Dt(ω, y) := ∂
∂y V̂ (t, ω, y). Remarking that the explosion time, see the

statement of Theorem V.39 in Protter (2004), is infinite in our case due to the negative drift for

large values of Y . We have D satisfies the SDE

dDt = Dt

{[
r − θ(1− p)

pK
− 2r

pK
V̂t

]
dt+ σdWt

}
D0 = 1

which solution is

Dt = exp

{
rt− θ(1− p)

pK
t− 2r

pK

∫ t

0
V̂sds−

1

2
σ2t+ σWt

}
that is controlled by

D̂t = exp

{
rt− θ(1− p)

pK
t− 1

2
σ2t+ σWt

}
= exp

{[
r − θ(1− p)

pK

]
t

}
E(σWt) ≥ Dt

since V̂ is non negative and where E denotes the Dolean-Dade exponential. Applying Fatou’s lemma

and Fubini theorem we obtain that

g′(y) ≤ θ(1− p)
pK

1

β − r + θ(1−p)
pK

under the condition β > r. We will show that J(x, y; Ĥ) is a supersolution in the sense of (3.6).

We have already ∂J
∂x (x, y; Ĥ) = 1. We need to verify that [βJ − LJ ] (x, y; Ĥ) ≥ 0.

[βJ − LJ ] (x, y, Ĥ) = βx+ βg(y)−
[
rx

(
1− x

(1− p)K

)
+ θ(1− p)

(
y

pK
− x

(1− p)K

)]
−
[
ry

(
1− y

pK

)
− θ(1− p)

(
y

pK
− x

(1− p)K

)]
g′(y)− 1

2
σ2 y2g′′(y)

= (β − r)x+
r

(1− p)K
x2 +

θ

K
x
[
1− g′(y)

]
+βg(y)− θ(1− p)

pK
y −

[
ry

(
1− y

pK

)
− θ(1− p)

pK
y

]
g′(y)− 1

2
σ2 y2g′′(y) .

The last line is equal to zero thanks to the relation (3.15) and the first line is positive, i.e.

β − r +
θ

K

[
1− θ(1− p)

pK(β − r) + θ(1− p)

]
> 0

since β ≥ r. 2
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Remark 3.2 Recalling Corollary 3.2, when β ≥ r, we have v(x, y) = x + g(y) ≤ x + y. This

corollary implies that when the discount rate β is bigger than the reproduction rate r, then the

economic value, v(x, y), obtained from the optimal harvesting strategy under reserve constraint

is lower than the economic value, x + y, obtained by depleting fish stocks in both areas. In this

case, it may be argued that implementing a reserve policy prevents fishers from obtaining the

optimal economic value. However, one may equally argue that obtaining optimal economic value

by depleting the fish stocks is clearly short-termist. Indeed, the discount rate may actually fluctuate

depending on the current economic environment. Under strong uncertainty, it may be higher than

the reproduction rate in the short term, but not over the long run. As such, implementing a reserve

constraint prevents the fishing industry from implementing damaging short-termism.

From now, we consider that 0 ≤ β < r.

4 Viscosity characterisation and some properties of the optimal

policy

We now turn to the PDE characterisation of the value function using viscosity approach, see The-

orem 4.1 and Theorem 4.2. This PDE characterisation, which states that the value function is the

unique viscosity solution to associated the HJB equation (3.3), will allow us to obtain qualitative

as well as numerical results to our control problem. The other main result of this section is to show

that for any positive level of the fish population, y, in the marine reserve area, there exists a thresh-

old x̄y on the fish population in the fishing area, such that it is optimal to harvest any quantity

of fish population exceeding x̄y, see Proposition 4.1. The explicit behaviour of the threshold x̄y as

function of y is studied numerically in Section 5.

Theorem 4.1 The value function v is a continuous viscosity solution of the HJB equation (3.3),

i.e. v satisfies

(i) Supersolution viscosity property: for any (x, y) ∈ R++ × R++ and any C2 function ϕ in a

neighbourhood of (x, y) s.t. (x, y) is a local minimum of v − ϕ with (v − ϕ)(x, y) = 0,

min{βv(x, y)− Lv(x, y), vx(x, y)− 1} ≥ 0 (4.1)

(ii) Subsolution viscosity property: for any (x, y) ∈ R+×R+ and any C2 function ϕ in a neighbour-

hood of (x, y) s.t. (x, y) is a local maximum of v − ϕ with (v − ϕ)(x, y) = 0,

min{βv(x, y)− Lv(x, y), vx(x, y)− 1} ≤ 0 (4.2)

16



We now turn to the comparison principle for constrained viscosity solutions to the HJB equation

(3.3).

Theorem 4.2 Suppose continuous functions u and w respectively viscosity subsolution and viscosity

supersolution to the HJB equation (3.3) on R++ × R++, satisfying the boundary conditions

u(0, y) ≤ w(0, y), y ∈ R+

u(x, 0) ≤ w(x, 0), x ∈ R+

and the linear growth condition:

|u(x, y)|+ |w(x, y)| ≤ C(1 + x+ y), ∀(x, y) ∈ R++ × R++. (4.3)

for some positive constants C. Then

u ≤ w on R++ × R++.

Proof. The proof of Theorems 4.1 and 4.2 are postponed to Appendix. 2

The following Proposition states that for any positive value of the fish population, y, in the

marine reserve area, there exists a threshold x̄y on the fish population in the fishing area, such

that it is optimal to harvest any quantity of fish population exceeding x̄y. In other words, given

any value y of the reserved fish Y , the optimal policy is to harvest all fish exceeding the threshold

x̄y, i.e. harvesting the quantity X − x̄y, if X ≥ x̄y. When X is below x̄y, it is optimal to wait

until it exceeds the threshold x̄y to start harvesting again. This results are in-line with the one-

dimensional harvesting problem when no marine reserve is considered, see for instance Alvarez and

Shepp (1998).

Proposition 4.1 For all y ∈ R++ , there exists a unique x̄y ≥ 0 such that for all x ≥ x̄y, we have

(x, y) ∈ H.

Proof. We start proving the existence of x̄y. Defining AC = {(x, y) | px− (1− p)y > p(1− p)KC}

with C > 1 a constant large enough, we consider the function

v̂(x, y) =

 x− (1− p)KC − 1−p
p y + v

(
(1− p)KC + 1−p

p y, y
)

if (x, y) ∈ AC

v(x, y) otherwise .
(4.4)
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For simplicity, we now set the drift of the process X and Y as follows:

αx(x, y) := rx

(
1− x

(1− p)K

)
+ θ(1− p)

[
y

pK
− x

(1− p)K

]
αy(x, y) := ry

(
1− y

pK

)
− θ(1− p)

[
y

pK
− x

(1− p)K

]
.

We remark that v̂ is the expected profit associated to the admissible harvesting strategy where

the fisher applies the optimal strategy up to (x, y) ∈ AcC and harvests otherwise. Thanks to Lemma

3.1, we have v̂ ≤ v. To obtain the other inequality and therefore v̂ = v, we will prove that v̂ is a

viscosity supersolution of HJB equation (3.3).

This result is obtained by contradiction. Suppose that the claim is not true. There exist

(x0, y0) ∈ R++ ×R++ and a function φ̂ ∈ C2(R++ ×R++) such that (φ̂− v̂)(x0, y0) = 0 and φ̂ ≤ v̂

in a neighbourhood Bε(x0, y0) = {(x, y), ‖(x, y)− (x0, y0)‖ ≤ ε} of (x0, y0) and such that

min{βφ̂(x0, y0)− Lφ̂(x0, y0), φ̂x(x0, y0)− 1} < 0 (4.5)

Since v = v̂ on AcC and v is a supersolution to HJB (3.3), we have (x0, y0) ∈ AC

We have easily that v̂ restricted to AC admits a partial derivative with respect to x and that

this partial derivative is equal to 1. From (4.5), we obtain (β − L)φ̂(x0, y0) < 0.

Since the value function v is non-negative, we deduce that v̂ is non-negative and then we have

φ̂(x0, y0) = v(x0, y0) > 0. We have

0 < Lφ̂(x0, y0) = αx(x0, y0) + αy(x0, y0)φ̂y(x0, y0)

+
1

2
σ2
[
x20φ̂xx(x0, y0) + ρx0y0φ̂xy(x0, y0) + y20φ̂yy(x0, y0)

]
.

Recalling the definition of function v̂, i.e. equation (4.4), we have that v̂ is semi-differentiable with

respect to y and the right and the left partial derivative of v̂ with respect to y are decreasing

functions, always with respect to y, due to the concavity of the value function v. We could then

assume that φ̂ satisfies the same properties, i.e. it is semi-differentiable with respect to y and the

right and the left partial derivative of φ̂ with respect to y are decreasing functions, always with

respect to y. Inside the domain AC , it is easy to see that φ̂xx(x0, y0) = 0 = φ̂xy(x0, y0) due to the

particular form of v̂ as defined in (4.4). Since the left partial derivative of v̂ with respect to y is

decreasing φ̂yy(x0, y0) is nonpositive, otherwise the inequality φ̂ ≤ v̂ is not satisfied. In a similar

way, we can show that the partial derivative of φ̂ is controlled by the right and left partial derivative
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of v̂, i.e.

v̂−y (x0, y0) ≤ φ̂y(x0, y0) ≤ v̂−y (x0, y0) . (4.6)

Moreover, we have by concavity

v̂−y (x0, y0) = v−y

(
(1− p)KC +

1− p
p

y0, y0

)
≤ v−y

(
(1− p)KC +

1− p
p

y0, η

)
, (4.7)

where η ≤ y0. Resuming the previous relation can be satisfied only if

αy(x0, y0)φ̂y(x0, y0) > −αx(x0, y0) . (4.8)

In the domain AC , we have αx < 0 and in particular

αx(x0, y0) = rx0

[
1− x0

(1− p)K

]
+

θ

pK
[(1− p)y0 − px0]

αy(x0, y0) = ry0

[
1− y0

pK

]
− θ

pK
[(1− p)y0 − px0] .

Thanks to relation (4.6) and the fact that the value function is increasing with respect to y, see

Lemma 3.2, we deduce that φ̂y(x0, y0) is non negative and then if αy(x0, y0) ≤ 0, a contradiction

appears.

We then consider the subset of AC where αy(x0, y0) > 0. Replacing (4.6) and (4.7) into (4.8)

and integrating with respect to η between y0/2 and y0 we obtain

αy(x0, y0)

[
v

(
(1− p)

(
KC +

y0
p

)
, y0

)
− v

(
(1− p)

(
KC +

y0
p

)
,
y0
2

)]
> −1

2
αx(x0, y0)y0.

Using Lemma 3.1, we have that x ≤ v(x, y) ≤ ϕM (x, y) < x+ y +B, where B is a constant. Then

the previous inequality implies

αy(x0, y0)(y0 +B) > −1

2
αx(x0, y0)y0.

Since αx is quadratic in x0 whereas αy is linear, if C is large enough given x0 > (1−p)KC, then the

previous inequality is a contradiction. Therefore, we obtain that ∀ y ∈ R++ , there exists x̄y ≥ 0

such that vx(x̄y, y) = 1. Recalling that the function v is concave, see Lemma 3.2, we deduce that vx

is decreasing with respect to x. As a consequence ∀x ≥ x̄y, we have vx(x, y) = 1. That concludes

the proof. 2

5 Numerical results

This Section deals with numerical studies of our harvesting problem. In Section 4, we have char-

acterised the value function as the unique solution in viscosity sense of the HJB equation (3.3).
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Moreover, in Section 3, we have detailed some properties of the value function, in particular, it is

non-decreasing and concave. Both properties are useful to obtain a robust numerical method to

approximate the solution of the HJB equation (3.3).

5.1 Numerical scheme

To solve the HJB equation (3.3) arising from the stochastic control problem (3.2), we choose to

use a deterministic approach based on a finite difference scheme which leads to the resolution

of a controlled Markov chain problem. Such technique was widely popularised by Kushner and

Dupuis (2013). The convergence of the solution of the numerical scheme towards the solution of

the HJB equation, when the space step goes to zero, can be shown using standard arguments, i.e.

it satisfies monotonicity, consistency and stability properties. Similar numerical schemes, involving

a controlled Markov chain problem, are exploited in operational research, see for instance Cao,

Li, and Yan (2012), Jin, Yin and Zhu (2012), Parpas et Webster (2014), Sesana, Marazzina and

Fusai (2014), Cosso, Marazzina and Sgarra (2015) and Phelan, Marazzina, Fusai and Germano

(2018). The concavity guarantees the existence of left derivative with respect to the variable x and

this derivative is non-increasing. The harvesting region H is identified by the set where the left

derivative with respect to x is equal to 1. Thanks to the concavity, if (x, y) belongs to the harvesting

region then all (x′, y) with x′ > x belongs to the harvesting region. The numerical method is then

to identify, for all y, the smallest x̄y such that vx(x̄y, y) = 1.

We first localise the problem on a discretised grid. Let h and k be the discretisation steps

along the directions x and y respectively. We define the space grid as Gh,k := {0, h, 2h, .., xmax} ×

{0, k, 2k, ..., ymax}, where xmax and ymax are nonnegative constants, that could be changed if the

threshold x̄y is not identified.

For sake of readability we introduce the following quantities:

z1 := (x+ h, y), z2 := (x, y + k), z3 := (x− h, y), σx := σx,

z4 := (x, y − k), z5 := (x+ h, y + k), z6 := (x− h, y − k), σy := σy,

µx := rx

(
1− x

(1− p)K

)
+ θ

(
y

pK
− x

(1− p)K

)
, µy := ry

(
1− y

pK

)
− θ

(
y

p
− x

(1− p)K

)
.

For (x, y) in the space grid Gh,k we consider approximations of the following form:

∂v

∂x
(x, y) ≈ v(x+ h, y)− v(x, y)

h
1µx≥0 −

v(x− h, y)− v(x, y)

h
1µx<0,

∂v

∂y
(x, y) ≈ v(x, y + k)− v(x, y)

k
1µy≥0 −

v(x, y − k)− v(x, y)

k
1µy<0,

20



∂2v

∂x2
(x, y) ≈ v(x+ h, y) + v(x− h, y)− 2v(x, y)

h2
,

∂2v

∂y2
(x, y) ≈ v(x, y + k) + v(x, y − k)− 2v(x, y)

k2
,

∂2v

∂x∂y
(x, y) ≈ 2v(x, y) + v(x+ h, y + k) + v(x− h, y − k)

2hk

−v(x+ h, y) + v(x, y + k) + v(x− h, y) + v(x, y − k)

2hk
.

Thus, using the above notations and applying a finite difference scheme, the HJB equation (3.3)

can be formulated as the following:

v(x, y) = max

{∑6
i=1 piv(zi)

1 + β∆th,k
, v(x− h, y) + h

}
, (5.1)

where

p1(x, y) :=
σ2xk

2 + 2hk2µ+x − ρhkσxσy
2Qh,k

, p2(x, y) :=
σ2yh

2 + 2h2kµ+y − ρhkσxσy
2Qh,k

,

p3(x, y) :=
σ2xk

2 + 2hk2µ−x − ρhkσxσy
2Qh,k

, p4(x, y) :=
σ2yh

2 + 2h2kµ−y − ρhkσxσy
2Qh,k

,

p5(x, y) = p6(x, y) :=
ρhkσxσy

2Qh,k
, ∆th,k(x, y) :=

h2k2

Qh,k
,

Qh,k(x, y) := hk(|µx|k + |µy|h) + σ2xk
2 + σ2yh

2 − ρhkσxσy.

To compute explicitly the approximated solution of the discrete problem (5.1) we use the following

iterative scheme:

vn+1(x, y) = max

{∑6
i=1 pivn(zi)

1 + β∆th,k
, vn(x− h, y) + h

}
, (5.2)

v0(x, y) = 0. (5.3)

The above iterative scheme is explicit and fully implementable on the enlarged grid G+h,k :=

{0, .., xmax + h} × {−k, .., ymax + k}.

Using the following parameters, about 8 seconds are necessary to obtain the approximated value

function and policy using IntelTMCore i7 at 2.70 Ghz CPU with 8 Go of RAM.

5.2 Comparative statics

In this section, we study the sensitivity of the value function, i.e. the discounted reward from fishing,

and the optimal policy, i.e. the optimal threshold x̄y, with respect to the main model parameters.

Numerical tests are performed for different values of the parameters and with the following set of

central values. The choice of the partition p = 0.4 will be justified by an economic justification and
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r β σ ρ θ K p

0.3 0.05 0.01 0.01 3.5 1 0.4

Table 1: Parameters used for the numerical tests.

is coherent with the result of Grafton, Kompas and Lindenmayer (2005), since they obtain p = 0.5

but the numerical values for p = 0.4 are quite similar in their case.

Figure 1: Optimal harvesting threshold when the populations in reserve and unprotected area are

renormalised by the proportion p. From top left to bottom right, graphs are for p = 0.1; 0.3; 0.4; 0.5;

0.6; 0.8. The dotted line indicates the states with same density in reserve and unprotected areas,

i.e. y/p = x/(1− p).

We plot, in Figure 1, the shapes of the frontier which separate the harvesting region H, which is

on the right side of the frontier where x ≥ x̄y, from the no harvesting region NH, which is on the

left side of the frontier where x ≤ x̄y , characterising therefore the optimal harvesting policy for

different values of p, i.e. for all y, the threshold x̄y above which is optimal to harvest.

Our numerical results as plotted in Figure 1, allow us to identify the following three cases.
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• First, for large values of y, i.e. y > 0.5p, the optimal threshold x̄y is very small and get even

smaller for higher values of y. The interpretation is that when the reserve area is overcrowded,

there is little extinction risk. Then, the optimal policy is to harvest more in the authorised

area, especially if the population overcomes the capacity of the environment, in order to

rebalance as soon as possible the excess of population in the reserve .

• Second, for small values of y, i.e. y < 0.3p, the optimal threshold x̄y is very large and gets

higher for smaller values of y . The optimal policy consists in delaying harvesting and keeping

a high spillover from the fishing area to the reserve in order to repopulate the reserve area

quickly.

• A third case arises for intermediate values of y, i.e. 0.3p < y < 0.5p. When the fish density

decreases in the reserve area, i.e. y decreases, the optimal threshold x̄y intuitively should

increase as in the previous two cases, but this is no longer the case. Indeed, instead of

delaying harvesting, we observe that the threshold x̄y above which it is optimal to harvest,

actually decreases. This is completely counter-intuitive as the optimal policy implies that

the less we have fish in the reserve area, the more we have to harvest in the authorised area.

Furthermore, we observe that the curve representing x̄y with respect to y decreases for smaller

value of y and becomes tangent and then coincides with the dotted line. We recall that the

dotted line represents the line where fish density is the same in the reserve and authorised

areas. Although it looks counter-intuitive, our findings state that for intermediate levels of

fish population y, which represent no risk of extinction or overpopulation in the reserve area,

the optimal policy is to harvest any excess of fish density in the authorised area, preventing

therefore the fish net spillover from authorised area to the reserve. Indeed, spillover from

authorised area to reserve area should only happen when the fish density in the reserve is

very low, see the above second case. We will refer to this effect as the diagonal effect of the

threshold x̄y.

In the economic point of view, we compute the value function for different values of p. We plot

the following Figure 2 which compares the value function for different p and to the case when no

reserve area is implemented, i.e. when p = 0. We can see that there is a clear economic surplus

when a reserve area is implemented, with p = 0.4 delivering the highest value function, in other

words, the best economic values. As such, these numerical results highlight that implementing a

reserve policy not only has an evident ecological aim but also an economic surplus. These numerical
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results are globally stable when we change other parameters, confirming therefore, numerically, the

importance of no-take area in natural resources management.

Figure 2: Value function for different value of the proportion of the marine reserve. The case p = 0

indicates the absence of the marine reserve.

We now evaluate the sensitivity with respect the growth rate r, the discount factor β and the

volatility σ. We plot, in Figure 3, the resulting shapes of the frontier which separate the harvesting

region H, from the no harvesting region NH, respectively for different values of r, β and σ. We

may notice that the optimal threshold x̄y is increasing with respect to the growth rate r but

decreasing with respect the discount factor β and the volatility σ. These results are insightful and

economically in-line with expectations. Indeed, our findings basically state that when the growth

rate r gets larger, it is optimal to delay harvesting and let the system grows as we expect a better

harvest later. The opposite findings are true with regard to the discount rate and the volatility.

However, the diagonal effect of the threshold x̄y appears for all the different sets of parameters,

the only changes is to translate along the diagonal line. We also remark that the sensitivity with

respect to the volatility σ is very small compared to the other parameters.

We also analyse, in Figure 4, the sensitivities of the value function with respect to the growth

rate r, the discount factor β and the volatility σ. We may notice that the value function is increasing
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Figure 3: Optimal harvesting threshold when the populations in reserve and unprotected area are

renormalised by the proportion p = 0.4. From left to right, graphs are for the growth rate r, the

discount factor β and the volatility σ. The dotted line indicates the states with same density in

reserve and unprotected areas, i.e. y/p = x/(1− p).

in the growth rate r but decreasing with respect the discount factor β and the volatility σ. This

findings is line with our economic intuitions. We also notice that the value function is much less

sensitive to the change in σ compared to the other two parameters β and σ.

We finally focus on the parameter θ describing the transfer rate between the no-take reserve

and the harvesting area. Figure 5 shows the sensitivity of the value function as well as the optimal

threshold x̄y with respect the transfer rate θ. We notice that the value function is mildly decreasing

with respect to θ. The finding on the optimal threshold is insightful as it interestingly separates two

situations when the fish density in the reserve area is higher or lower than that in the harvesting

area, in other words, when the transfer flow, i.e. spillover, is positive (corresponding to the region

above the doted line) or negative (corresponding to the region below the doted line) from the

reserve area to the harvesting area. Indeed, when the transfer flow is positive, a bigger parameter

θ optimally leads to a higher optimal threshold x̄y, i.e. it is optimal to delay harvesting and wait

until enough fishes have moved into the harvesting area. On the other hand, when the transfer

flow is negative, a bigger the parameter θ optimally leads to a lower optimal threshold x̄y, i.e. it

is optimal to increase our harvest and not wait until too many fishes move out of the harvesting

area. In other words, the diagonal effect is magnified when θ increases. We deduce that if the

no-take reserve area is highly connected with the harvesting area, the diagonal effect will be really
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Figure 4: Value function for different value of the proportion of the marine reserve. For different

values of the growth rate r, the discount factor β and the volatility σ respectively.

important. In contrast, when θ is small, for instance when the governments or regulators choose

lowly connected areas, like a semi-enclosed sea connected via narrow straights, the diagonal effect

will be minimal or negligible. To sum up, while the optimal economic reward may not be very

sensitive to the parameter θ, i.e. to the way the border between the reserve and the harvesting area

is designed, the optimal policy behaviour may change dramatically.
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Figure 5: Optimal harvesting threshold when the populations in reserve and unprotected area are

renormalised by the proportion p = 0.4. From left to right, graphs are for the connection parameter

θ. The dotted line indicates the states with same density in reserve and unprotected areas, i.e.

y/p = x/(1 − p). Value function for different value of the proportion of the marine reserve. For

different values of the connection parameter θ.

6 General discussion and conclusions

We have studied an optimal harvesting problem under marine reserve constraints, in which the

marine area is split into two parts, the no-take marine reserve where harvesting is strictly prohibited

and a fishing area where unconstrained harvesting is allowed. In our harvesting problem, which is

formulated as a bi-dimensional singular control problem, our main focus is on the optimal harvesting

control strategy. We have addressed our problem in the following three mains aspects. First, the

modelling aspect which includes important features and constraints characterising our harvesting

problem. Then, we solve theoretically and rigorously our stochastic optimisation problem using

viscosity approach. Finally, we solve our problem numerically, in order to characterise the optimal

policy in an explicit framework. Our contribution to the literature on the multi-dimensional singular

control is our ability to obtain non-trivial results on the value function and more importantly on the

optimal strategy, in particular the study around an optimal threshold x̄y which in turn defines the

optimal strategy. This is clearly beyond the usual viscosity characterisation of the value function

in most studies on non-degenerate multi-dimensional singular control problems. On the harvesting

management aspect, our findings are new and insightful as they clearly show that marine reserve

policy may increase both ecological and economics interests. Moreover, the obtained results are
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completely counter-intuitive as the optimal policy implies that, when there is no extinction or

overpopulation risk, the less we have fish in the reserve area, the more we have to harvest in the

fishing area. This optimal strategy, which consists in harvesting all spillover from the protected area,

clearly indicates that there is no longer any conflictual relation between ecological and economic

interests. Furthermore, comparative statics confirm these phenomena which are magnified when

the transfer rate between the two regions increases. As such, they clearly contribute to a better

understanding on optimal harvesting strategy under marine reserve constraints.

However many operational questions and important realistic features in harvesting management

problem remain open and currently unaddressed and need to be investigated in future research.

Natural improvements to our model and control problem include interesting and distinctive charac-

teristics of fish evolution such as seasonality, see for instance Ni and Sandal (2019) and Kvamsdal,

Maroto, Morán and Sandal (2020), spatial distribution, see Costello and Polasky (2008), or multi-

party exploitation of renewable resources, see Ekerhovd, Flam and Steinshamn (2021). Other

interesting features to be considered in future work include the possibility of negative population

shocks due to epidemics and/or ecological disasters. Previous literature models these shocks as

Poisson events with constant intensity, see for instance, Grafton, Kompas and Lindenmayer (2005).

However, based on the observations of the current pandemic, we may consider cluster structures, in

which shocks are concentrated in short periods without events between each cluster. Such cluster-

ing effects may be incorporated by using Hawkes process or continuous state branching processes,

see for instance Bernis, Brignone, Scotti and Sgarra (2021), Jiao, Ma, Scotti and Zhou (2021), and

Sadoghi and Vecer (2021). Further realistic model features such as “dynamic” spillover may be

incorporated to our model by using Markov chain leading to a regime-switching problem, therefore

a system of variational inequalities, see for instance Chevalier, Ly Vath, Roch and Scotti (2015) and

Oliveira and Perkowski (2020). Another realistic model feature which may be studied in future re-

search is to consider an endogenous version of the discount rate β within our optimisation problem.

The introduction of an endogenous β will certainly lead us to a better understanding in the degree

of substitution between future and current consumption. Finally, a more theoretical issue arising

in our study is the choice of the size of the no-take area. In this paper, we have consider a static

problem, i.e. the regulator or the government fixes the proportion of the no-take area p. However,

a more dynamic approach could also be investigated with a game between the social planner and

the fishers. The arising natural setup is a singular control problem of McKean Vlasov dynamics,

which could be addressed in a future research.
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Appendix

The proofs of the following Theorems 4.1 and 4.2 could be obtained by mainly adapting the argu-

ments used in Bayraktar and Young (2011) and Chevalier, Ly Vath, Roch, and Scotti (2015). We

will therefore provide only the tricky parts of the proofs which include the subsolution property

and a sketch of the proof of the comparison theorem.

Proof of the Theorem 4.1

Proof of the subsolution property on R++ × R++.

We prove the subsolution property by contradiction. Suppose that the claim is not true. Then, there

exists (x, y) and a neighbourhood Bε(x, y) = {(x, y), ‖(x, y) − (x, y)‖ ≤ ε} of (x, y), a C2 function

ϕ with (ϕ− v)(x, y) = 0 and ϕ ≥ v on Bε(x, y), and η > 0, such that for all (x, y) ∈ Bε(x, y)

(βϕ− Lϕ)(x, y) > η (6.4)

ϕx(x, y)− 1 > η. (6.5)

Let an admissible harvesting strategy H ∈ A and consider the exit time τε = inf{t ≥ 0, (Xt, Yt) /∈

Bε(x, y)}. Applying the Itô’s formula to the process e−βtϕ(Xt, Yt) between 0 and τ−ε , and taking

the expectation, we obtain

E
[
e−β(τε)ϕ(Xτ−ε

, Yτε)
]

= ϕ(x, y) + E
[∫ τε

0
e−βt(−βϕ+ Lϕ)(Xt, Yt)dt

]
(6.6)

− E
[∫ τε

0
e−βtϕx(Xt, Yt)dH

c
t

]

+ E

 ∑
0≤t<τε

e−βt[ϕ(Xt, Yt)− ϕ(Xt− , Yt)]

 .
From Taylor’s formula and (6.5), and noting that ∆Xt = −∆Ht, we have for all 0 ≤ t < τε

ϕ(Xt, Yt)− ϕ(Xt− , Yt) ≤ ∆Xt ϕx(Xt + ∆Xt, Yt) ≤ −(1 + η)∆Ht . (6.7)

Using (6.5), (6.6) and (6.7), we have

E
[
e−βτεϕ(Xτ−ε

, Yτε)
]
≤ ϕ(x, y)− η E

[∫ τε

0
e−βtdt

]
− (1 + η) E

[∫ τ−ε

0
e−βtdHt

]
. (6.8)

Notice that while (Xτ−ε
, Yτε) ∈ Bε(x, y)}, (Xτε , Yτε) is either on the boundary ∂Bε(x, y) or out of

Bε(x, y). However, there’s some random variable α valued in [0, 1] and X(α) such that

(X(α), Yτε) := (Xτ−ε
+ α∆Xτε , Yτε) = (Xτ−ε

− α∆Hτε , Yτε) ∈ ∂Bε(x, y)
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Then similarly as in (6.7), we have

ϕ(X(α), Yτε)− ϕ(Xτ−ε
, Yτε) ≤ −α(1 + η)∆Hτε (6.9)

Notice that Xτε = X(α) − (1− α)∆Hτε , and from Lemma 3.1, we have

v(X(α), Yτε) ≥ v(Xτε , Yτε) + (1− α)∆Hτε (6.10)

Recalling that ϕ(X(α), Yτε) ≥ v(X(α), Yτε), inequalities (6.9) and (6.10) imply

ϕ(Xτ−ε
, Yτε) ≥ v(Xτε , Yτε) + (1 + αη)∆Hτε

Plugging this into (6.8), we obtain

v(x, y) ≥ E
[∫ τε

0
e−βtdHt

]
+ E

[
e−βτεv(Xτε , Yτε)

]
+η

{
E
[∫ τε

0
e−βtdt

]
+ E

[∫ τ−ε

0
e−βtdHt

]
+ E

[
αe−βτε∆Hτε

]}
.

We now claim that there exists a constant m0 > 0 such that for any admissible harvesting strategy

E
[∫ τε

0
e−βtdt

]
+ E

[∫ τ−ε

0
e−βtdHt

]
+ E

[
αe−βτε∆Hτε

]
≥ m0 . (6.11)

We need to find some constantM0 > 0 such that the C2 function ψ(x, y) := M0

[
(x− x)2 + (y − y)2 − ε2

]
satisfies

min {βψ − Lψ + 1, 1− |ψx|} ≥ 0, on Bε(x, y),

ψ = 0, on ∂Bε(x, y).

It is sufficient to take M0 small enough. Applying the Itô’s formula, we then obtain

E
[
e−β(τε)ψ(Xτ−ε

, Yτε)
]
≤ ψ(x, y) + E

[∫ τε

0
e−βtdt

]
+ E

[∫ τ−ε

0
e−βtdHt

]
. (6.12)

Noticing that ψx(x, y) ≥ −1, we have ψ(Xτ−ε
, Yτε) − ψ(X(α), Yτε) ≥ −(Xτ−ε

− X(α)) = −α∆Hτε

Plugging into (6.12), we obtain

E
[∫ τε

0
e−βtdt

]
+ E

[∫ τ−ε

0
e−βtdHt

]
+ E

[
e−β(τε)α∆Hτε

]
≥ E

[
e−β(τε)ψ(X(α), Yτε)

]
− ψ(x, y) ≥ −ψ(x, y) = M0ε

2

Hence the claim (6.11) is true with m0 = M0ε
2.
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Finally, by taking the supremum over all admissible harvesting strategies H, and using the

dynamic programming principle (3.2), we have v(x, y) ≥ v(x, y) + ηm0 , which is a contradiction.

2

Proof of the Comparison Theorem 4.2

Let u be a continuous viscosity subsolution to the HJB equation (3.3) on R++ ×R++, and w be a

continuous viscosity supersolution to HJB equation (3.3) on R++ × R++, satisfying the boundary

conditions

u(0+, y) ≤ w(0+, y), y ∈ R+

u(x, 0+) ≤ w(x, 0+), x ∈ R+

and linear growth condition :

|u(x, y)|+ |w(x, y)| ≤ C(1 + x+ y), ∀(x, y) ∈ R++ × R++. (6.13)

for some positive constants C.

We want to prove that

u ≤ w on R++ × R++.

Step 1. We first construct a strict supersolution to the HJB equation (3.3) with suitable pertur-

bations of w. We consider the perturbation smooth function on R++ × R++,

H(x, y) = (x+ y)2 + (1− p)Kx+ δx+ pKy +B ,

where B is a constant large enough, in particular larger than C. Then for any γ ∈ (0, 1), we show

that the function wγ = (1−γ)w+γH is a strict viscosity supersolution to HJB (3.3) in R++×R++,

i.e. there exists δ > 0 such that

min

{
βwγ − Lwγ ;

∂wγ

∂x
− 1

}
≥ γδ > 0. (6.14)

A straightforward computation gives us the above strict inequality.

Step 2. In order to prove the comparison principle, it suffices to show that for all γ ∈ (0, 1):

sup
R++×R++

(u− wγ) ≤ 0,

since the required result is obtained by letting γ to 0. We argue by contradiction and suppose that

there exist some γ ∈ (0, 1), such that

Θ ≡ sup
R++×R++

(u− wγ) > 0. (6.15)
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Notice that u − wγ goes to −∞ when ||(x, y)|| goes to infinity. We also have limx→0+ u(x, y) −

limx→0+ w
γ(x, y) ≤ γ(C − B) ≤ 0. Hence, by continuity of the functions u and wγ , there exists

(x0, y0) ∈ R++ × R++ such that Θ = u(x0, y0)− wγ(x0, y0). For sake of simplicity, we will denote

z ≡ (x, y), z′ ≡ (x′, y′) and z0 ≡ (x0, y0) For any ε > 0, we consider the functions

Φε(z, z
′) = u(z)− wγ(z′)−Ψε(z, z

′),

Ψε(z, z
′) =

1

4
||z − z0||4 +

1

2ε
||z − z′||2,

Now the rest of the proof follows, for instance the appendix A of Chevalier, Ly Vath, Roch, and

Scotti (2015). 2
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