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In this research work, we introduce a new concept of double measure ergodic processes to identify the space of double measure pseudo almost periodic (or pap) processes in the pth mean sense. We display some findings regarding the completeness as well as the composition theorems and the invariance of the space consisting in double measure pap processes. Motivated by the above-mentioned results, the Banach fixed point theorem and the stochastic analysis techniques, we prove the existence, uniqueness and the global exponential stability of doubly measure pseudo almost periodic mild solution for a class of stochastic Nicholson's blowflies model with mixed delays in a separable real Hilbert space. The concluding part of the work is crowned with an example to confirm the reliability and feasibility of our findings.

Introduction

In this work, we take into consideration the following Nicholson's blowflies model with multiple harvesting terms and infinite delays, driven by Brownian motion in a separable Hilbert space H: In [START_REF] Chérif | Quadratic-mean pseudo almost periodic solutions to some stochastic differential equations in a hilbert space[END_REF], Chrif investigates the existence of the quadratic-mean pseudo almost periodic solutions of the following equation:

dx(t) = -a(t)x(t)dt + m i=1 α i (t)x(t -τ i (t))e -βi(t) R 0 -∞ ki(s)x(t+s)ds dt + f (t, x(t -τ ))dW(t), t ∈ R, ( 1 
dx(t) = Ax(t)dt + f (t, x(t -τ ))dt + ϕ(t, x(t -τ ))dW(t), t ∈ R, (1.2) 
where A is the infinitesimal generator of a C 0 -semi-group (T (t)) t≥0 exponentially stable, f, ϕ are two stochastic processes. In [START_REF] Diop | Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion[END_REF], the authors obtained sufficient condition for the existence of pth mean μ-pseudo almost periodic mild solutions to the following class of nonlinear stochastic evolution equations driven by a fractional Brownian motion in a separable Hilbert space H:

dx(t) = A(t)x(t)dt + f (t, x(t))dt + θ(t, x(t))dW(t) + ψ(t)dB H (t), t ∈ R, (1.3) 
where (A(t)) t∈R is a family of densely defined closed linear operators satisfying Acquistapace-Terreni conditions; f, θ are two stochastic processes and ψ a function deterministic. The notion of pseudo almost periodicity with measure (see [START_REF] Belmabrouk | Measure pseudo almost periodic solution for a class of nonlinear delayed stochastic evolution equations driven by Brownian motion[END_REF][START_REF] Blot | New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications[END_REF][START_REF] Chérif | New results for a Lasota-Wazewska model[END_REF][START_REF] Diagana | Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory[END_REF][START_REF] Miraoui | Existence of µpseudo almost periodic solutions to some evolution equations[END_REF][START_REF] Miraoui | µ-pseudo-almost automorphic solutions for some differential equations with reflection of the argument[END_REF][START_REF] Miraoui | Measure pseudo almost periodic solutions for differential equations with reflection[END_REF][START_REF] Miraoui | Measure pseudo almost periodic solutions of shunting inhibitory cellular neural networks with mixed delays[END_REF]) is a generalization of the almost periodicity and pseudoalmost periodicity introduced by Zhang [START_REF] Zhang | Pseudo almost periodic solutions of some differential equations[END_REF]; it is also a generalization of weighted pseudo almost periodicity firstly introduced by Diagana [START_REF] Diagana | Weighted pseudo-almost periodic solutions to some differential equations[END_REF]. The concept of measure almost periodicity is of great importance in probability for investigating stochastic processes. Such a notion is also very interesting for applications arising in many branches of mathematical biology, physics and statistics. Moreover, for Nicholson's Blowflies model, many results were proved, (see for example [START_REF] Berezansky | Nicholson's blowflies differential equations revisited: main results and open problems[END_REF][START_REF] Gurney | Nicholson's blowflies revisited[END_REF][START_REF] Kulenoviĉ | Global attractivity in nicholson's blowflies[END_REF][START_REF] So | Global attractivity and uniform persistence in Nicholson's blowflies[END_REF]). Motivated by the above discussion, we introduce the concept of doubly measure pseudo almost periodicity in the stochastic case, we give some fundamental properties and we investigate the existence, uniqueness and stability of (μ, ν)-pseudo almost periodic mild solutions in pth mean sense for Eq. (1.1).

This paper is laid out as follows: In Sec. 2, we introduce the concept of doubly measure pseudo almost periodicity. Some new developments on the completeness and composition of measure pseudo almost periodic functions are exhibited in Sec. 3.

In Sec. 4, we address the existence and uniqueness and exponential stability of (μ, ν)-pseudo almost periodic mild solutions in pth mean sense for Eq. (1.1). Finally, in the closing section, we set forward an example to assess the effectiveness of the results. We denote the space of such all functions by ξ(R, H, μ, ν).

We give the following hypothesis:

(H 1 ) Let μ, ν ∈ M, lim sup r→+∞ μ([-r, r]) ν([-r, r]) = α ≺ ∞. Proposition 2.1. Let μ, ν ∈ M satisfy (H 1 ). Then (ξ(R, H, μ, ν), . ∞ ) is a Banach space, where f ∞ = sup t∈R |f (t)|. Proof. It is enough to prove that ξ(R, H, μ, ν) is closed in B C (R, H). Let (f n ) n be a sequence in ξ(R, H, μ, ν) such that lim n→+∞ f n -f ∞ = 0. Since f p is a convex function, then for r > 0, we have r -r f (t) p dμ(t) ≤ 2 p-1 r -r f n (t) -f (t) p dμ(t) + 2 p-1 r -r f n (t) p dμ(t).
It implies

1 ν([-r, r]) r -r f (t) p dμ(t) ≤ 2 p-1 ν([-r, r]) r -r f n (t) -f (t) p dμ(t) + 2 p-1 ν([-r, r]) r -r f n (t) p dμ(t). It follows that lim sup r→+∞ 1 ν([-r, r]) r -r f (t) p dμ(t) ≤ lim sup r→+∞ 2 p-1 μ([-r, r]) ν([-r, r]) sup t∈R f n (t) -f (t) p . Moreover, sup t∈R f n (t) -f (t) p ≤ sup t∈R f n (t) -f (t) p = f n -f p ∞ , 2250065-3
and from (H 1 ), we obtain lim sup

r→+∞ 1 ν([-r, r]) r -r f (t) p dμ(t) ≤ α2 p-1 f n -f p ∞ . Since lim n→+∞ f n -f ∞ = 0, we deduce that lim r→+∞ 1 ν([-r, r]) r -r f (t) p dμ(t) = 0.

Definition 2.2 ([11]

). A stochastic process x : R → L p (Ω, H) is said to be stochastically bounded in pth mean sense, if there exists C > 0 such that

E x(t) p ≤ C, ∀ t ∈ R,
and a stochastic process x : R → L p (Ω, H) is said to be stochastically continuous in

pth mean sense, if lim t→s E x(t) -x(s) p = 0, ∀ s ∈ R.
Denote by B C (R, L p (Ω, H)) the collection of all the stochastically bounded continuous processes. We can verify that (B C (R, L p (Ω, H)), . ∞ ) is a Banach space, where

x ∞ = sup t∈R (E x(t) p ) 1/p . Definition 2.3. Let μ, ν ∈ M. A stochastic process x is said to be (μ, ν)-ergodic in pth mean sense, if x ∈ B C (R, L p (Ω, H)) and it satisfies lim r→+∞ 1 ν([-r, r]) r -r E x(t) p dμ(t) = 0.
Denote by ξ p (R, L p (Ω, H), μ, ν) the set of all such stochastic processes.

Proposition 2.2. Let μ, ν ∈ M satisfy (H 1 ). Then (ξ p (R, L p (Ω, H), μ, ν), . ∞ ) is a Banach space.
To prove this proposition, we just have to use the same arguments as in the proof of Proposition 2.1. The following lemma gives some properties of ergodicity. Lemma 1. Let μ, ν ∈ M, satisfy (H 1 ), and let I be a bounded interval (eventually

I = ∅). Suppose that x ∈ B C (R, L p (Ω, H)).
Then the following assertions are equivalent:

(i) x ∈ ξ p (R, L p (Ω, H), μ, ν); (ii) lim r→+∞ 1 ν([-r,r]\I) [-r,r]\I E x(t) p dμ(t) = 0; (iii) for any > 0, lim r→+∞ μ{t ∈ [-r, r]\I : E x(t) p > } ν{t ∈ [-r, r]\I} = 0. 2250065-4
Proof. The proof is based on the same arguments as in the proof of [START_REF] Diop | Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion[END_REF]Theorem 2.22]. For r > 0 such that I ⊂ [-r, r] and ν([-r, r]\I) > 0,

we have

1 ν([-r, r]\I) [-r,r]\I E x(t) p dμ(t) = 1 ν([-r, r]) -A r -r E x(t) p dμ(t) -B = ν([-r, r]) ν([-r, r]) -A 1 ν([-r, r]) r -r E x(t) p dμ(t) - B ν([-r, r]) . Since ν(R) = +∞, we obtain that lim r→+∞ 1 ν([-r, r]) r -r E x(t) p dμ(t) = 0.
Thus, (i) and (ii) are equivalent.

(ii) ⇒ (iii) Let A ε r = {t ∈ [-r, r]\I : E x(t) p > ε} and B ε r = {t ∈ [-r, r]\I : E x(t) p ≤ ε}.
Assume that (ii) holds. Then, we have

1 ν([-r, r]\I) [-r,r]\I E x(t) p dμ(t) ≥ 1 ν([-r, r]\I) A ε r E x(t) p dμ(t) ≥ ε μ(A ε r ) ν([-r, r]\I) .
Therefore, for r large enough, we obtain (iii).

(iii) ⇒ (ii) Assume that (iii) holds and let ε > 0, then from (H 1 ), we have

1 ν([-r, r]\I) [-r,r]\I E x(t) p dμ(t) = A ε r E x(t) p dμ(t) + B ε r E x(t) p dμ(t) ≤ x ∞ μ(A ε r ) ν([-r, r]\I) + ε μ(B ε r ) ν([-r, r]\I) ≤ x ∞ μ(A ε r ) ν([-r, r]\I) + ε μ([-r, r]\I) ν([-r, r]\I) 2250065-5 ≤ x ∞ μ(A ε r ) ν([-r, r]\I) + ε μ([-r, r]) -C ν([-r, r]) -A ≤ x ∞ μ(A ε r ) ν([-r, r]\I) + ε μ([-r, r]) ν([-r, r]) 1 - C μ([-r,r]) 1 - A ν([-r,r]) ≤ αε 1 - C μ([-r,r]) 1 - A ν([-r,r]) . Since, μ(R) = ν(R) = +∞, then we get lim sup r→+∞ 1 ν([-r, r]\I) [-r,r]\I E x(t) p dμ(t) ≤ 2αε, ∀ ε > 0. (2.1)
Therefore, (ii) holds.

Definition 2.4. Let μ, ν ∈ M. A function f : R × L p (Ω, H) → L p (Ω, H), (t, x) → f (t, x) is said to be (μ, ν)-ergodic in pth sense in t ∈ R uniformly with respect to x ∈ K, if f ∈ B C (R × L p (Ω, H), L p (Ω, H)) and it satisfies lim r→+∞ 1 ν([-r, r]) r -r E f (t, x) p dμ(t) = 0, where K ⊂ L p (Ω, H) is a compact.
We denote by

ξ p (R × L p (Ω, H), L p (Ω, H), μ, ν) = {f (., x) ∈ ξ p (R, L p (Ω, H), μ, ν) for any x ∈ L p (Ω, H)}
the set of all such functions.

Definition 2.5 ([4]

). Let x : R → L p (Ω, H) be a continuous stochastic process. x is said to be almost periodic process in pth mean sense if for each ε > 0 there exists l > 0 such that for all α ∈ R, there exists τ

∈ [α, α + l] satisfying sup t∈R E x(t + τ ) -x(t) p < ε.
We denote by AP(R, L p (Ω, H)) the space of all such stochastic processes. It is easy to verify that AP(R, L p (Ω, H)), . ∞ is a Banach space.

Definition 2.6 ([11]

). Let f : R × L p (Ω, H) → L p (Ω, H) be continuous. f is said to be almost periodic in pth mean sense in t ∈ R uniformly in x ∈ K, where

K ⊂ L p (Ω, H) is a compact, if for each ε > 0, there exists l(ε, K) > 0 such that for all α ∈ R, there exists τ ∈ [α, α + l(ε, K)] satisfying sup t∈R E f (t + τ, x) -f (t, x) p < ε,
for each stochastic process x : R → K.
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We denote by AP(R × L p (Ω, H), L p (Ω, H)) = {f (., x) ∈ AP(R, L p (Ω, H))

for any x ∈ L p (Ω, H)} the space of such stochastic processes.

Definition 2.7. Let μ, ν ∈ M. A continuous stochastic process x is said to be (μ, ν)-pseudo almost periodic in pth mean sense, if it can be written as

x = x 1 + x 2 ,
where

x 1 ∈ AP(R, L p (Ω, H)) and x 2 ∈ ξ p (R, L p (Ω, H), μ, ν).
Denote by PAP(R, L p (Ω, H), μ, ν) the set of all such stochastic processes.

We can verify that

PAP(R, L p (Ω, H), μ, ν) ⊂ B C (R, L p (Ω, H)).
We introduce the following new space of doubly measure pseudo almost periodic functions:

Definition 2.8. Let μ, ν ∈ M. A continuous function f : R × L p (Ω, H) → L p (Ω, H)
is said to be (μ, ν)-pseudo almost periodic in pth mean sense, if it can be written as

f = g + h, where g ∈ AP(R × L p (Ω, H), L p (Ω, H)) and h ∈ ξ p (R × L p (Ω, H), L p (Ω, H), μ, ν).
Denote by PAP(R × L p (Ω, H), L p (Ω, H), μ, ν) the set of all such functions. 

ξ p (R, L p (Ω, H), μ 1 , ν 1 ) = ξ p (R, L p (Ω, H), μ 2 , ν 2 ), (2.2) 
and

PAP(R, L p (Ω, H), μ 1 , ν 1 ) = PAP(R, L p (Ω, H), μ 2 , ν 2 ). (2.3)
Proof. First, we will prove (2.2). Since μ 1 ∼ μ 2 , ν 1 ∼ ν 2 and B is a Lebesgue σ-field, then there exist α, β, γ, θ > 0, such that

αμ 1 ≤ μ 2 ≤ βμ 1 ,
and

γν 1 ≤ ν 2 ≤ θν 1 .
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N. Belmabrouk, M. Damak & M. Miraoui It implies that α θ μ 1 {t ∈ [-r, r]\I : E f (t) p > ε} ν 1 {t ∈ [-r, r]\I} ≤ μ 2 {t ∈ [-r, r]\I : E f (t) p > ε} ν 2 {t ∈ [-r, r]\I} ≤ β γ μ 1 {t ∈ [-r, r]\I : E f (t) p > ε} ν 1 {t ∈ [-r, r]\I} .
From Lemma 1, we get

ξ p (R, L p (Ω, H), μ 1 , ν 1 ) = ξ p (R, L p (Ω, H), μ 2 , ν 2 ).
Using the definition of (μ, ν)-pseudo almost periodicity, we conclude that

PAP(R, L p (Ω, H), μ 1 , ν 1 ) = PAP(R, L p (Ω, H), μ 2 , ν 2 ).
For μ ∈ M and σ ∈ R, we define the positive measure μ σ on (R, B) by

μ σ (A) = μ(a + σ : a ∈ A), A ∈ B.
We give the following hypothesis:

(H 2 ) For all σ ∈ R, there exist α > 0 and a bounded interval I such that

μ σ (A) ≤ αμ(A),
where A ∈ B satisfies A ∩ I = ∅.

Lemma 2 ([6]

). Let μ ∈ M. Then μ satisfies (H 2 ) if and only if μ is equivalent to μ σ for all σ ∈ R.

Lemma 3 ([6]). It follows from hypothesis

(H 2 ) that ∀ δ > 0, lim sup r→+∞ μ([-r -δ, r + δ]) μ([-r, r]) < +∞. Let f ∈ B C (R, L p (Ω, H)). For all α ∈ R, we define f α by f α (t) = f (t + α).
We say that the subset

S of B C (R, L p (Ω, H)) is translation invariant, if ∀ f ∈ S, we have f α ∈ S. Theorem 2.4. Let μ, ν ∈ M satisfy (H 2 ). Then PAP(R, L p (Ω, H), μ, ν) is trans- lation invariant.
Proof. First, we need to prove that ξ p (R,

L p (Ω, H), μ, ν) is translation invariant. In other words, if f ∈ ξ p (R, L p (Ω, H), μ, ν), then f τ ∈ ξ p (R, L p (Ω, H), μ, ν), ∀ τ ∈ R.
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Let

μ τ = μ({t + τ ; t ∈ A}) ∀ A ∈ B. 1 ν([-r, r]) r -r E f (t + τ ) p dμ(t) = ν[-r + τ, r + τ ] ν([-r, r]) . 1 ν[-r + τ, r + τ ] r -r E f (t + τ ) p dμ(t) = ν[-r + τ, r + τ ] ν([-r, r]) . 1 ν[-r + τ, r + τ ] r+τ -r+τ E f (t) p dμ -τ (t) ≤ ν[-r -|τ |, r + |τ |] ν([-r, r]) . 1 ν[-r + τ, r + τ ] r+τ -r+τ E f (t) p dμ -τ (t).
Since μ and ν satisfy (H 2 ) and according to Lemma 3 we obtain that

1 ν([-r, r]) r -r E f (t + τ ) p dμ(t) ≤ Cte. ν[-r -|τ |, r + |τ |] ν([-r, r]) . 1 ν([-r + τ, r + τ ]) r+τ -r+τ E f (t) p dμ(t). We get lim r→+∞ 1 ν([-r, r]) r -r E f (t + τ ) p dμ(t) = 0. Therefore, ξ p (R, L p (Ω, H), μ, ν) is translation invariant. Since AP(R, L p (Ω, H)) is translation invariant, then PAP(R, L p (Ω, H), μ, ν) is also translation invariant.

Completeness and Composition Theorem

Theorem 3.1. Let μ, ν ∈ M . Assume that f ∈ PAP(R, L p (Ω, H), μ, ν) can be written as f = g + h, where g ∈ AP(R, L p (Ω, H)) and h ∈ ξ p (R, L p (Ω, H), μ, ν). If μ and ν satisfy (H 2 ), then {g(t), t ∈ R} ⊂ {f (t), t ∈ R}. (3.1)
Proof. For the proof, we use the same arguments given in [START_REF] Blot | New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications[END_REF]. Assume that (3.1)

does not hold. Then, there exists t 0 ∈ R such that

g(t 0 ) ∈ {f (t), t ∈ R}.
Since μ, ν satisfy (H 2 ), and from Theorem 2.4, we deduce that AP(R, L p (Ω, H))

and ξ p (R, L p (Ω, H), μ, ν) are translation invariant. We can suppose that t 0 = 0, then there exists ε > 0 such that

E f (t) -g(0) p ≥ 2 p ε ∀ t ∈ R.
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N. Belmabrouk, M. Damak & M. Miraoui Note, E f (t) -g(0) p ≤ 2 p-1 E f (t) -g(t) p + 2 p-1 E g(t) -g(0) p . For all t ∈ C ε := t ∈ R : E g(t) -g(0) p < ε , we obtain that E h(t) p = E f (t) -g(t) p ≥ 2 1-p E f (t) -g(0) p -E g(t) -g(0) p ≥ 2 1-p E f (t) -g(0) p ≥ ε.
For all i ∈ {1, 2, . . . , n} and for all t

∈ α i + C ε , where α 1 , . . . , α n ∈ R such that R = n i=1 (α i + C ε ),
we have

E h(t -α i ) p ≥ ε. (3.2)
Let ψ be the function defined by

ψ(t) = n i=1 E h(t -α i ) p (3.3) (3.
2) and (3.3) imply that Assume that f satisfies the Lipschitz condition: there exists L > 0 such that for any

ψ(t) ≥ ε ∀ t ∈ R. (3.4) Since ξ p (R, L p (Ω, H), μ, ν) is translation invariant, then we get [t → h(t -α i )] ∈ ξ p (R, L p (Ω, H), μ, ν), ∀ i ∈ {1, . . . , n}. Therefore, ψ ∈ ξ p (R, L p (Ω, H), μ, ν),
x, y ∈ L p (Ω, H) E f (t, x) -f (t, y) p ≤ L.E x -y p . Then t → f (t, x(t)) ∈ AP(R, L p (Ω, H) for any x ∈ AP(R, L p (Ω, H)). Theorem 3.5. Let μ, ν ∈ M satisfy (H 2 ). Assume that f ∈ PAP(R × L p (Ω, H), L p (Ω, H), μ, ν). If f satisfies the Lipschitz condition in the second variable,
that is, there exists L > 0 such that, for any x, y ∈ L p (Ω, H),

E f (t, x) -f (t, y) p ≤ L.E x -y p , ∀ t ∈ R. Then t → f (t, x(t)) ∈ PAP(R, L p (Ω, H), μ, ν) for any x ∈ PAP(R, L p (Ω, H), μ, ν). Proof. Let f ∈ PAP(R × L p (Ω, H), L p (Ω, H), μ, ν) and x ∈ PAP(R, L p (Ω, H), μ, ν).
Then, we can write

f = g + h, where g ∈ AP(R × L p (Ω, H), L p (Ω, H)) and h ∈ ξ p (R × L p (Ω, H), L p (Ω, H), μ, ν). And x = x 1 + x 2 ,
with x 1 ∈ AP(R, L p (Ω, H), and x 2 ∈ ξ p (R, L p (Ω, H), μ, ν). We decomposed f as

f (t, x(t)) = g(t, x 1 (t)) + [f (t, x(t)) -f (t, x 1 (t))] + [f (t, x 1 (t)) -g(t, x 1 (t))] = g(t, x 1 (t)) + [f (t, x(t)) -f (t, x 1 (t))] + h(t, x 1 (t)).
To prove this theorem, we need to verify

(i) g(., x 1 (.)) ∈ AP(R, L p (Ω, H)). (ii) f (., x(.)) -f (., x 1 (.)) ∈ ξ p (R, L p (Ω, H), μ, ν). (iii) h(., x 1 (.)) ∈ ξ p (R, L p (Ω, H), μ, ν).
To demonstrate (i), we use the similar arguments of Step (1) in the proof of [START_REF] Diop | Existence and global attractiveness of a pseudo almost periodic solution in p-th mean sense for stochastic evolution equation driven by a fractional Brownian motion[END_REF]Theorem 5.7].

(ii) Let x, x 1 ∈ L p (Ω, H). By using the Lipschitz condition, we obtain We deduce that lim sup

1 ν([-r, r]) r -r E f (t, x(t)) -f (t, x 1 (t) p dμ(t) ≤ 1 ν([-r, r]) .L r -r E x(t) -x 1 (t) p dμ(t) ≤ 1 ν([-r, r]) .L r -r E x 2 (t) p dμ(t). Since x 2 ∈ ξ p (R, L p (Ω, H), μ, ν), then lim r→+∞ 1 ν([-r,r]) r -r E x 2 (t) p dμ(t) = 0.
r→+∞ 1 ν([-r, r]) r -r E f (t, x(t)) -f (t, x 1 (t) p dμ(t) = 0. Therefore, f (., x(.) -f (., x 1 (.)) ∈ ξ p (R, L p (Ω, H), μ, ν).
(iii) It remains to demonstrate the ergodicity of h(., x 1 (.)). First, we have

h(t, x) -h(t, y) p = f (t, x) -g(t, x) -f (t, y) + g(t, y) p ≤ 2 p-1 f (t, x) -f (t, y) p + 2 p-1 g(t, x) -g(t, y) p .
By using the Lipschitz condition, we obtain that

E h(t, x) -h(t, y) p ≤ 2 p-1 E f (t, x) -f (t, y) p + 2 p-1 E g(t, x) -g(t, y) p ≤ 2 p .LE x -y p . Since K = {x 1 (t), t ∈ R} is a compact. Then, for ε > 0 there exists x 1 , . . . , x m ∈ K, such that K ⊂ ∪ m i=1 Bx i , ε 2 2p-1 L , where B x i , ε 2 2p-1 L = {x ∈ K; x i -x p ≤ ε 2 2p-1 L }. It implies that K ⊂ ∪ m i=1 x ∈ K, ∀ t ∈ R, E h(t, x) -h(t, x i ) p ≤ ε 2 p-1 .
Let t ∈ R and x ∈ K. Then, there exists i 0 ∈ {1, . . . , m} such that

E h(t, x) -h(t, x i0 ) p ≤ ε 2 p-1 .
We get

E h(t, x 1 (t)) p ≤ 2 p-1 E h(t, x 1 (t)) -h(t, x i0 ) p + 2 p-1 E h(t, x i0 ) p ≤ ε + 2 p-1 m i=1 E h(t, x i ) p . Since ∀ i ∈ {1, . . . , m} we have lim r→+∞ 1 ν([-r, r]) r -r E h(t, x i ) p dμ(t) = 0. It follows that lim sup r→+∞ 1 ν([-r, r]) r -r E h(t, x 1 (t)) p dμ(t) ≤ ε, ∀ε > 0. We deduce that lim r→+∞ 1 ν([-r, r]) r -r E h(t, x 1 (t)) p dμ(t) = 0. Finally, t → h(t, x 1 (t)) ∈ ξ p (R, L p (Ω, H), μ, ν),
which ends the proof. In this section, we state to prove the existence and exponential stability of (μ, ν)pseudo almost periodic solutions in pth mean sense of Eq. (1.1). Together with Eq. (1.1), we consider , T > 0.

x (t) = -a(t)x(t), t ∈ R. ( 4 
(s) = m i=1 α i (s)x(s - τ i (s))e -βi(s) R 0 -∞ ki(r)x(s+r)dr ds. Lemma 4 ([18]). Let S : [0, T ] × Ω → (L p (Ω, H)) be a F t -
We introduce the following assumptions:

(A 1 ) a : R → R + is almost periodic, (A 2 ) α i , β i : R → R + are (μ, ν)-pseudo almost periodic in pth-mean sense, for i = 1, 2, . . . , n, (A 3 ) f : R × L p (Ω, H) → L p (Ω, H) is uniformly (μ, ν)-pseudo almost periodic pro- cess, (A 4 ) the delay kernel k i (t) ∈ C(R -, R + ) and 0 -∞ k i (t)dt = 1, (A 5 ) there exists L > 0 such that E f (t, x) -f (t, y) p ≤ L.E x -y p , ∀ t ∈ R, x,y ∈ L p (Ω, H), (A 6 ) there exists a positive constant K such that f ∞ ≤ 1 Cp K p a 2 p 2
and m i=1 ᾱi p ≤ (2a) p .

2250065-13

Theorem 4.1.

If f ∈ PAP(R, L p (Ω, H), μ, ν), then (i) t → t -∞ w(t, s)f (s)ds ∈ PAP(R, L p (Ω, H), μ, ν). (ii) t → t -∞ w(t, s)f (s -τ )dW (s) ∈ PAP(R, L p (Ω, H), μ, ν).
Proof. (i) We know that f ∈ PAP(R, L p (Ω, H), μ, ν), then it can be decomposed

as f = g + Φ where g ∈ AP(R, L p (Ω, H)), and Φ ∈ ξ p (R, L p (Ω, H), μ, ν).
Denote by (Λx

)(t) = t -∞ w(t, s)g(s)ds and (Γx)(t) = t -∞ w(t, s)Φ(s)ds.
We need to verify that (Λx

)(t) ∈ AP(R, L p (Ω, H)) and (Γx)(t) ∈ ξ p (R, L p (Ω, H), μ, ν).
• Our first step consists of proving that (Λx)(t) and (Γx)(t) are stochastically continuous.

Let t 0 ∈ R fixed. Assume that α = st + t 0 , and from Holder's inequality,

we get

E (Λx)(t) -(Λx)(t 0 ) p = E t -∞ w(t, s)g(s)ds - t0 -∞ w(t 0 , s)g(s)ds p = E t0 -∞ w(t, α + t -t 0 )g(α + t -t 0 )dα - t0 -∞ w(t 0 , s)g(s)ds p ≤ 2 p-1 E t0 -∞ [w(t, s + t -t 0 ) -w(t 0 , s)]g(s + t -t 0 )]ds p + 2 p-1 E t0 -∞ w(t 0 , s)[g(s + t -t 0 ) -g(s)]ds p = I 1 + I 2 I 1 ≤ 2 p-1 E t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) p-1 p w(t, s + t -t 0 )
w(t 0 , s)

1 p g(s + t -t 0 ) ds p ≤ 2 p-1 E ⎡ ⎣ t0 -∞ ( w(t, s + t -t 0 ) -w(t 0 , s) p-1 p ) p p-1 ds p-1 p × t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) 1 p g(s + t -t 0 ) -g(s) p ds 1 p p ≤ 2 p-1 t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) ds p-1

2250065-14

Stochastic Nicholson's blowflies model with delays

× t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) .E g(s + t -t 0 ) -g(s) p ds ≤ 2 2p-2 t0 -∞ e -a(t0-s) ds p-1 × t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) E g(s + t -t 0 ) p ds ≤ 2 2p-2 1 a p-1 × t0 -∞
e -a(t0-s) E g(s + tt 0 ) p ds.

Let {t n } be a real arbitrary sequence such that t n → t 0 as n → +∞. Since g ∈ 1 B C (R, L p (Ω, H)), we have, for n large enough, one has

2 e -a(t0-s) E g(s + t n -t 0 ) p ≤ e -a(t0-s) g p ∞ .
Furthermore,

3 t0 -∞ e -a(t0-s) g p ∞ ds < ∞.
In addition,

w(t n , s + t n -t 0 ) -w(t 0 , s) 2 → 0, n → +∞.
Then, from Lebesgue's Dominated Convergence Theorem, we get lim n→+∞ t0 -∞ w(t n , s + t nt 0 )w(t 0 , s) g(s + tt 0 ) p ds = 0.

Hence,

6 lim t→t0 t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) g(s + t -t 0 ) p ds = 0.
For the second integral:

7 I 2 = 2 p-1 E t0 -∞ w(t 0 , s)[g(s + t -t 0 ) -g(s)]ds p ≤ E t0 -∞ w(t 0 , s) p-1 p w(t 0 , s) 1 p g(s + t -t 0 ) -g(s) ds p ≤ E ⎡ ⎣ t0 -∞ ( w(t 0 , s) p-1 p ) p p-1 ds p-1 p × t0 -∞ w(t 0 , s) 1 p g(s + t -t 0 ) -g(s) p ds 1 p p 2250065-15
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N. Belmabrouk, M. Damak & M. Miraoui ≤ t0 -∞ e -a(t0-s) ds p-1 × t0 -∞ e -a(t0-s) .E g(s + t -t 0 ) -g(s) p ds ≤ 1 a p-1 t0 -∞ e -a(t0-s) E g(s + t -t 0 ) -g(s) p ds.
Using similar arguments, we obtain

lim t→t0 t0 -∞ e -a(t0-s) E g(s + t -t 0 ) -g(s) p ds = 0. Hence lim t→t0 E (Λx)(t) -(Λx)(t 0 ) p = 0.
By analogous steps, we verify that (Γx) is also stochastically continuous.

• We now prove the almost periodicity of Λx. Note that the integral t -∞ w(t, s)g(s)ds is absolutely convergent, and

t -∞ w(t, s)g(s)ds ≤ 1 a g ∞ .
Since a and g are two almost periodic functions then

∀ ε > 0, ∃ l > 0, ∀ α ∈ R, there existsδ ∈ [α, α + l] satisfying sup t∈R E g(t + δ) -g(t) p < ε.a p 2 p , and sup t∈R |a(t + δ) -a(t)| < ε.a 2 2. g ∞ .
In other hand, assume that σ = sδ and using the same steps developed above, we obtain 

E (Λx)(t + δ) -(Λx)(t) p = E t+δ -∞ w(t + δ, s)g(s)ds - t -∞ w(t, s)g(s)ds p = E t -∞ w(t + δ, σ + δ)g(σ + δ)dσ - t -∞ w(t,
= E t -∞ [w(t + δ, s + δ) -w(t, s)]g(s + δ)ds + t -∞ w(t, s)[g(s + δ) -g(s)]ds p ≤ 2 p-1 E t -∞ [w(t + δ, s + δ) -w(t, s)]g(s + δ)ds p + 2 p-1 E t -∞ w(t, s)[g(s + δ) -g(s)]ds p ≤ 2 p-1 g p ∞ t -∞ w(t + δ, s + δ) -w(t, s) ds p + 2 p-1 t -∞ w(t, s)ds p-1 × t -∞ w(t, s)E g(s + δ) -g(s) p ds.
There exists c ∈ [0, 1] such that

1 E (Λx)(t + δ) -(Λx)(t) p ≤ 2 p-1 g p ∞ t -∞ e - R t+δ s+δ a(r)dr -e - R t s a(r)dr ds p + 2 p-1 t -∞ e - R t s a(r)dr ds p-1 × t -∞ e - R t s a(r)dr E g(s + δ) -g(s) p ds ≤ 2 p-1 g p ∞ t -∞ e -( R t s a(r+δ)dr+c( R t s a(r)dr- R t s a(r+δ)dr)) × t s a(r + δ)dr - t s a(r)dr ds p + 2 p-1 t -∞ e -a(t-s) ds p-1 × t -∞ e -a(t-s) E g(s + δ) -g(s) p ds.
Using the almost periodicity of a and g, we get 

2 E (Λx)(t + δ) -(Λx)(t) p ≤ 2 p-1 g p ∞ t -∞ e -a(t-s) e -c.ε. a 2 2. g ∞ (t-s) ε. a 2 2. g ∞ (t -s)ds p + 2 p-1 ε t -∞ e -a(
≤ 2 p-1 g p ∞ 1 a 2p .ε p . a 2p 2 p . g p ∞ + 2 p-1 1 a p . ε.a p 2 p ≤ ε 2 + ε 2 = ε.
• It remains to verify that (Γx) ∈ ξ p (R, L p (Ω, H), μ, ν). First, we have

1 1 ν([-r, r]) r -r E (Γx)(t) p dμ(t) = 1 ν([-r, r]) r -r E t -∞ w(t, s)Φ(s)ds p dμ(t) ≤ 1 ν([-r, r]) r -r E t -∞ w(t, s)Φ(s) ds p dμ(t).
From Holder's inequality and Fubini's theorem, we get

2 1 ν([-r, r]) r -r E (Γx)(t) p dμ(t) ≤ 1 ν([-r, r]) r -r t -∞ e R t s e -a(r)dr ds p-1 × t -∞ e R t
s e -a(r)dr E Φ(s) p ds dμ(t)

≤ 1 a p-1 1 ν([-r, r]) r -r t -∞ e -a(t-s) E Φ(s) p dsdμ(t) ≤ 1 a p-1 . 1 ν([-r, r]) r -r R 1 ]-∞,t] (s)e -a(t-s) E Φ(s) p dsdμ(t) ≤ 1 a p-1 . 1 ν([-r, r]) R r -r 1 ]-∞,t] (s)e -a(t-s) E Φ(s) p dμ(t)ds. Let v = t -s. Then we obtain 3 1 ν([-r, r]) r -r E (Γx)(t) p dμ(t) ≤ 1 a p-1 +∞ 0 e -av ν([-r, r]) r -r E Φ(t -v) p dμ(t)dv.

Moreover, we have

4 e -av ν([-r, r]) r -r E Φ(t -v) p dμ(t) ≤ e -av Φ p ∞ .
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Since Φ ∈ ξ p (R, L p (Ω, H), μ, ν) which is translation invariant, and from Lebesgue's dominated convergence theorem, we deduce that

lim r→+∞ 1 ν([-r, r]) r -r E (Γx)(t) p dμ(t) ≤ 1 a p-1 +∞ 0 e -av lim r→+∞ 1 ν([-r, r]) r -r E Φ(t -v) p dμ(t) dv = 0.
Thus, (Γx)(t) ∈ ξ p (R, L p (Ω, H), μ, ν). Finally, (i) holds.

(ii) Since f ∈ PAP(R, L p (Ω, H), μ, ν), then it can be written as f = Θ + ϕ where Θ ∈ AP(R, L p (Ω, H)), and ϕ ∈ ξ p (R, L p (Ω, H), μ, ν).

Let S 1 x(t) = t -∞ w(t, s)Θ(s-τ )dW (t) and S 2 x(t) = t -∞ w(t, s)ϕ(s-τ )dW (t). We must demonstrate that S 1 x ∈ AP(R, L p (Ω, H)) and S 2 x ∈ ξ p (R, L p (Ω, H), μ, ν).
•• On the first time, we verify that (S 1 x)(t) is stochastically continuous, we take an arbitrary number t 0 ∈ R. Let α = st + t 0 , then we obtain

E (S 1 x)(t) -(S 1 x)(t 0 ) p = E t -∞ w(t, s)Θ(s -τ )dW (s) - t0 -∞ w(t 0 , s)Θ(s -τ )dW (s) p = E t0 -∞ w(t, α + t -t 0 )Θ(α + t -t 0 -τ )dW (α + t -t 0 ) - t0 -∞ w(t 0 , s)Θ(s -τ )dW (s) p . Suppose that W (α) = W (α + t -t 0 ) -W (t -t 0 ).
We note that W and W are two Wiener processes and have the same distribution.

Using Lemma 4, we obtain

E (S 1 x)(t) -(S 1 x)(t 0 ) p = E t0 -∞ w(t, α + t -t 0 )Θ(α + t -t 0 -τ )d W (α) - t0 -∞ w(t 0 , s)Θ(s -τ )dW (s) p 2250065-19
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N. Belmabrouk, M. Damak & M. Miraoui = E t0 -∞ w(t, α + t -t 0 )Θ(α + t -t 0 -τ )d W (α) - t0 -∞ w(t 0 , s)Θ(s -τ )d W (s) p ≤ 2 p-1 E t0 -∞ [w(t, s + t -t 0 ) -w(t 0 , s)]Θ(s + t -t 0 -τ )]d W (s) p + 2 p-1 E t0 -∞ w(t 0 , s)[Θ(s + t -t 0 -τ ) -Θ(s -τ )]d W (s) p ≤ 2 p-1 C p E t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) 2 Θ(s + t -t 0 -τ ) 2 ds P 2 + 2 p-1 C p E t0 -∞ w(t 0 , s) 2 Θ(s + t -t 0 -τ ) -Θ(s -τ ) 2 ds P 2 = I 1 + I 2 .
From Holder's inequality, we get

1 I 1 ≤ 2 p-1 C p E t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) 2. p-2 p . w(t, s + t -t 0 )
w(t 0 , s)

4 p × Θ(s + t -t 0 -τ ) 2 ds P 2 ≤ 2 p-1 C p E ⎡ ⎣ t0 -∞ ( w(t, s + t -t 0 ) -w(t 0 , s) 2. p-2 p ) p p-2 ds p-2 p × t0 -∞ ( w(t, s + t -t 0 ) -w(t 0 , s) 4 p Θ(s + t -t 0 -τ ) 2 ) p 2 ds 2 p ⎤ ⎦ P 2 ≤ 2 2p-3 C p t0 -∞ e -2a(t0-s) ds p-2 2 × t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) 2 E Θ(s + t -t 0 -τ ) p ds ≤ 2 2p-3 C p 1 2a p-2 2 × t0 -∞ e -2a(t0-s) E Θ(s + t -t 0 -τ ) p ds.
Let {t n } be a real arbitrary sequence such that t n → t 0 as n → +∞. Since Θ ∈ 2 B C (R, L p (Ω, H)), we have, for n large enough one has

3 e -2a(t0-s) E Θ(s + t n -t 0 -τ ) p ≤ e -2a(t0-s) Θ p ∞ .
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Furthermore,

t0 -∞ e -2a(t0-s) Θ p ∞ ds < ∞.
In addition,

w(t n , s + t n -t 0 ) -w(t 0 , s) 2 → 0, n → +∞.
Then, from Lebesgue's Dominated Convergence Theorem, we get

lim n→+∞ t0 -∞ w(t n , s + t n -t 0 ) -w(t 0 , s) 2 Θ(s + t -t 0 -τ ) p ds = 0. Hence, lim t→t0 t0 -∞ w(t, s + t -t 0 ) -w(t 0 , s) 2 Θ(s + t -t 0 -τ ) p ds = 0.
Next, we have to evaluate

I 2 . I 2 ≤ 2 p-1 C p E t0 -∞ w(t 0 , s) 2. p-2 p . w(t 0 , s) 4 p × Θ(s + t -t 0 -τ ) -Θ(s -τ ) 2 ds P 2 ≤ 2 p-1 C p E ⎡ ⎣ t0 -∞ ( w(t 0 , s) 2. p-2 p ) p p-2 ds p-2 p × t0 -∞
( w(t 0 , s)

4 p Θ(s + t -t 0 -τ ) -Θ(s -τ ) 2 ) p 2 ds 2 p ⎤ ⎦ P 2 ≤ 2 p-1 C p t0 -∞ e -2a(t0-s) ds p-2 2 × t0 -∞ e -2a(t0-s) E Θ(s + t -t 0 -τ ) -Θ(s -τ ) p ds ≤ 2 p-1 C p (2a) 2-p 2 t0 -∞ e -2a(t0-s) E Θ(s + t -t 0 -τ ) -Θ(s -τ ) p ds.
By the similar arguments as above, we obtain

lim t→t0 t0 -∞ e -2a(t0-s) E Θ(s + t -t 0 -τ ) -Θ(s -τ ) p ds = 0. Therefore, lim t→t0 E (S 1 x)(t) -(S 1 x)(t 0 ) p = 0.
In this way, we have shown that (S 1 x)(t) is stochastically continuous. By an analogous argument, we verify that (S 2 x)(t) is also continuous.
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N. Belmabrouk, M. Damak & M. Miraoui •• We know that Θ ∈ AP(R, L p (Ω, H)) and a ∈ AP(R, R + ). So, ∀ ε > 0, ∃ l > 1 0, ∀ α ∈ R, ∃ δ ∈ [α, α + l] satisfying 2 sup t∈R E Θ(t + δ) -Θ(t) p < ε and sup t∈R |a(t + δ) -a(t)| < ε. Let σ = s -δ, and W (σ) = W (σ + δ) -W (δ). From Lemma 4, we obtain 3 E (S 1 x)(t + δ) -(S 1 x)(t) p = E t+δ -∞ w(t + δ, s)Θ(s -τ )dW (s) - t -∞ w(t, s)Θ(s -τ )dW (s) p = E t -∞ w(t + δ, σ + δ)Θ(σ + δ -τ )dW (σ + δ) - t -∞ w(t, s)Θ(s -τ )dW (s) p = E t -∞ w(t + δ, σ + δ)Θ(σ + δ -τ )d W (σ) - t -∞ w(t, s)Θ(s -τ )d W (s) p ≤ 2 p-1 C p E t -∞ w(t + δ, s + δ) -w(t, s) 2 Θ(s + δ -τ ) 2 ds P 2 + 2 p-1 C p E t -∞ w(t, s) 2 Θ(s + δ -τ ) -Θ(s -τ ) 2 ds P 2 ≤ 2 p-1 C p t -∞ w(t + δ, s + δ) -w(t, s) 2 ds p-2 2 × t -∞ w(t + δ, s + δ) -w(t, s) 2 E Θ(s + δ -τ ) p ds + 2 p-1 C p t -∞ w(t, s) 2 ds p-2 2 × t -∞ w(t, s) 2 .E Θ(s + δ -τ ) -Θ(s -τ ) p ds ≤ 2 p-1 C p Θ p ∞ t -∞ w(t + δ, s + δ) -w(t, s)
+ 2 p-1 C p t -∞ w(t, s) 2 ds p-2 2 × t -∞ w(t, s) 2 .E Θ(s + δ -τ ) -Θ(s -τ ) p ds.
Using similar steps as above and the almost periodicity of a and Θ, we deduce there

1 exists c ∈ [0, 1] such that 2 E (Λx)(t + δ) -(Λx)(t) p ≤ 2 p-1 C p Θ p ∞ E t -∞ e -2( R t s a(r+δ)dr+c( R t s a(r)dr- R t s a(r+δ)dr)) × t s a(r + δ)dr - t s a(r)dr 2 ds p 2 + 2 p-1 C p t -∞ e -2a(t-s) ds p-2 2 × t -∞ e -2a(t-s) .E Θ(s + δ -τ ) -Θ(s -τ ) p ds ≤ 2 p-1 C p Θ p ∞ 1 2 p 2 1 (a) p .ε p + 2 p-1 C p 1 (2a) p 2 ε ≤ 2 p-2 2 C p Θ p ∞ a p + 1 a p 2 ε.
Consequently, (S 1 x)(t) is almost periodic.

3

•• In order to complete the proof we still have to show the (μ, ν)-ergodicity of 4 (S 2 x)(t). By Lemma 4, we get

5 1 ν([-r, r]) r -r E S 2 x(t) p dμ(t) = 1 ν([-r, r]) r -r E t -∞ w(t, s)ϕ(s -τ )dW (s) p dμ(t) ≤ C p 1 ν([-r, r]) r -r E t -∞ w(t, s)ϕ(s -τ ) 2 ds p 2 dμ(t).
From Holder's inequality and Fubini's theorem, we infer that 

6 1 ν([-r, r]) r -r E (S 2 x)(t) p dμ(t) ≤ C p 1 ν([-r, r]) r -r t -∞ w(t, s)
≤ C p 1 ν([-r, r]) r -r t -∞ e -2a(t-s) ds p-2 2 × t -∞ e -2a(t-s) E ϕ(s -τ ) p ds dμ(t) ≤ C p 1 (2a) p-2 2 1 ν([-r, r]) r -r t -∞ e -2a(t-s) E ϕ(s -τ ) p dsdμ(t) ≤ C p 1 (2a) p-2 2 . 1 ν([-r, r]) r -r R 1 ]-∞,t] (s)e -2a(t-s) E ϕ(s -τ ) p dsdμ(t) ≤ C p 1 (2a) p-2 2 . 1 ν([-r, r]) R r -r 1 ]-∞,t] (s)e -2a(t-s) E ϕ(s -τ ) p dμ(t)ds. Let v = t -s. Then we obtain 1 1 ν([-r, r]) r -r E (S 2 x)(t) p dμ(t) ≤ C p 1 (2a) p-2 2 +∞ 0 e -2av ν([-r, r]) r -r E ϕ(t -v -τ ) p dμ(t)dv.
Add to that, we have

2 e -2av ν([-r, r]) r -r E ϕ(t -v -τ ) p dμ(t) ≤ e -2av ϕ p ∞ .
Since, ϕ ∈ ξ p (R, H, μ, ν) which is translation invariant, and from the Lebesgue 3 dominated convergence theorem, we deduce that

4 lim r→+∞ 1 ν([-r, r]) r -r E (S 2 x)(t) p dμ(t) ≤ C p 1 (2a) p-2 2 +∞ 0 e -2av × lim r→+∞ 1 ν([-r, r]) r -r E ϕ(t -v, x(t -v -τ ) p dμ(t)dv = 0,
which completes the proof. Proof. By definition of (μ, ν)-almost periodic functions, f = f 1 + f 2 , g = g 1 + g 2 where f 1 , f 2 ∈ AP(R, L p (Ω, H)) and f 2 , g 2 ∈ ξ p (R, L p (Ω, H), μ, ν). Evidently,

f g = f 1 g 1 + f 1 g 2 + f 2 g 1 + f 2 g 2 .
In order to demonstrate the almost periodicity of f 1 g 1 , we need only to invest similar arguments to those in [8, Lemma 2] with the function t → E f (t) p . Moreover, by the (μ, ν)-ergodicity of functions f 2 and g 2

lim r→+∞ 1 ν([-r, r]) r -r E f 1 g 2 (t) + f 2 g 1 (t) + f 2 g 2 (t) p dμ(t) = 3 p-1 ν([-r, r]) r -r [ f 1 ∞ E g 2 (t) p + g 1 ∞ E f 2 (t) p + f 2 ∞ E g 2 (t) p ]dμ(t) = 0 as r → +∞. Lemma 6. If (H 2 ), (A 4 ) hold and x(.) ∈ PAP(R, L p (Ω, H), μ, ν), then t → 0 -∞ k(s)x(t + s)ds ∈ PAP(R, L p (Ω, H), μ, ν).
Proof. Since x ∈ PAP(R, L p (Ω, H), μ, ν), then there exist x 1 ∈ AP(R, L p (Ω, H))

and x 2 ∈ ξ p (R, L p (Ω, H), μ, ν) such that x = x 1 + x 2 . Let ψ(t) = 0 -∞ k(s)x 1 (t + s)ds + 0 -∞ k(s)x 1 (t + s)ds = ψ 1 (t) + ψ 2 (t).
We can prove the almost periodicity of ψ 1 along the direction of the proof of [START_REF] Ammar | Existence and uniqueness of pseudo almostperiodic solutions of recurrent neural networks with time-varying coefficients and mixed delays[END_REF]Lemma 4.3] where we take the Banach space L p (Ω, H) equipped with the norm . L p (Ω,H) . Next, we have to show the (μ, ν)-ergodicity of ψ 2 . From Holder's inequality and Fubini's theorem, we get

1 ν([-r, r]) r -r E (ψ 2 )(t) p dμ(t) = 1 ν([-r, r]) r -r E 0 -∞ k(s)x(t + s)ds p dμ(t) ≤ 1 ν([-r, r]) r -r E 0 -∞ k(s)x(t + s) ds p dμ(t). ≤ 1 ν([-r, r]) r -r 0 -∞ k(s)ds p-1 × 0 -∞ k(s)E x(t + s) p ds dμ(t) ≤ 1 σ p-1 1 ν([-r, r]) r -r 0 -∞ k(s)E x(t + s) p dsdμ(t)
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N. Belmabrouk, M. Damak & M. Miraoui ≤ 1 σ p-1 . 1 ν([-r, r]) r -r R 1 ]-∞,0] (s)k(s)E x(t + s) p dsdμ(t) ≤ 1 ν([-r, r]) R r -r 1 ]-∞,0] (s)k(s)E x(t + s) p dμ(t)ds ≤ 0 -∞ k(s) ν([-r, r]) r -r E x(t + s) p dμ(t)ds.
Moreover, we have

k(s) ν([-r, r]) r -r E x(t + s) p dμ(t) ≤ k(s) x p ∞ .
Since x ∈ ξ p (R, L p (Ω, H), μ, ν) which is translation invariant, and from Lebesgue's dominated convergence theorem, we deduce that 

lim r→+∞ 1 ν([-r, r]) r -r E (ψ 2 )(t) p dμ(t) ≤ +∞ 0 k(s) lim r→+∞ 1 ν([-r, r]) r -r E x(t + s) p dμ(t) ds = 0. Thus, ψ 2 (t) ∈ ξ p (R, L p (Ω, H), μ, ν).
* = {x ∈ PAP(R, L p (Ω, H), μ, ν), E x(t) p ≤ K p , t ∈ R}.
(2) The solution x(t) in the region T * is exponentially stable. Step 1. We will show that F is self-mapping from T * to T * . 

Proof. We define the nonlinear operator

F in T * F x(t) = t -∞ w(t, s)h x (s)ds + t -∞ w(t, s)f (s -τ )dW (s) = F 1 x(t) + F 2 x(t), where h x (s) = m i=1 α i (s)x(s -τ i (s))e -βi(s) R 0 -∞ ki(
E F x(t) p ≤ 2 p-1 E t ∞ w(t, s)h x (s)ds p + 2 p-1 E t -∞ w(t, s)f (s, x(s -τ ))dW (s) p ≤ 2 p-1 [R 1 + R 2 ].
From Holder's inequality, we get

2 R 1 ≤ E t -∞ w(t, s) m i=1 α i (s)x(s -τ i (s))e -βi(s) R 0 -∞ ki(r)x(s+r)dr ds p ≤ E t -∞ w(t, s) m i=1 α i (s)x(s -τ i (s)) ds p ≤ E t -∞ w(t, s) p-1 p w(t, s) 1 p m i=1 α i (s)x(s -τ i (s)) ds p ≤ t -∞ e -a(t-s) ds p-1 . t -∞ e -a(t-s) E m i=1 α i (s)x(s -τ i (s)) p ds ≤ 1 a p m i=1 ᾱi p K p .
Similarly, using Lemma 4 and Holder's inequality, we have

3 R 2 = E t -∞ w(t, s)f (s, x(s -τ ))dW (s) p ≤ C p E t -∞ w(t, s) 2 f (s, x(s -τ )) 2 ds p/2 ≤ C p t -∞ e -2a(t-s) p-2 2 t ∞ e -2a(t-s) E f (s, x(s -τ )) p ≤ C p 1 2a p-2 2 . 1 2a f p ∞ ≤ C p 1 2a p 2 f p ∞ .
By (A 6 ), one has

E F x(t) p ≤ 2 p-1 1 a p m i=1 ᾱi p K p + 2 p-1 C p 1 2a p 2 f p ∞ ≤ K p .
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April Now, we will prove that

F 1 x(t) = t -∞ w(t, s) m i=1 α i (s)x(s -τ i (s)) 1 e -βi(s) R s -∞ ki(r)x(s+r)dr ds ∈ PAP(R, L p (Ω, H), μ, ν). 2 According to Theorem 2.4 x(. -τ ) ∈ PAP(R, L p (Ω, H), μ, ν) ∀ τ ∈ R. Using 3 
Lemma 6 and the fact that (x → e -x ) is Lipschitzian, then by Theorem 3.4, we Then,

4 have 5 t → m i=1 α i (t)x(t -τ i (t))e -βi(t) R t -∞ ki(s)x(t+s)ds × belongs to PAP(R, L p (Ω, H), μ, ν). ∀ x, y ∈ T * we have 6 E (F x)(t) -(F y)(t) p = E t -∞ w(t, s)h x (s)ds + t -∞ w(t, s)f (s, x(s -τ ))dW (s) - t -∞ w(t, s)h y (s)ds - t -∞ w(t, s)f (s, y(s -τ ))dW (s) p = E t -∞ w(t, s)[h x (s) -h y (s)]ds + t -∞ w(t, s)[f (s, x(s -τ )) -f (s, y(s -τ ))]dW (s) p ≤ 2 p-1 E t -∞ w(t, s)([h x (s) -h y (s)]ds p + 2 p-1 E t -∞ w(t, s)[f (s, x(s -τ )) -f (s, y(s -τ ))]dW (s) p = 2 p-1 (F 1 + F 2 ). F 1 = E t -∞ w(t,
F 1 ≤ 1 a p m i=1 ᾱi (1 + K βi ) p x -y p ∞ .
Second, using Lemma 4, Holder theorem and (A 5 ), we get The unique (μ, ν)-pseudo almost periodic solution of (1.1) x(t) is exponentially stable.

Example

Consider the following stochastic Nicholson's blowflies model with a harvesting term: Suppose that μ is a positive measure, where its Randon-Nikodym derivative is

dx(t) = -(9 + cos
ρ(t) = exp(t) if t ≤ 0, 1 i ft > 0, (5.2) 
and ν is the Lebesgue measure. Then from [START_REF] Blot | New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications[END_REF] μ and ν satisfy (H 1 ) and (H 2 ).

From Theorem 4.2, we deduce that Eq. T * = {x ∈ PAP(R, L p (Ω, H), μ, ν), E x(t) p ≤ e 3 , t ∈ R}.
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 221 (μ, ν)-Pseudo-Almost Periodic Processes We denote by B the Lebesgue σ-field of R and by M the set of all positive measures μ on B satisfying μ(R) = +∞ and μ([a, b]) < +∞ for all a, b ∈ R (a < b). We introduce the following new space of (μ, ν)-ergodic functions: Let μ, ν ∈ M. A bonded continuous function f : R → H is said to be (μ, ν)-ergodic in pth (p ≥ 2)mean sense, if lim r→+∞ 1 ν([-r, r]) r -r f (t) p dμ(t) = 0.

  (i) ⇔ (ii) We denote by A = ν(I), B = I E x(t) p dμ(t) and C = μ(I). Since the interval I is bounded and x ∈ B C (R, L p (Ω, H)), then A, B and C are finite.

  , M. Damak & M. Miraoui

Stochastic Nicholson's blowflies model with delays 4 .

 4 Existence of (μ, ν)-pseudo Almost Periodic Mild Solutions for Nonlinear Stochastic Differential Equations With Delay

5 Lemma 5 .

 55 If f, g ∈ PAP(R, L p (Ω, H), μ, ν), then f × g ∈ PAP(R, L p (Ω, H), μ, ν).

Theorem 4 . 2 . 1 )

 421 Let μ, ν ∈ M satisfy (H 1 ) and (H 2 ). If the conditions (A 1 )-(A 5 ) are met then (There exists a unique (μ, ν)-pseudo almost periodic solution x(t) of Nicholson's blowflies model with infinite delays (1.1) in the region T

1

 1 

α

  i (s)[x(sτ i (s))e -βi(s) R 0 -∞ ki(r)x(s+r)dr y(sτ i (s))e -βi(s) R 0 -∞ ki(r)y(s+r)dr ] p = E m i=1 α i (s)[(x(sτ i (s))y(sτ i (s)))e -βi(s) R 0 -∞ ki(r)x(s+r)dr + y(sτ i (s))(e -βi(s) R 0 -∞ ki(r)x(s+r)dre -βi(s) R 0 -∞ ki(r)y(s+r)dr )] p ≤ m i=1 ᾱi xy ∞ (1 + K βi ) p .

eee

  -2a(t-s) E f (s, x(sτ ))f (s, y(sτ )) p ds ≤ 3 p-1 e -pa(t-t0) E x 0y 0 p -a(t-s) E [x(sτ i (s))y(sτ i (s))] p ds + 3 p-1 C p . -2a(t-s) E x(sτ )y(sτ ) p ds.Put E v(t) p = E x(t)y(t) p e pat . According to the Gronwall-Bellman lemma, we obtainE x(t)y(t) p ≤ 3 p-1 E x 0y 0 p e [-pa+( 3 a ) p-1 .( P m i=1 ᾱi(1+K βi 1 σ )) p + 3 p-1 Cp(2a) (p-2)/2 .L](t-t0) .

Fig. 1 .

 1 Fig. 1. Double measure pseudo almost periodic solution of stochastic Nicholson's blowflies model (5.1).

( 5 . 1 )

 51 has a unique (μ, ν)-pseudo almost periodic solution in T * , where T
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Definition 2.9 ([6]). Let

  

	μ 1 , μ 2 ∈ M. If there exist positive constants α, β and
	a bounded interval I (eventually I = ∅) such that
	αμ 1 (A) ≤ μ 2 (A) ≤ βμ 1 (A)
	for A ∈ B satisfying A ∩ I = ∅,

then we say that μ 1 and μ 2 are equivalent μ 1 ∼ μ 2 . Proposition 2.3. Let μ 1 , μ 2 , ν 1 and ν 2 ∈ M. If μ 1 and ν 1 are equivalent, respectively, to μ 2 and ν 2 , then

  

  We use the same arguments of the proof of[START_REF] Diagana | Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory[END_REF] Theorem 2.19], where we take the Banach space X := L p (Ω, H) equipped with the norm x L p = (E x p ) 1/p .
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which is absurd by

(3.4)

. Theorem 3.2. Let μ, ν ∈ M satisfy (H 2 ). Then the decomposition of (μ, ν)-pseudo almost periodic function in the form f = g + h, where g ∈ AP(R, L p (Ω, H)) and

h ∈ ξ p (R, L p (Ω, H), μ, ν), is unique.

This theorem can be proved with the same steps developed in the proof of [7, Theorem 2]. Theorem 3.3. Let μ, ν ∈ M satisfy (H 1 ) and (H 2 ). Then (PAP(R, L p (Ω, H), μ, ν, . ∞ ) is a Banach space.

Proof.

Stochastic Nicholson's blowflies model with delays

Theorem 3.4 ([5]). Let f : R × L p (Ω, H) → L p (Ω, H), (t, x) → f (t, x), be an almost periodic process in t uniformly in x ∈ K, where K ⊂ L p (Ω, H) is a compact.

  The solutions of (4.1) satisfying the initial condition x(t 0 ) = x 0 are in the form x(t) = w(t, t 0 )x 0 .

		.1)
	Denote by w(t, s) = e -	R t

s a(r)dr for s ≤ t. Definition 4.1. A F t -progressively measurable stochastic process {x(t)} t∈R is called a mild solution of Eq. (1.1) if it satisfies the corresponding stochastic integral equation x(t) = w(t, t 0 )x 0 + t t0 w(t, s)h x (s)ds + t t0 w(t, s)f (s, x(sτ ))dW (s), (4.2) for all t, t 0 ∈ R such that t ≥ t 0 , where h x

  r)x(s+r)dr ds.
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  s)[h x (s)h y (s)]ds -a(t-s) E [h x (s)h y (s)] p ds.Stochastic Nicholson's blowflies model with delaysMoreover, ∀ u, v ∈ [0, +∞[ we have |e ue v | < |u -v|, so we have
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				p
		t	p-1	
	≤	w(t, s) ds	
		-∞		
		t		
	×		w(t, s) .E [h x (s) -h y (s)] p ds
		-∞		
	≤	1 a p-1 .		
				2250065-28

t -∞ e 1 E [h x (s)h y (s)] p = E

  Then, F is a contracting operator in T * . Consequently, by the fixed point theorem, . Belmabrouk, M. Damak & M. Miraoui be a solution of Eq. (1.1) with an initial condition y(t 0 ) = y 0 , we prove that all solutions converge exponentially to the (μ, ν)-pseudo almost periodic solution x(t).
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		E x(t) -y(t) p			
		≤ 3 p-1 e -pa(t-t0) E x 0 -y 0	p + 3 p-1 1 a p-1
		•	t	e -a(t-s) E [h x (s) -h y (s)] p ds
		t0				
		+ 3 p-1 C p .	1 (2a)
								P
								2
		≤ C p		t		e -2a(t-s) ds	p-2 2
				-∞		
				t			
		×					
				-∞			
		≤ C p .	1 (2a) p/2 .L sup
	4	Consequently,					
		E (F x)(t) -(F y)(t) p ≤	2 p-1 a p	m i=1	ᾱi (1 + K βi )	p	+	p-2 2 a p/2 C p .L x -y p 2 ∞ .
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3

F 2 = E t -∞ w(t, s)[f (s, x(sτ ))f (s, y(sτ ))]dW (s) p ≤ C p E t -∞ w(t, s)[f (s, x(sτ ))f (s, y(sτ ))] 2 ds e -2a(t-s) E f (s, x(sτ ))f (s, y(sτ )) p ds t∈R E x(tτ )y(tτ ) p .

5 there exists a unique (μ, ν)-almost periodic solution x(t) of Eq. (1.1) in T * . Let y(t) N