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Molecules with two electronic energy levels : deviation from the canonical distribution for N identical and independent sets of two molecules linked by a chemical bond

A spin-conversion molecule is organised around an iron ion F e +2 . This ion has two quantum energy levels : a low spin (LS) ground level, S = 0, and a high spin (HS) excited level, S = 2 , where S is the total spin of the 3d electrons. We call the distance in energy of the two levels. This result is described by introducing a …ctitious spin b which has two eigenvalues 1. For a set of two molecules we introduce the sum b 1 +b 2 of two …ctitious spins which has the eigen values 2 and 0. The vibrations inside each molecule and the vibrations between the two molecules are taken into account. These vibrations are independent of each other but their frequency depends on the electronic states of the two molecules. For the following, each molecule is designated by atom and the set of two molecules is designated by molecule.

) and (2) with occupation probabilities P ( 2), P (0) and P (2), respectively. For each state we can calculate its Gibbs potential, its entropy and its enthalpy.

For an ensemble of N identical molecules, there are at the (Boltzmann) equilibrium N P ( 2) molecules in the state ( 2), N P (0) in the state (0) and N P (2) in the state (2). But, as the Gibbs potentials of the three states are not equal, this canonical distribution is not stable. Then, due to random exchanges of heat between the thermostat and the molecules, the molecules will all go to the the state with the lowest Gibbs potential. The consequences are described.
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Introduction

A spin-conversion molecule is organised around an iron ion F e +2 . This ion has two quantum energy levels : a low spin (LS) ground level, S = 0, and a high spin (HS) excited level, S = 2, where S is the total spin of the 3d electrons[ 1 3] . Let us call the di¤erence between the energies of the two levels and r the degeneracy of the excited level. This degeneracy is given by r = 2S + 1.

In 1974, M. Sorai and S. Seki [START_REF] Sorai | [END_REF] measured the heat capacities of [F e (phen) 2 (N CS) 2 ] and [F e (phen) 2 (N CSe) 2 ] crystals. These molecules are spin-conversion molecules. They concluded that "there is signi…cant coupling between electronic state and phonon system" and that excitation of phonons is much easier in the high temperature phase. In order to take into account these results, J. A. Nasser [5] assumed that the elastic force constant of the spring linking two molecules …rst neighbours in a crystal of spin conversion molecules depends on the electronic states of both molecules.

In 2006, Kate L. Ronayme et al. [6] determined by DFT calculations and from di¤erent experimental results the values of the intramolecular vibration frequencies of the molecule [F e (phen) 2 (N CS) 2 ] when this molecule is in the (LS) and (HS) levels. They found that these values are generally smaller when the molecule is in the (HS) level. Taking into account the results of Ronayme et al. J. A. Nasser et al. [7] studied the in ‡uence of intramolecular vibrations on this two electronic energy levels system. Now, we study the thermal behavior of two identical spin-conversion molecules linked by a chemical bond. We assume that i) the elastic force constant of the spring which exists between the two molecules depends on the electronic state of both molecules and that ii) there are in each molecule p independent linear harmonic oscillators.

For the following, each molecule is designated by atom and the set of two molecules is designated by molecule.

In Section 2, we present the theoretical study. In Section 3 we give the results obtained for a set of values given to system parameters. The last section is devoted to discussion and conclusion.

Theoretical Study 2.1 Hamiltonian and Partition function

Consider a system of N identical molecules in contact with a heat reservoir at the absolute temperature T . We do not take into account the degrees of freedom of translation and of rotation of the molecules. And we consider the interaction between the molecules to be negligible.

Each molecule is made up of two identical atoms (1) and (2) linked by a chemical bond. Let us call k 12 the elastic force constant of the spring that acts between both atoms. The atoms oscillate around their equilibrium position with the frequency ! 12 given by

! 12 = r 2k 12 m a (1)
where m a is the mass of an atome and m a =2 is the reduced mass of the two atoms. 

z 12vib = 1 2 sinh ~!12 2 (2)
We recall that X n=0:1:2:::

e ~!(n+ 1 2 ) = 1 2 sinh ~! 2 (3) 
with = 1 k B T and where k B is the Boltzmann constant. We assume that each atom has two energy levels separated by . The fundamental level is not degenerated while the excited one has the degeneracy r. We associate the …ctitious spin b i to the atom (i) (i = 1; 2) and we assume that b i has two eigenvalues i = 1 [START_REF] Bousseksou | [END_REF]. The degeneracy r comes from an other space of states.

The spin Hamiltonian of the atom (i) can be written

b H sp (i) = 2 b i (4) 
and the spin Hamiltonian of the molecule is

b H sp = 2 (b 1 + b 2 ) (5) 
The eigen values of the operator b m = b 1 + b 2 are m = 2; 0; 2. The corresponding eigen kets are j 2i = j 1; 1i, 0 (1) = j 1; 1i, 0 (2) = j1; 1i and j2i = j1; 1i. In the brackets the …rst number is the value of 1 and the second that of 2 . The two kets 0 (1) and 0 (2) 

+ ~!12 n 12 + 1 2
, with n 12 = 0; 1; 2; ::1

~!12 n 0 12 + 1 2

; with n 0 12 = 0; 1; 2; ::1

+ ~!12 n 00 12 + 1 2
, with n 00 12 = 0; 1; 2; ::1

Taking into account the degeneracy r and that of the eigen value m = 0, the partition function z spvib12 associated to the Hamiltonian b

H sp + b H vib12 is z spvib12 = e + 2r + r 2 e 1 2 sinh ~!12 2 (7)
As the Hamiltonians b H sp and b H vib12 are independent, the partition function z spvib12 is the product of the partition functions associated with each of the two Hamiltonians.

Now we introduce the following assumptions : i) We assume that the value of the elastic force constant k 12 depends on the electronic states of the two atoms. This elastic force constant is equal to when both atoms are in their fundamental level ( that corresponds to the state j 2i), to when they are both in their excited level ( that corresponds to the state j2i) and to when the two atoms are not in the same level ( that corresponds to the states 0 (1) and 0 (2) ). This assumption can be written as following [5] :

k 12 = + 2 + 4 + 4 ( 1 + 2 ) + 2 + 4 1 2 (8) 
We assume >

and

= + 2 (10) 
The relation [START_REF] Landau | Physique théorique[END_REF] introduces a coupling between the …ctious spins and the interatomic vibrations. Taking into account this coupling, the partition function becomes

(z spvib12 ) coupl = e 1 2 sinh( ~! 2 ) + 2r 2 sinh( ~!+ 2 ) + r 2 e 1 2 sinh( ~!++ 2 ) (11) 
where

! = r 2 m (12) 
! + = ! + = r 2 m = ! r (13) 
and

! ++ = r 2 m = ! r (14) 
ii) We also assume also that in each atom there are p identical and independent one-dimensional harmonic oscillators. The frequency value of one oscillator is ! int when the atom is in its fundamental level and e ! int when it is in its excited one. With this new assumptition the partition function of the molecule becomes 

z mol = e 2 sinh( ~! 2 ) 1 2 sinh( ~!int 2 ) ! 2p + 2r 2 sinh( ~! + 2 ) 1 2 sinh( ~!int 2 ) ! p 1 2 sinh( ~e !int 2 ) ! p + r 2 e 2 sinh( ~!++ 2 ) 1 2 sinh( ~e !int 2 ) ! 2p (15) 
z mol = 1 2 sinh( ~!int 2 ) ! 2p z 0 mol (16) with z 0 mol = e 2 sinh( ~! 2 ) + 2rR vib 2 sinh( ~! + 2 ) + r 2 R 2 vib e 2 sinh( ~!++ 2 ) (17) 
and

R vib = 2 sinh( ~!int 2 ) 2 sinh( ~e !int 2 ) ! p (18) 
In the relation (16), the partition function z mol appears as that of two independent systems : a system of 2p identical and independent harmonic oscillators which vibrate with the frequency ! int and the system of the two …ctitious spins b 1 and b 2 coupled to the vibrations of the molecule. We are concerned with z 0 mol .

Probability and partial Gibbs-potential

As the partition function z 0 mol depends on the intensive parameters T and =2, the thermodynamic potential associated to z 0 mol is the free enthalpy, or the Gibbs potential, denoted g. We have

g = k B T ln (z 0 mol ) (19) 
Let h b mi be the thermal mean value of the operator

b 1 + b 2 , h b mi = hb 1 + b 2 i (20)
For the following h b mi is called magnetization per molecule. Accordind to the Hamiltonian b H sp , relation (5), hmi is the extensive parameter associated to 2 . So we have

h b mi = @g @ 2 (21) 
and then

h b mi = 1 z 0 mol 2e 2 sinh( ~! 2 ) + 2r 2 R 2 vib e 2 sinh( ~!++ 2 ) ! (22) 
Let us introduce the parameters a 1 , a 2 and a 3 de…ned by

a 1 = e 2 sinh( ~! 2 ) (23) 
a 2 = 2rR vib 2 sinh( ~! + 2 ) (24) 
and

a 3 = r 2 R 2 vib e 2 sinh( ~!++ 2 ) (25) 
The partition function z 0 mol can be writen

z 0 mol = a 1 + a 2 + a 3 (26) 
and the mean value h b mi is given by

h b mi = 1 z 0 mol ( 2a 1 + 2a 3 ) (27) 
From relation (27) we see that the thermal probability to …nd the system in the quantum state j 2i is

P (j 2i) = P ( 2) = a 1 z 0 mol (28) 
Likewise

P (j2i) = P (2) = a 3 z 0 mol ( 29 
)
and P 0 (1) E and 0 (2)

E = P (0) = a 2 z 0 mol ( 30 
)
We introduce three thermodynamic states : The thermodynamic state (2)

that takes into account all the vibration energy levels associated with the eigen value m = 2 and likewise the thermodynamic states (0) and ( 2). While z 0 mol corresponds to the sum

P (l)
e E l over all the microscopic states (l) of the molecule, the parameter a 1 corresponds to the sum over all microscopic states for which the eigen value m is equal to 2, the sum is made over the energy levels of the oscillators. For this set of microscopic states one introduce the partial Gibbs potential g ( 2)

g ( 2) = k B T ln (a 1 ) (31) 
In the same way we de…ne the partial Gibbs potential g (0) by

g (0) = k B T ln (a 2 ) (32) 
and the partial Gibbs potential g (2) by

g (2) = k B T ln (a 3 ) (33) 
From the relations (31-33), we have

a 1 = exp g ( 2) k B T (34) 
a 2 = exp g (0) k B T (35) 
and

a 3 = exp g (2) k B T (36) 
We can verify that @g (2)

@ 2 = 2 (37) @g ( 2) @ 2 = 2 (38) 
and

@g (0) @ 2 = 0 (39) 
So the magnetization per molecule in the states (2), (0) and ( 2) is equal to 2, 0 and 2, respectively. The parameters 2 corresponds to the pressure for gas and h b mi to its volume per molecule.

Entropy

The entropy related to the Gibbs potential g is

s = @ @T g (40) 
So,

s = k B ln (z 0 mol )+k B T a 1 z 0 mol @ @ ln (a 1 ) + a 2 z 0 mol @ @ ln (a 2 ) + a 1 z 0 mol @ @ ln (a 3 ) d dT (41) with @ @ ln (a 1 ) = ~! 2 coth ~! 2 (42) @ @ ln (a 2 ) = @ @ ln (R vib ) ~!+ 2 coth ~!+ 2 (43) @ @ ln (a 3 ) = 2 @ @ ln (R vib ) ~!++ 2 coth ~!++ 2 (44) @ @ ln (R vib ) = p ~!int 2 coth ~!int 2 ~e ! int 2 coth ~e ! int 2 (45) 
As

d dT = 1 k B T 2 (46) 
we obtain

s = k B ln (a 1 + a 2 + a 3 ) k B k B T P ( 2) @ @ ln (a 1 ) + P (0) @ @ ln (a 2 ) + P (2) @ @ ln (a 3 ) (47) 
For the state ( 2) the entropy is

s ( 2) = @ @T g ( 2) (48) So s ( 2) = k B ln (a 1 ) k B k B T @ @ ln (a 1 ) (49) 
Likewise, we have for the state (0) and ( 2)

s (0) = k B ln (a 2 ) k B k B T @ @ ln (a 2 ) (50) 
and

s (2) = k B ln (a 3 ) k B k B T @ @ ln (a 3 ) (51)

Enthalpy

The enthalpy related to the Gibbs potential g is given by

h = @ @ ln (z 0 mol ) (52) 
or by

g = h T s (53) 
So we obtain h = P ( 2) @ @ ln (a 1 ) + P (0) @ @ ln (a 2 ) + P (2) @ @ ln (a 3 ) (54)

For the state ( 2) the enthalpy is

h ( 2) = @ @ ln (a 1 ) (55) 
Likewise, we have for the states (0) and ( 2)

h (0) = @ @ ln (a 2 ) (56) 
and

h (2) = @ @ ln (a 3 ) (57)

Ensemble of N identical molecules

Let us consider the ensemble of N identical molecules. At equilibrium they are distributed between the three states according to the canonical distribution given by relations (28-30). So there are N ( 2) molecules in the state ( 2), N (0) in the state (0) and N (2) in the state ( 2) with

N ( 2) = N P ( 2) (58) 
N (0) = N P (0) (59) 
N (2) = N P (2) (60) 
We recall that T and =2 are …xed.

Extensive parameters

Let M be the total magnetization

M = N h b mi (61) 
From relation ( 27) we can verify that

M = 2N ( 2) + 2N (2) ( 62 
)
So M is the sum of the magnetizations of the three separate states.

Let H be the total enthalpy

H = N h (63) 
Using equations (54-57) we obtain

H = N ( 2) h ( 2) + N (0) h (0) + N (2) h (2) ( 64 
)
So H is the sum of the enthalpies of the three separate states.

Let S be the total entropy, S = N s (65)

Using relation (47), we obtain

S = N k B ln (a 1 + a 2 + a 3 ) k B k B T N ( 2) @ @ ln (a 1 ) + N (0) @ @ ln (a 2 ) + N (2) @ @ ln (a 3 ) (66) 
Let S 0 be the sum of the entropies of the three separate states. Using relations (49-51) we have

S 0 = k B (N ( 2) ln (a 1 ) + N (0) ln (a 2 ) + N (2) ln (a 3 )) k B k B T N ( 2) @ @ ln (a 1 ) + N (0) @ @ ln (a 2 ) + N (2) @ @ ln (a 3 ) (67)
So, S and S 0 are not equal and the quantity S S 0 is given by

S S 0 = N k B ln (a 1 + a 2 + a 3 ) k B (N ( 2) ln (a 1 ) + N (0) ln (a 2 ) + N (2) ln (a 3 )) (68) 
The quantity S S 0 corresponds to the entropy of mixing.

Random heat exchanges

At the triple point of a pure substance there are three phases having N 1 , N 2 and N 3 molecules. As the Gibbs potentials of the three phases are equal the system is stable and these numbers remain constant. However they can be modi…ed, given P and T , when the molecules receive, in algebraic sense, macroscopic heat and work. The work received is related to volume variation.

In the present study, there are three thermodynamiques states having N ( 2), N (0) and N (2) molecules at the same values for =2 and T . But, as the Gibbs potentials of the three states are not equal the system is not stable. These numbers of molecules can and must vary.

It is known that the thermostat randomly exchange heat with the molecules. Let us call q the heat receive, in algebraic sense, by a molecule. As =2 is constant,

q = h ( 69 
)
where h is the variation of the enthalpy of the molecule. From relation (53), the variation of the Gibbs potential of the molecule is

g = h T s (70) So g = q T s (71) 
We know that when the thermostat gives the quantity of heat q its entropy varies according to the relation

q = T S thermostat (72) 
So

g = T ( S thermostat + s) (73) 
So the entropy variation of the total system ( thermostat+molecules) veri…es the relation

S thermostat + s = g T (74) 
From relation (74), this entropy variation is positive when g is negative. So, if a molecule leaves a state (i) to go in a state (j) (i; j = 2; 0; 2), this process is possible and is an irreversible process if g (j) is lower than g (i).

So, for T and =2 …xed, all the molecules are found in the state where the gibbs potential is the smallest. This state is the stable state.

3 Numerical study

Reduced parameters

We take as the unit of elastic force constant and ~! as the unit of energy. We then introduce the reduced energy gap

= ~! (75) 
the reduced temperature

t = k B T ~! (76) 
and the following reduced parameters

x = (77) zz = ! int ! (78) e x = e ! int ! int (79)

Values of the system parameters

The numerical study is done with r = 5, zz = 1:2, e x = 0:9 , p = 2, x = 0:1. With the choice e

x and x smaller than the unit, the vibration frequencies values are lower when the spin conversion molecules are in the excited level than when they are in the fundamental one.

The value of ! depends on the mass of a spin conversion molecule, while the value of ! int depends on the mass of a few atoms of a spin conversion molecule. For this reason we take ! int larger than ! and then zz > 1. The value of the parameter r is 2S + 1 with S = 2. As R vib is higher than the unit and as ! ++ is smaller than ! , the vibrations favour a 3 , that is the state (2), while the parameter favours a 1 , that is the state ( 2).

Case = 0:35

The thermal variations of the probabilities P ( 2), P (0) and P (2) for = 0:35 are shown in Figure 1. From this Figure, the probabilities P ( 2) and P (2) are equal at the temperature value denoted t 3 . From relations (28) and (29), the probabilities P ( 2) and P (2) are equal when the parameters a 1 and a 3 are equal. So the parameters a 1 and a 3 are equal at t 3 . In case = 0:35, t 3 = 0:0367.

The thermal variations of the partial Gibbs potentials g ( 2), g (0) and g (2) for = 0:35 are shown in Figure 2. The temperature at which g ( 2) and g (2) are equal is t 3 because at this temperature a 1 and a 3 are equal. As shown in Figure 2, the lowest partial Gibbs potential is g ( 2) is below t 3 and g (2) above t 3 . So all the molecules are in the state ( 2) below t 3 and in the state (2) above t 3 .

In Figure 2, it should be noted that the partial Gibbs potential g (0) is higher than the partial Gibbs potentials g (2) and g ( 2) between t 1 and t 2 . In case = 0:35, t 1 = 0:0188 and t 2 = 0:0438.

Following the canonical distribution, hmi, the magnetization per atom, is given by relation (27). But due to the irreversible process mentioned previously the magnetization per atom is equal to 2 below t 3 and to +2 above t 3 . So there is a discontinuity in the magnetization per atom at t 3 . These results are shown in Figure 3. . The Gibbs potentials g ( 2) and g (2) are equal at t 3 . The Gibbs potential g (0) is higher than g ( 2) and g (2) between t 1 = 0:0188 and t 2 = 0:0438. 

Other values

The variation with of the parameters t 1 , t 2 and t 3 are shown in Figure 4. For = 0:28, the value of t 3 does not exist. This means that state (2) is the stable state from t = 0:001. This result comes from the fact that the energy of vibrations at 0K (zero-point energy) is higher than .

For values between 0:30 and 0:38 approximately the results are the same as in the case = 0:35 : the molecules are in the state ( 2) below t 3 and in the state (2) above t 3 . The t 3 value is between t 1 and t 2 .

As shown in Figure 5, for values greater than 0:38 the stable state is ( 2) at low temperature, (0) above t 4 and …nally (2) above t 5 . Thus the thermal variation of the magnetization per atom is discontinuous at t 4 and t 5 .

Figure 4. Variations with of the parameters t 1 , t 2 and t 3 . These parameters are de…ned in Figure 2. The state (2) is the stable state for t > t 3 . Figure 5. Thermal variations of the partial Gibbs potentials g ( 2), g (0) and g (2) for = 0:5. The state ( 2) is the stable state between 0:001 and t 4 = 0:1089. It is the state (0)between t 4 and t 5 = 0:1587 and the state (2) above t 5 .

Discussion and Conclusion

Discussion : entropy of mixing

As the molecules are identical the additional entropy, S S 0 , " does not make physical sense" ( see Reif p. 244). If we remove this additional entropy, the Gibbs potential of the system is N ( 2) g ( 2) + N (0) g (0) + N (2) g (2). It is clear that this Gibbs potential value is higher than the value N g (min), where g (min) is the smallest of the three values g ( 2), g (0) and g (2).

Discussion : about discontinuity

In the case = 0:35, the presence of a discontinuity at t 3 leads to the question: is there a …rst order phase transition at t 3 ? We do not know.

In the case of the van der Waals gas, the …rst order phase transition is related to the fact that the stability condition [10]

@ 2 F @V 2 T 0 (80) 
is not satis…ed. In the above relation, F and V are the free energy and the volume, respectively.

In the present study, we have veri…ed that the stability conditions [11]

@ 2 g @T 2 =2 0 @ 2 g @ =2 2 T 0 (81) 
are satis…ed.

It is interesting to recall that, to our knowledge, there is no theorem, no theoretical result concerning the size of a system for a …rst order phase transition.

Discussion : study around t 3

At t 3 , g ( 2) and g (+2) are equal and the transition of a molecule between states ( 2) and (2) is a reversible process. There is no reason for a molecule that is in state ( 2) to go in state (2) and vice versa. Close to t 3 the absolute value jg ( 2) g (2)j is small so the transition of a molecule between states ( 2) and ( 2) is a weakly irreversible process. So, we assume that, around t 3 , the time for the molecules to go into the stable state can be very long. This time can be a macroscopic time. Also in an experimental study the molecules could be observed in a state which is not the stable state.

Previously, we have studied the permanent states. Now we will see the transitional states for temperature values close to t 3 , in the case = 0:35. We use the master equation [START_REF] Diu | Roulet Physique Statistique[END_REF], [START_REF] Reif | Fundamentals of statistical and thermal physics[END_REF].

Master equation

Let us denote (1) ; (2) ; (3) the states ( 2); (0); (2), respectively and P i ( ), i = 1; 2; 3, the probability that the studied molecule is found in state (i) at time . With j = 1; 2; 3, the master equation is

dP i d = X j6 =i (P j W ji P i W ij ) (82) 
where the parameter W ji is the transition probability per unit time from the state (j) to the state (i). The parameters W ji are positive and depend on the temperature T . Relation (82) leads to the three di¤erential equations We will study the functions P 1 ( ), P 2 ( ) and P 3 ( ) for di¤erent temperature values between t 1 and t 2 . We consider the case where the molecules are heated from a low temperature value . This precision plays a role in the choice of initial conditions, that is the values of the parameters (P 1 ) 0 , (P 2 ) 0 and (P 3 ) 0 introduced below. We assume that the parameter

W ij i) is equal to zero if g (j) g (i) is positive (impossible process) or equal to zero W ij = 0 if g (j) g (i) 0 (87) 
ii) is small when g (j) g (i) is equal to , where is positive and small W ij = 0 if g (j) g (i) = , and 0 positive and small (88)

General results

With these assumptions W 12 and W 32 are equal to zero for any temperature between t 1 and t 2 because g (2) is higher than g (1) and g (3) . So, equation (84) becomes

dP 2 ( ) d = (W 21 + W 23 ) P 2 ( ) (89) 
The solution of the equation ( 89) is

P 2 ( ) = (P 2 ) 0 exp ( (W 21 + W 23 ) ) (90) 
where (P 2 ) 0 is the initial value of P 2 ( ). The relaxation time of P 2 ( ) is

2 = 1 W 21 + W 23 (91) 
As the absolute values jg (1) g (2)j and jg (3) g (2)j are large (see Figure 2), we can consider 2 as a microscopic time. So the permanent solution P 2 ( ) = 0 is achieved quickly.

When P 2 ( ) is equal to zero, the equations ( 83) and ( 85 

To solve equation ( 95), we make a change of function [START_REF] Soum | Techniques Mathématiques Pour La Physique-II[END_REF]. We introduce Y 1 ( ) by

Y 1 ( ) = P 1 ( ) W 31 W 13 + W 31 (97) 
We then obtain the equation

dY 1 ( ) d = (W 13 + W 31 ) Y 1 ( ) (98) 
The solution of (98) is

Y 1 ( ) = (Y 1 ) 0 exp ( (W 13 + W 31 ) ) (99) 
where (Y 1 ) 0 is the initial value of Y 1 ( ). This initial value is related to (P 1 ) 0 , the initial value of P 1 ( ), by

(Y 1 ) 0 = (P 1 ) 0 W 31 W 13 + W 31 (100) 
Finally, between t 1 and t 2 , the expression of P 1 ( ) is

P 1 ( ) = (P 1 ) 0 W 31 W 13 + W 31 exp ( (W 13 + W 31 ) ) + W 31 W 13 + W 31 (101) 
and that of P 3 ( ) is

P 3 ( ) = (P 3 ) 0 W 13 W 13 + W 31 exp ( (W 13 + W 31 ) ) + W 13 W 13 + W 31 (102) 

Above and below t 3

For t t 3 , as g (3) is higher than g (1), W 13 is equal to zero and relations (101) and (102) become

P 1 ( ) = ((P 1 ) 0 1) exp ( W 31 ) + 1 (103) 
and

P 3 ( ) = (P 3 ) 0 exp ( W 31 ) (104) 
The relaxation time of P 1 ( ) and P 3 ( ) is

31 = 1 W 31 (105) 
For a temperature value far from t 3 the absolute value jg (1) g (3)j is large and this relaxation time is very short, it is a microscopic time. For a temperature value close to t 3 jg (1) g (3)j is small and this relaxation time is very long, it is a macroscopic time. At t 3 the value of 31 is in…nite. For t t 3 , as g (1) is higher than g (3), W 31 is equal to zero and relations (101) and (102) become

P 1 ( ) = (P 1 ) 0 exp ( W 13 ) (106) 
and P 3 ( ) = ((P 3 ) 0 1) exp ( W 13 ) + 1 (107)

The relaxation time of P 1 ( ) and P 3 ( )

is 13 = 1 W 13 (108) 
For a temperature value far from t 3 the absolute value jg (3) g (1)j is large and the relaxation time 13 is very short, it is a microscopic time. For a temperature value close to t 3 the absolute value jg (3) g (1)j is small and this relaxation time is very long, it is a macroscopic time. At t 3 the value of 13 is in…nite.

Description of an experimental study

We consider an experiment where the measurements are made at t 3 2 t, t 3 t, t 3 , t 3 + t and t 3 + 2 t. The quantity t is a small positive variation of the temperature.

We assume that 31 is a microscopic time at the temperature values t 3 2 t and a macroscopic time for t 3 t . Likewise, we assume that 13 is a macroscopic time at t 3 + t and a microscopic time at t 3 + 2 . At t 3 the relaxation times 31 and 13 are in…nite.

At t 3 2 t, the value of the function exp ( W 31 ) is quickly zero and, from relations (103) and (104), the result of the measurement is P 1 ( ) = 1 and P 3 ( ) = 0 which means that the molecules are in the state (1).

Raise the temperature. At t 3 t, we assume that the initial values (P 1 ) 0 and (P 3 ) 0 that appear in relations ( 103) and ( 104) are the values obtained for P 1 ( ) and P 3 ( ) at t 3 2 t. Also we take (P 1 ) 0 = 1 and (P 3 ) 0 = 0 in relations ( 103) and (104). As 31 is a macroscopic time the value of the function exp ( W 31 ) remains close to the unit during the measurement. So the result of the measurement is P 1 ( ) = 1 and P 3 ( ) = 0 which means that the molecules are in the state(1). The same is true at t 3 .

So heating the molecules from a small temperature value they remain in the state (1) until t 3 .

Raise the temperature. At t 3 + t, we must use the equations ( 106) and (107). For the initial values (P 1 ) 0 and (P 3 ) 0 we take the values obtained at t 3 , that is (P 1 ) 0 = 1 and (P 3 ) 0 = 0. As the relaxation time 13 is a macroscopic time, the value of the function exp ( W 13 ) remains close to the unit during the measurement. So the result of the measurement is P 1 ( ) = 1 and P 3 ( ) = 0. That means that the molecules are still in the state (1) which is no longer the stable state.

Raise the temperature. At t 3 + 2 t we take for the initial values (P 1 ) 0 and (P 3 ) 0 which appear in relations (106) and (107) the values obtained at t 3 + t, that is P 1 ( ) = 1 and P 3 ( ) = 0. But now, as 13 is a microscopic time, the value of the function exp ( W 13 ) quickly goes to zero and the result of the measurement is P 1 ( ) = 0 and P 3 ( ) = 1.

Thus the molecules have passed into the stable state (3) not at t 3 but at t 3 + t.

We would show in the same way that by cooling the molecules from the temperature t 3 + 2 t, where they are in the state (3), that they pass into the stable state (1) at t 3 t.

Conclusion

Thus, the molecules change state at t 3 + t or t 3 t depending on whether they are heated or cooled. This result should be able to be veri…ed by Monte Carlo simulations.

It would be interesting to resume this study with three molecules linked by chemical bonds.

In this model the information on the electronic states of the two atoms is transmitted by vibrations. In magnetism the information concerning the quantum states of two spins is transmitted by the overlapping of orbitals.

We would like to thank H. T. Diep for our inspiring discussions and L. Chassagne for his support as director of LISV.
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  are the eigen states of the eigen value m = 0. The eigen values of the Hamiltonian b H sp are , 0 and and the corresponding eigen kets are those of b m = b 1 + b 2 . The eigen values of the Hamiltonian b H sp + b H vib12 are :

Factorizing
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Figure 1 .

 1 Figure1. Thermal variations of the probabilities P ( 2), P (0) and P (2). The probabilities P ( 2) and P (2) are equal at t 3 = 0:0367.

Figure 2 .

 2 Figure 2. Thermal variations of the partial Gibbs potentials g ( 2), g (0) and g (2). The Gibbs potentials g ( 2) and g (2) are equal at t 3 . The Gibbs potential g (0) is higher than g ( 2) and g (2) between t 1 = 0:0188 and t 2 = 0:0438.

Figure 3 .

 3 Figure 3. Thermal variations of the magnetization per atom. According to the canonical distribution this parameter varies continuously with temperature. But taking into account stable states, this parameter has only two values 2.

  ( ) W 12 P 2 ( ) W 21 + P 3 ( ) W 32 P 2 ( ) W 23

	dP 2 ( ) d	= P 1 (84)
	dP 3 ( ) d	= P 1 ( ) W 13 P 3 ( ) W 31 + P 2 ( ) W 23 P 3 ( ) W 32	(85)
	which are not independent because	
		P 1 ( ) + P 2 ( ) + P 3 ( ) = 1	(86)
	dP 1 ( ) d	= P 2 ( ) W 21 P 1 ( ) W 12 + P 3 ( ) W 31 P 1 ( ) W 13	(83)