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Abstract

A spin-conversion molecule is organised around an iron ion Fe™2. This
ion has two quantum energy levels : a low spin (LS) ground level, S = 0,
and a high spin (HS) excited level, S = 2 , where S is the total spin
of the 3d electrons. We call A the distance in energy of the two levels.
This result is described by introducing a fictitious spin & which has two
eigenvalues 1. For a set of two molecules we introduce the sum &1 +72 of
two fictitious spins which has the eigen values +2 and 0. The vibrations
inside each molecule and the vibrations between the two molecules are
taken into account. These vibrations are independent of each other but
their frequency depends on the electronic states of the two molecules. For
the following, each molecule is designated by atom and the set of two
molecules is designated by molecule.

From the statistical study, its appears at equilibrium, for fixed T" and
A/2, three thermodynamic states (—2), (0) and (2) with occupation prob-
abilities P (—2), P (0) and P (2), respectively. For each state we can cal-
culate its Gibbs potential, its entropy and its enthalpy.

For an ensemble of N identical molecules, there are at the (Boltzmann)
equilibrium N P (—2) molecules in the state (—2), NP (0) in the state (0)
and NP (2) in the state (2). But, as the Gibbs potentials of the three
states are not equal, this canonical distribution is not stable. Then, due
to random exchanges of heat between the thermostat and the molecules,
the molecules will all go to the the state with the lowest Gibbs potential.
The consequences are described.



1 Introduction

A spin-conversion molecule is organised around an iron ion Fe®2. This ion has
two quantum energy levels : a low spin (LS) ground level, S = 0, and a high spin
(HS) excited level, S = 2, where S is the total spin of the 3d electrons[l — 3]
. Let us call A the difference between the energies of the two levels and r the
degeneracy of the excited level. This degeneracy is given by r = 25 + 1.

In 1974, M. Sorai and S. Seki [4] measured the heat capacities of [F'e (phen), (NCS),]
and [F'e (phen), (NCSe),| crystals. These molecules are spin-conversion mole-
cules. They concluded that "there is significant coupling between electronic
state and phonon system" and that excitation of phonons is much easier in
the high temperature phase. In order to take into account these results, J.
A. Nasser [5] assumed that the elastic force constant of the spring linking two
molecules first neighbours in a crystal of spin conversion molecules depends on
the electronic states of both molecules.

In 2006, Kate L. Ronayme et al. [6] determined by DFT calculations and
from different experimental results the values of the intramolecular vibration
frequencies of the molecule [Fe (phen), (NCS),| when this molecule is in the
(LS) and (HS) levels. They found that these values are generally smaller when
the molecule is in the (HS) level. Taking into account the results of Ronayme
et al. J. A. Nasser et al. [7] studied the influence of intramolecular vibrations
on this two electronic energy levels system.

Now, we study the thermal behavior of two identical spin-conversion mole-
cules linked by a chemical bond. We assume that i) the elastic force constant
of the spring which exists between the two molecules depends on the electronic
state of both molecules and that ii) there are in each molecule p independent
linear harmonic oscillators.

For the following, each molecule is designated by atom and the set of two
molecules is designated by molecule.

In Section 2, we present the theoretical study. In Section 3 we give the
results obtained for a set of values given to system parameters. The last section

is devoted to discussion and conclusion.

2 Theoretical Study



2.1 Hamiltonian and Partition function

Consider a system of IV identical molecules in contact with a heat reservoir at
the absolute temperature 7. We do not take into account the degrees of freedom
of translation and of rotation of the molecules. And we consider the interaction
between the molecules to be negligible.

Each molecule is made up of two identical atoms (1) and (2) linked by a
chemical bond. Let us call k5 the elastic force constant of the spring that acts
between both atoms. The atoms oscillate around their equilibrium position with
the frequency w2 given by

(1)

where m, is the mass of an atome and m,/2 is the reduced mass of the two

Mg

atoms. The relation (1) can be established by means of classical mechanics [8] .
The eigen values of the Haliltonian of vibrations H,;p12 are hwis (n12 + %)

with n12 = 0,1,2,...00 and where & is the Planck’s constant divided by 27. So,
the partition function associated to the Hamiltonian H,;12 is

1

(2)

We recall that
> el - s @
n=0.1.2... 2sinh (8%5°)
with 8 = kE%T and where kp is the Boltzmann constant.

We assume that each atom has two energy levels separated by A. The
fundamental level is not degenerated while the excited one has the degeneracy
r. We associate the fictitious spin &; to the atom (i) (i = 1,2) and we assume
that ; has two eigenvalues o; = +1 [9]. The degeneracy r comes from an other
space of states.

The spin Hamiltonian of the atom (7) can be written

~ A

and the spin Hamiltonian of the molecule is

~ A =R
Hyp = = (01 +02) (5)
The eigen values of the operator m = g1 + g4 are m = —2,0,2. The corre-
sponding eigen kets are |—2) = [—1,—1), [0)) = |-1,1), [0®) = |1, -1) and

|2) = |1,1). In the brackets the first number is the value of o7 and the second



that of o5. The two kets |0(1)> and |0(2)> are the eigen states of the eigen value
m = 0. The eigen values of the Hamiltonian H,, are —A, 0 and A and the
corresponding eigen kets are those of m = 71 + 0».

The eigen values of the Hamiltonian I/-jsp + ﬁvib12 are :

1
—A + hwio <n12 + 2) , with mis = 0,1,2,..00 (6)
!/ 1 . !/
hw12 (n12 + 2) , withnj, = 0,1,2,..00
1 1 : 1
A + w1z (n12 + 2) , withnjy, = 0,1,2,..00

Taking into account the degeneracy r and that of the eigen value m = 0, the
partition function zgpip12 associated to the Hamiltonian Hp + Hyipi2 is

Zspuibl2 = (eﬁA + 2r 4 r2ePA

)2 (575 "

As the Hamiltonians H sp and I/‘\Iuiblg are independent, the partition function
Zspvib12 18 the product of the partition functions associated with each of the two
Hamiltonians.

Now we introduce the following assumptions :

i) We assume that the value of the elastic force constant k15 depends on the
electronic states of the two atoms. This elastic force constant is equal to A when
both atoms are in their fundamental level ( that corresponds to the state |—2)),
to v when they are both in their excited level ( that corresponds to the state
[2)) and to p when the two atoms are not in the same level ( that corresponds
to the states }0(1)> and ‘0(2)>). This assumption can be written as following [5]

)\+2u+1/+1/—>\ A—2u+v

k1o = 1 1 (01 +02)+f0102 (8)
We assume
A>v 9)
and At
v
p= (10)

The relation (8) introduces a coupling between the fictious spins and the in-
teratomic vibrations. Taking into account this coupling, the partition function
becomes

1 2r 1
- . hw_ _ + . hwy +r26_BA . hwy
2sinh(f=5—) 2sinh(8—5~) 2smh(BT() |
11
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where

and

ii) We also assume also that in each atom there are p identical and indepen-
dent one-dimensional harmonic oscillators. The frequency value of one oscillator
i win: when the atom is in its fundamental level and w;,; when it is in its ex-
cited one. With this new assumptition the partition function of the molecule
becomes

2
ePr 1 p+ 2r 1 P 1 b
Zmol = A iy - o - y - =
l 2sinh(3%5—=) \ 2sinh(f14=e) 2sinh(52+) \ 2sinh(B1ne) 2 sinh (31t )

2p
2 —BA 1
N .r e — . — (15)
2sinh(3=5+) \ 2sinh(B752t)
2p
Factorizing (2}1(51’“’)) in the relation (15), we obtain
Sin 72 —
2p
1 /
Zmol = | o Ao hoiN Zmol (16)
2sinh(3*nt)
with
, efA 2rRyip r?R2, e P8
Zmol = . hw_ _ + . hw_ . hw (17)
2sinh(f=5—=) 2sinh(8=5+) 2sinh(5=5+)
and

P

2 sinh(31ne

Ryiy = % (18)
2sinh(3*=t)

In the relation (16), the partition function z,,, appears as that of two indepen-
dent systems : a system of 2p identical and independent harmonic oscillators
which vibrate with the frequency w;,: and the system of the two fictitious spins

o1 and 09 coupled to the vibrations of the molecule. We are concerned with

/

Zmol *



2.2 Probability and partial Gibbs-potential

As the partition function 2/, , depends on the intensive parameters 7" and A/2,
the thermodynamic potential associated to z] , is the free enthalpy, or the
Gibbs potential, denoted g. We have

= _kBTln( mol) (19)
Let (m) be the thermal mean value of the operator o, + 72,
(m) = (01 +02) (20)

For the following (m) is called magnetization per molecule. Accordind to the
Hamiltonian H,,, relation (5), (m) is the extensive parameter associated to 5.

So we have
() = 2 (21)
T 9A
9%
and then
_ 1 —2¢PA 2r?R?,
() = CH i (22)
2sinh(f~5—) 2sinh(8—5*)
Let us introduce the parameters a1, as and az defined by
BA
e—nw (23)
2sinh(8=5—)
2 Rm
- R &
2sinh(f=5+)
and 22 A
R
vlbef (25)
T2 sinh(5=5+)
The partition function 2/, , can be writen
20 o = a1+ as +as (26)
and the mean value (M) is given by
N 1
(m) = o (—2a;1 + 2a3) (27)
mol

From relation (27) we see that the thermal probability to find the system in

the quantum state |—2) is

P(=2)=P(-2)= 7— (28)



Likewise
as

P(|2))=P(2)= o (29)
and
P (‘0<1>> and ‘0<2>>) = P(0) = z;il (30)

We introduce three thermodynamic states : The thermodynamic state (2)

that takes into account all the vibration energy levels associated with the eigen
value m = 2 and likewise the thermodynamic states (0) and (—2).

While z/, ; corresponds to the sum Y e #% over all the microscopic states
O]
(1) of the molecule, the parameter a1 corresponds to the sum over all microscopic

states for which the eigen value m is equal to —2, the sum is made over the
energy levels of the oscillators. For this set of microscopic states one introduce
the partial Gibbs potential g (—2)

9(=2) = —kpT'In(a1) (31)

In the same way we define the partial Gibbs potential g (0) by
g(0) = —kpTIn (a9) (32)
and the partial Gibbs potential g (2) by
9(2) = —kpTn (as) (33)

From the relations (31- 33), we have

a; = exp <— gk(B_I%)> (34)
as = exp <— i;?) (35)
and

as = exp < ‘Zf}) (36)

We can verify that )

dg(2)

8% =2 (37)
aga(;) — 2 (38)



and
dg (0)
0%

So the magnetization per molecule in the states (2), (0) and (—2) is equal to 2,

=0 (39)

0 and —2, respectively.

The parameters % corresponds to the pressure for gas and (m) to its volume

per molecule.

2.3 Entropy

The entropy related to the Gibbs potential g is

0
s = —ang (40)
So,
_ / a9 a2 9 a9 a8
8= Faln (oma) theT <l g )t et agth @) a7
(41)
with 5 . .
a5 In(ay) = <A -5 coth <62>) (42)
0 _ 9 o ey Ty —
a5 In (ag) = 95 In (Ry:p) 5 coth (6 5 > (43)
N I Uy i
a5 In (a3) = 23ﬂ In (Ryip) — A 5 coth (6 5 (44)
0 o hwint hwint mint mint
%ln (Ryiv) =D <2 coth <B 5 > ) coth <B 5 >) (45)
As
d 1
we obtain
B kg 0 0 0
s=kpln(a; + az + a3) T <P( 2)%ln(a1) + P (0) %ln(ag) +P(2) 2
(47)
For the state (—2) the entropy is
(-2) = —2g(-2) (48)
ST Tard



So

5(0) = kp In (as) %% In (as)
and kp O
$(2) = kpln(as) ©T 95 In (a3)

2.4 Enthalpy

The enthalpy related to the Gibbs potential g is given by

7]
h = _% In (Z:nol)
or by
g=h-Ts
So we obtain
h=-— P(—2)iln(a )—i—P(O)iln(a )+P(2)£ln(ar)
B g o g
For the state (—2) the enthalpy is
0
h(-2)= T In (aq)

and

(52)

(53)

(54)

(55)

(56)



2.5 Ensemble of N identical molecules

Let us consider the ensemble of N identical molecules. At equilibrium they
are distributed between the three states according to the canonical distribution
given by relations (28-30). So there are N (—2) molecules in the state (—2),
N (0) in the state (0) and N (2) in the state (—2) with

N (-2) = NP (-2) (58)
N (0) = NP (0) (59)
N(2)=NP(2) (60)

We recall that 7" and A/2 are fixed.

2.5.1 Extensive parameters

Let M be the total magnetization
M = N (m) (61)
From relation (27) we can verify that
M = —2N (-2) +2N (2) (62)

So M is the sum of the magnetizations of the three separate states.
Let H be the total enthalpy

H = Nh (63)
Using equations (54-57) we obtain
H=N(-2)h(-2)+ N(0)h(0)+ N (2)h(2) (64)
So H is the sum of the enthalpies of the three separate states.

Let S be the total entropy,

S =Ns (65)
Using relation (47), we obtain
B kp 0 0 7]
S =NEkpln(a; + a2 + a3)ka—T (N (—2) a5 In (a1) + N (0) a5 In (az) + N (2) a5 In (a3)>
(66)

10



Let S’ be the sum of the entropies of the three separate states. Using relations
(49-51) we have

S = kg(N(=2)In(a1)+ N (0)In(az) + N (2)In(a3))

_% (N (-2) % In (a1) + N (0) % In(az) + N (2) % I (“3>>67)

So, S and S are not equal and the quantity S — S’ is given by

S—S8"= Nkgln(a; +as +a3)—kp (N (—2)In(a;) + N (0)In (az) + N (2) In (a3))
(68)
The quantity S — S’ corresponds to the entropy of mixing.

2.5.2 Random heat exchanges

At the triple point of a pure substance there are three phases having Ny, Ny and
N3 molecules. As the Gibbs potentials of the three phases are equal the system
is stable and these numbers remain constant. However they can be modified,
given P and 7', when the molecules receive, in algebraic sense, macroscopic heat
and work. The work received is related to volume variation.

In the present study, there are three thermodynamiques states having N (—2),
N (0) and N (2) molecules at the same values for A/2 and T'. But, as the Gibbs
potentials of the three states are not equal the system is not stable. These num-
bers of molecules can and must vary.

It is known that the thermostat randomly exchange heat with the molecules.
Let us call g the heat receive, in algebraic sense, by a molecule. As A/2 is
constant,

dq = oh (69)

where dh is the variation of the enthalpy of the molecule. From relation (53),
the variation of the Gibbs potential of the molecule is

dg = 6h —Tds (70)

So
dg =0dq —Tds (71)

We know that when the thermostat gives the quantity of heat dq its entropy

varies according to the relation

6q =-T 6Sthermostat (72)

11



So
§g =-T (5Sthermostat + 63) (73)

So the entropy variation of the total system ( thermostat+molecules) verifies
the relation
og
5Sthe7’mostat + ds = — T (74)

From relation (74), this entropy variation is positive when dg is negative. So, if
a molecule leaves a state (i) to go in a state (j) (¢,7 = —2,0,2), this process is
possible and is an irreversible process if g (j) is lower than g (7).

So, for T and A/2 fixed, all the molecules are found in the state where the
gibbs potential is the smallest. This state is the stable state.

3 Numerical study

3.1 Reduced parameters

We take A as the unit of elastic force constant and Zww_ _ as the unit of energy.
We then introduce the reduced energy gap

A
T (75)
the reduced temperature
= T (76)
C hw_ _
and the following reduced parameters
v
=— 7
r=7 (77)
Wint
= — 78
2= (78)
~ wint
= 79
v Wint ( )

3.2 Values of the system parameters

The numerical study is done with r =5, 22 =12, =09, p=2, z =0.1.

With the choice £ and x smaller than the unit, the vibration frequencies
values are lower when the spin conversion molecules are in the excited level
than when they are in the fundamental one.

12



The value of w_ _ depends on the mass of a spin conversion molecule, while
the value of w;,; depends on the mass of a few atoms of a spin conversion

molecule. For this reason we take w;,; larger than w_ _ and then zz > 1.
The value of the parameter r is 25 4+ 1 with S = 2.
As Ry is higher than the unit and as w4y is smaller than w_ _, the vibra-

tions favour ag, that is the state (2), while the parameter A favours a;, that is
the state (—2).

3.3 Case § =0.35

The thermal variations of the probabilities P (—2), P (0) and P (2) for § = 0.35
are shown in Figure 1. From this Figure, the probabilities P (—2) and P (2)
are equal at the temperature value denoted t3. From relations (28) and (29),
the probabilities P (—2) and P (2) are equal when the parameters a; and ag
are equal. So the parameters a; and az are equal at t3. In case § = 0.35,
t3 = 0.0367.

The thermal variations of the partial Gibbs potentials g (—2), ¢ (0) and g (2)
for 6 = 0.35 are shown in Figure 2. The temperature at which g (—2) and g (2)
are equal is t3 because at this temperature a; and as are equal. As shown in
Figure 2, the lowest partial Gibbs potential is g (—2) is below ¢5 and g (2) above
t3. So all the molecules are in the state (—2) below ¢3 and in the state (2) above
ts.

In Figure 2, it should be noted that the partial Gibbs potential ¢ (0) is higher
than the partial Gibbs potentials ¢ (2) and g (—2) between t; and to. In case
6 =0.35, t1 = 0.0188 and ¢, = 0.0438.

Following the canonical distribution, (m), the magnetization per atom, is
given by relation (27). But due to the irreversible process mentioned previously
the magnetization per atom is equal to —2 below t3 and to +2 above t3. So
there is a discontinuity in the magnetization per atom at t3. These results are
shown in Figure 3.

13
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Figure 1. Thermal variations of the probabilities P (—2), P (0) and P (2).
The probabilities P (—2) and P (2) are equal at 3 = 0.0367.

Figure 2. Thermal variations of the partial Gibbs potentials g (—2), g (0) and
g (2). The Gibbs potentials g (—2) and g (2) are equal at t3. The Gibbs potential
¢ (0) is higher than g (—2) and g (2) between ¢; = 0.0188 and to = 0.0438.

Figure 3. Thermal variations of the magnetization per atom. According to
the canonical distribution this parameter varies continuously with temperature.
But taking into account stable states, this parameter has only two values £2.

3.4 Other § values

The variation with & of the parameters 1, to and t3 are shown in Figure 4.
For 6 = 0.28, the value of t3 does not exist. This means that state (2) is the

stable state from ¢ = 0.001. This result comes from the fact that the energy of
vibrations at 0K (zero-point energy) is higher than A.

For 0 values between 0.30 and 0.38 approximately the results are the same
as in the case § = 0.35 : the molecules are in the state (—2) below t3 and in the
state (2) above t3. The t3 value is between ¢; and ¢s.

As shown in Figure 5, for ¢ values greater than 0.38 the stable state is (—2)
at low temperature, (0) above t4 and finally (2) above t5. Thus the thermal
variation of the magnetization per atom is discontinuous at t4 and t5.

15
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Figure 4. Variations with § of the parameters ¢, to and t3. These parameters
are defined in Figure 2. The state (2) is the stable state for ¢ > t3.

Figure 5. Thermal variations of the partial Gibbs potentials g (—2), ¢ (0)
and ¢ (2) for 6 = 0.5. The state (—2) is the stable state between 0.001 and
ty = 0.1089. Tt is the state (0)between t4 and ¢; = 0.1587 and the state (2)

above ts.

4 Discussion and Conclusion

4.1 Discussion : entropy of mixing

As the molecules are identical the additional entropy, S — S’, " does not make
physical sense" ( see Reif p. 244). If we remove this additional entropy, the
Gibbs potential of the system is N (—2)g(—2) + N (0)g(0) + N (2)g(2). Tt is
clear that this Gibbs potential value is higher than the value Ng (min), where
¢ (min) is the smallest of the three values g (—2), g (0) and g (2).

4.2 Discussion : about discontinuity

In the case § = 0.35, the presence of a discontinuity at t3 leads to the question:
is there a first order phase transition at t3 7 We do not know.

In the case of the van der Waals gas, the first order phase transition is related
to the fact that the stability condition [10]

17



is not satisfied. In the above relation, F and V are the free energy and the
volume, respectively.
In the present study, we have verified that the stability conditions [11]

0%g 0%g
I < <
(aTQ) s ! (aA/22>T =0 (81)

It is interesting to recall that, to our knowledge, there is no theorem, no the-

are satisfied.
oretical result concerning the size of a system for a first order phase transition.

4.3 Discussion : study around t3

At t3, g(—2) and g (+2) are equal and the transition of a molecule between
states (—2) and (2) is a reversible process. There is no reason for a molecule
that is in state (—2) to go in state (2) and vice versa. Close to t3 the absolute
value |g (—2) — ¢ (2)] is small so the transition of a molecule between states (—2)
and (2) is a weakly irreversible process. So, we assume that, around ¢3, the time
for the molecules to go into the stable state can be very long. This time can
be a macroscopic time. Also in an experimental study the molecules could be
observed in a state which is not the stable state.

Previously, we have studied the permanent states. Now we will see the
transitional states for temperature values close to t3, in the case § = 0.35. We

use the master equation [10], [12].

4.3.1 Master equation

Let us denote (1), (2),(3) the states (—2), (0), (2), respectively and P; (1), ¢ =
1,2, 3, the probability that the studied molecule is found in state (i) at time 7.
With j = 1,2, 3, the master equation is
dP;
= > (PWji = PWiy) (82)
J#i

where the parameter Wj; is the transition probability per unit time from the
state (j) to the state (). The parameters W;; are positive and depend on the
temperature T

Relation (82) leads to the three differential equations

dP1 (T)
dr

:PQ(T)ng—Pl(T)le—f—Pg(T)W;gl—Pl(T)W13 (83)

18



dP;iT(T):Pl(T)ng—P2(T)W21+P3(T)W32—P2(T)W23 (84)
dr

which are not independent because

:Pl(T)W13—P3(T)W31+P2(T)W23—P3(T)W32 (85)

P (r)+ P (1) +Ps(r)=1 (86)

We will study the functions P; (1), Py (7) and P; (7) for different temperature
values between t; and t2. We consider the case where the molecules are heated
from a low temperature value . This precision plays a role in the choice of
initial conditions, that is the values of the parameters (Pi),, (P2), and (P3),
introduced below.

We assume that the parameter W;;

i) is equal to zero if g () — g (¢) is positive (impossible process) or equal to
7€ero

Wij =0 if g(j)—g(i) >0 (87)

ii) is small when g (j) — ¢ (¢) is equal to —e, where € is positive and small

Wi; =€ if g(j) — g (i) = —¢, € and € positive and small (88)

4.3.2 General results

With these assumptions W15 and Wiy are equal to zero for any temperature
between ¢1 and t3 because g (2) is higher than g (1) and ¢ (3) . So, equation (84)
becomes

dP2 (T)
dr

= — (Wa1 + Waz) Py (1) (89)

The solution of the equation (89) is
Py(r)= (PQ)O exp (— (Way + Was) 1) (90)

where (P,), is the initial value of P (7). The relaxation time of P (7) is

1
 Way + Wogs

T2

(91)

As the absolute values |g (1) — g (2)] and |g (3) — g (2)] are large (see Figure 2),
we can consider 7o as a microscopic time. So the permanent solution P (1) = 0
is achieved quickly.
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When P; (1) is equal to zero, the equations (83) and (85) become

L) — i (r) Wia+ Py (r) Wy 02)
dpsT(T) = —P3 (1) W31 + Py (1) Wi3 (93)

with
Pl(T)+P3(T):1 (94)

Using (94), equation (92) becomes

dP
;T(T) == Wiz + Wa1) Pr (7) + Wau (95)
and equation (93) becomes
dP:
% = — (Wig + Wa1) P53 (1) + W13 (96)

To solve equation (95), we make a change of function [13]. We introduce Y7 (1)
by

W1
Y; =P T 97
(1) = Pi ()~ g (o7
We then obtain the equation
dYy (T
75; ) = — (W13 + ng) Y1 (T) (98)
The solution of (98) is
Y1 (r) = (Y1)gexp (= (Wis + Wa1) 1) (99)

where (Y1), is the initial value of Y; (7). This initial value is related to (Pr),,
the initial value of Py (), by

W31

Y1)o=(P1)g — ————— 100
( 1)0 ( 1)0 W13 + W31 ( )
Finally, between ¢; and t9, the expression of P; (1) is
P =((P)y— =—+ — (Wizs + W: + — - (101
1 (7) = (P = s ) 50 (= (W + W) 1)+ g2 (101
and that of Ps (1) is
Wis Wis
P. =((P3)yg— =————— — (Wis + W- + — (102
2 (7) = (Pl = g g ) X0 (= (Wi o W) 1) 4 i (102
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4.3.3 Above and below t3

For t < t3, as ¢ (3) is higher than ¢ (1), W3 is equal to zero and relations (101)
and (102) become

Py (1) =((P1)y —1)exp (—Wazim) +1 (103)

and
P3 (1) = (Ps)gexp (—Ws17) (104)

The relaxation time of Py (1) and P5(7) is

1

— 105
W (105)

T31 =

For a temperature value far from ¢35 the absolute value |g (1) — g (3)| is large and
this relaxation time is very short, it is a microscopic time. For a temperature
value close to t3 |g (1) — g (3)| is small and this relaxation time is very long, it
is a macroscopic time. At t3 the value of 73; is infinite.

For t > t3, as g (1) is higher than g (3), W3; is equal to zero and relations
(101) and (102) become

Py (1) = (P1)gexp (—=WiaT) (106)
and
P3 (1) = ((P3)y — 1) exp (=WizT) + 1 (107)

The relaxation time of Py (1) and P5 (7) is

1
Wis

For a temperature value far from ¢35 the absolute value |g (3) — ¢ (1)| is large and

T13 = (108)

the relaxation time 713 is very short, it is a microscopic time. For a temperature
value close to t3 the absolute value |g(3) — g (1)| is small and this relaxation
time is very long, it is a macroscopic time. At t3 the value of 713 is infinite.

4.3.4 Description of an experimental study

We consider an experiment where the measurements are made at t3 —20t, t3—dt,
t3, t3 + 0t and t3 + 20t. The quantity dt is a small positive variation of the
temperature.

We assume that 731 is a microscopic time at the temperature values t3 — 2t
and a macroscopic time for t3—0t . Likewise, we assume that 713 is a macroscopic
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time at t3 + 0t and a microscopic time at t3 + 26. At t3 the relaxation times 73,
and 713 are infinite.

At tg — 2dt, the value of the function exp (—W317) is quickly zero and, from
relations (103) and (104), the result of the measurement is P, (1) = 1 and
P5 (1) = 0 which means that the molecules are in the state(1).

Raise the temperature.

At t3 — t, we assume that the initial values (P;), and (P3), that appear
in relations (103) and (104) are the values obtained for P; (1) and Ps (1) at
t3 — 20t. Also we take (P1), = 1 and (P3), = 0 in relations (103) and (104).
As 731 is a macroscopic time the value of the function exp (—W3;7) remains
close to the unit during the measurement. So the result of the measurement is
Py () =1 and P53 (7) = 0 which means that the molecules are in the state(1).
The same is true at ts.

So heating the molecules from a small temperature value they remain in the
state (1) until ¢3.

Raise the temperature.

At t3 + dt, we must use the equations (106) and (107). For the initial values
(P1), and (Ps), we take the values obtained at ¢3, that is (1), = 1 and (Ps), =
0. As the relaxation time 713 is a macroscopic time, the value of the function
exp (—Wh3T) remains close to the unit during the measurement. So the result of
the measurement is P; (7) = 1 and P53 (7) = 0. That means that the molecules
are still in the state (1) which is no longer the stable state.

Raise the temperature.

At t3 + 26t we take for the initial values (Py), and (P3), which appear in
relations (106) and (107) the values obtained at t3 + dt, that is P, (1) = 1 and
P; (1) = 0. But now, as 713 is a microscopic time, the value of the function
exp (—Wi3T) quickly goes to zero and the result of the measurement is P (1) = 0
and Ps (1) = 1.

Thus the molecules have passed into the stable state (3) not at t3 but at
ts + Ot.

We would show in the same way that by cooling the molecules from the
temperature t3 + 20t, where they are in the state (3), that they pass into the
stable state (1) at t3 — dt.

4.4 Conclusion

Thus, the molecules change state at t3+ ¢ or t3 — 6t depending on whether they
are heated or cooled. This result should be able to be verified by Monte Carlo
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simulations.

It would be interesting to resume this study with three molecules linked by
chemical bonds.

In this model the information on the electronic states of the two atoms is
transmitted by vibrations. In magnetism the information concerning the quan-
tum states of two spins is transmitted by the overlapping of orbitals.

We would like to thank H. T. Diep for our inspiring discussions and L.
Chassagne for his support as director of LISV.
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