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Abstract
A spin-conversion molecule is organised around an iron ion Fe+2. This

ion has two quantum energy levels : a low spin (LS) ground level, S = 0,
and a high spin (HS) excited level, S = 2 , where S is the total spin
of the 3d electrons. We call ∆ the distance in energy of the two levels.
This result is described by introducing a fictitious spin σ̂ which has two
eigenvalues ±1. For a set of two molecules we introduce the sum σ̂1+σ̂2 of
two fictitious spins which has the eigen values ±2 and 0. The vibrations
inside each molecule and the vibrations between the two molecules are
taken into account. These vibrations are independent of each other but
their frequency depends on the electronic states of the two molecules. For
the following, each molecule is designated by atom and the set of two
molecules is designated by molecule.

From the statistical study, its appears at equilibrium, for fixed T and
∆/2, three thermodynamic states (−2), (0) and (2) with occupation prob-
abilities P (−2), P (0) and P (2), respectively. For each state we can cal-
culate its Gibbs potential, its entropy and its enthalpy. The intensive
parameters are the temperature T and ∆/2.

For an ensemble of N identical molecules, there are at the (Boltzmann)
equilibrium NP (−2) molecules in the state (−2), NP (0) in the state (0)
and NP (2) in the state (2). But, as the Gibbs potentials of the three
states are not equal, this canonical distribution is not stable. Then, due
to random exchanges of heat between the thermostat and the molecules,
the molecules will all go to the the state with the lowest Gibbs potential.
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1 Introduction

A spin-conversion molecule is organised around an iron ion Fe+2. This ion has
two quantum energy levels : a low spin (LS) ground level, S = 0, and a high spin
(HS) excited level, S = 2, where S is the total spin of the 3d electrons[1− 3]

. Let us call ∆ the difference between the energies of the two levels and r the
degeneracy of the excited level. This degeneracy is given by r = 2S + 1.
In 1974, M. Sorai and S. Seki [4]measured the heat capacities of [Fe (phen)2 (NCS)2]

and [Fe (phen)2 (NCSe)2] crystals. These molecules are spin-conversion mole-
cules. They concluded that "there is significant coupling between electronic
state and phonon system" and that excitation of phonons is much easier in
the high temperature phase. In order to take into account these results, J.
A. Nasser [5] assumed that the elastic force constant of the spring linking two
molecules first neighbours in a crystal of spin conversion molecules depends on
the electronic states of both molecules.
In 2006, Kate L. Ronayme et al. [6] determined by DFT calculations and

from different experimental results the values of the intramolecular vibration
frequencies of the molecule [Fe (phen)2 (NCS)2] when this molecule is in the
(LS) and (HS) levels. They found that these values are generally smaller when
the molecule is in the (HS) level. Taking into account the results of Ronayme
et al. J. A. Nasser et al. [7] studied the influence of intramolecular vibrations
on this two electronic energy levels system.
Now, we study the thermal behavior of two identical spin-conversion mole-

cules linked by a chemical bond. We assume that i) the elastic force constant
of the spring which exists between the two molecules depends on the electronic
state of both molecules and that ii) there are in each molecule p independent
linear harmonic oscillators.
For the following, each molecule is designated by atom and the set of two

molecules is designated by molecule.
In Section 2, we present the theoretical study. In Section 3 we give the

results obtained for a set of values given to system parameters. The last section
is devoted to discussion and conclusion.

2 Theoretical Study
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2.1 Hamiltonian and Partition function

Consider a system of N identical molecules in contact with a heat reservoir at
the absolute temperature T . We do not take into account the degrees of freedom
of translation and of rotation of the molecules. And we consider the interaction
between the molecules to be negligible.
Each molecule is made up of two identical atoms (1) and (2) linked by a

chemical bond. Let us call k12 the elastic force constant of the spring that acts
between both atoms. The atoms oscillate around their equilibrium position with
the frequency ω12 given by

ω12 =

√
2k12

ma
(1)

where ma is the mass of an atome and ma/2 is the reduced mass of the two
atoms. The relation (1) can be established by means of classical mechanics [8] .

The eigen values of the Haliltonian of vibrations Ĥvib12 are ~ω12

(
n12 + 1

2

)
with n12 = 0, 1, 2, ...∞ and where ~ is the Planck’s constant divided by 2π. So,
the partition function associated to the Hamiltonian Ĥvib12 is

z12vib =
1

2 sinh
(
β ~ω122

) (2)

We recall that ∑
n=0.1.2...

e−β~ω(n+ 1
2 ) =

1

2 sinh
(
β ~ω2

) (3)

with β = 1
kBT

and where kB is the Boltzmann constant.
We assume that each atom has two energy levels separated by ∆. The

fundamental level is not degenerated while the excited one has the degeneracy
r. We associate the fictitious spin σ̂i to the atom (i) (i = 1, 2) and we assume
that σ̂i has two eigenvalues σi = ±1 [9]. The degeneracy r comes from an other
space of states.
The spin Hamiltonian of the atom (i) can be written

Ĥsp (i) =
∆

2
σ̂i (4)

and the spin Hamiltonian of the molecule is

Ĥsp =
∆

2
(σ̂1 + σ̂2) (5)

The eigen values of the operator m̂ = σ̂1 + σ̂2 are m = −2, 0, 2. The corre-
sponding eigen kets are |−2〉 = |−1,−1〉,

∣∣0(1)
〉

= |−1, 1〉,
∣∣0(2)

〉
= |1,−1〉 and

|2〉 = |1, 1〉. In the brackets the first number is the value of σ1 and the second
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that of σ2. The two kets
∣∣0(1)

〉
and

∣∣0(2)
〉
are the eigen states of the eigen value

m = 0. The eigen values of the Hamiltonian Ĥsp are −∆, 0 and ∆ and the
corresponding eigen kets are those of m̂ = σ̂1 + σ̂2.

The eigen values of the Hamiltonian Ĥsp + Ĥvib12 are :

−∆ + ~ω12

(
n12 +

1

2

)
, with n12 = 0, 1, 2, ..∞ (6)

~ω12

(
n′12 +

1

2

)
, with n′12 = 0, 1, 2, ..∞

∆ + ~ω12

(
n′′12 +

1

2

)
, with n′′12 = 0, 1, 2, ..∞

Taking into account the degeneracy r and that of the eigen value m = 0, the
partition function zspvib12 associated to the Hamiltonian Ĥsp + Ĥvib12 is

zspvib12 =
(
eβ∆ + 2r + r2e−β∆

) 1

2 sinh
(
β ~ω122

) (7)

As the Hamiltonians Ĥsp and Ĥvib12 are independent, the partition function
zspvib12 is the product of the partition functions associated with each of the two
Hamiltonians.
Now we introduce the following assumptions :
i) We assume that the value of the elastic force constant k12 depends on the

electronic states of the two atoms. This elastic force constant is equal to λ when
both atoms are in their fundamental level ( that corresponds to the state |−2〉),
to ν when they are both in their excited level ( that corresponds to the state
|2〉) and to µ when the two atoms are not in the same level ( that corresponds
to the states

∣∣0(1)
〉
and

∣∣0(2)
〉
). This assumption can be written as following [5]

:
k12 =

λ+ 2µ+ ν

4
+
ν − λ

4
(σ1 + σ2) +

λ− 2µ+ ν

4
σ1σ2 (8)

We assume
λ > ν (9)

and
µ =

λ+ ν

2
(10)

The relation (8) introduces a coupling between the fictious spins and the in-
teratomic vibrations. Taking into account this coupling, the partition function
becomes

(zspvib12)coupl = eβ∆ 1

2 sinh(β ~ω− −
2 )

+
2r

2 sinh(β ~ω+−2 )
+ r2e−β∆ 1

2 sinh(β ~ω++2 )
(11)
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where

ω− − =

√
2
λ

m
(12)

ω+− = ω−+ =

√
2
µ

m
= ω− −

√
µ

λ
(13)

and

ω++ =

√
2
ν

m
= ω− −

√
ν

λ
(14)

ii) We also assume also that in each atom there are p identical and indepen-
dent one-dimensional harmonic oscillators. The frequency value of one oscillator
is ωint when the atom is in its fundamental level and ω̃int when it is in its ex-
cited one. With this new assumptition the partition function of the molecule
becomes

zmol =
eβ∆

2 sinh(β ~ω− −
2 )

(
1

2 sinh(β ~ωint2 )

)2p

+
2r

2 sinh(β ~ω−+2 )

(
1

2 sinh(β ~ωint2 )

)p(
1

2 sinh(β ~ω̃int2 )

)p

+
r2e−β∆

2 sinh(β ~ω++2 )

(
1

2 sinh(β ~ω̃int2 )

)2p

(15)

Factorizing
(

1

2 sinh(β
~ωint

2 )

)2p

in the relation (15), we obtain

zmol =

(
1

2 sinh(β ~ωint2 )

)2p

z′mol (16)

with

z′mol =
eβ∆

2 sinh(β ~ω− −
2 )

+
2rRvib

2 sinh(β ~ω−+2 )
+

r2R2
vibe
−β∆

2 sinh(β ~ω++2 )
(17)

and

Rvib =

(
2 sinh(β ~ωint2 )

2 sinh(β ~ω̃int2 )

)p
(18)

In the relation (16), the partition function zmol appears as that of two indepen-
dent systems : a system of 2p identical and independent harmonic oscillators
which vibrate with the frequency ωint and the system of the two fictitious spins
σ̂1 and σ̂2 coupled to the vibrations of the molecule. We are concerned with
z′mol .
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2.2 Probability and partial Gibbs-potential

As the partition function z′mol depends on the intensive parameters T and ∆/2,
the thermodynamic potential associated to z′mol is the free enthalpy, or the
Gibbs potential, denoted g. We have

g = −kBT ln (z′mol) (19)

Let 〈m̂〉 be the thermal mean value of the operator σ̂1 + σ̂2,

〈m̂〉 = 〈σ̂1 + σ̂2〉 (20)

For the following 〈m̂〉 is called magnetization per molecule. Accordind to the
Hamiltonian Ĥsp, relation (5), 〈m〉 is the extensive parameter associated to ∆

2 .
So we have

〈m̂〉 =
∂g

∂∆
2

(21)

and then

〈m̂〉 =
1

z′mol

(
−2eβ∆

2 sinh(β ~ω−−2 )
+

2r2R2
vibe
−β∆

2 sinh(β ~ω++2 )

)
(22)

Let us introduce the parameters a1, a2 and a3 defined by

a1 =
eβ∆

2 sinh(β ~ω−−2 )
(23)

a2 =
2rRvib

2 sinh(β ~ω−+2 )
(24)

and

a3 =
r2R2

vibe
−β∆

2 sinh(β ~ω++2 )
(25)

The partition function z′mol can be writen

z′mol = a1 + a2 + a3 (26)

and the mean value 〈m̂〉 is given by

〈m̂〉 =
1

z′mol
(−2a1 + 2a3) (27)

From relation (27) we see that the thermal probability to find the system in
the quantum state |−2〉 is

P (|−2〉) = P (−2) =
a1

z′mol
(28)
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Likewise
P (|2〉) = P (2) =

a3

z′mol
(29)

and
P
(∣∣∣0(1)

〉
and

∣∣∣0(2)
〉)

= P (0) =
a2

z′mol
(30)

We introduce three thermodynamic states : The thermodynamic state (2)

that takes into account all the vibration energy levels associated with the eigen
value m = 2 and likewise the thermodynamic states (0) and (−2).

While z′mol corresponds to the sum
∑
(l)

e−βEl over all the microscopic states

(l) of the molecule, the parameter a1 corresponds to the sum over all microscopic
states for which the eigen value m is equal to −2, the sum is made over the
energy levels of the oscillators. For this set of microscopic states one introduce
the partial Gibbs potential g (−2)

g (−2) = −kBT ln (a1) (31)

In the same way we define the partial Gibbs potential g (0) by

g (0) = −kBT ln (a2) (32)

and the partial Gibbs potential g (2) by

g (2) = −kBT ln (a3) (33)

From the relations (31- 33), we have

a1 = exp

(
− g (−2)

kBT

)
(34)

a2 = exp

(
− g (0)

kBT

)
(35)

and

a3 = exp

(
− g (2)

kBT

)
(36)

We can verify that
∂g (2)

∂∆
2

= 2 (37)

∂g (−2)

∂∆
2

= −2 (38)
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and
∂g (0)

∂∆
2

= 0 (39)

So the magnetization per molecule in the states (2), (0) and (−2) is equal to 2,
0 and −2, respectively.
The parameters ∆

2 corresponds to the pressure for gas and 〈m̂〉 to its volume
per molecule.

2.3 Entropy

The entropy related to the Gibbs potential g is

s = − ∂

∂T
g (40)

So,

s = kB ln (z′mol)+kBT

(
a1

z′mol

∂

∂β
ln (a1) +

a2

z′mol

∂

∂β
ln (a2) +

a1

z′mol

∂

∂β
ln (a3)

)
dβ

dT
(41)

with
∂

∂β
ln (a1) =

(
∆− ~ω−−

2
coth

(
β
~ω−−

2

))
(42)

∂

∂β
ln (a2) =

∂

∂β
ln (Rvib)−

~ω+−
2

coth

(
β
~ω+−

2

)
(43)

∂

∂β
ln (a3) = 2

∂

∂β
ln (Rvib)−∆− ~ω++

2
coth

(
β
~ω++

2

)
(44)

∂

∂β
ln (Rvib) = p

(
~ωint

2
coth

(
β
~ωint

2

)
− ~ω̃int

2
coth

(
β
~ω̃int

2

))
(45)

As

d

dT
β = − 1

kBT 2
(46)

we obtain

s = kB ln (a1 + a2 + a3)− kB
kBT

(
P (−2)

∂

∂β
ln (a1) + P (0)

∂

∂β
ln (a2) + P (2)

∂

∂β
ln (a3)

)
(47)

For the state (−2) the entropy is

s (−2) = − ∂

∂T
g (−2) (48)
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So
s (−2) = kB ln (a1)− kB

kBT

∂

∂β
ln (a1) (49)

Likewise, we have for the state (0) and (2)

s (0) = kB ln (a2)− kB
kBT

∂

∂β
ln (a2) (50)

and
s (2) = kB ln (a3)− kB

kBT

∂

∂β
ln (a3) (51)

2.4 Enthalpy

The enthalpy related to the Gibbs potential g is given by

h = − ∂

∂β
ln (z′mol) (52)

or by
g = h− Ts (53)

So we obtain

h = −
(
P (−2)

∂

∂β
ln (a1) + P (0)

∂

∂β
ln (a2) + P (2)

∂

∂β
ln (a3)

)
(54)

For the state (−2) the enthalpy is

h (−2) = − ∂

∂β
ln (a1) (55)

Likewise, we have for the states (0) and (2)

h (0) = − ∂

∂β
ln (a2) (56)

and

h (2) = − ∂

∂β
ln (a3) (57)
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2.5 Ensemble of N identical molecules

Let us consider the ensemble of N identical molecules. At equilibrium they
are distributed between the three states according to the canonical distribution
given by relations (28-30). So there are N (−2) molecules in the state (−2),
N (0) in the state (0) and N (2) in the state (−2) with

N (−2) = NP (−2) (58)

N (0) = NP (0) (59)

N (2) = NP (2) (60)

We recall that T and ∆/2 are fixed.

2.5.1 Extensive parameters

Let M be the total magnetization

M = N 〈m̂〉 (61)

From relation (27) we can verify that

M = −2N (−2) + 2N (2) (62)

So M is the sum of the magnetizations of the separate three states.
Let H be the total enthalpy

H = Nh (63)

Using equations (54-57) we obtain

H = N (−2)h (−2) +N (0)h (0) +N (2)h (2) (64)

So H is the sum of the enthalpies of the separate three states.

Let S be the total entropy,
S = Ns (65)

Using relation (47), we obtain

S = NkB ln (a1 + a2 + a3)− kB
kBT

(
N (−2)

∂

∂β
ln (a1) +N (0)

∂

∂β
ln (a2) +N (2)

∂

∂β
ln (a3)

)
(66)
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Let S′ be the sum of the entropies of the three separate states. Using relations
(49-51) we have

S′ = kB (N (−2) ln (a1) +N (0) ln (a2) +N (2) ln (a3))

− kB
kBT

(
N (−2)

∂

∂β
ln (a1) +N (0)

∂

∂β
ln (a2) +N (2)

∂

∂β
ln (a3)

)
(67)

So, S and S′ are not equal and the quantity S − S′ is given by

S−S′ = NkB ln (a1 + a2 + a3)−kB (N (−2) ln (a1) +N (0) ln (a2) +N (2) ln (a3))

(68)
The quantity S − S′ corresponds to the entropy of mixing. The lack of

information is greater when we know that there are N molecules having the
magnetization 〈m〉 than when we know that there are N (−2) with the magne-
tization −2, N (0) with the magnetization 0 and N (2) with the magnetization
2.

2.5.2 Random heat exchanges

At the triple point of a pure substance there are three phases having N1, N2 and
N3 molecules. As the Gibbs potentials of the three phases are equal the system
is stable and these numbers remain constant. However they can be modified,
given P and T , when the molecules receive, in algebraic sense, macroscopic heat
and work. The work received is related to volume variation.
In the present study, there are three thermodynamiques states havingN (−2),

N (0) and N (2) molecules at the same values for ∆/2 and T . But, as the Gibbs
potentials of the three states are not equal the system is not stable. These num-
bers of molecules can and must vary.
It is known that the thermostat randomly exchange heat with the molecules.

Let us call δq the heat receive, in algebraic sense, by a molecule. As ∆/2 is
constant,

δq = δh (69)

where δh is the variation of the enthalpy of the molecule. The variation of the
Gibbs potential of the molecule is

δg = δh− Tδs (70)

So
δg = δq − Tδs (71)

11



We know that when the thermostat gives the quantity of heat δq its entropy
varies according to the relation

δq = −T δSthermostat (72)

So
δg = −T (δSthermostat + δs) (73)

So the entropy variation of the total system ( thermostat+molecules) verifies
the relation

δSthermostat + δs = − δg

T
(74)

From relation (74), this entropy variation is positive when δg is negative. So, if
a molecule leaves a state (i) to go in a state (j) (i, j = −2, 0, 2), this process is
possible and is an irreversible process if g (j) is lower than g (i).
So, for T and ∆/2 fixed, all the molecules are found in the state where the

gibbs potential is the smallest. This state is the stable state.

3 Numerical study

3.1 Reduced parameters

We take λ as the unit of elastic force constant and ~ω− − as the unit of energy.
We then introduce the reduced energy gap

δ =
∆

~ω− −
(75)

the reduced temperature

t =
kBT

~ω− −
(76)

and the following reduced parameters

x =
ν

λ
(77)

zz =
ωint
ω− −

(78)

x̃ =
ω̃int
ωint

(79)
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3.2 Values of the system parameters

The numerical study is done with r = 5, zz = 1.2, x̃ = 0.9 , p = 2, x = 0.1.
With x̃ and x smaller than the unit the values of the vibration frequencies

are lower when the spin conversion molecules are in the excited level than when
they are in the fundamental one.
The value of ω− − depends on the mass of a spin conversion molecule, while

the value of ωint depend on the mass of a few atoms of a spin conversion mole-
cule. For this reason we take ωint larger than ω− − and then zz > 1.

The value of the parameter r is 2S + 1 with S = 2.
As Rvib is higher than the unit and as ω++ is smaller than ω− −, the vibra-

tions favour a3, that is the state (2), while the parameter ∆ favours a1, that is
the state (−2).

3.3 Case δ = 0.35

The thermal variations of the probabilities P (−2), P (0) and P (2) for δ = 0.35

are shown in Figure 1. From this Figure, the probabilities P (−2) and P (2)

are equal at the temperature value denoted t3. From relations (28) and (29),
the probabilities P (−2) and P (2) are equal when the parameters a1 and a3

are equal. So the parameters a1 and a3 are equal at t3. In case δ = 0.35,
t3 = 0.0367.
The thermal variations of the partial Gibbs potentials g (−2), g (0) and g (2)

for δ = 0.35 are shown in Figure 2. As a1 and a3 are equal at t3, the partial
Gibbs potentials g (−2) and g (2) are equal at t3. As shown in Figure 2, the
lowest partial Gibbs potential is g (−2) is below t3 and g (2) above t3. So all
the molecules are in the state (−2) below t3 and in the state (2) above t3.
In Figure 2, it should be noted that the partial Gibbs potential g (0) is higher

than the partial Gibbs potentials g (2) and g (−2) between t1 and t2. In case
δ = 0.35, t1 = 0.0188 and t2 = 0.0438.

Following the canonical distribution, 〈m〉, the magnetization per atom, is
given by relation (27). But due to the irreversible process mentioned previously
the magnetization per atom is equal to −2 below t3 and to +2 above t3. So
there is a discontinuity in the magnetization per atom at t3. These results are
shown in Figure 3.

13
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Figure 1. Thermal variations of the probabilities P (−2), P (0) and P (2).
The probabilities P (−2) and P (2) are equal at t3 = 0.0367.

Figure 2. Thermal variations of the partial Gibbs potentials g (−2), g (0) and
g (2). The Gibbs potentials g (−2) and g (2) are equal at t3. The Gibbs potential
g (0) is higher than g (−2) and g (2) between t1 = 0.0188 and t2 = 0.0438.

Figure 3. Thermal variations of the magnetization per atom. According to
the canonical distribution this parameter varies continuously with temperature.
But taking into account stable states, this parameter has only two values ±2.

3.4 Other δ values

For δ values between 0.26 and 0.38 approximately the results are the same as
in the case δ = 0.35 : the molecules are in the state (−2) below t3 and in the
state (2) above t3. The t3 value is between t1 and t2. The variation with δ of
the parameters t1, t2 and t3 are shown in Figure 4.
For δ = 0.28, the value of t3 does not exist. This means that state (2) is the

stable state from t = 0.001. This result comes from the fact that the energy of
vibrations at 0K (zero-point energy) is higher than ∆.

As shown in Figure 5, for δ values greater than 0.38 the stable state is (−2)

at low temperature, (0) above t4 and finally (2) above t5. Thus the thermal
variation of the magnetization per atom is discontinuous at t4 and t5.
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Figure 4. Variations with δ of the parameters t1, t2 and t3. These parameters
are defined in Figure 2. The state (2) is the stable state for t > t3.

Figure 5. Thermal variations of the partial Gibbs potentials g (−2), g (0)

and g (2) for δ = 0.5. The state (−2) is the stable state between 0.001 and
t4 = 0.1089. Between t4 and t5 = 0.1587 the stable state is the state (0). Above
t5 the stable state is the state (2).

4 Discussion and Conclusion

4.1 Discussion

4.1.1 1)

In the case δ = 0.35, the presence of a discontinuity at t3 leads to the question:
is there a first order phase transition at t3 ? We do not know.
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In the case of the van der Waals gas, the first order phase transition is related
to the fact that the stability condition [10](

∂2F

∂V 2

)
T

≥ 0 (80)

is not satisfied. In the above relation, F and V are the free energy and the
volume, respectively.
In the present study, we have verified that the stability conditions [11](

∂2g

∂T 2

)
∆/2

≤ 0

(
∂2g

∂∆/22

)
T

≤ 0 (81)

are satisfied.
It is interesting to recall that, to our knowledge, there is no theorem, no the-

oretical result concerning the size of a system for a first order phase transition.

4.1.2 2) Study around t3

At t3, g (−2) and g (+2) are equal and the transition of a molecule between
states (−2) and (2) is a reversible process. There is no reason for a molecule
that is in state (−2) to go in state (2) and vice versa. Close to t3 the absolute
value |g (−2)− g (2)| is small so the transition of a molecule between states (−2)

and (2) is a weakly irreversible process.
We assume that, around t3, the time for the molecules to go into the stable

state can be very long. This time can be a macroscopic time. Also in an
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experimental study the molecules could be observed in a state which is not the
stable state.
Previously, we have studied the permanent states. Now we will see the

transitional states for temperature values close to t3, in the case δ = 0.35. We
use the master equation [10], [12].

Master equation Let us denote (1) , (2) , (3) the states (−2), (0), (2), respec-
tively and Pi (τ), i = 1, 2, 3, the probability that the studied molecule is found
in state (i) at time τ . With j = 1, 2, 3, the master equation is

dPi
dτ

=
∑
j 6=i

(PjWji − PiWij) (82)

where the parameter Wji is the transition probability per unit time from the
state (j) to the state (i). The parameters Wji are positive and depend on the
temperature T .
Relation (82) leads to the three differential equations

dP1 (τ)

dτ
= P2 (τ)W21 − P1 (τ)W12 + P3 (τ)W31 − P1 (τ)W13 (83)

dP2 (τ)

dτ
= P1 (τ)W12 − P2 (τ)W21 + P3 (τ)W32 − P2 (τ)W23 (84)

dP3 (τ)

dτ
= P1 (τ)W13 − P3 (τ)W31 + P2 (τ)W23 − P3 (τ)W32 (85)

which are not independent because

P1 (τ) + P2 (τ) + P3 (τ) = 1 (86)

We will study the functions P1 (τ), P2 (τ) and P3 (τ) for different temperature
values between t1 and t2. We consider the case where the molecules are heated
from a low temperature value . This precision plays a role in the choice of
initial conditions, that is the values of the parameters (P1)0, (P2)0 and (P3)0

introduced below.
We assume that the parameter Wij

i) is equal to zero if g (j)− g (i) is positive (impossible process) or equal to
zero

Wij = 0 if g (j)− g (i) ≥ 0 (87)

ii) is small when g (j)− g (i) is equal to −ε, where ε is positive and small

Wij = ε′ if g (j)− g (i) = −ε, ε and ε′ positive and small (88)
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With these assumptions W12 and W32 are equal to zero for any temperature
between t1 and t2 because g (2) is higher than g (1) and g (3) . So, equation (84)
becomes

dP2 (τ)

dτ
= − (W21 +W23)P2 (τ) (89)

The solution of the equation (89) is

P2 (τ) = (P2)0 exp (− (W21 +W23) τ) (90)

where (P2)0 is the initial value of P2 (τ). The relaxation time of P2 (τ) is

τ2 =
1

W21 +W23
(91)

As the absolute values |g (1)− g (2)| and |g (3)− g (2)| are large (see Figure 2),
we can consider τ2 as a microscopic time. So the permanent solution P2 (τ) = 0

is achieved quickly.
When P2 (τ) is equal to zero, the equations (83) and (85) become

dP1 (τ)

dτ
= −P1 (τ)W13 + P3 (τ)W31 (92)

dP3 (τ)

dτ
= −P3 (τ)W31 + P1 (τ)W13 (93)

with
P1 (τ) + P3 (τ) = 1 (94)

Using (94), equation (92) becomes

dP1 (τ)

dτ
= − (W13 +W31)P1 (τ) +W31 (95)

and equation (93) becomes

dP3 (τ)

dτ
= − (W13 +W31)P3 (τ) +W13 (96)

To solve equation (95), we make a change of function [13]. We introduce Y1 (τ)

by

Y1 (τ) = P1 (τ)− W31

W13 +W31
(97)

We then obtain the equation

dY1 (τ)

dτ
= − (W13 +W31)Y1 (τ) (98)
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The solution of (98) is

Y1 (τ) = (Y1)0 exp (− (W13 +W31) τ) (99)

where (Y1)0 is the initial value of Y1 (τ). This initial value is related to (P1)0,
the initial value of P1 (τ), by

(Y1)0 = (P1)0 −
W31

W13 +W31
(100)

Finally, between t1 and t2, the expression of P1 (τ) is

P1 (τ) =

(
(P1)0 −

W31

W13 +W31

)
exp (− (W13 +W31) τ) +

W31

W13 +W31
(101)

and that of P3 (τ) is

P3 (τ) =

(
(P3)0 −

W13

W13 +W31

)
exp (− (W13 +W31) τ) +

W13

W13 +W31
(102)

For t ≤ t3, as g (3) is higher than g (1), W13 is equal to zero and relations
(101) and (102) become

P1 (τ) = ((P1)0 − 1) exp (−W31τ) + 1 (103)

and
P3 (τ) = (P3)0 exp (−W31τ) (104)

The relaxation time of P1 (τ) and P3 (τ) is

τ31 =
1

W31
(105)

For a temperature value far from t3 the absolute value |g (1)− g (3)| is large and
this relaxation time is very short, it is a microscopic time. For a temperature
value close to t3 |g (1)− g (3)| is small and this relaxation time is very long, it
is a macroscopic time. At t3 the value of τ31 is infinite.
For t ≥ t3, as g (1) is higher than g (3), W31 is equal to zero and relations

(101) and (102) become

P1 (τ) = (P1)0 exp (−W13τ) (106)

and
P3 (τ) = ((P3)0 − 1) exp (−W13τ) + 1 (107)

The relaxation time of P1 (τ) and P1 (τ) is
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τ13 =
1

W13
(108)

For a temperature value far from t3 the absolute value |g (3)− g (1)| is large and
the relaxation time τ13 is very short, it is a microscopic time. For a temperature
value close to t3 the absolute value |g (3)− g (1)| is small and this relaxation
time is very long, it is a macroscopic time. At t3 the value of τ13 is infinite.

Description of an experimental study We consider an experiment where

the measurements are made at t3 − 2δt, t3 − δt, t3, t3 + δt and t3 + 2δt. The
quantity δt is a small positive variation of the temperature.
We assume that τ31 is a microscopic time at the temperature values t3−2δt

and a macroscopic time for t3−δt . Likewise, we assume that τ13 is a macroscopic
time at t3 + δt and a microscopic time at t3 + 2δ. At t3 the relaxation times τ31

and τ13 are infinite.
At t3 − 2δt, the value of the function exp (−W31τ) is quickly zero and, from

relations (103) and (104), the result of the measurement is P1 (τ) = 1 and
P3 (τ) = 0 which means that the molecules are in the state(1).
Raise the temperature.
At t3 − δt, we assume that the initial values (P1)0 and (P3)0 that appear

in relations (103) and (104) are the values obtained for P1 (τ) and P3 (τ) at
t3 − 2δt. Also we take (P1)0 = 1 and (P3)0 = 0 in relations (103) and (104).
As τ31 is a macroscopic time the value of the function exp (−W31τ) remains
close to the unit during the measurement. So the result of the measurement is
P1 (τ) = 1 and P3 (τ) = 0 which means that the molecules are in the state(1).
The same is true at t3.

So heating the molecules from a small temperature value they remain in the
state (1) until t3.
Raise the temperature.
At t3 + δt, we must use the equations (106) and (107). For the initial values

(P1)0 and (P3)0 we take the values obtained at t3, that is (P1)0 = 1 and (P3)0 =

0. As the relaxation time τ13 is a macroscopic time, the value of the function
exp (−W13τ) remains close to the unit during the measurement. So the result of
the measurement is P1 (τ) = 1 and P3 (τ) = 0. That means that the molecules
are still in the state (1) which is no longer the stable state.

Raise the temperature.
At t3 + 2δt we take for the initial values (P1)0 and (P3)0 which appear in

relations (106) and (107) the values obtained at t3 + δt, that is P1 (τ) = 1 and
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P3 (τ) = 0. But now, as τ13 is a microscopic time, the value of the function
exp (−W13τ) quickly goes to zero and the result of the measurement is P1 (τ) = 0

and P3 (τ) = 1.
Thus the molecules have passed into the stable state (3) not at t3 but at

t3 + δt.
We would show in the same way that by cooling the molecules from the

temperature t3 + 2δt, where they are in the state (3), that they pass into the
stable state (1) at t3 − δt.

4.2 Conclusion

Thus, the molecules change state at t3 +δt or t3−δt depending on whether they
are heated or cooled. This result should be able to be verified by Monte Carlo
simulations.
It would be interesting to resume this study with three molecules linked by

chemical bounds.
In this model the information on the electronic states of the two atoms is

transmitted by vibrations. In magnetism the information concerning the quan-
tum states of two spins is transmitted by the overlapping of orbitals.

We would like to thank H. T. Diep for our inspiring discussions and L.
Chassagne for his support as director of LISV.
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