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Abstract

A spin-conversion molecule is organised around an iron ion Fe+2. This
ion has two quantum energy levels : a low spin (LS) ground level, S = 0,
and a high spin (HS) excited level, S = 2 , where S is the total spin of
the 3d electrons. A macroscopic crystal of a spin-conversion molecule has
two thermodynamic phases : a diamagnetic phase where all the molecules
are in (LS) level and a paramagnetic phase where they are all in (HS)
level. The diamagnetic phase is stable at low temperature. For some
spin-conversion crystals, the phase change is accompanied by a thermal
hysteresis cycle and for some of them, this hysteresis still exists in very
small nanoparticles. From what size this hysteresis can appear and which
are the microscopic parameters responsible for it ?

It has been shown that a single spin-conversion molecule passes with-
out hysteresis from one level to the other when its temperature varies. In
the present theoretical study we consider the case of two spin conversion
molecules linked by a chemical bound. We assume that the value of the
elastic force constant of the spring between the two molecules depends on
the quantum states of the molecules. A thermal hyteresis cycle can be
obtained.
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1 Introduction

A spin-conversion molecule is organised around an iron ion Fe+2. This ion has
two quantum energy levels : a low spin (LS) ground level, S = 0, and a high
spin (HS) excited level, S = 2, where S is the total spin of the 3d electrons [1].
Let us call ∆ the difference between the energies of the two levels and r the
degeneracy of the excited level. This degeneracy is given by r = 2S + 1.
A macroscopic crystal of a spin-conversion molecule has two thermodynamic

phases : a diamagnetic phase where all the molecules are in (LS) level and a
paramagnetic phase where they are in (HS) level. The diamagnetic phase is
stable at low temperature. For some spin-conversion crystals, the phase change
is accompanied by a thermal hysteresis cycle [2− 10] and for some of them, this
hysteresis still exists in very small nanoparticles [11− 17]. From what size this
hysteresis can appear and which are the microscopic parameters responsible for
it ? These questions are interesting not only from a theoretical point of view but
also because of potential applications. Indeed, because of this hysteresis cycle,
spin-conversion compounds appear as two-levels systems and the nanoparticles
that present this hysteresis can be used as electronic components [18, 19].

M. Sorai and S. Seki ( 1974) [20]measured the heat capacities of [Fe (phen)2 (NCS)2]

and [Fe (phen)2 (NCSe)2] crystals. These molecules are spin-conversion mole-
cules. They concluded that "there is significant coupling between electronic
state and phonon system" and that excitation of phonons is much easier in
the high temperature phase. In order to take into account the results of Sorai
and Seki, J. A. Nasser (2001) [21] assumed that the elastic force constant of
the spring linking two molecules first neighbours in a crystal of spin conversion
molecules depends on the electronic states of both molecules. The value of this
elastic force constant is λ when both molecules are in the (LS) level and ν when
they are both in the (HS) one, with ν < λ. With this last condition phonon
system favours the (HS) level while ∆ favours the (LS) one.
Kate L. Ronayme et al. (2006) [22] determined by DFT calculations and

from different experimental results the values of the intramolecular vibration
frequencies of the molecule [Fe (phen)2 (NCS)2] when this molecule is in the
(LS) and (HS) levels. They found that these values are generally smaller when
the molecule is in the (HS) level.
Previously, J. A. Nasser et al. (2007) [23] studied the case of a single molecule

of [Fe (phen)2 (NCS)2], taking into account the results of Royname et al.. They
showed that the molecule passes without hysteresis, from the (LS) level to the
(HS) one when its temperature varies.
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Now, we study the thermal behavior of two identical spin-conversion mole-
cules linked by a chemical bond. We assume that i) the elastic force constant
of the spring which exists between the two molecules depends on the electronic
state of both molecules and that ii) there are in each molecule p independent
linear harmonic oscillators.
For the following, each molecule is designated by atom and the set of two

molecules is designated by molecule.
In Section 2, we present the theoretical study. In Section 3 we give the results

obtained by the numerical study, and the last Section is devoted to discussion
and conclusion. In the Appendix we establish approximate relationships that
allow us to see where each parameter comes into play.
We recall that the study of the chemical bond between two atoms as part

of the adiabatic approximation leads to the presence between both atoms of
a spring-like and that the elastic force constant of this spring depends on the
quantum states of the electrons involved in the bond [24].

The classical approximation cannot be used in the present study, because
the model is based on the variation in the frequency of harmonic oscillators (
see statistical physics cours and compare [21] and [25]).

2 Theoretical Study

2.1 Hamiltonian and Partition function

Consider a system of N identical molecules in contact with a heat reservoir at
the absolute temperature T . We do not take into account the degrees of freedom
of translation and of rotation of the molecules. And we consider the interaction
between the molecules to be negligible.
Each molecule is made up of two identical atoms (1) and (2) linked by a

chemical bond. Let us call k12 the elastic force constant of the spring that acts
between both atoms. The atoms oscillate around their equilibrium position with
the frequency ω12 given by

ω12 =

√
2k12

ma
(1)

where ma is the mass of an atome and ma/2 is the reduced mass of the two
atoms. The relation (1) can be established by means of classical mechanics [26] .

The eigen values of the Haliltonian of vibrations Ĥvib12 are ~ω12

(
n12 + 1

2

)
with n12 = 0, 1, 2, ...∞ and where ~ is the Planck’s constant divided by 2π. The

3



partition function associated to the Hamiltonian Ĥvib12 is

z12vib =
1

2 sinh
(
β ~ω122

) (2)

We recall that ∑
n=0.1.2...

e−β~ω(n+ 1
2 ) =

1

2 sinh
(
β ~ω2

) (3)

with β = 1
kBT

and where kB is the Boltzmann constant.
We assume that each atom has two energy levels separated by ∆. The

fundamental level is not degenerated while the excited one has the degeneracy
r. We associate the fictitious spin σ̂i to the atom (i) (i = 1, 2) and we assume
that σ̂i has two eigenvalues σi = ±1. The degeneracy r comes from an other
space of states.
The spin Hamiltonian of the atom (i) can be written

Ĥsp (i) =
∆

2
σ̂i (4)

and the spin Hamiltonian of the molecule is

Ĥsp =
∆

2
(σ̂1 + σ̂2) (5)

The eigen values of the operator m̂ = σ̂1 + σ̂2 are m = −2, 0, 2. The corre-
sponding eigen kets are |−2〉 = |−1,−1〉,

∣∣0(1)
〉

= |−1, 1〉,
∣∣0(2)

〉
= |1,−1〉 and

|2〉 = |1, 1〉. In the brackets the first number is the value of σ1 and the second
that of σ2. The two kets

∣∣0(1)
〉
and

∣∣0(2)
〉
are the eigen states of the eigen value

m = 0. The eigen values of the Hamiltonian Ĥsp are −∆, 0 and ∆ and the
corresponding eigen kets are those of m̂ = σ̂1 + σ̂2.

The eigen values of the Hamiltonian Ĥsp + Ĥvib12 are :

−∆ + ~ω12

(
n12 +

1

2

)
, with n12 = 0, 1, 2, ..∞ (6)

~ω12

(
n′12 +

1

2

)
, with n′12 = 0, 1, 2, ..∞

∆ + ~ω12

(
n′′12 +

1

2

)
, with n′′12 = 0, 1, 2, ..∞

Taking into account the degeneracy r and that of the eigen value m = 0, the
partition function zspvib12 associated to the Hamiltonian Ĥsp + Ĥvib12 is

zspvib12 =
(
eβ∆ + 2r + r2e−β∆

) 1

2 sinh
(
β ~ω122

) (7)
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As the Hamiltonians Ĥsp and Ĥvib12 are independent, the partition function
zspvib12 is the product of the partition functions associated with each of the two
Hamiltonians.
Now we introduce the following assumptions :
i) We assume that the value of the elastic force constant k12 depends on the

electronic states of the atoms. This elastic force constant is equal to λ when
both atoms are in their fundamental level ( that corresponds to the state |−2〉),
to ν when they are both in their excited level ( that corresponds to the state
|2〉) and to µ when the two atoms are not in the same level ( that corresponds
to the states

∣∣0(1)
〉
and

∣∣0(2)
〉
). This assumption can be written as following

(2001) [21] :

k12 =
λ+ 2µ+ ν

4
+
ν − λ

4
(σ1 + σ2) +

λ− 2µ+ ν

4
σ1σ2 (8)

We assume
λ > ν (9)

and
µ =

λ+ ν

2
(10)

The relation (8) introduces a coupling between the fictious spins and the vibra-
tions of the molecule. Taking into account this coupling, the partition function
becomes

(zspvib12)coupl = eβ∆ 1

2 sinh(β ~ω− −
2 )

+
2r

2 sinh(β ~ω+−2 )
+ r2e−β∆ 1

2 sinh(β ~ω++2 )
(11)

where

ω− − =

√
2
λ

m
(12)

ω+− = ω−+ =

√
2
µ

m
= ω− −

√
µ

λ
(13)

and

ω++ =

√
2
ν

m
= ω− −

√
ν

λ
(14)

ii) We assume also that in each atom there are p identical and independent
one-dimensional harmonic oscillators. The frequency value of one oscillator is
ωint when the atom is in its fundamental level and ω̃int when it is in its excited
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one. With this new assumptition the partition function of the molecule becomes

zmol =
eβ∆

2 sinh(β ~ω− −
2 )

(
1

2 sinh(β ~ωint2 )

)2p

+
2r

2 sinh(β ~ω−+2 )

(
1

2 sinh(β ~ωint2 )

)p(
1

2 sinh(β ~ω̃int2 )

)p

+
r2e−β∆

2 sinh(β ~ω++2 )

(
1

2 sinh(β ~ω̃int2 )

)2p

(15)

Factorizing
(

1

2 sinh(β
~ωint

2 )

)2p

in the relation (15), we obtain

zmol =

(
1

2 sinh(β ~ωint2 )

)2p

z′mol (16)

with

z′mol =
eβ∆

2 sinh(β ~ω− −
2 )

+
2rRvib

2 sinh(β ~ω−+2 )
+

r2R2
vibe
−β∆

2 sinh(β ~ω++2 )
(17)

and

Rvib =

(
2 sinh(β ~ωint2 )

2 sinh(β ~ω̃int2 )

)p
(18)

In the relation (16), the partition function zmol appears as that of two indepen-
dent systems : a system of 2p identical and independent harmonic oscillators
which vibrate with the frequency ωint and the system of the two fictitious spins
σ̂1 and σ̂2 coupled to the vibrations of the molecule. We are concerned with
z′mol .

2.2 Probabilities and partial Gibbs-potentials

As the partition function z′mol depends on the intensive parameters T and∆, the
thermodynamic potential associated to z′mol is the free enthalpy, or the Gibbs
potential, denoted g. We have

g = −kBT ln (z′mol) (19)

Let 〈m̂〉 be the thermal mean value of the operator σ̂1 + σ̂2,

〈m̂〉 = 〈σ̂1 + σ̂2〉 (20)
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Accordind to the Hamiltonian Ĥsp, relation (5), 〈m〉 is the extensive parameter
associatedn to ∆

2 . So we have

〈m̂〉 =
∂g

∂∆
2

(21)

and then

〈m̂〉 =
1

z′mol

(
−2eβ∆

2 sinh(β ~ω−−2 )
+

2r2R2
vibe
−β∆

2 sinh(β ~ω++2 )

)
(22)

Let us introduce the parameters a1, a2 and a3 defined by

a1 =
eβ∆

2 sinh(β ~ω−−2 )
(23)

a2 =
2rRvib

2 sinh(β ~ω−+2 )
(24)

and

a3 =
r2R2

vibe
−β∆

2 sinh(β ~ω++2 )
(25)

The partition function z′mol can be writen

z′mol = a1 + a2 + a3 (26)

and the mean value 〈m̂〉 is given by

〈m̂〉 =
1

z′mol
(−2a1 + 2a3) (27)

We introduce three thermodynamic states (or phases) : The thermodynamic
state (2) that takes into account all the vibration energy levels associated

with the eigen value m = 2 and likewise the thermodynamic states (0) and
(−2).
From relation (22) we see that the thermal probability to find the system in

the quantum state |−2〉, that is in the thermodynamic state (−2) is

P (|−2〉) = P (−2) =
a1

z′mol
(28)

Likewise
P (|2〉) = P (2) =

a3

z′mol
(29)

and
P
(∣∣∣0(1)

〉
and

∣∣∣0(2)
〉)

= P (0) =
a2

z′mol
(30)
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While z′mol corresponds to the sum
∑
(l)

e−βEl over all the microscopic states (l)

of the molecule, the parameter a1 corresponds to the sum over all microscopic
states for which the eigen value m is equal to −2, the sum is made over the
energy levels of the oscillators. For this set of microscopic states one introduce
the partial Gibbs potential g (−2)

g (−2) = −kBT ln (a1) (31)

In the same way we define the partial Gibbs potential g (0) by

g (0) = −kBT ln (a2) (32)

and the partial Gibbs potential g (2) by

g (2) = −kBT ln (a3) (33)

From the relations (31- 33), we have

a1 = exp

(
− g (−2)

kBT

)
(34)

a2 = exp

(
− g (0)

kBT

)
(35)

and

a3 = exp

(
− g (2)

kBT

)
(36)

According to the relations (28-30) we see that between the three eigen values
−2, 0 and 2 the most probable is the one whose partial Gibbs potential is the
smallest.

3 Numerical study

3.1 Reduced parameters

We take λ as the unit of elastic force constant and ~ω− − as the unit of energy.
We then introduce the reduced energy gap

δ =
∆

~ω− −
(37)

the reduced temperature

t =
kBT

~ω− −
(38)
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and the following reduced parameters

x =
ν

λ
(39)

zz =
ωint
ω− −

(40)

x̃ =
ω̃int
ωint

(41)

3.2 Values of the parameters

The numerical study is done with r = 5, zz = 1.2, x̃ = 0.9 , p = 2, x = 0.1.
With x̃ and x smaller than the unit the values of the vibration frequencies

are lower when the atoms are in the excited level than when they are in the
fundamental one what favours the excited level.
The values of the intramolecular vibration frequencies of a molecule depend

on the masses of a few atoms in the molecule while the value of the intermolecular
vibration frequency depend on the masses of all atoms in the molecules. For
this reason, we chose ωint larger than ω− −. So zz > 1.
The value of the parameter r is 2S + 1 with S = 2.
As Rvib is higher than the unit and as ω++ is smaller than ω− −, the vibra-

tions favour a3, that is the state (2), while the parameter ∆ favours a1, that is
the state (−2).
The reduced temperature value 0.001, corresponds to the 0K temperature.

4 Study of the case δ = 0.35

The thermal variations of the partial Gibbs potentials g (−2), g (0) and g (2) for
δ = 0.35 are shown in Figure 1.

Figure 1. Thermal variations of the partial Gibbs potential g (m) for δ = 0.35

and m = −2, 0, 2. For the temperature values of the Figure, 2 sinh(β ~ω−−2 ) '
exp

(
β ~ω−−2

)
and g (−2) ' 0.5− δ.
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In this Figure we see that for t lower than t1 = 0.0188, the Gibbs potential
g (m) , considered as a function of the eigen value m, is an increasing function
of m, that is

g (−2) < g (0) < g (2) (42)

For t higher than t2 = 0.0438, g (m) is a decreasing function of m, that is

g (−2) > g (0) > g (2) (43)

Between t1 and t2, g (0) appears as a maximum of the function g (m).
There are two behaviors : t outside the interval (t1, t2) and t1 ≤ t ≤ t2.

4.1 t < t1 or t > t2

Below t1 and above t2 the molecules occupy the thermodynamique states (−2),
(0) and (2) according to the probabilities P (−2), P (0) and P (2), given in
relations (28-30). The value of 〈m̂〉 is then calculated using relation (22). With
relation (22), 〈m̂〉 is an increasing function of temperature below t1 and above
t2.
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4.2 t1 ≤ t ≤ t2

Between t1 and t2, g (0) appears as a maximun. Indeed

g (0) > g (−2) and g (0) > g (2) for t1 < t < t2 (44)

4.2.1 Stable, metastable and unstable state.

Callen’s argument [27] It is known that studying a system some weak in-
teractions are not included in the studied Hamiltonian [28, 29]. For example,
nanoparticles of spin conversion molecules are obtained and studied experimen-
taly in a liquid. Due to Brownian motion, the molecules of the liquid can collide
with the nanoparticles. Generally, these interactions are not taken into account
in the studied Hamiltonian but such small interactions are capable of inducing
transitions beween the states of the studied Hamiltonian. For systems in contact
with a reservoir at constant temperature these transitions take place between
the states of the global system, i.e. the studied system + the reservoir. Those
small interactions tends to produce the thermal equilibrium but they also can
randomly modify the value of the energy of the studied system and the values of
other internal parameters. So thse values fluctuate around equilibrium values.
According to H. B. Callen, in the case where the Gibbs potential of the

studied system displays a maximun surrounded by two minima, the system "
spends almost of this time in the more stable minimun ( the deepest minimun)".
In this case the variable on which depends the Gibbs potential is an extensive
parameter. In the present study, we repeat Callen’s argument and we justify it
by solving the master equation.
As g (0) is a maximun, the thermodynamic state (0) is unstable and the

molecules do not occupy this state. Due to fluctuations, all the molecule are
in the state (−2) when g (−2) < g (2). Indeed, in this case, the energy barrier
g (0)−g (−2) is larger than the energy barrier g (0)−g (2). So, if a fluctuation is
large enough to exceed barrier g (0)−g (−2) and thus to allow molecules that are
in state (−2) to pass into state (2), a smaller fluctuation is required to exceed
barrier g (0) − g (2) and thus to allow molecules that are in state (2) to pass
into state (−2). As the probability of fluctuations falls quickly with increasing
amplitude of fluctuations, then we can expect that the molecules spend almost
all the time in the state (−2). This state is thus called the stable state and the
state (2) is called the metastable state. Likewise, when g (2) < g (−2) all the
molecules are in the state (2) which is the stable state.
As shown in Figure 1, the partial Gibbs-potentials g(−2) and g(2) are equal

at t3 = 0.0367 and the stable state is the state (−2) for t < t3 and the state (2)

11



for t > t3.
When all the molecules are in state (m), with m = −2 or 2, the mean value

〈m̂〉 is equal to m.

Justification of Callen’s argument Let us denote (1) , (2) , (3) the states
(−2), (0), (2), respectively and Pi (τ), i = 1, 2, 3, the probability that the studied
molecule is found in state (i) at time τ . With j = 1, 2, 3, the master equation is

dPi
dτ

=
∑
j 6=i

(PjWji − PiWij) (45)

where the parameter Wji is the transition probability per unit time from the
state (j) to the state (i). This parameter is matrix element between states of
the global system ( the thermostat + the studied molecule). It depends on the
temperature T (or the reduced temperature t).
Using the relation

PjWji = PiWij (46)

We deduce
Wij

Wji
=
Pj
Pi

(47)

As we study variations around the equilibrium we take for the right side of the
equation (47) the values of relations (28), (29) and (30). So,

Wij

Wji
=
aj
ai

(48)

So,
W12

W21
=
a2

a1
= exp

(
−g (0)− g (−2)

kBT

)
(49)

W13

W31
=
a3

a1
= exp

(
−g (2)− g (−2)

kBT

)
(50)

W32

W23
=
a2

a3
= exp

(
−g (0)− g (2)

kBT

)
(51)

As g (0)− g (−2) is positive, W12 < W21. We take W12 = 0. Likewise, we take
W32 = 0.
For t1 ≤ t < t3, g (2)− g (−2) is positive. We take W13 = 0. So the master

equation becomes
dP1

dτ
= W21P2 +W31P3 (52)

dP2

dτ
= −W21P2 −W23P2 (53)
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dP3

dτ
= −W31P3 +W23P2 (54)

The solution of the equation (53) is

P2 = (P2)0 exp (− (W21 +W23) τ) (55)

where (P2)0 is the initial value of P2. After some time of the order of τ2 given
by

τ2 =
1

W21 +W23
(56)

P2 is equal to zero.
When P2 = 0, the equation (54) becomes

dP3

dτ
= −W31P3 (57)

The solution of equation (57) is

P3 = (P3)0 exp (−W31τ) (58)

where (P3)0 is the initial value of P3. After some time of the order of τ3 given
by

τ2 =
1

W31
(59)

P3 is equal to zero. Then the equation (52) becomes

dP1

dτ
= 0 (60)

The solution of this equation is P1 = 1.
For t3 < t ≤ t2, as g (2) is lower than g (−2), it is W31 which is equal to zero

and not W13. We obtain P3 = 1.
This calculation leads to the same result as Callen’s argument.

4.2.2 Delay in changing state

From the precedent discussion, the studied molecule must change state at t3
when the two Gibbs potentials g (−2) and g (2) are equal. It is the same situation
as in the case of the phase change of a pure substance. However, it is known that
the temperature of a liquid can be lowered below its freezing point without it
becomes solid. In this case the pure substance remains in the liquid phase which
is no longer the stable state. Likewise a liquid can exist above its boiling point.
These phenomena, which hav different causes, makes it possible to explain the
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thermal hysteresis observed in certain first order phase transitions. We assume
that this phenomenon plays role in the present study.
Suppose the system is in state (−2) at a temperature between t1 and t3.

Heating the system, it remains in this state and its temperature increases. At
t3 the system can stay in the state (−2) instead of being shared between the
state (−2) and the state (2) that are both stable. Then, heating the system ,
its temperature can increase to values higher than t3 and it finds itself in the
state (−2) which is now metastable. Finally, the system passes into state (2) at
a temperature t3 + ∆t between t3 and t2.

Likewise, suppose the system is in state (2) at a temperature between t3
and t2. Cooling the system, it passes into state (−2) at a temperature t3 −∆t′

between t3 and t1.

4.2.3 Hysteresis cycle

The thermal behaviour of the parameter 〈m̂〉 in the diagram (〈m〉 , t) is shown
in Figure 2.

Figure 2. Hysteresis cycle for δ = 0.35 in the (〈m〉 , t) diagram. The stable
state is the state (−2) below t3 and the state (2) above t3. The system change
state at t3 + ∆t and at t3 −∆t′. We recall that t1 = 0.0188, t2 = 0.0438 and
t3 = 0.0367.

Let us start from the initial temperature t = 0.059, greater than t2. Using
relation (22), we obtain 〈m̂〉 = 0.771 for this temperature. Cooling the system,
its temperature and 〈m̂〉 decreases. At t2, the value of 〈m̂〉 calculated with
relation (22) is 0.373. But, at t2, the molecules go into the stable state (2).
Indeed, those which are in state (0) leave this state become it is unstable and
those which are in state (−2) leave this state become it is metastable. So, at t2
the system is in the stable state (2) and 〈m̂〉 = 2. There is a discontinuity in
〈m̂〉 equal to 1.627.

Cooling the system, it remains in the state (2) and its temperature decreases
down to t3 − ∆t′. At this temperature the system passes into the state (−2)
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which is the stable state. So, at t3−∆t′ there is a discontinuity in 〈m̂〉 equal to
−4.
Cooling the system it remains in the state (−2) and its temperature decreases

down to t1. Just below t1 the molecules occupy the states (−2), (0) and (2) with
the probabilities P (−2), P (0) and P (2) and the value of 〈m̂〉, calculated with
the relation (22), is −1.743. So, at t1, the discontinuity in 〈m̂〉 is then 0.257.
Cooling the system below t1, its temperature and the value of 〈m̂〉 decrease. At
t = 0.001, 〈m̂〉 = −2.

If now the system is heated, it will follow the same path as before, but it
will go from state (−2) to state (2) at temperature t3 + ∆t.
In most experimental studies, it is the fraction of iron ion in the excited

state (σi = 1 for i equal 1 and 2) that is measured. In the present study, this
parameter is the fraction of atoms in the excited level. This fraction n+ is given
by

n+ =
1

2

(
1 +
〈m̂〉

2

)
(61)

Using relation (61) and Figure 2, we obtain the hysteresis cycle of the para-
meter n+. This hysteresis cycle is shown in Figure 3.

Figure 3. Hysteresis cycle for δ = 0.35 in the (n+, t) diagram. The parameter
n+ is the fraction of atoms in the excited level.
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5 Discussion and Conclusion

We have shown that the molecules can display an hysteresis cycle for δ = 0.35.
The previous study can be done for other values of δ for which g (0) is a max-
imun. These values are shown in Figure 4. In this Figure we see that for certain
values of δ the temperature t1 is equal to zero.

Figure 4. Variations with δ of the values of the parameters t1, t2 and t3. For
a given value of δ, g (0) is a maximun of the function g (m) for any temperature
between t1 and t2.

To solve the master equation of evolution we took W12 and W32 equal to
zero. This approximation is all the better as the quantities g(0)−g(±2)

kBT
are large.

The thermal variations of the quantities g (0) − g (2), g (0) − g (−2) and kBT
for δ equal to 0.35 and 0.30 are shown in the Figures 5 and 6, respectivelly. In
these Figures we see that the approximation is better in case δ = 0.30 than in
case δ = 0.35.
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Figure 5. Thermal variations of the barriers g (0)− g (2) and g (0)− g (−2)

for δ = 0.35 and t1 ≤ t ≤ t2. The reduced value of kBT is t.

Figure 6. Thermal variations of the reduced values of the barriers g (0)−g (2)

and g (0)− g (−2) for δ = 0.30 and t1 ≤ t ≤ t2. The reduced value of kBT is t.
In case δ = 0.30, t1 = 0.001 as shown in Figure 4.

It would be interesting to study the role of the other parameters of the
model. We have verify that the function g (m) does not have a maximum for
x = 1, that is if the elastic force constant k12 does not depend on the electronic
states of the two atoms. The range of values of δ leading to an hysteresis cycle
can be expect to decrease when x increases [21].

Concerning spin conversion molecules, the results obtained in this study
support the statements of J.-F. Létard (2004) [19] that the molecular scale
must be considered as the limit of the miniaturization of components used in
working devices.
Finally, we would like to emphasize that, in magnetism, the coupling between

spins is is due to orbitals overlaps while the coupling between the electronic
quantum states of two spin conversion molecules is due to vibrations.
We would like to thank H. T. Diep for our fruitful discussions and L. Chas-

sagne for his support as director of LISV.
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7 Appendix

7.1 Approximative relations

Approximative relations can allow to discuss the numerical results.
If we replace 2 sinh (x) by ex, the relations (23), (24) and (25) become

a1 ' eβ∆e−β
~ω−−

2 (1)

a2 ' 2rRvibe
−β ~ω+−

2 (2)

a3 ' r2R2
vibe
−β∆e−β

~ω++
2 (3)

For the parameter Rvib we have

Rvib '
(
eβ

~ωint
2 e−β

~ω̃int
2

)p
So

ln(Rvib) ' pβ
~ωint

2

(
1− ω̃int

ωint

)
(4)

Using reduced parameters, we obtain

−kT ln(Rvib) ' −
1

2
p zz (1− x̃) (5)

and
g (−2) ' −δ +

1

2
(6)

g (0) ' −t ln(2r) + b (7)

g (2) ' −t ln
(
r2
)

+ c+ δ (8)

with

b =
1

2

√
1 + x

2
− 1

2
p zz (1− x̃) (9)

c =
1

2

√
x− p zz (1− x̃) (10)

The quantities g (0)− g (−2) and g (0)− g (2) are given by

g (0)− g (2) '
(
ln
(
r2
)
− ln (2r)

)
t+ b− c− δ (11)

g (0)− g (−2) ' − ln (2r) t+ b− 1

2
+ δ (12)

with

b− c =
1

2

(√
1 + x

2
−
√
x+ p zz (1− x̃)

)
(13)
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b− 1

2
=

1

2

(√
1 + x

2
− p zz (1− x̃)− 1

)
(14)

It is easy to verify that for x comprised between 0 and 1, b − c is positive
and b− 1

2 is negative. Moreover for r = 5, ln
(
r2
)
− ln (2r) is positive.

7.2 Sign of g (0)− g (m), for m = ±2.
i) As can be seen in relation (11), the quantity g (0) − g (2) is an increasing
function of the temperature t. When δ is greater than b − c, this function is
negative at t = 0 and increases when the temperature increases. It becomes
positive for t greater than t1 which is given by

t1 =
δ − (b− c)

ln r2 − ln (2r)
with δ > b− c (15)

When δ is smaller than b − c, this function is positive at t = 0 and it remains
positive at any temperature.
So

g (0)− g (2) > 0 for t > t1 when δ > b− c
and for t ≥ 0 when δ < b− c (16)

One can say that for δ < b− c, t1 is equal to zero.
ii) As can be seen in relation (12), the quantity g (0)− g (−2) is a decreasing

function of the temperature t. If δ is higher than 1
2 − b, this function is positive

at t = 0 and decreases when the temperature increases. This function becomes
negative above t2 given by

t2 =
δ −

(
1
2 − b

)
ln (2r)

with δ >
1

2
− b (17)

When δ is lower than 1
2 − b, the quantity g (0)− g (−2) is negative at t = 0 and

remains negatif at any temperature. So,

g (0)− g (−2) > 0 for t < t2 when δ >
1

2
− b (18)

One can show that
b− c > 1

2
− b (19)

and from this relation we can show that

t1 < t2 (20)
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When g (0) − g (2) et g (0) − g (−2) are both positive, g (0) appears as a
maximun between two minima and the state (0) is unstable state.
The parameters t1 and t2 are increasing linear functions of δ. As

(
ln
(
r2
)
− ln (2r)

)
is smaller than ln (2r), the t1 function grows faster than the t2 function. Also
there exists a value of δ where these two functions are equal. This value called
δmax is given by

δmax =
1

2 ln (2)

[
ln (r)

(
b− c−

(
1

2
− b
))

+ ln (2)

(
b− c+

(
1

2
− b
))]

(21)

When δ is greater than δmax, g (0) is no longer a maximun.

8 Data Availability Statement :

No Data associated in the manuscript
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