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Abstract

A spin-conversion molecule is organised around an iron ion Fe+2. This
ion has two quantum energy levels : a low spin (LS) ground level, S = 0,
and a high spin (HS) excited level, S = 2 , where S is the total spin of
the 3d electrons. A macroscopic crystal of a spin-conversion molecule has
two thermodynamic phases : a diamagnetic phase where all the molecules
are in (LS) level and a paramagnetic phase where they are all in (HS)
level. The diamagnetic phase is stable at low temperature. For some
spin-conversion crystals, the phase change is accompanied by a thermal
hysteresis cycle and for some of them, this hysteresis still exists in very
small nanoparticles. From what size this hysteresis can appear and which
are the microscopic parameters responsible for it ?

It has been shown that a single spin-conversion molecule passes with-
out hysteresis from one level to the other when its temperature varies. In
the present theoretical study we consider the case of two spin conversion
molecules linked by a chemical bound. We assume that the value of the
elastic force constant of the spring between the two molecules depends on
the quantum states of the molecules. A thermal hyteresis cycle can be
obtained.
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1 Introduction

A spin-conversion molecule is organised around an iron ion Fe+2. This ion has
two quantum energy levels : a low spin (LS) ground level, S = 0, and a high
spin (HS) excited level, S = 2, where S is the total spin of the 3d electrons [1].
Let us call ∆ the difference between the energies of the two levels and r the
degeneracy of the excited level. This degeneracy is given by r = 2S + 1.
A macroscopic crystal of a spin-conversion molecule has two thermodynamic

phases : a diamagnetic phase where all the molecules are in (LS) level and a
paramagnetic phase where they are in (HS) level. The diamagnetic phase is
stable at low temperature. For some spin-conversion crystals, the phase change
is accompanied by a thermal hysteresis cycle [2− 10] and for some of them, this
hysteresis still exists in very small nanoparticles [11− 17]. From what size this
hysteresis can appear and which are the microscopic parameters responsible for
it ? These questions are interesting not only from a theoretical point of view but
also because of potential applications. Indeed, because of this hysteresis cycle,
spin-conversion compounds appear as two-levels systems and the nanoparticles
that present this hysteresis can be used as electronic components [18, 19].

M. Sorai and S. Seki ( 1974) [20]measured the heat capacities of [Fe (phen)2 (NCS)2]

and [Fe (phen)2 (NCSe)2] crystals. These molecules are spin-conversion mole-
cules. They concluded that "there is significant coupling between electronic
state and phonon system" and that excitation of phonons is much easier in
the high temperature phase. In order to take into account the results of Sorai
and Seki, J. A. Nasser (2001) [21] assumed that the elastic force constant of
the spring linking two molecules first neighbours in a crystal of spin conversion
molecules depends on the electronic states of both molecules. The value of this
elastic force constant is λ when both molecules are in the (LS) level and ν when
they are both in the (HS) one, with ν < λ. With this last condition phonon
system favours the (HS) level while ∆ favours the (LS) one.
Kate L. Ronayme et al. (2006) [22] determined by DFT calculations and

from different experimental results the values of the intramolecular vibration
frequencies of the molecule [Fe (phen)2 (NCS)2] when this molecule is in the
(LS) and (HS) levels. They found that these values are generally smaller when
the molecule is in the (HS) level.
Previously, J. A. Nasser et al. (2007) [23] studied the case of a single molecule

of [Fe (phen)2 (NCS)2], taking into account the results of Royname et al.. They
showed that the molecule passes without hysteresis, from the (LS) level to the
(HS) one when its temperature varies.
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Now, we study the thermal behavior of two identical spin-conversion mole-
cules linked by a chemical bond. We assume that i) the elastic force constant
of the spring which exists between the two molecules depends on the electronic
state of both molecules and that ii) there are in each molecule p independent
linear harmonic oscillators.
For the following, each molecule is designated by atom and the set of two

molecules is designated by molecule.
In Section 2, we present the theoretical study. In Section 3 we give the results

obtained by the numerical study, and the last Section is devoted to discussion
and conclusion. In the Appendix we establish approximate relationships that
allow us to see where each parameter comes into play.
We recall that the study of the chemical bond between two atoms as part

of the adiabatic approximation leads to the presence between both atoms of
a spring-like and that the elastic force constant of this spring depends on the
quantum states of the electrons involved in the bond [24].

The classical approximation cannot be used in the present study, because
the model is based on the variation in the frequency of harmonic oscillators (
see statistical physics cours and compare [21] and [25]).

2 Theoretical Study

2.1 Hamiltonian and Partition function

Consider a system of N identical molecules in contact with a heat reservoir at
the absolute temperature T . We do not take into account the degrees of freedom
of translation and of rotation of the molecules. And we consider the interaction
between the molecules to be negligible.
Each molecule is made up of two identical atoms (1) and (2) linked by a

chemical bond. Let us call k12 the elastic force constant of the spring that acts
between both atoms. The atoms oscillate around their equilibrium position with
the frequency ω12 given by

ω12 =

√
2k12

ma
(1)

where ma is the mass of an atome and ma/2 is the reduced mass of the two
atoms. The relation (1) can be established by means of classical mechanics [26] .

The eigen values of the Haliltonian of vibrations Ĥvib12 are ~ω12

(
n12 + 1

2

)
with n12 = 0, 1, 2, ...∞ and where ~ is the Planck’s constant divided by 2π. The
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partition function associated to the Hamiltonian Ĥvib12 is

z12vib =
1

2 sinh
(
β ~ω122

) (2)

We recall that ∑
n=0.1.2...

e−β~ω(n+ 1
2 ) =

1

2 sinh
(
β ~ω2

) (3)

with β = 1
kBT

and where kB is the Boltzmann constant.
We assume that each atom has two energy levels separated by ∆. The

fundamental level is not degenerated while the excited one has the degeneracy
r. We associate the fictitious spin σ̂i to the atom (i) (i = 1, 2) and we assume
that σ̂i has two eigenvalues σi = ±1. The degeneracy r comes from an other
space of states.
The spin Hamiltonian of the atom (i) can be written

Ĥsp (i) =
∆

2
σ̂i (4)

and the spin Hamiltonian of the molecule is

Ĥsp =
∆

2
(σ̂1 + σ̂2) (5)

The eigen values of the operator m̂ = σ̂1 + σ̂2 are m = −2, 0, 2. The corre-
sponding eigen kets are |−2〉 = |−1,−1〉,

∣∣0(1)
〉

= |−1, 1〉,
∣∣0(2)

〉
= |1,−1〉 and

|2〉 = |1, 1〉. In the brackets the first number is the value of σ1 and the second
that of σ2. The two kets

∣∣0(1)
〉
and

∣∣0(2)
〉
are the eigen states of the eigen value

m = 0. The eigen values of the Hamiltonian Ĥsp are −∆, 0 and ∆ and the
corresponding eigen kets are those of m̂ = σ̂1 + σ̂2.

The eigen values of the Hamiltonian Ĥsp + Ĥvib12 are :

−∆ + ~ω12

(
n12 +

1

2

)
, with n12 = 0, 1, 2, ..∞ (6)

~ω12

(
n′12 +

1

2

)
, with n′12 = 0, 1, 2, ..∞

∆ + ~ω12

(
n′′12 +

1

2

)
, with n′′12 = 0, 1, 2, ..∞

Taking into account the degeneracy r and that of the eigen value m = 0, the
partition function zspvib12 associated to the Hamiltonian Ĥsp + Ĥvib12 is

zspvib12 =
(
eβ∆ + 2r + r2e−β∆

) 1

2 sinh
(
β ~ω122

) (7)
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As the Hamiltonians Ĥsp and Ĥvib12 are independent, the partition function
zspvib12 is the product of the partition functions associated with each of the two
Hamiltonians.
Now we introduce the following assumptions :
i) We assume that the value of the elastic force constant k12 depends on the

electronic states of the atoms. This elastic force constant is equal to λ when
both atoms are in their fundamental level ( that corresponds to the state |−2〉),
to ν when they are both in their excited level ( that corresponds to the state
|2〉) and to µ when the two atoms are not in the same level ( that corresponds
to the states

∣∣0(1)
〉
and

∣∣0(2)
〉
). This assumption can be written as following

(2001) [21] :

k12 =
λ+ 2µ+ ν

4
+
ν − λ

4
(σ1 + σ2) +

λ− 2µ+ ν

4
σ1σ2 (8)

We assume
λ > ν (9)

and
µ =

λ+ ν

2
(10)

The relation (8) introduces a coupling between the fictious spins and the vibra-
tions of the molecule. Taking into account this coupling, the partition function
becomes

(zspvib12)coupl = eβ∆ 1

2 sinh(β ~ω− −
2 )

+
2r

2 sinh(β ~ω+−2 )
+ r2e−β∆ 1

2 sinh(β ~ω++2 )
(11)

where

ω− − =

√
2
λ

m
(12)

ω+− = ω−+ =

√
2
µ

m
= ω− −

√
µ

λ
(13)

and

ω++ =

√
2
ν

m
= ω− −

√
ν

λ
(14)

ii) We assume also that in each atom there are p identical and independent
one-dimensional harmonic oscillators. The frequency value of one oscillator is
ωint when the atom is in its fundamental level and ω̃int when it is in its excited
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one. With this new assumptition the partition function of the molecule becomes

zmol =
eβ∆

2 sinh(β ~ω− −
2 )

(
1

2 sinh(β ~ωint2 )

)2p

+
2r

2 sinh(β ~ω−+2 )

(
1

2 sinh(β ~ωint2 )

)p(
1

2 sinh(β ~ω̃int2 )

)p

+
r2e−β∆

2 sinh(β ~ω++2 )

(
1

2 sinh(β ~ω̃int2 )

)2p

(15)

Factorizing
(

1

2 sinh(β
~ωint

2 )

)2p

in the relation (15), we obtain

zmol =

(
1

2 sinh(β ~ωint2 )

)2p

z′mol (16)

with

z′mol =
eβ∆

2 sinh(β ~ω− −
2 )

+
2rRvib

2 sinh(β ~ω−+2 )
+

r2R2
vibe
−β∆

2 sinh(β ~ω++2 )
(17)

and

Rvib =

(
2 sinh(β ~ωint2 )

2 sinh(β ~ω̃int2 )

)p
(18)

In the relation (16), the partition function zmol appears as that of two indepen-
dent systems : a system of 2p identical and independent harmonic oscillators
which vibrate with the frequency ωint and the system of the two fictitious spins
σ̂1 and σ̂2 coupled to the vibrations of the molecule. We are concerned with
z′mol .

2.2 Probabilities and partial Gibbs-potentials

As the partition function z′mol depends on the intensive parameters T and∆, the
thermodynamic potential associated to z′mol is the free enthalpy, or the Gibbs
potential, denoted g. We have

g = −kBT ln (z′mol) (19)

Let 〈m̂〉 be the thermal mean value of the operator σ̂1 + σ̂2,

〈m̂〉 = 〈σ̂1 + σ̂2〉 (20)
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Accordind to the Hamiltonian Ĥsp, relation (5), 〈m〉 is the extensive parameter
associatedn to ∆

2 . So we have

〈m̂〉 =
∂g

∂∆
2

(21)

and then

〈m̂〉 =
1

z′mol

(
−2eβ∆

2 sinh(β ~ω−−2 )
+

2r2R2
vibe
−β∆

2 sinh(β ~ω++2 )

)
(22)

Let us introduce the parameters a1, a2 and a3 defined by

a1 =
eβ∆

2 sinh(β ~ω−−2 )
(23)

a2 =
2rRvib

2 sinh(β ~ω−+2 )
(24)

and

a3 =
r2R2

vibe
−β∆

2 sinh(β ~ω++2 )
(25)

The partition function z′mol can be writen

z′mol = a1 + a2 + a3 (26)

and the mean value 〈m̂〉 is given by

〈m̂〉 =
1

z′mol
(−2a1 + 2a3) (27)

We introduce three thermodynamic states (or phases) : The thermodynamic
state (2) that takes into account all the vibration energy levels associated

with the eigen value m = 2 and likewise the thermodynamic states (0) and
(−2).
From relation (22) we see that the thermal probability to find the system in

the quantum state |−2〉, that is in the thermodynamic state (−2) is

P (|−2〉) = P (−2) =
a1

z′mol
(28)

Likewise
P (|2〉) = P (2) =

a3

z′mol
(29)

and
P
(∣∣∣0(1)

〉
and

∣∣∣0(2)
〉)

= P (0) =
a2

z′mol
(30)
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While z′mol corresponds to the sum
∑
(l)

e−βEl over all the microscopic states (l)

of the molecule, the parameter a1 corresponds to the sum over all microscopic
states for which the eigen value m is equal to −2, the sum is made over the
energy levels of the oscillators. For this set of microscopic states one introduce
the partial Gibbs potential g (−2)

g (−2) = −kBT ln (a1) (31)

In the same way we define the partial Gibbs potential g (0) by

g (0) = −kBT ln (a2) (32)

and the partial Gibbs potential g (2) by

g (2) = −kBT ln (a3) (33)

From the relations (31- 33), we have

a1 = exp

(
− g (−2)

kBT

)
(34)

a2 = exp

(
− g (0)

kBT

)
(35)

and

a3 = exp

(
− g (2)

kBT

)
(36)

According to the relations (28-30) we see that between the three eigen values
−2, 0 and 2 the most probable is the one whose partial Gibbs potential is the
smallest.

3 Numerical study

3.1 Reduced parameters

We take λ as the unit of elastic force constant and ~ω− − as the unit of energy.
We then introduce the reduced energy gap

δ =
∆

~ω− −
(37)

the reduced temperature

t =
kBT

~ω− −
(38)
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and the following reduced parameters

x =
ν

λ
(39)

zz =
ωint
ω− −

(40)

x̃ =
ω̃int
ωint

(41)

3.2 Results

The numerical study is done with r = 5, zz = 1.2, x̃ = 0.9 , p = 2, x = 0.1.
With x̃ and x smaller than the unit the values of the vibration frequencies

are lower when the atoms are in the excited level than when they are in the
fundamental one what favours the excited level.
The values of the intramolecular vibration frequencies of a molecule depend

on the masses of a few atoms in the molecule while the value of the intermolecular
vibration frequency depend on the masses of all atoms in the molecules. For
this reason, we chose ωint larger than ω− −. So zz > 1.
The value of the parameter r is 2S + 1 with S = 2.
As Rvib is higher than the unit and as ω++ is smaller than ω− −, the vibra-

tions favour a3, that is the state (2), while the parameter ∆ favours a1, that is
the state (−2).
The reduced temperature value 0.001, corresponds to the 0K temperature.

3.2.1 Case δ = 0.35

The thermal variations of the partial Gibbs potentials g (−2), g (0) and g (2) for
δ = 0.35 are shown in Figure 1. From this Figure we see that

g (−2) < g (0) < g (2) for 0.001 ≤ t < t1 (42)

and that

g (−2) > g (0) > g (2) for t > t2 (43)

So, the Gibbs potential g (m) , considered as a function of the eigen value m,
is an increasing function of m below t1 and a decreasing function of m above
t2. On Figure 1 we see that g (0) is higher than g (2) above t1 = 0.0188 and
smaller than g (−2) above t2 = 0.0438.
There are two behaviors :
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i) Below t1 and above t2.
Below t1 and above t2 the molecules occupy the thermodynamique states

(−2), (0) and (2) according to the probabilities P (−2), P (0) and P (2), given
in relations (28-30). The value of 〈m̂〉 is then calculated using relation (22).
With relation (22), 〈m̂〉 is an increasing function of temperature below t1 and
above t2.

Figure 1. Thermal variations of the partial Gibbs potential g (m) for δ = 0.35

and m = −2, 0, 2. For the temperature values of the Figure, 2 sinh(β ~ω−−2 ) '
exp

(
β ~ω−−2

)
and g (−2) ' 0.5− δ.

ii) Between t1 and t2.

Stable, metastable and unstable state. Between t1 and t2, g (0) appears
as a maximun. Indeed

g (0) > g (−2) and g (0) > g (2) for t1 < t < t2 (44)

For this reason the thermodynamic state (0) is unstable and the molecules do
not occupy this state. Due to fluctuations, all the molecule are in the state (−2)

when g (−2) < g (2). Indeed, in this case, the energy barrier g (0) − g (−2) is
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larger than the energy barrier g (0)− g (2). So, if a fluctuation is large enough
to exceed barrier g (0) − g (−2) and thus to allow molecules that are in state
(−2) to pass into state (2), a smaller fluctuation is required to exceed barrier
g (0)− g (2) and thus to allow molecules that are in state (2) to pass into state
(−2). As the probability of fluctuations falls quickly with increasing amplitude
of fluctuations, then we can expect that the molecules spend almost all the time
in the state (−2) [27]. This state is thus called the stable state and the state (2)

is called the metastable state. Likewise, when g (2) < g (−2) all the molecules
are in the state (2) which is the stable state.
As shown in Figure 1, the partial Gibbs-potentials g(−2) and g(2) are equal

at t3 = 0.0367 and the stable state is the state (−2) for t < t3 and the state (2)

for t > t3.
When all the molecules are in state (m), with m = −2 or 2, the mean value

〈m̂〉 is equal to m.

Delay in changing state Suppose the system is in state (−2) at a temper-
ature between t1 and t3. Heating the system, it remains in this state and its
temperature increases. At t3 the system can stay in the state (−2) instead of
being shared between the state (−2) and the state (2) that are both stable.
Then, heating the system , its temperature can increase to values higher than
t3 and it finds itself in the state (−2) which is now metastable. Finally, the
system passes into state (2) at a temperature t3 + ∆t between t3 and t2.
Likewise, suppose the system is in state (2) at a temperature between t3

and t2. Cooling the system, it passes into state (−2) at a temperature t3 −∆t′

between t3 and t1.

Role of kBT We assume that the amplitude of fluctuations is of the order of
kBT . Consequently we must compare the thermal energy kBT to the quantities
g(0)−g(−2) and g(0)−g(2). If the barrier g(0)−g(−2) is higher than kBT , the
system cannot leave the state (−2) even if this state is metastable. Likewise,
the system cannot leave the state (2) if the barrier g(0) − g(2) is higher than
kBT .
The thermal variations of the quantities g(0) − g(−2) and g(0) − g(2) and

that of kBT are shown in Figure 2. In this Figure, the barrier g(0)−g(2) is lower
than kBT for any temperature between t1 and t2, while the barrier g(0)−g(−2)

is lower than kBT for t > t4, with t4 = 0.0305. It is interesting to note that t4
is less than t3.
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Figure 2. Thermal variations of the reduced values of the barriers g (0)−g (2)

and g (0)− g (−2) for δ = 0.35 and t1 ≤ t ≤ t2. The reduced value of kBT is t.
The barrier g (0)− g (−2) is equal to kBT at t4 = 0.0305.

Hysteresis cycle The thermal behaviour of the parameter 〈m̂〉 in the diagram
(〈m〉 , t) est shown in Figure 3.

Figure 3. Hysteresis cycle for δ = 0.35 in the (〈m〉 , t) diagram. The stable
state is the state (−2) below t3 and the state (2) above t3. The system change
state at t3 + ∆t and at t3 −∆t′. We recall that t1 = 0.0188, t2 = 0.0438 and
t3 = 0.0367.

Let us start from the initial temperature t = 0.059, greater than t2. Using
relation (22), we obtain 〈m̂〉 = 0.771 for this temperature. Cooling the system,
its temperature and 〈m̂〉 decreases. At t2, the value of 〈m̂〉 calculated with
relation (22) is 0.373. But, at t2, the molecules go into the stable state (2).
Indeed, those in state (0) leave this state become unstable and those in state
(−2) leave this state become metastable. The molecules can leave the state (−2)
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because the barrier g (0) − g (−2) is smaller than kBT . So, at t2 the system is
in the stable state (2) and 〈m̂〉 = 2. There is a discontinuity in 〈m̂〉 equal to
1.627.
Cooling the system, it remains in the state (2) and its temperature decreases

down to t3 − ∆t′. At this temperature the system passes into the state (−2)

which is the stable state. It can pass because the barrier g (0)− g (2) is smaller
than kBT . So, at t3 −∆t′ there is a discontinuity in 〈m̂〉 equal to −4.
Cooling the system it remains in the state (−2) and its temperature decreases

down to t1. Just below t1 the molecules occupy the states (−2), (0) and (2) with
the probabilities P (−2), P (0) and P (2) and the value of 〈m̂〉, calculated with
the relation (22), is −1.743. So, at t1, the discontinuity in 〈m̂〉 is then 0.257.
Cooling the system below t1, its temperature and the value of 〈m̂〉 decrease. At
t = 0.001, 〈m̂〉 = −2.

If now the system is heated, it will follow the same path as before, but it will
go from state (−2) to state (2) at temperature t3 + ∆t. At this temperature it
can change state because g (0)− g (−2) is smaller than kBT .
In most experimental studies, it is the fraction of iron ion in the excited

state (σi = 1 for i equal 1 and 2) that is measured. In the present study, this
parameter is the fraction of atoms in the excited level. This fraction n+ is given
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by

n+ =
1

2

(
1 +
〈m̂〉

2

)
(45)

Using relation (45) and Figure 3, we obtain the hysteresis cycle of the parameter
n+. This hysteresis cycle is shown in Figure 4.

Figure 4. Hysteresis cycle for δ = 0.35 in the (n+, t) diagram. The parameter
n+ is the fraction of atoms in the excited level.

3.2.2 Case δ = 0.30

For δ = 0.30, g (0) is a maximun between the temperature values 0.001 and
0.02206. So, t1 = 0.001 and t2 = 0.02206. But, in the case δ = 0.30, g (0) is not
equal to g (2) at t1 as in case δ = 0.35. The state (−2) is the stable state below
t3 = 0.00563. For t > t2 , g (m) is a decreasing function of m.

As shown in Figure 5, the barrier g(0)−g(−2) is lower than kBT for t greater
than t4 = 0.01538. As t4 is higher than t3, the molecules can leave the state
(−2) only above t4. As shown in Figure 5, the barrier g(0)−g(2) is greater than
kBT for any temperature between 0.001 and t2. It follows that the molecules
cannot leave state (2) to go to state (−2).
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Figure 5. Thermal variations of the reduced values of the barriers g (0)−g (2)

and g (0) − g (−2) and that of the thermal energy kBT between t1 and t2. For
δ = 0.30, t1 = 0.001. It worth to notice that t4 is larger than t3.

Let us start from the initial temperature t = 0.024 greater than t2. Using
relation (22), 〈m̂〉 = 1.541. Cooling the system, its temperature and 〈m̂〉 de-
crease. Just above t2, the value of 〈m̂〉 calculated with relation (22) is 1.538.
As in the case δ = 0.35, at t2 the system passes into the stable state (2) with a
discontinuity in 〈m̂〉 equal to 0.462. Cooling the system, it remains in state (2)

down to t1 while this state is metastable since t3.
Now let us heat the system from the state t = 0.001, 〈m̂〉 = 2. It remains in

the state (2) up to t2. Just above t2, the molecules occupy the three states (−2),
(0) and (2) according to the probabilities P (−2), P (0) and P (2), respectively.
Now suppose that the system is prepared in the state t = 0.001, 〈m̂〉 =

−2. Heating the system it remains in the state (−2) up to t4 + ∆t. At this
temperature it passes in the state (2) and can no longer return to state (−2).
It is clear that there is no hysteresis cycle for δ = 0.30.
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3.2.3 Varying δ

The values of the parameters t1, t2, t3 and t4 for different values of δ are shown
in Figure 6.
For δ = 0.38, there is an hysteresis cycle, but not for δ = 0.39. So, the

hysteresis cycle disappears when δ is greater than a value δmax between 0.38

and 0.39.
For δ = 0.34, there is an hysteresis cycle and this case is the same as the cas

δ = 0.35. For δ = 0.33, there is no hysteresis cycle and this case is the same
as the case δ = 0.30. So, the system displays hysteresis cycle when δ is greater
than a value δmin between 0.33 and 0.34, and smaller than δmax.
As shown in Figure 6, the difference t2 − t1 decreases when the parameter

δ tends toward δmax, the same is true for the width of the hysteresis cycle. It
worth noting that t4 is smaller than t3 for δ ≥ 0.34.

Figure 6. Variations with δ of the values of the parameters t1, t2, t3 and
t4. For a given value to δ, g (0) is a maximun of the function g (m) for any
temperature between t1 and t2 but it is not enough to have an hysteresis cycle.
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4 Conclusion

The molecules can display an hysteresis cycle for some values of δ. These values
depend on those of the model parameters. For example, with x = 0.1 and
x̃ = 0.9 we found that the function g (m) had no maximum for δ = 0.39. But,
with x = 0.1 and x̃ = 0.86 there is an hysteresis cycle.
If the elastic force constant k12 does not depend on the electronic states of

the two atoms, i.e. x = 1, the function g (m) does not have a maximum. The
range of values of δ leading to an hysteresis cycle can be expect to decrease
when x increases [21].
Studying the nanoparticles of the complex Fe (pyrazine) {Pt (CN)4}, Flo-

rence Voltaron et al. [16] have found that the amount of Fe+2 ions remaining
in the excited level at low temperature is larger for the smaller particles. This
experimental result can correspond to the cases where the molecules remain in
the state (2) ( see case δ = 0.30).
It is recalled that the excited level of an atom is degenerated. Also, when at

0K there are atoms in the excited level, the entropy of the system is not zero
which is not in agreement with the third law of thermodynamics. However, as
the degeneracy is due to the 3d electrons spins, any magnetic field, for example
the earth magnetic field, can suppress the degeneracy and restore the respect of
this law.
Concerning spin conversion molecules, the results obtained in this study

support the statements of J.-F. Létard (2004) [19] that the molecular scale
must be considered as the limit of the miniaturization of components used in
working devices.
Finally, we would like to emphasize that, in magnetism, the coupling be-

tween spins is is due to orbitals overlaps while, here, the coupling between the
electronic quantum states of two molecules is due to vibrations.
We would like to thank H. T. Diep for our fruitful discussions and L. Chas-

sagne for his support as director of LISV.
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6 Appendix

6.1 Approximative relations

Approximative relations can allow to discuss the numerical results.
If we replace 2 sinh (x) by ex, the relations (23), (24) and (25) become

a1 ' eβ∆e−β
~ω−−

2 (1)

a2 ' 2rRvibe
−β ~ω+−

2 (2)

a3 ' r2R2
vibe
−β∆e−β

~ω++
2 (3)

For the parameter Rvib we have

Rvib '
(
eβ

~ωint
2 e−β

~ω̃int
2

)p
So

ln(Rvib) ' pβ
~ωint

2

(
1− ω̃int

ωint

)
(4)

Using reduced parameters, we obtain

−kT ln(Rvib) ' −
1

2
p zz (1− x̃) (5)

and
g (−2) ' −δ +

1

2
(6)

g (0) ' −t ln(2r) + b (7)

g (2) ' −t ln
(
r2
)

+ c+ δ (8)

with

b =
1

2

√
1 + x

2
− 1

2
p zz (1− x̃) (9)

c =
1

2

√
x− p zz (1− x̃) (10)

The quantities g (0)− g (−2) and g (0)− g (2) are given by

g (0)− g (2) '
(
ln
(
r2
)
− ln (2r)

)
t+ b− c− δ (11)

g (0)− g (−2) ' − ln (2r) t+ b− 1

2
+ δ (12)

with

b− c =
1

2

(√
1 + x

2
−
√
x+ p zz (1− x̃)

)
(13)
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b− 1

2
=

1

2

(√
1 + x

2
− p zz (1− x̃)− 1

)
(14)

It is easy to verify that for x comprised between 0 and 1, b − c is positive
and b− 1

2 is negative. Moreover for r = 5, ln
(
r2
)
− ln (2r) is positive.

6.2 Sign of g (0)− g (m), for m = ±2.
i) As can be seen in relation (11), the quantity g (0) − g (2) is an increasing
function of the temperature t. When δ is greater than b − c, this function is
negative at t = 0 and increases when the temperature increases. It becomes
positive for t greater than t1 which is given by

t1 =
δ − (b− c)

ln r2 − ln (2r)
with δ > b− c (15)

When δ is smaller than b − c, this function is positive at t = 0 and it remains
positive at any temperature.
So

g (0)− g (2) > 0 for t > t1 when δ > b− c
and for t ≥ 0 when δ < b− c (16)

One can say that for δ < b− c, t1 is equal to zero.
ii) As can be seen in relation (12), the quantity g (0)− g (−2) is a decreasing

function of the temperature t. If δ is higher than 1
2 − b, this function is positive

at t = 0 and decreases when the temperature increases. This function becomes
negative above t2 given by

t2 =
δ −

(
1
2 − b

)
ln (2r)

with δ >
1

2
− b (17)

When δ is lower than 1
2 − b, the quantity g (0)− g (−2) is negative at t = 0 and

remains negatif at any temperature. So,

g (0)− g (−2) > 0 for t < t2 when δ >
1

2
− b (18)

One can show that
b− c > 1

2
− b (19)

and from this relation we can show that

t1 < t2 (20)
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When g (0) − g (2) et g (0) − g (−2) are both positive, g (0) appears as a
maximun between two minima and the state (0) is unstable state.
The parameters t1 and t2 are increasing linear functions of δ. As

(
ln
(
r2
)
− ln (2r)

)
is smaller than ln (2r), the t1 function grows faster than the t2 function. Also
there exists a value of δ where these two functions are equal. This value called
δmax is given by

δmax =
1

2 ln (2)

[
ln (r)

(
b− c−

(
1

2
− b
))

+ ln (2)

(
b− c+

(
1

2
− b
))]

(21)

When δ is greater than δmax, g (0) is no longer a maximun.

7 Data Availability Statement :

No Data associated in the manuscript
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