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Abstract

Fully automated approaches based on convolutional neural networks have
shown promising performances on muscle segmentation from magnetic reso-
nance (MR) images, but still rely on an extensive amount of training data
to achieve valuable results. Muscle segmentation for pediatric and rare dis-
eases cohorts is therefore still often done manually. Producing dense delin-
eations over 3D volumes remains a time-consuming and tedious task, with
significant redundancy between successive slices. In this work, we propose a
segmentation method relying on registration-based label propagation, which
provides 3D muscle delineations from a limited number of annotated 2D
slices. Based on an unsupervised deep registration scheme, our approach
ensures the preservation of anatomical structures by penalizing deformation
compositions that do not produce consistent segmentation from one anno-
tated slice to another. Evaluation is performed on MR data from lower leg
and shoulder joints. Results demonstrate that the proposed semi-automatic
multi-label segmentation model outperforms state-of-the-art techniques.
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1. Introduction

Pediatric musculoskeletal segmentation is a key pre-processing stage for
clinical decision-making, as the generated 3D muscle and bone models en-
able the extraction of key biomarkers related to disease progression, which, in
turn, optimizes identifying therapeutic interventions. In this context, manual
segmentation remains the gold standard to achieve valuable delineations [1].
Indeed, the variability and scarcity of musculoskeletal data, especially in pe-
diatric cohorts, is an obstacle to the generalization of automatic segmentation
models. Thus, 3D atlas-based label propagation methods, whether based on
registration [2, 3] or local patch similarity [4], are not always well suited.
To reduce the processing-time while maintaining a quality close to the inter-
expert variability, semi-automatic techniques requiring few annotated images
appeared to be the best trade-off to date [5].

Fully supervised methods based on deep learning (DL) have been inves-
tigated with sparse annotated 2D slices [6, 7]. Despite superior performance
to atlas-based methods [8], these DL-based approaches require a significant
number of training examples [9]. Learning from few examples remains an
open issue. Interactive approaches have also been explored in the field of DL
for medical image segmentation purposes. Point or scribble-based methods
allow for the least possible interaction, but suffer from a lack of reproducibil-
ity and thus require complex optimization procedures [10, 11, 12]. Chanti et
al. explored the use of long short-term memory (LSTM) units to propagate
an annotated sub-volume through 3D ultrasound images, but still requires
hundreds of annotated slices for training [13].

As an alternative, intra-volume semi-automatic segmentation enables to
deal with the limited size of annotated data [5]. In recent medical imaging
literature, semi-automatic segmentation by label propagation, which involves
spreading annotated slices throughout a volume or sequence, has not been
widely studied. This technique is more commonly seen in the field of video
segmentation, where the first annotated frame is propagated throughout the
sequence [14, 15]. In the context of medical images, morphological-based
interpolation of distant annotated slices provides a fast strategy to propa-
gate labels over a 3D volume, but may also require an important number of
interactions and often fails on multi-structure objects [16, 17]. In addition,
this method does not capture local structure variations, as it relies solely
on segmentation contours. To address this issue, Ogier et al. investigated
a 2D registration framework for propagating annotated slices towards 3D
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segmentation maps [18]. In the same spirit as [19, 20] for static or dynamic
images, the approach proposed in [18] allowed to obtain contour delineations
for a sequence of slices delimited by two annotated slices. The anatomical
coherence is reinforced by exploiting both distant deformations between an-
notations and successive deformations between images, weighting each con-
tribution according to their distance to the closest annotated slices.

Our approach differs from these previous works by using an unsupervised
deep learning framework for deformation generation. Numerous studies have
been conducted in the topic of deep learning registration, with promising out-
comes, especially for its generalizability and its lower processing time com-
pared to direct optimization methods [21, 22, 23]. Among these methods,
Voxelmorph reaches similar performances of popular 3D free-form registra-
tion algorithms between subjects such as ANTs SyN [24, 25]. In this study,
we propose to use a similar approach to perform 2D registration. One key
distinction between this study and the work of Voxelmorph is the focus on 2D
registration within a single volume, rather than on 3D registration between
multiple volumes.

In this work, our objective is to develop an intra-subject 3D segmentation
method for pediatric muscles from magnetic resonance (MR) images based
on very few manually annotated 2D slices. To this end, we investigate the
use of a learning-based registration framework to propagate labels through
the full volume. More precisely, the 3D segmentation problem is modeled
as a 2D label propagation problem based on unsupervised DL-based reg-
istration. The registration approach relies on intensity similarity between
successive slices and on muscle shapes from annotated slices. A regulariza-
tion term is introduced via the definition of a dedicated loss from combined
deformation fields. Furthermore, propagated masks from different manual
segmentations are merged through a novel weighting method based on im-
age similarity measures. The proposed approach is evaluated on two clinical
datasets and compares favorably to state-of-the-art methods. The PyTorch
implementation of this work is publicly available1.

2. Methods

Let us consider a volumetric MR image as a stack of 2D slices. The
use-case considered in this work consists of a clinical expert who minimally

1https://github.com/nathandecaux/labelprop
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Figure 1: Deep registration-based label propagation from an annotated slice {xi,yi} to
the next one {xj ,yj} towards dense muscle segmentation in MR images. Please refer to
the text for complete description of notations.

delineates muscles of interest in few slices only. The objective is to provide
a full 3D segmentation map of the muscles by propagating the 2D annota-
tions. We model this problem into an intra-patient registration-based propa-
gation framework. We denote a full volume X as a set of stacked 2D images
X = (x1,x2, ...,xn) and the corresponding segmentation map Y as a set of
stacked sparsely annotated 2D images Y = (y1,y2, ...,yn), i.e. the majority of
the slices in the set are not annotated. In such a registration-based propaga-
tion framework, the key assumption is that muscle shapes in two consecutive
2D images are highly similar. As recently highlighted in [5], methods based
on intra-subject non-linear registration currently provide state-of-the-art re-
sults. The purpose of the proposed approach is to propagate a small amount
of annotated 2D slices through the volume X to estimate a full 3D muscle
segmentation map. To this end, we propose a DL-based approach that si-
multaneously registers consecutive 2D MR slices and propagates annotated
muscle contours.

2.1. Unsupervised 2D intensity-based registration

The proposed label propagation framework relies on non-linear registra-
tion of consecutive 2D slices. Let ϕk→k+1 be a non-linear mapping that maps
coordinates of xk to coordinates of xk+1. Such a mapping ϕk→k+1 is usually
estimated by solving the following optimization problem:

ϕ̂k→k+1 = argmin
ϕ

Lsimk→k+1
(X , ϕ) + λ1Lsmooth(ϕ), (1)
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Figure 2: Unsupervised 2D intensity-based registration model between two successive slices
xk and xk+1. Please refer to the text for complete description of notations.

where Lsimk→k+1
(X , ϕ) is an image dissimilarity measure between the con-

secutive slices xk and xk+1, Lsmooth a regularization term and λ1 a trade-off
weight between both terms. In this work, the non-linear mapping ϕ is mod-
eled as ϕ = Id+ u where Id is the identity transform and u is the displace-
ment field. We consider a diffeomorphic mapping ϕ through the integral of
a stationary velocity vector field v such that ϕ preserves the topology and
is invertible [26]. Moreover, the inverse mapping ϕ-1

k→k+1 is obtained using
the negative velocity field -v, computed with a similar process as in forward
integration.

Lsimk→k+1
(X , ϕ) penalizes the dissimilarity between the slice xk deformed

using ϕk→k+1 and the slice xk+1, and reciprocally using ϕ-1
k→k+1. To be robust

to any intensity variations inside the full volume X , the dissimilarity loss
used in this work is the normalized local cross-correlation (NCC):

Lsimk→k+1
= −NCC(ϕk→k+1(xk),xk+1)− NCC(ϕ-1

k→k+1(xk+1),xk). (2)

To ensure smooth deformation fields, the regularization term Lsmooth pe-
nalizes for each pixel p the spatial derivatives of the velocity field v [24]:
Lsmooth(ϕk→k+1) =

∑
p∥∇(vk→k+1(p))∥2. Similarly to VoxelMorph [24], the

deformation field is computed in an unsupervised way, where the velocity
field is modeled using a neural network.
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2.2. Propagation constraints

Our objective is to segment a full MR volume by propagating 2D anno-
tations using estimated deformation fields between consecutive slices. We
propose to consider a loss related to segmentation to make the registration-
based label propagation more accurate and anatomically plausible. Let con-
sider two annotated slices xi and xj and their corresponding annotations yi

and yj. The slice xi can be mapped to xj using ϕi→j, the combination of non-
linear mappings ϕi→j = ϕj−1→j ◦ ... ◦ϕi→i+1. To improve the anatomical cor-
respondences, we consider a overlap-based segmentation loss Lsegi→j

between
the deformed annotated slice ϕi→j(yi) and yj: Lsegi→j

= −DSC(ϕi→j(yi),yj)
where DSC is the Dice similarity coefficient quantifying the surface overlap
for a given muscle. The combination of non-linear mappings can lead to
an accumulation of registration errors between annotated sections. There-
fore, to regularize the estimated displacement fields through the propagation,
we propose to investigate the use of the following intensity-based criterion:
Lcompi→j

= −NCC(ϕi→j(xi),xj).

2.3. Label propagation framework

Considering two slices (xi,xj) and their annotations (yi,yj), the corre-
sponding loss function Li→j is defined as follows:

Li→j =
1

j − i

j−1∑
k=i

(
Lsimk→k+1

+ λ1Lsmooth(ϕk→k+1)
)
+ λ2Lsegi→j

+ λ3Lcompi→j
,

(3)
with weighting factors λ2 and λ3.
For more robustness, label propagation can be performed in both directions
by considering a bidirectional loss L = Li→j + Lj→i. The generated dense
annotations are then merged by giving more weight to the pixels that are
most likely to be correctly registered:

ŷk = βk(X , ϕ).(ϕi→k(yi)) + (1− βk(X , ϕ)).(ϕj→k(yj)), (4)

with βk the weighting function. As an approximation of the DSC evolution
along the propagation axis, [18] suggested using βk = 1− arctan(C(k−(j−i)/2))

π
as

a weighting function, where C is a smoothing factor. The approach therefore
assumes a symmetry in the propagation quality in both directions, which
may not be the case. This function is denoted as distance-based weighting
(DW) in Sect. 3.7.
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Figure 3: Label propagation framework scheme. Labels are propagated in both direction,
resulting in two prediction for intermediate slices, that are fused using a weighting function
β. Please refer to the text for complete description of notations.

Instead of distance, we hypothesize a correlation between image similarity
and segmentation quality by considering now βk(X , ϕ) as a function of the
propagated slices ϕi→k(xi) and ϕj→k(xj), such that :

βk(X , ϕ) =
sim(ϕi→k(xi),xk)

sim(ϕi→k(xi),xk) + sim(ϕj→k(xj),xk)
. (5)

Three sim(ϕi→k(xi),xk) functions as composition of the pixel-level func-
tion NCC(., .) have been investigated: (1) the average cross-correlation map

p: 1
N

N∑
p

NCC(ϕi→k(xi),xk)(p), denoted as correlation-based weighting (CW);

(2) the average of the masked map

N∑
p
ϕi→k(yi)(p)NCC(ϕi→k(xi),xk)(p)

N∑
p
ϕi→k(yi)(p)

, denoted as

masked correlation-based weighting (MCW); (3) the pixel-level map NCC(ϕi→k(xi))
where each pixel is weighted independently, denoted as pixel-wise correlation-
based weighting (PCW) in Sect. 3.7.

3. Experiments and results

3.1. MR muscle datasets

We evaluate the proposed approach on two muscle MR datasets, acquired
from two distinct anatomies: shoulder and thigh.

The first one (referred to as MR Shoulders) is a shoulder dataset collected
from a previous IRB approved study [27] originally established to investigate
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the muscle volume-strength relationship in 12 children with unilateral ob-
stetrical brachial plexus palsy (averaged age of 12.1±3.3 years). Informed
consents from a legal guardian and assents from the participants were ob-
tained for all subjects. Data from children with atrophic muscles exhibit
a large variability in muscle structure and texture between subjects, which
represents a challenge for learning-based segmentation algorithms. For each
subject, 3D axial-plane T1-weighted gradient-echo MR images were acquired
for the affected shoulder. For each MR volume, a sparse set of 2D axial slices
were selected to delineate four rotator cuff muscles: deltoid, infraspinatus,
supraspinatus and subscapularis (Fig.4, top). Manual annotations were per-
formed by an expert in physical medicine and rehabilitation. Size for axial
slices is constant for each subject (416×312 pixels). Resolution varies from
0.55×0.55 to 0.63×0.63mm. The number of axial slices fluctuates from 192
to 224 while slice thickness is fixed to 1.2mm. The average axial slice number
of interest is 106±28 for deltoid, 63±16 for infraspinatus, 24±8 for subscapu-
laris and 71±16 for supraspinatus.
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subscapularis
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Figure 4: Sample images from the two evaluated shoulder MR dataset in each plane, with
corresponding labels. (Top) 3D MR scan of a pediatric shoulder of a child with obstetrical
brachial plexus palsy from the MR Shoulders dataset. Four muscles of the rotator cuff
are represented in color: deltoid, infraspinatus, subscapularis and supraspinatus muscles.
(Bottom) 3D MR scan of a healthy adult thigh extracted from the MyoSegmenTUM dataset.
Four muscle groups are represented in color: gracilis, hamstring, quadriceps femoris and
sartorius. Each muscle is differentiated by leg (left-right).
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The second dataset employed to evaluate our method is the publicly avail-
able MyoSegmenTUM dataset [28], consiststing of Dixon water MR scans of
thighs, with dense segmentation of four muscles: quadriceps femoris, sarto-
rius, gracilis, hamstring, differentially marked for left and right thigh (Tab.4,
bottom). The dataset is composed of a population of 15 healthy adults (80%
of males) with age, weight, and height of resp. 29±8 years old, 86±13kg,
and 180±9cm. Image size varies from 400×400 (63 axial slices) to 560×560
(65 axial slices), while resolution is 0.93×0.93 with slice thickness of 4mm.
The average number of annotated axial slices is 48±10, all muscles included.

3.2. Implementation details and evaluation

A U-Net architecture is used for the velocity field generator, designed as
a contraction/expansion path with skip-connections. It takes as input two
successive images of the volume and estimates as output two maps repre-
senting the velocity fields in both directions of the plane. The displacement
field is obtained by repeatedly integrating the velocity field over small-time
steps, following the method described in the DARTEL [26] paper. The ve-
locity field is first scaled by a factor of 1

2N
where N is the number of squaring

steps. Then, the scaled field is integrated by self-application N times, which
is considered an approximation of the computation of the exponential of
the velocity field. The number of squaring steps is set to 7, as suggested
in DARTEL method [26]. The implementation used is a publicly available
U-Net network from the MONAI library2. The number of features is set
to (16, 32, 32, 32) and the number of residual units to 2, other parameters
being kept by default. Final convolution layer, velocity field integration,
deformation field mapping function and original losses are based on the of-
ficial Voxelmorph Pytorch implementation3. As in [24] when using NCC, the
weighting parameter λ1 (Eq. 1) is set to 1. λ2 and λ3 is empirically set to 1.
NCC sliding-window size is set to 9×9 in Lsim and Lcomp while set to 31×31
in Eq. 5. The total number of parameters is similar to the one involved in
Voxelmorph (114k versus 110k).

For all experiments, the model is trained using the Adam optimizer with
a learning rate fixed at 10−3 and a weight decay of 10−8. The best trained
model over 200 epochs is selected by keeping the one that provides the highest

2https://docs.monai.io/en/stable/networks.html#unet
3https://github.com/voxelmorph/voxelmorph
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Dice score between propagated labels and ground-truth annotated training
slices. The prediction evaluated is the segmentation map resulting from the
fusion of the propagation in both directions, according to Eq. 4, using PCW

function.
To provide a comprehensive assessment, the metrics employed for eval-

uation purposes are the Dice coefficient (DSC), the average surface distance
(ASD) as well as the Hausdorff distance (HD), computed in 2D according to
the axial plane.

3.3. Existing methods

The proposed approach is compared with two segmentation methods: a
morphology-based interpolation method [17] as well as a supervised U-Net
deep segmentation model [29]. The morphology-based approach is an iter-
ative method that can explicitly handle inter-slice topology changes by de-
composing a many-to-many correspondence. This method is very suitable in
the scenario considered in this work, namely a semi-automatic segmentation
strategy which propagates annotated slices within the same volume. This
can thus be considered as a reference method. A publicly available code is
provided by Kitware in ITK4. This approach is denoted as Morph in Tab. 1
and Tab. 2.

The second method is a supervised DL technique, relying on the U-Net
architecture, similar to previous studies [7, 30, 31]. The network is trained
using a cross-entropy loss and data augmentation with random affine trans-
formations (rotations between -20 and 20 degrees, scaling from 0.8 to 1.2 and
shearing from -20 to 20). In the context of semi-automatic segmentation, the
U-Net model is trained during 200 epochs and tested in a supervised learning
fashion for each subject independently. The implementation is based on a
publicly available Pytorch implementation5. It follows the original architec-
ture and number of filters, with the addition of a batch normalization oper-
ation after each convolution. The number of parameters is approximately 14
million. This approach is denoted as U-Net in Tab. 1 and Tab. 2.

The final method presented in the paper is a semi-automatic deep learn-
ing approach for video label propagation tasks. It uses space-time graphs to
represent video sequences, where patches from each frame are the nodes and

4https://github.com/KitwareMedical/ITKMorphologicalContourInterpolation
5https://github.com/milesial/Pytorch-UNet
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transitions between patches in adjacent frames are the edges. The model
learns a representation that defines the transition probability of a random
walk on the graph. The representation is optimized to place high probability
along paths of similar nodes, and is trained using cycle-consistency without
supervision. At test time, the first frame annotation is propagated to the en-
tire sequence using the most likely transitions for each patch. To remain fair
to our method, we apply the same label propagation framework during infer-
ence, described in Sec. 2.3, propagating for each subsequence (i.e. between
two annotated slices) in both directions, and merging the predicted segmen-
tations as a function of distance from the nearest annotated slice (see DW
function in Sec. 2.3). A model is trained for each dataset separately, using
every sequence without annotation. Models are initialized using pretrained
weights provided in the public implementation6 of the method, and trained
during 200 epochs. During training, sequences are divided into clips of 8
frames, dropout is set to 0.1, softmax temperature to 0.05, and learning-rate
and batch size are respectively set to 10−4 and 32. For data augmentation,
we use the random flip function provided in the code, which provides the
best performance in our case. Other hyperparameters are set to default.
The number of parameters is approximately 2.7 million. This approach is
denoted as VideoWalk in Tab. 1 and Tab. 2.

3.4. Intra-Subject Segmentation with Minimal Supervision

In this section, we consider a difficult intra-subject segmentation scenario:
only three slices are annotated for each MR volume to segment. The middle
slice allows a fine delineation of the muscle while the two other slices provide
its spatial extent (in z-direction). In this case, the typical distance between
two consecutive annotations is 32 ± 17 for shoulders and 24 ± 5 for thighs.
These three slices are the only annotation seen for each methods, as we
perform the experiment for each subject separately.

Tab. 1 reports the DSC, HD and ASD scores for the shoulder dataset av-
eraged over each slice and muscle. With DSC scores of 76.6, 81.0, 80.7, and
72.7% for deltoid, infraspinatus, subscapularis, and supraspinatus muscles,
respectively, our method outperforms interpolation-based techniques [17], U-
Net [29] and VideoWalk [14] for all muscles. Significant improvements in ASD

stability (3.0±4.6 versus 5.3±16.8 mm with [29] for supraspinatus) and HD

6https://github.com/ajabri/videowalk
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(18.8±16.1 versus 32.8±26.4 mm with [17] for infraspinatus) are achieved.
Overall, VideoWalk shows the lowest performance on this shoulder dataset,
presumably because the approach is not suitable for the propagation of fine
structures on low contrast images such as these T1w images. . The DSC

scores for supraspinatus are overall lower than for the other muscles due to
its thin and elongated shape. For a more complete assessment, we also in-
clude in Tab. 1 the results from [7], based on a U-Net model trained in a
leave-one-out (LOO) manner, i.e., using every subject except the one tested.
Compared to [7], our method shows better results for all muscles despite a
much smaller amount of annotated data. A strong improvement in DSC is
moreover visible for infraspinatus (from 71.4 to 81.0% in DSC) although only
3 slices are used for label propagation.

Similar conclusions can be noted for MyoSegmenTUM in Tab. 2, where the
proposed approach consistently outperformed other methods in DSC, ASD,
and HD metrics. Specifically, we find that small muscles such as gracilis
and sartorius challenge both U-Net [29] and interpolation-based technique
[17] in this semi-automatic intra-subject segmentation case (10.2 for [29] and
30.6% for [17] in average DSC for gracilis and sartorius muscles and left/right
legs versus 81.4% for our approach). Thanks to the good contrast of the
water sequences in this dataset, the VideoWalk [14] approach achieves better
performance on these small muscles in DSC, but remains significantly less
accurate compared to our method (47.0% for gracilis and sartorius muscles
and left/right legs versus 81.4% for our approach).

The proposed method shows similar ASD scores with [17] on larger muscles,
but shows significant improvements in HD (12.9±12.0 versus 30.7±27.2 mm
for [17] on right quadriceps femoris). The VideoWalk method [14] shows
similar performance for the global quadriceps femoris in terms of DSC, with a
score of 82.9% for their method compared to 86.7% for our method. However,
their method did not perform as well in terms of ASD and HD, with scores of
5.3 in ASD and 26.7 in HD compared to our scores of 3.1 in ASD and 13.0 in
HD.

Moreover, Fig.5 shows the evolution in the z-direction of the averaged DSC

of both datasets. It appears that the proposed label propagation is less sensi-
tive to distance from the nearest annotated slice, compared to interpolation-
based approaches [17], U-Net [29] and VideoWalk [14]. Results also demon-
strate a higher overall robustness with our method, as evoked by the standard
deviation (colored area around the mean curves).
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no learning intra-subject learning LOO learning
metric muscle Morph [17] U-Net [29] VideoWalk [14] Proposed [7]

DSC ↑

deltoid 45.4±29.2 56.8±28.7 49.7±32.6 76.3±15.5 68.9±29.9
infraspinatus 53.4±27.6 67.0±27.7 46.1±31.6 81.0±11.5 71.4±24.7
subscapularis 55.6±30.5 66.3±25.5 56.7±25.9 80.7±12.1 78.1±18.1
supraspinatus 38.6±25.1 50.2±29.0 39.1±29.1 72.7±18.3 64.9±28.0

ASD ↓

deltoid 3.4±5.7 3.2±9.0 4.8±4.9 2.9±3.2 -
infraspinatus 3.6±7.5 1.8±4.3 7.3±8.8 1.9±1.3 -
subscapularis 2.1±4.2 2.3±7.8 7.8±5.9 2.4±1.2 -
supraspinatus 4.0±5.5 5.3±16.8 7.4±6.6 3.0±4.6 -

HD ↓

deltoid 39.6±32.3 42.7±44.2 37.8±35.2 27.6±27.4 -
infraspinatus 32.8±26.4 25.7±29.6 36.1±28.8 18.8±16.1 -
subscapularis 18.6±12.9 20.6±21.4 31.2±20.6 12.8±9.3 -
supraspinatus 33.9±19.5 35.9±33.3 33.7±21.5 22.5±17.9 -

Table 1: Quantitative assessment over the MR Shoulder dataset in the minimal supervision
setting. Best scores are highlighted in bold.

3.5. Ablation study

We now evaluate the contribution of Lseg and Lcomp losses and the prop-
agation schemes: forward (F) model, backward (B) model (i.e. propagated
in the opposite direction as F) and the fusion of these two predictions as
described in Eq. 4). To this end, 7 annotated slices per subject are used for
training. Results are reported in Tab. 3 for the two datasets. First, it can
be seen that, as expected, adding a segmentation-based loss improves the
label propagation quality, especially while propagating in a single direction
(82.3±14 versus 71.1±21.2 in DSC for MR Shoulders in backward direction
and 90.5±7.1 versus 83.8±15.4 for MyoSegmenTUM in forward direction). Sec-
ond, adding a composition loss to regularize the estimation of the deformation
fields does not lead to a significant improvement in the segmentation results.
Finally, the bidirectional fusion strategy allows in a large majority of cases an
improvement of the segmentation results, and more particularly when Lseg is
not used (DSC scores of 82.2±13.9 versus 73.7±19.2 and 71.1±21.2 in single
directions for MR Shoulders, 90.1±7.4 versus 83.8±15.4 and 86.5±10.3 for
MyoSegmenTUM).

3.6. Pre-training

The training stage of the proposed method can be performed in a subject-
specific label propagation context for each volume independently, similarly
to [18]. However, it is possible to train the neural network from the available
unannotated data set as well. We focus in this section on the influence
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no learning intra-subject learning
metric muscle leg Morph [17] U-Net [29] VideoWalk [14] Proposed

DSC ↑

gracilis
R 27.2±29.6 8.7±21.5 40.8±30.4 83.6±12.2
L 27.8±30.9 2.5±7.5 38.0±30.3 80.6±16.6

hamstring
R 78.6±14.3 36.6±31.3 76.9±14.5 88.0±10.2
L 78.0±15.8 34.7±29.1 77.6±13.2 86.7±11.0

quadriceps femoris
R 76.8±18.2 38.5±31.8 83.1±9.7 87.4±8.8
L 75.6±20.0 37.0±35.2 82.7±10.8 86.0±10.1

sartorius
R 36.1±31.0 12.1±20.6 56.9±25.5 82.9±16.8
L 31.5±27.4 17.7±27.0 52.5±27.4 78.5±21.4

ASD ↓

gracilis
R 7.8±3.7 152.4±70.5 2.0±1.9 0.9±0.4
L 7.9±3.9 174.7±60.3 2.1±2.0 1.1±0.9

hamstring
R 3.1±1.3 90.1±71.1 4.8±4.4 2.1±0.9
L 3.1±1.7 94.9±64.5 5.1±4.2 2.2±1.0

quadriceps femoris
R 3.3±2.7 113.3±73.3 5.2±4.6 2.9±2.5
L 3.2±1.6 112.5±80.6 5.4±4.7 3.3±3.0

sartorius
R 9.3±6.2 137.2±76.0 2.8±2.9 1.5±2.7
L 9.5±5.8 116.4±83.7 2.7±2.1 1.7±1.7

HD ↓

gracilis
R 15.2±5.3 263.6±104.7 7.8±7.4 3.1±1.9
L 15.6±5.9 295.3±69.7 8.1±7.8 3.8±3.8

hamstring
R 16.5±12.0 210.8±131.6 20.3±15.1 10.3±8.4
L 16.9±12.8 229.2±114.2 21.3±14.9 11.3±10.1

quadriceps femoris
R 30.7±27.2 251.6±114.7 24.9±22.4 12.9±12.0
L 28.4±26.8 249.8±141.7 28.6±28.3 13.1±12.8

sartorius
R 24.7±14.9 259.7±122.3 9.8±8.5 4.8±5.7
L 25.4±13.1 218.9±141.1 10.5±8.7 5.1±4.3

Table 2: Quantitative assessment over the MyoSegmenTUM dataset in the minimal supervi-
sion setting. Best scores are highlighted in bold.

of such a pre-training step. More precisely, we evaluate performance and
convergence time with or without pre-training. For a given dataset and a
given propagation direction, the pre-training stage corresponds to a joint
learning of every subject successive deformations, without any annotation.
This corresponds then to minimizing Eq. 1 for each slice of each subject, in
both directions.

We consider the minimal supervision learning scenario described as in
Sect. 3.4. Results for both datasets are reported in Tab. 4. The experi-
ment shows the interest of pre-training in a difficult context of learning from
only 3 slices, with improvements in mean DSC score from 2.7 to 7.2% for MR
Shoulders, and from 4.0 to 22.6% for MyoSegmenTUM, as well as for other
metrics.

DSC convergence over epochs on the MR shoulder dataset is studied in
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Figure 5: Averaged Dice (DSC) for each annotated slice over the MR Shoulders (a) and
MyoSegmenTUM (b) datasets, in a minimal supervision setting. DSC is displayed with
respect to the normalized axial slice number obtained by linearly scaling slice number from
[zmin, zmax] to [0, 1] where zmin (zmax) is the minimal (maximal) slice index displaying
a muscle. Vertical dotted black lines represents the location of annotated slices used for
training. Colored areas deal with standard deviation.

Fig. 6. It shows that the pre-training stage provides a good initialization
(58.1 versus 41.1 at epoch 0). Moreover, the pre-trained models reach on
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MR Shoulders MyoSegmenTUM

direction Lseg Lcomp DSC ↑ HD ↓ ASD ↓ DSC ↑ HD ↓ ASD ↓
F

✗ ✗

73.7±19.2 22.4±23.0 5.1±8.2 83.8±15.4 8.0±10.7 1.6±1.0
B 71.1±21.2 23.3±25.1 3.4±4.2 86.5±10.3 7.6±10.6 2.0±3.1

Fused 82.2±13.9 14.0±15.8 2.3±4.3 90.1±7.4 5.4±8.1 1.3±1.8
F

✓ ✗

83.8±11.1 15.5±19.0 2.7±4.8 90.5±7.1 5.9±9.6 1.2±0.7*
B 82.3±14.0 16.5±22.1 1.9±2.9 90.6±6.7 5.8±9.3 1.3±1.5

Fused 84.4±11.6 13.1±16.9 2.0±3.7 91.1±6.4* 5.0±7.9 1.2±1.2
F

✗ ✓

76.4±18.4 21.8±23.0 4.8±7.9 84.5±15.6 8.1±10.7 1.7±1.1
B 74.2±20.0 22.6±24.6 3.3±4.6 87.4±9.7 7.5±10.6 1.9±2.8

Fused 83.1±13.3 14.0±15.8 2.3±4.2 89.9±8.3 5.6±8.5 1.4±1.8
F

✓ ✓

84.6±10.8 15.3±18.3 2.7±4.7 90.3±7.2 6.0±9.6 1.2±0.7*
B 83.2±13.8 16.5±22.4 1.9±4.0 90.6±6.4 5.8±9.1 1.3±1.6

Fused 85.3±11.2* 12.3±15.4* 1.8±3.4* 91.0±6.4 4.9±7.5* 1.2±1.2

Table 3: Ablation study. Influence of Lseg and Lcomp losses for different propagation
schemes. Best results for a given loss combination is in bold. The asterisk (*) indicates
the best results over all loss combinations.

average per epoch performance of non pre-trained models from 14 epochs
(70.5 at epoch 14 versus 70.0 at epoch 175).
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Figure 6: Performance evolution over training epochs on MR shoulders dataset, with or
without pretraining. Shown metric is the 2D DSC averaged over all subjects and muscles.
Colored areas deal with standard deviation.
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DSC ↑ ASD ↓ HD ↓

pre-training No Yes No Yes No Yes

muscle

deltoid 69.5±16.4 76.3±15.5 4.4±4.4 2.9±3.2 34.2±29.7 27.6±27.4
infraspinatus 78.3±12.4 81.0±11.5 2.6±2.2 1.9±1.3 21.9±18.9 18.8±16.1
subscapularis 77.8±13.3 80.7±12.1 3.2±1.8 2.4±1.2 15.2±9.7 12.8±9.3
supraspinatus 65.5±21.9 72.7±18.3 4.7±6.1 3.0±4.6 25.4±19.5 22.5±17.9

(a)

DSC ↑ ASD ↓ HD ↓

pre-training No Yes No Yes No Yes

muscle leg

gracilis
L 64.8±24.3 80.6±16.6 2.4±2.5 1.1±0.9 7.8±7.3 3.8±3.8
R 61.0±30.7 83.6±12.2 2.1±2.2 0.9±0.4 7.0±5.6 3.1±1.9

hamstring
L 82.5±12.6 86.7±11.0 3.0±1.4 2.2±1.0 13.0±7.8 11.3±10.1
R 84.0±11.6 88.0±10.2 2.9±1.5 2.1±0.9 12.7±7.2 10.3±8.4

quadriceps femoris
L 81.6±13.6 86.0±10.1 4.9±4.3 3.3±3.0 18.4±14.0 13.1±12.8
R 83.4±10.8 87.4±8.8 4.8±4.3 2.9±2.5 19.8±14.2 12.9±12.0

sartorius
L 61.7±28.2 78.5±21.4 4.4±6.3 1.7±1.7 12.9±13.1 5.1±4.3
R 61.9±29.8 82.9±16.8 4.2±5.7 1.5±2.7 12.4±12.9 4.8±5.7

(b)

Table 4: Evaluation of pre-training step on MR Shoulders (a) and MyoSegmenTUM (b)
datasets. Best results are highlighted in bold.

3.7. Study of weighting strategies

In this experiment, we compare performances of each weighting strategies
described in above Sect. 2.3. We study their influence on both datasets, and
with a different number of annotated slices per subject : 3, 5 and 7.

Results for DSC, ASD and HD scores are reported in Tab. 5. Pixel-wise
fusion (PCW) shows the best average improvements compared to the baseline
distance fusion, with DSC gains from 0.1 to 1.2% and up to -1.3 in HD. In MR

Shoulders, the local similarity strategy (MCW) reaches the lowest ASD even
though it gives the lowest DSC as well.

Visual comparison between weighting strategies based on distance and
pixel-wise similarity is provided in Fig. 9. The PCW approach shows more
robustness to structure splitting of the quadriceps femoris (blue label) and
hamstring.
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MR Shoulders MyoSegmenTUM

annotated slices strategy DSC ↑ HD ↓ ASD ↓ DSC ↑ HD ↓ ASD ↓

3

DW 75.9±16.7 22.8±24.7 2.6±3.1 83.8±14.6 9.3±12.5 1.9±1.3
MCW 75.3±19.9 22.3±24.0 2.3±2.8 83.1±17.8 8.8±11.3 2.1±2.9
CW 76.6±16.3 22.4±24.2 2.5±3.0 84.5±14.3 8.7±11.6 1.8±1.2
PCW 77.1±15.5 21.5±20.4 2.6±3.2 84.3±14.3 8.2±9.3 2.0±2.1

5

DW 82.5±13.1 16.1±20.8 1.9±2.8 90.7±7.6 5.1±7.6 1.1±1.0
MCW 82.5±15.0 15.2±19.6 1.8±2.8 90.5±9.8 4.8±6.9 1.1±1.2
CW 83.0±13.1 15.7±20.7 1.8±2.8 90.9±7.4 4.9±7.2 1.2±1.3
PCW 83.3±11.9 15.2±17.5 2.2±3.7 90.9±7.3 4.9±7.4 1.2±1.4

7

DW 84.8±11.6 13.4±18.2 1.7±3.0 92.0±6.8 4.3±6.8 1.0±1.1
MCW 84.6±13.9 12.8±17.5 1.6±2.8 92.0±6.9 4.3±7.1 1.0±1.2
CW 85.3±11.2 13.1±17.9 1.7±2.9 92.0±6.9 4.3±6.8 1.0±1.1
PCW 85.3±11.2 12.3±15.4 1.8±3.4 92.1±6.7 4.4±7.4 1.0±1.3

Table 5: Performance table summarizing average metrics per dataset, number of annotated
slices, and by weighting strategy. Please refer to the Sect. 2.3 for details about weighting
strategies

U-Net [29] Morph [17] VideoWalk [14] proposed ground truth

Figure 7: Visual comparison (first row : axial, second : sagittal, last : coronal) on MyoSeg-
menTUM dataset of existing methods and our approach in the minimal supervision setting
(Sect. 3.3).

3.8. Influence of annotated slice spacing

In this work, annotated slices are uniformly distributed across the vol-
ume, with the first and last annotations defining the region of interest to be
segmented. Intermediate slices are then chosen to divide the MR volumes
into approximately equal sub-volumes. In Sec. 3.4 and 3.6, only 3 annotated
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Figure 8: Visual comparison (first row : coronal plane, last rows : axial) on MR Shoulder
dataset of pretraining stage influence in the minimal supervision setting.

slices are used, while the number of annotated slices is set to 7 in Sec. 3.5.
In Sec. 3.7, we have studied the influence of the number of annotated slices
per volume: 3, 5, and 7 slices. In the previous sections, the experiments were
performed with a fixed number of annotated slices, rather than an interval
between annotations, to demonstrate the application of our approach for a
fixed interaction time, invariant to the subject morphology. The advantage
of this approach is that the user knows how long it takes to segment a dataset
using the proposed propagation method. However, the same anatomical re-
gion of interest may occupy a different number of slices depending on the
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forward propagation backward propagation

interaction (slice 39)  interaction (slice 65)

intermediate slice (52)

ground truth

Figure 9: Visual comparison of axial slice predictions for different weighting strategies on
MyoSegmenTUM dataset, in the three annotated slices setting. Images surrounded by
solid lines yellow lines are annotated slices used for training and propagation.

subject’s height, weight, or age. Longer muscles, for a given slice thickness,
therefore imply larger propagation distances for a given number of annotated
slices. In this section, we examine the performance of the proposed approach
as a function of the distance between annotated slices, with the hypothesis
that a greater propagation induces an accumulation of registration errors and
thus a lower segmentation accuracy. Figure 10 shows the results of the exper-
iment described in Sec. 3.7 with the pixel-wise correlation-based weighting
PCW strategy for the three configurations of the number of annotated slices (3,
5 and 7) according to the propagation distance. Each point corresponds to
the average DICE for a given subject and muscle as a function of the distance
between two annotated slices used for propagation. As expected, the smaller
the distance between the annotated slices, the better the segmentation is
propagated. For example, it can be noted that for the deltoid, the DICE
remains above 75% of DSC despite large distances between annotated slices
(up to 69 slices). Figure 10 shows the variability of performance depending
on the muscle to be segmented. The choice of the optimal distance between
the annotated slices depends on the anatomy of the subject, the size of the
structures to be segmented but also the contrast in the images. These results
require further investigation. Indeed, these results should be interpreted with
caution, as the DSC coefficient is sensitive to the size of the structure to be
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segmented. The determination of the optimal distance for each muscle and
each subject remains an avenue to be explored for future work, for example
with a view to using the approach in a routine clinical case.
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Figure 10: Average Dice (DSC) per subject as a function of the propagation distance, over
the MR Shoulders (a) and MyoSegmenTUM (b) datasets. Dotted lines show linear regressions
per label, with 95% confidence interval in colored area.

4. Conclusion

In this paper, we describe a deep registration-based label propagation
method for intra-subject muscle segmentation from MR images. The prop-
agation process is guided by image intensity, muscle shape and registration
consistency. This operation is performed in both directions, resulting in two
segmentation predictions that are merged with image registration quality es-
timation as weighting guidance. To improve performance and speed up con-
vergence, an unsupervised pretraining stage is suggested. To obtain smooth
and accurate fusions of segmentations from bidirectional propagation, several
weighting functions have been studied. Experiments on clinical data show
that 3D full scan segmentation can be achieved from very limited manual
annotations using the proposed approach. One limitation of using diffeomor-
phic registration for anatomical structure segmentation is that it does not
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adequately handle topological discontinuities. In such cases, the annotated
slices must accurately describe these changes in topology. A potential so-
lution to this problem is to incorporate an active learning mechanism that
guides the annotator in selecting the most informative slices for manual seg-
mentation. On the other hand, our approach relies on context information in
the form of annotated extreme slices. This requirement can be challenging
for annotators because extreme slices are often difficult to segment manually
and provide little information about the label structure. One possible way
to address this limitation is to investigate the use of weak annotations, such
as clicks or scribbles, for these slices. In our study, we focused on single-axis
propagation, which is more applicable to MR images where only one plane
is likely to be isotropic. However, a multi-view propagation approach could
be considered for isotropic volume segmentation, such as in CT or 3D ultra-
sound imaging. In the context of musculoskeletal medical images analysis,
for which there is very little annotated data, the described approach can
serve as a basis for the development of interactive user-friendly segmentation
tools. It is also very likely adaptable to other modalities that benefit from
high spatial resolution in all planes (CT, 3D US) or organs.
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