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Abstract

The paper formulates the concept of persistence of excitation for discrete-time linear switched sys-
tems, and provides sufficient conditions for an input signal to be persistently exciting. Persistence
of excitation is formulated as a property of the input signal, and it is not tied to any specific
identification algorithm. The results of the paper rely on realization theory and on the notion of
Markov-parameters for linear switched systems.

1. Introduction

The paper formulates the concept of persistence of excitation for discrete-time linear switched
systems (abbreviated by DTLSSs). DTLSSs are one of the simplest and best studied classes of
discrete-time switched systems, [1].

A DTLSS is a discrete-time switched system, such that the continuous sub-system associated
with each discrete state is linear. The switching signal is viewed as an external input, and all linear
systems live on the same input-output- and state-space.

We define persistence of excitation for input signals. More precisely, we will call an input signal
persistently exciting for an input-output map, if the response of the input-output map to that
particular input determines the input-output map uniquely. In other words, the knowledge of the
output response to a persistently exciting input should be sufficient to predict the response to any
input.

Persistence of excitation is essential for system identification and adaptive control. Normally, in
system identification the system of interest is tested only for one input sequence. One of the reason
for this is that our notion of the system entails a fixed initial state. However, any experiment
changes that particular initial state and it is in general not clear how to reset the system to a
particular initial state. The objective is to find a system model based on the response to the chosen
input. However, the knowledge of a model of the system (including the initial state) immediately
implies that the response of the system to any input is known. Hence, intuitively it is clear that
persistence of excitation of the input signal is a prerequisite for a successful identification of a
model.

Note that persistence of excitation is a joint property of the input and of the input-output map.
That is, a particular input might be persistently exciting for a particular system and might fail to
be persistently exciting for another system. In fact, it is not a priori clear if any system admits
a persistently exciting input. This calls for investigating classes of inputs which are persistently
exciting for some broad classes of systems.

In the existing literature, persistence of excitation is often defined as a specific property of
the measurements which is sufficient for the correctness of some identification algorithm. In
contrast, in this paper we propose a definition of persistence of excitation which is necessary for
the correctness of any identification algorithm. Obviously, the two approaches are complementary.
In fact, we hope that the results of this paper can serve as a starting point to derive persistence of
excitation conditions for specific identification algorithms.
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Contribution of the paper We define persistence of excitation for finite input sequences
and persistence of excitation for infinite input sequences.

We show that for every input-output map which is realizable by a reversible DTLSS, there
exists a finite input sequence which is persistently exciting for that particular input-output map.
A reversible DTLSS is a DTLSS such that its continuous dynamics is invertible. Such systems
arise naturally by sampling continuous-time systems. In addition, we define the class of reversible
input-output maps and show that there is a finite input sequence which is persistently exciting for
all the input-output maps of that class. Moreover, we present a procedure for constructing such
an input sequence.

We show that there exists a class of infinite input sequences which are persistently exciting for
all the input-output maps which are realizable by a stable DTLSS. The conditions which the input
sequence must satisfy is that each subsequence occurs there infinitely often (i.e. the switching signal
is rich enough) and that the continuous input is a colored noise. Hence, this result is consistent
with the classical result for linear systems.

It might be appealing to interpret the conditions above as ones which ensure that one stays in
every discrete mode long enough and the continuous input is persistently exciting in the classical
sense. One could then try to identify the linear subsystems separately and merge the results.
Unfortunately, such an interpretation is in general incorrect. The reason for this is that there
exists a broad class of input-output maps which can be realized by a linear switched system but
not by a switched system whose linear subsystems are minimal, [2]. The above scheme obviously
would not work for such systems. In fact, for such systems one has to test the system’s response
not only for each discrete mode, but for each combination of discrete modes.

The main idea behind the definition of persistence of excitation and the subsequent results is
as follows. From realization theory [2] we know that the knowledge of (finitely many) Markov-
parameters of the input-output map is sufficient for computing a DTLSS realization of that map.
Hence, if the response of the input-output map to a particular input allows us to compute the
necessary Markov-parameters, then we can compute a DTLSS representation of that map. This
can serve as a definition of persistence of excitation. We call an input sequence persistently exciting,
if the Markov-parameters of the input-output map can be computed from the response of the map
to that input. We call an infinite sequence input persistently exciting, if from a large enough finite
initial part of the response one can compute an arbitrarily precise approximation of the Markov-
parameters. Since the realization algorithm for DTLSS is continuous in the Markov-parameters, it
means that a persistently exciting infinite input sequence allows the computation of an arbitrarily
precise approximation of a DTLSS realizing the input-output map.

Motivation of the system class The class of DTLSSs is the simplest and perhaps the best
studied class of discrete-time switched systems.

In addition to its practical relevance, it also serves as a convenient starting point for theoretical
investigations. In particular, any piecewise-affine hybrid system can be viewed as a feedback
interconnection of a DTLSS with an event generating device. Hence, identification of a piecewise-
affine system is related to the problem of closed-loop identification of a DTLSS. For the latter,
it is indispensable to have a good notion of persistence of excitation. For this reason, we believe
that the results of the paper will be relevant not only for identification of DTLSSs, but also for
identification of piecewise-affine hybrid systems with autonomous switching.

Related work Identification of hybrid systems is an active research area, with several signif-
icant contributions, without claiming completeness see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22] and the references therein. While enormous progress was made in
terms of efficient identification algorithms, the fundamental theoretical limitations and properties
of these algorithms are still only partially understood.

In particular, there are few results on consistency of system identification algorithms, i.e.,
[3, 8, 23, 24, 20, 25, 19, 17], and the ones which are available tend to concentrate on switched ARX
systems [3, 8, 23, 24, 20, 25, 19].

The papers [3, 8, 23, 24, 20, 25, 19] impose conditions on the measured data, i.e., inputs, out-
puts, (possibly switching signals), which are sufficient for consistency of some system identification
algorithm. These conditions could be viewed as persistence of excitation conditions, and they are
referred to as such in some of the cited papers. In particular, the papers [3, 8, 23, 24, 20, 25, 19]
impose conditions on the measured data which ensures that there are no multiple switched ARX

2



models which fit the data. However, this approach cannot be extended to state-space representa-
tions, as they are never unique: application of a state-space isomorphism always yields a state-space
representation which is different from the original one but generates exactly the same data. The
paper [17] imposes a condition that certain matrices formed by the underlying hidden states are
full rank.

The common drawback of the conditions of the papers [3, 8, 23, 24, 20, 25, 19, 17] is that
these conditions do not depend only on the input and switching sequence, but also on the output
and even the underlying unobserved state. However, it is not clear how to design the system
identification experiment so that the generated data satisfies those conditions: even if the inputs
can be chosen arbitrarily, there are no guarantees that the resulting output will satisfy those
persistence of excitation conditions. That is, the definition of persistence of excitation proposed
in the cited literature does not possess one important feature of the traditional definitions of
persistence of excitation, namely, the existence of a suitable input guaranteeing that the data from
the system identification experiment is persistently exciting. This means that the conditions of
[3, 8, 23, 24, 20, 25, 19, 17] are not directly helpful for designing system identification experiments.
In principle, it could not be excluded that in general it is not possible to design good system
identification experiments which would result in persistently exciting data as defined in [3, 8, 23,
24, 20, 25, 19, 17].

Fortunately, the results of the paper show that this is not the case, and it is possible to de-
sign system identification experiments which generate rich enough data for identification. That is,
the main contribution of the present paper with respect to the existing literature lies in proving
formally that for linear switched state-space models it is possible to design a system identification
experiment which is persistently exciting, i.e., which allows the design of consistent system iden-
tification algorithms. By designing a system identification experiment we mean choosing an input
and a switching signal. In other words, we show that for any linear switched system satisfying
some mild conditions, there exists a switching signal and an input which allows us to identify the
system parameters. To the best of our knowledge, this result is new.

For linear systems, persistence of excitation has thoroughly been investigated, see for example
[26, 27] and the references therein.

The paper is an extension of [28]. The main difference with respect to [28] is that the present
paper contains detailed proofs and the presentation has been improved. A preliminary version of
this paper appeared in the form of a technical report [29].

Outline of the paper §2 presents the formal definition of DTLSSs and it formulates the major
system-theoretic concepts for this system class. §3 presents a brief overview of realization theory
for DTLSSs. §4 presents the main contribution of the paper.

Notation 1. Denote by N the set of natural numbers including 0. The notation described below
is standard in automata theory, see [30, 31]. Consider a set X which will be called the alphabet.
Denote by X∗ the set of finite sequences of elements of X. Finite sequences of elements of X are
referred to as strings or words over X. Each non-empty word w is of the form w = a1a2 · · · ak for
some a1, a2, . . . , ak ∈ X. The element ai is called the ith letter of w, for i = 1, . . . , k and k is called
the length of w. We denote by ε the empty sequence (word). The length of word w is denoted by
|w|; note that |ε| = 0. We denote by X+ the set of non-empty words, i.e. X+ = X∗ \ {ε}. We
denote by wv the concatenation of word w ∈ X∗ with v ∈ X∗. For each j = 1, . . . ,m, ej is the jth
unit vector of Rm, i.e. ej = (δ1,j , . . . , δn,j), δi,j is the Kronecker symbol.

2. Linear switched systems

In this section we present the formal definition of DTLSSs along with a number of relevant
system-theoretic concepts for DTLSSs .

Definition 1. Recall from [32] that a discrete-time linear switched system (abbreviated by DTLSS),
is a discrete-time control system of the form

Σ

{
xt+1 = Aqtxt +Bqtut
yt = Cqtxt.

(1)
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Here Q = {1, . . . , D} is the finite set of discrete modes, D is a positive integer, qt ∈ Q is the
switching signal, ut ∈ R is the continuous input, yt ∈ Rp is the output and Aq ∈ Rn×n, Bq ∈ Rn×m,
Cq ∈ Rp×n are the matrices of the linear system in mode q ∈ Q.

Notation 2. We will use Σ = (n, {Aq, Bq, Cq}q∈Q) as a short-hand notation for a DTLSS Σ of
the form (1).

Throughout the section, Σ denotes a DTLSS of the form (1). The inputs of Σ are the continuous
inputs {ut}∞t=0 and the switching signal {qt}∞t=0. The state of the system at time t is xt. Note that
any switching signal is admissible and that the initial state is assumed to be zero. We use the
following notation for the inputs of Σ.

Notation 3 (Hybrid inputs). Denote U = Q× Rm.

We denote by U∗ (resp. U+) the set of all finite (resp. finite and non-empty) sequences of
elements of U .

Notation 4 (Concatenation � of hybrid inputs). In order to avoid confusion with the notation
for concatenation of finite sequences of discrete modes, we will use the symbol � to denote the
concatenation of two sequences from U∗. The concatenation operation on U∗ is the same as the
standard one used for finite sequences of the elements of an arbitatry set, see Notation 1.

In particular, any element w of U+ can be represented as the concatenation of some elements
(q0, u0), . . . , (qt, ut) of U for some t ≥ 0, i.e.,

w = (q0, u0) � (q1, t1) � · · · � (qt, ut) (2)

The input w from (2) describes the scenario, when the discrete mode qi and the continuous input
ui are fed to Σ at time i, for i = 0, . . . , t.

Next, we define the state and output of (1), if the latter is started from some initial state.

Definition 2 (State and output). Consider a state xinit ∈ Rn. For any w ∈ U+ of the form (2),
denote by xΣ(xinit, w) the state of Σ at time t+ 1, and denote by yΣ(xinit, w) the output of Σ at
time t, if Σ is started from xinit and the inputs {ui}ti=0 and the discrete modes {qi}ti=0 are fed to
the system.

That is, xΣ(xinit, w) is defined recursively as follows; xΣ(xinit, ε) = xinit, and if w = v � (q, u)
for some (q, u) ∈ U , v ∈ U∗, then

xΣ(xinit, w) = AqxΣ(xinit, v) +Bqu.

If w ∈ U+ and w = v � (q, u), (q, u) ∈ U , v ∈ U∗, then

yΣ(xinit, w) = CqxΣ(xinit, v).

We will call Σ observable, if for any two distinct initial states x1, x2 ∈ Rn, x1 6= x2, there exists
an input w ∈ U+ (w being possibly dependent on x1 and x2), such that yΣ(x1, w) 6= yΣ(x2, w).
We say that Σ is reachable from the initial state xinit, if the reachable set {xΣ(xinit, w) | w ∈ U∗}
equals Rn. We say that Σ is span-reachable from the initial state xinit, if the linear span of the
reachable set {xΣ(xinit, w) | w ∈ U∗} equals Rn. Note that reachability from an initial state implies
span-reachablity. We say that Σ is controllable, if for any initial state xinit there exists an input
w = w(xinit) ∈ U+, such that xΣ(xinit, w) = 0, i.e., if any state of Σ can be driven to zero. From
[1] it follows that if the matrix Aq is invertable for all q ∈ Q, then Σ is controllable, if and only
if it is reachable from the initial state zero. Moreover, for such systems a state is either reachable
from zero, or cannot be influenced by continuous inputs.

So far we have defined states and outputs generated from a certain initial state. In order to
define the input-output behavior of a DTLSS, we have to either fix an initial state, or consider
the input-output behavior induced by all initial states. The latter approach is more elegant, but it
requires elements of the behavioral approach and the corresponding realization theory. Moreover,
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this approach is less common for system identification, as typical system identification experiments
involve output responses generated from one single initial state. For this reason, we will fix an
initial state when defining the input-output behavior of a DTLSS.

In order to simplify the discussion, in the sequel we will consider DTLSSs with zero initial
state. This assumption allows us to avoid technical and notational complications. In addition to
simplicity, there are other arguments in favor of assuming zero initial state. First, from a practical
point of view, this assumption can be made for stable DTLSSs without loss of generality, as for
such systems the effect of the non-zero initial state on the measured output response will not be
detectable in the long run. In turn, identification of unstable state-space representations is known
to be problematic in practice, even for the linear case. Another argument in favor of zero initial
state is that for DTLSSs for which the matrices Aq, q ∈ Q are invertable controllability implies
reachability from the zero initial state. More precisely, state components which are not reachable
from the zero initial state cannot be influenced by continuous inputs. In turn, for controllable
DTLSS, the input-output behavior from any non-zero initial state can be viewed as the shifted
behavior of the input-output behavior induced by the zero initial state.

Most of the results of this paper hold only for DTLSSs with zero initial state. We will discuss
possible extensions to the case of non-zero initial state, when applicable.

Definition 3 (Input-output map). The map fΣ : U+ → Rp, ∀w ∈ U+ : fΣ(w) = yΣ(0, w), is called
the input-output map of Σ.

That is, the input-output map of Σ maps each sequence w ∈ U+ to the output generated by Σ
under the hybrid input w, if started from the zero initial state. The definition above implies that
the input-output behavior of a DTLSS can be formalized as a map

f : U+ → Rp. (3)

The value f(w) for w of the form (2) represents the output of the underlying black-box system at
time t, if the continuous inputs {ui}ti=0 and the switching sequence {qi}ti=0 are fed to the system.

Next, we define when a general map f of the form (3) is adequately described by the DTLSS
Σ, i.e. when Σ is a realization of f .

Definition 4 (Realization). The DTLSS Σ is a realization of an input-output map f of the form
(3), if f equals the input-output map of Σ, i.e. f = fΣ.

In order to be coherent with our choice of zero initial state, in the sequel we will use the following
terminology: we will say that a DTLSS Σ is reachable respectively span-reachable, if it is reachable
respectively span-reachable from the zero initial state.

Finally, in the sequel we will need the notions of dimension, minimality and isomorphism, which
will be recalled below, for a more complete discussion on these concepts, see [2].

Definition 5 (Dimension). The dimension of Σ, denoted by dim Σ, is the dimension n of its
state-space.

Definition 6 (Minimality). Let f be an input-output map. Then Σ is a minimal realization of f ,
if Σ is a realization of f , and for any DTLSS Σ̂ which is a realization of f , dim Σ ≤ dim Σ̂.

Definition 7 (DTLSS isomorphism). Consider a DTLSS Σ1 of the form (1) and a DTLSS Σ̂ =
(n, {Âq, B̂q, Ĉq}q∈Q). An invertable n× n matrix S is said to be an isomorphism from Σ to Σ̂, if

∀q ∈ Q : SAqS−1 = Âq, B̂q = SBq, CqS−1 = Ĉq.

If there exists an isomorphism from Σ to Σ̂, then Σ and Σ̂ are said to be isomorphic.

3. Overview of realization theory

Below we present an overview of the results on realization theory of DTLSSs along with the
concept of Markov-parameters. For more details on the topic see [2]. In the sequel, Σ denotes a
DTLSS of the form (1), and f denotes an input-output map f : U+ → Rp.
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For our purposes the most important result is the one which states that a DTLSS realization
of f can be computed from the Markov-parameters of f . In order to present this result, we need
to define the Markov-paramaters of f formally. Denote Qk,∗ = {w ∈ Q∗ | |w| ≥ k}. Define the

maps Sfj : Q2,∗ → Rp, j = 1, . . . ,m as follows; for any v = σ1 . . . σ|v| ∈ Q∗ with σk ∈ Q, and for
any q, q0 ∈ Q,

Sfj (q0vq) =

{
f
(
(q0, ej) � (q, 0)

)
if v = ε

f
(
(q0, ej) � (σ1, 0) � . . . � (σ|v|, 0) � (q, 0)

)
if |v| ≥ 1

(4)

with ej ∈ Rm is the vector with 1 as its jth entry and zero everywhere else. Define

Sf (v) =
[
Sf1 (v) . . . Sfm(v)

]
∈ Rp×m

for all v ∈ Q∗. The collection of values {Sf (v)}v∈Q∗ is called the Markov-parameters of f .

The functions Sfj , j = 1, . . . ,m can be viewed as input responses. The interpretation of Sfj will
become more clear after we define the concept of a generalized convolution representation. Note
that the values of the Markov-parameters can be obtained from the values of f .

Definition 8 (Convolution representation). The input-output map f has a generalized convolution
representation (abbreviated as GCR), if for all w ∈ U+ of the form (2), f(w) can be expressed
via the Markov-parameters of f as follows:

f(w) =

t−1∑
k=0

Sf (qkqk+1 · · · qt)uk

Remark 1. If f has a GCR, then the Markov-parameters of f determine f uniquely.

The motivation for introducing GCRs is that existence of a GCR is a necessary condition for
realizability by DTLSSs. Moreover, if f is realizable by a DTLSS, then the Markov-parameters of
f can be expressed as products of the matrices of its DTLSS realization. In order to formulate this
result more precisely, we need the following notation.

Notation 5. Consider the collection of n × n matrices Aσ, σ ∈ X. For any w ∈ Q∗, the n × n
matrix Aw is defined as follows. If w = ε, then Aε is the identity matrix. If w = σ1σ2 · · ·σk ∈ X∗,
σ1, · · ·σk ∈ X, k > 0, then

Aw = AσkAσk−1
· · ·Aσ1 . (5)

Lemma 1. The map f is realized by the DTLSS Σ if and only if f has a GCR and for all v ∈ Q∗,
q, q0 ∈ Q,

Sfj (q0vq) = CqAvBq0ej , j = 1, . . . ,m. (6)

Next, we define the concept of a Hankel-matrix. Similarly to the linear case, the entries of the
Hankel-matrix are formed by the Markov parameters. For the definition of the Hankel-matrix of
f , we will use lexicographical ordering on the set of sequences Q∗.

Remark 2 (Lexicographic ordering). Recall that Q = {1, . . . , D}. We define a lexicographic
ordering ≺ on Q∗ as follows. For any v, s ∈ Q∗, v ≺ s if either |v| < |s| or 0 < |v| = |s|, v 6= s and
for some l ∈ {1, . . . , |s|}, vl < sl with the usual ordering of integers and vi = si for i = 1, . . . , l− 1.
Here vi and si denote the ith letter of v and s respectively. Note that ≺ is a complete ordering and
Q∗ = {v1, v2, . . .} with v1 ≺ v2 ≺ . . .. Note that v1 = ε and for all i ∈ N, q ∈ Q, vi ≺ viq.

In order to simplify the definition of a Hankel-matrix, we introduce the notion of a combined
Markov-parameter.

Definition 9 (Combined Markov-parameters). A combined Markov-parameter Mf (v) of f indexed
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by the word v ∈ Q∗ is the following pD ×Dm matrix

Mf (v) =


Sf (1v1), · · · , Sf (Dv1)
Sf (1v2), · · · , Sf (Dv2)

... · · ·
...

Sf (1vD), · · · , Sf (DvD)

 (7)

Definition 10 (Hankel-matrix). Consider the lexicographic ordering ≺ of Q∗ from Remark 2.
Define the Hankel-matrix Hf of f as the following infinite matrix

Hf =


Mf (v1v1) Mf (v2v1) · · · Mf (vkv1) · · ·
Mf (v1v2) Mf (v2v2) · · · Mf (vkv2) · · ·
Mf (v1v3) Mf (v2v3) · · · Mf (vkv3) · · ·

...
... · · ·

... · · ·

 ,
i.e. the pD× (mD) block of Hf in the block row i and block column j equals the combined Markov-
parameter Mf (vjvi) of f . The rank of Hf , denoted by rankHf , is the dimension of the linear span
of its columns.

The main result on realization theory of DTLSSs can be stated as follows.

Theorem 1 ([2]). 1. The map f has a realization by a DTLSS if and only if f has a GCR
and rankHf < +∞.

2. A minimal DTLSS realization of f can be constructed from Hf and any minimal DTLSS
realization of f has dimension rankHf .

3. A DTLSS Σ is a minimal realization of f if and only if Σ is span-reachable, observable and
it is a realization of f . Any two DTLSSs which are minimal realizations of f are isomorphic.

Note that Theorem 1 shows that the knowledge of the Markov-parameters is necessary and
sufficient for finding a state-space representation of f . In fact, similarly to the continuous-time
case [33], we can even show that the knowledge of finitely many Markov-parameters is sufficient.
This will be done by formulating a realization algorithm for DTLSSs, which computes a DTLSSs
realization of f based on finitely many Markov-parameters of f .

In order to present the realization algorithm, we need the following notation.

Notation 6. Consider the lexicographic ordering ≺ of Q∗ and recall that Q∗ = {v1, v2, . . . , } where
v1 ≺ v2 · · · . Denote by N(L) the number of sequences from Q∗ of length at most L. It then follows
that |vi| ≤ L if and only if i ≤ N(L).

Definition 11 (Hf,L,M sub-matrices of Hf ). For L,K ∈ N define the integers IL = N(L)pD and
JK = N(K)mD Denote by Hf,L,K the following upper-left IL × JK sub-matrix of Hf ,

Mf (v1v1) Mf (v2v1) · · · Mf (vN(K)v1)
Mf (v1v2) Mf (v2v2) · · · Mf (vN(K)v2)

...
... · · ·

...
Mf (v1vN(L)) Mf (v2vN(L)) · · · Mf (vN(K)vN(L))

 .
Notice that the entries of Hf,L,K are Markov-parameters indexed by words of length at most

L+K, i.e. Hf,L,K is uniquely determined by {Mf (vi)}N(L+K)
i=1 .

The promised realization algorithm is Algorithm 1, which takes as input the matrix Hf,N,N+1

and produces a DTLSS. Note that the knowledge of Hf,N,N+1 is equivalent to the knowledge of the

finite sequence {Mf (vi)}N(2N+1)
i=1 of Markov-parameters. The correctness of Algorithm 1 is stated

below.

Theorem 2. If rankHf,N,N = rankHf , then Algorithm 1 returns a minimal realization ΣN of f .
The condition rankHf,N,N = rankHf holds for a given N , if there exists a DTLSS realization Σ of
f such that dim Σ ≤ N + 1.
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The proof of Theorem 2 is completely analogous to its continuous-time counterpart [33]. The-
orem 2 implies that if f is realizable by a DTLSS, then a minimal DTLSS realization of f is
computable from finitely many Markov-parameters, using Algorithm 1. In fact, if f is realizable by

a DTLSS of dimension n, then the first N(2n− 1) Markov-parameters {Mf (vi)}N(2n−1)
i=1 uniquely

determine f .

Algorithm 1
Inputs: Hankel-matrix Hf,N,N+1.
Output: DTLSS ΣN

1: Let n = rankHf,N,N+1. Choose a tuple of integers (i1, . . . , in) such that the columns of
Hf,N,N+1 indexed by i1, . . . , in form a basis of ImHf,N,N+1. Let O be IN × n matrix formed
by these linearly independent columns, i.e. the rth column of O equals the irth column of
Hf,N,N+1. Let R ∈ Rn×JN+1 be the matrix, rth column of which is formed by coordinates
of the rth column of Hf,N,N+1 with respect to the basis consisting of the columns i1, . . . , in
of Hf,N,N+1, for every r = 1, . . . , JN+1. It then follows that Hf,N,N+1 = OR and rankR =
rankO = n.

2: Define R̄ ∈ Rn×JN as the matrix formed by the first JN columns of R.
3: For each q ∈ Q, let Rq ∈ Rn×JN be such that for each i = 1, . . . JN , the ith column of Rq

equals the r(i)th column of R. Here r(i) ∈ {1, . . . , JN+1} is defined as follows. Consider the
decomposition i = (r − 1)mD + z for some z = 1, . . . ,mD and r = 1, . . . ,N(N). Consider the
word vrq and notice that |vrq| ≤ N + 1. Hence, vrq = vd for some d = 1, . . . ,N(N + 1). Then
define r(i) as r(i) = (d− 1)mD + z.

4: Construct ΣN of the form (1) such that[
B1, . . . , BD

]
=

the first mD columns of R (8)[
CT1 CT2 . . . CTD

]T
= the first pD rows of O (9)

∀q ∈ Q : Aq = RqR̄
+ (10)

where R̄+ is the Moore-Penrose pseudoinverse of R̄.
5: Return ΣN

The intuition behind Algorithm 1 is the following. The state-space of the DTLSS ΣN returned
by Algorithm 1 is an isomorphic copy of the space spanned by the columns of Hf,N,N . The
isomorphism is determined by the matrix R. The columns of Bq, q ∈ Q are formed by the columns
(q − 1)mD + 1, . . . , qmD of the block-matrix[

Mf (v1v1)T . . . Mf (v1vN(L))
T
]T
.

The rows of Cq, q ∈ Q are formed by the rows (q−1)p+ 1, . . . , pq of Hf,N,N+1. Finally, the matrix

Aq, q ∈ Q is the matrix of a shift-like operator, which maps a block-column
{
Mf (vjvi)

}N(L)

i=1
of

Hf,N,N to the block-column
{
Mf (vjqvi)

}N(L)

i=1
of Hf,N,N+1.

The intuition behind Algorithm 1 explains why Theorem 2 requires rankHf,N,N = rankHf , even
though Algorithm 1 uses the matrix Hf,N,N+1. In a nutshell, rank Hf,N,N = rankHf implies that
rankHf,N,N+1 = rankHf,N,N = rankHf . Since Aq is the matrix representation of the linear map
which maps columns of Hf,N,N to columns of Hf,N,N+1, the condition rankHf,N,N+1 = rankHf,N,N

ensures thatAq is a well-defined square matrix. Moreover, the condition rankHf,N,N+1 = rankHf,N,N =
rankHf also ensures that Aq is the matrix representation of the linear map which maps a the block-
column

{
Mf (vjvi)

}∞
i=1

of the infinite Hankel-matrixHf to the shifted block-column
{
Mf (vjqvi)

}∞
i=1

of the same matrix. In turn, the latter is necessary for the result of Algorithm 1 to be a realiza-
tion of f . Note that requiring only rankHf,N,N+1 = rankHf would not have guaranteed that
rankHf,N,N+1 = rankHf,N,N holds, and thus the matrix representation of a linear map shifting
columns of Hf,N,N would not be a square matrix.

Note that the size of the matrix Hf,N,N+1 grows exponentially with N . This renders Algorithm
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1 impractical for large N . There is a way to get around it, by using so called selections, introduced
in [34, 35, 36].

We will call a finite subset α ⊂ Q∗ × Q × {1, . . . , p} a row selection and a finite subset β ⊆
Q∗ × Q × {1, . . . ,m} a column selection. For the SISO case, row and column selections can be
thought of as subsets of Q∗ × Q. We will refer to row and column selections as selections, if it is
clear from the context whether we mean row or column selections.

Selections will be used to define Hankel-like matrices, entries of which are Markov parameters.
Assume that α and β are row and column selections respectively and assume that α and β are

both finite sets of cardinality n and κ respectively. Fix an enumeration of the elements of α and β
as follows:

α = {(vi, qi, li)}ni=1, β = {(wj , σj , hj)}κj=1. (11)

Let us now define the matrix Hf,α,β ∈ Rn×κ as follows:

[Hf,α,β ]i,j=(Sf (σjwjviqi))li,hj i = 1, . . . , n, j = 1, . . . , κ. (12)

If α and β have the same cardinality, then the matrix Hf,α,β is a square one. Intuitively, the rows
of Hf,α,β are indexed by the elements of α, and the columns by the elements of β.

In order to present the algorithm, we define the matrices Hq,f,α,β ∈ Rn×κ, Hf,α,q ∈ Rn×m and
Hq,f,β ∈ Rp×κ:

[Hq,f,α,β ]i,j = (Sf (σjwjqviqi))li,hj , i = 1, . . . , n, j = 1, . . . , κ, (13)

[Hf,α,q]i,r = (Sf (qviqi))li,r, i = 1, . . . , n, r = 1, . . . ,m, (14)

[Hq,f,β ]r,j = (Sf (σjwjq))r,hj , j = 1, . . . , κ, r = 1, . . . , p (15)

Algorithm 2 Realization algorithm for DTLSSs with selections
Inputs: selections α, β and matrices Hf,α,β ,Hq,f,α,β Hf,α,q and Hq,f,β , q ∈ Q.

1: Choose a tuple of integers (i1, . . . , inm) such that the columns of Hf,α,β which are indexed
by i1, . . . , inm form a basis of ImHf,α,β . Let Onm be n × nm matrix formed by these linearly
independent columns, i.e. the rth column of Onm equals the irth column of Hf,α,β . Let
Rnm = O+

nmHf,α,β , where O+
nm is the Moore-Penrose inverse of Onm . It then follows that

Hf,α,β = OnmRnm and Onm is full column rank, Rnm is full row rank.
2: Define

Âq = O+
nmHq,f,α,βR

+
nm , B̂q = O+

nmHf,α,q, Ĉq = Hfq,f,βR
+
nm

where O+
nm , R

+
nm are the Moore-Penrose inverse of Onm and Rnm respectively.

3: return Σ̂ = (nm, {Âq, B̂q, Ĉq)}q∈Q).

Theorem 3 (Adapted from [35], realization algorithm with selections). If nm is the dimension
of a minimal DTLSS realization of f , then the DTLSS Σ̂ defined in Algorithm 2 is a minimal
realization of f . Moreover, if nm is the dimension of a minimal DTLSS realization of f , then there
exists a pair of selections α ⊆ Q∗ × Q × {1, . . . , p} and β ⊆ Q∗ × Q × {1, . . . ,m}, such that the
cardinality of the sets α, β is nm and rankHf,α,β = nm = rankHf .

In the sequel we will use the following notation.

Notation 7 (Q≤k). We denote by Q≤k the set of all sequences from Q∗ of length at most k.

Remark 3 (Relationship with Algorithm 1). From Theorem 2 and [35] it follows that we can
choose α = Q≤N × Q × {1, . . . , p} and β = Q≤N × Q × {1, . . . ,m}, where N is any integer not
smaller than the dimension of a minimal DTLSS realization of f . In this case, Algorithm 2 is
equivalent to Algorithm 1, see [35, 37].

Remark 4 (Markov parameters indexed by selections determine all Markov-parameters). Theorem
2 and Theorem 3 imply that for any input-output map f which is realizable by a DTLSS, there exist a
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finite set Γ ⊆ Q∗ such that the knowledge of the finite number of Markov-parameters {Sf (v)}v∈Γ is
sufficient to determine the entire input-output map f . This observation will be useful for computing
persistently exciting inputs.

Indeed, from Theorem 2 it follows that if f is realizable by a DTLSS of dimension n, then we
can choose Γ as

Γ := Γn = Q≤2n+3, (16)

i.e., Γ is the set of all words of length at most 2n + 3. It then follows that {Sf (v)}v∈Γ form the
entries of the Hankel-matrix Hf,n,n+1 and the latter can be used to compute a DTLSS realization
of f using Algorithm 1.

The set Γ from (16) has O(|Q|2n) elements, and hence its size is exponential in n. As we
shall see later, the size of Γ determines the length of persistently exciting inputs. Therefore, this
definition of Γ is not always practical for computing persistently exciting inputs.

This motivates us to formulate a refined definition of Γ using selections and Theorem 3. Con-
sider selections α, β such that rankHf,α,β = rankHf . By Theorem 3 such selections always exist.
Let us define Γ as a function of α, β as follows

Γ = Γ(α, β) =

{rvq | r ∈ Q and ∃q ∈ Q,∃l = 1, . . . , p : (v, q, l) ∈ α}∪
{q0wr | r ∈ Q and ∃q0 ∈ Q,∃h ∈ {1, . . . ,m} : (w, q0, h) ∈ α}∪
{q0wrvq | r ∈ Q and ∃q0, q ∈ Q,∃l ∈ {1, . . . , p},∃h ∈ {1, . . . ,m} : (v, q, l) ∈ α, (w, q0, h) ∈ β}∪
{q0wvq | ∃q0, q ∈ Q,∃l ∈ {1, . . . , p},∃h ∈ {1, . . . ,m} : (v, q, l) ∈ α, (w, q0, h) ∈ β}

(17)

Then the knowledge of {Sf (v)}v∈Γ=Γ(α,β) is sufficient to construct the matrices Hf,α,β,Hq,f,α,β
Hf,α,q and Hq,f,β, q ∈ Q, and the latter matrices can be used by Algorithm 2 to compute a DTLSS
realization of f . In turn, the latter realization is sufficient to determine all the Markov-parameters
{Sf (v)}q∈Q∗ .

Note that α and β can be chosen to have n elements, where n is the dimension of a minimal
DTLSS realization of f . That is, at most (|Q|+ 1)n2 + 2n|Q| Markov parameters are sufficient to
determine all the Markov-parameters of f .

In general, the choice of α and β depends on the input-output map f , especially if we would like
these selections to contain as many elements as the dimension of a minimal DTLSS realization of
f . However, if we do not put restrictions on the number of elements of α, β, then it is possible to
choose α and β independently of f , namely, by choosing the selections α = Q≤N ×Q× {1, . . . , p},
β = Q≤N × Q × {1, . . . ,m} such that N ≥ n, where n is the dimension of a minimal DTLSS
realization of f . In this case, Γ(α, β) will be equal to ΓN from (16), and the number of elements
of α and β is exponential in N , i.e., it is O(|Q|N ). However, the set of Markov-parameters which
is required in order to determine all the Markov-parameters of f does not depend on f .

That is, we can determine all the Markov-parameters of f from a finite set of Markov parame-
ters, and this set either

• depends on f but its cardinality is quadratic in n, or

• is independent of f , but then its cardinality is exponential in n,

where n is the dimension of a minimal DTLSS realization of f .

4. Main results of the paper

The main idea behind our definition of persistence of excitation is as follows. The measured time
series is persistently exciting, if from this time-series we can reconstruct the Markov-parameters of
the underlying system. Note that by Theorem 2, it is enough to reconstruct finitely many Markov-
parameters. This also means that our definition of persistence of excitation is also applicable to
finite time series.

In order to present our main results, we will need some terminology.
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Definition 12 (Output time-series). For any input-output map f and for any finite input sequence
w ∈ U+ we denote by O(f, w) the output time series induced by f and w, i.e. if w is of the form
(2), then O(f, w) = {yt}Tt=0, such that yt = f((q0, u0) � · · · � (qt, ut)) for all t ≤ T .

Definition 13 (Persistence of excitation). The finite sequence w ∈ U+ is persistently exciting for
the input-output map f , if it is possible to determine the Markov-parameters of f from the data
(w,O(f, w)).

Remark 5 (Interpretation). Remark 4 allows the following interpretation of persistence of excita-
tion defined above. If w is persistently exciting, then the Markov-parameters of f can be computed
from the response of f to the prefixes of w. In particular, if f admits a DTLSS realization of
dimension at most n, then there exists a finite subset Γ ⊆ Q∗ of the Markov-parameters such that
{Sf (v)}v∈Γ determine all the other Markov-parameters, and {Sf (v)}v∈Γ can be computed from the
data (w,O(f, w)). The knowledge of {Sf (v)}v∈Γ is sufficient for computing a DTLSS realization of
f . Hence, persistence of excitation of w for f means that Algorithm 1 or Algorithm 2 can serve as an
identification algorithm for computing a DTLSS realization of f from the time-series (w,O(f, w)).
Note, however, that our definition does not depend on Algorithm 1 or Algorithm 2. Indeed, if there
is any algorithm which can correctly find a DTLSS realization of f from (w,O(f, w)), then accord-
ing to our definition, w is persistently exciting, as the knowledge of a DTLSS realization allows us
to compute all the Markov-parameters. Note that our definition of persistence of excitation involves
only the inputs, but not the output response.

So far we have defined the persistence of excitation for finite sequences of inputs. Next, we
define the same notion for infinite sequences of inputs. To this end, we need the following notation.

Notation 8. We denote by Uω the set of infinite sequences of hybrid inputs. That is, any element
w ∈ Uω can be interpreted as a time-series w = {(qt, ut)}∞t=0. For each N ∈ N, denote by wN the
sequence formed by the first N elements of w, i.e. wN = (q0, u0) � · · · � (qN , uN ).

Definition 14 (Asymptotic persistence of excitation). An infinite sequence of inputs w ∈ Uω
is called asymptotically persistently exciting for the input-output map f , if the following holds.
For every sufficiently large N , we can compute from (wN ,O(f, wN )) asymptotic estimates of the
Markov-parameters of f . More precisely, for N ∈ N, we can compute from (wN ,O(f, wN )) some

matrices {Mf
N (v)}v∈Q∗ such that limN→∞Mf

N (v) = Mf (v) for all v ∈ Q∗. When clear from the
context, we will use the term persistently exciting instead of asymptotically persistently exciting.

Remark 6 (Interpretation of asymptotic persistence of excitation). The interpretation of asymp-
totic persistence of excitation is that asymptotically persistently exciting inputs allow us to estimate
a DTLSS realization of f with arbitrary accuracy. Indeed, assume that w ∈ Uω is asymptotically
persistently exciting. Then for each N we can compute from the time-series (wN ,O(f, wN )) an

approximation {Mf
N (v)}v∈Q∗ of the Markov-parameters of f . Suppose that f is realizable by a

DTLSS of dimension n and we know the indices (i1, . . . , in) of those columns of Hf,n−1,n which
form a basis of the column space of Hf,n−1,n. Let HN

f,n−1,n be the matrix which is constructed

in the same way as Hf,n−1,n, but with Mf
N (v) instead of the Markov-parameters Mf (v). Since

Mf
N (v) converges to Mf (v) for all v ∈ Q∗, we get that each entry of HN

f,n−1,n converges to the
corresponding entry of Hf,n−1,n. Modify Algorithm 1 by fixing the choice of columns to (i1, . . . , in)
in the first step. It is easy to see that the modified algorithm represents a continuous map from the
input data (finite Hankel-matrix) to the output data (matrices of a DTLSS). For sufficiently large
N , the columns of HN

f,n−1,n indexed by (i1, . . . , in) also represent a basis of the column space of

HN
f,n−1,n. If we apply the modified Algorithm 1 to the sequence of matrices HN

f,n−1,n, we obtain a
sequence of DTLSSs Σn,N and the parameters of Σn,N converge to the parameters of the DTLSS
Σ which we would obtain from Algorithm 1 if we applied it to Hf,n−1,n. In particular, by choosing
a sufficiently large N , the parameters of Σn,N are sufficiently close to those of Σ.

A similar argument can be made by replacing Algorithm 1 by Algorithm 2, and by replac-
ing Hf,n−1,n with the matrices Hf,α,β, Hq,f,α,α,Hf,α,q,Hq,f,β , q ∈ Q for suitable selections α, β.
More precisely, assume that α, β are selections containing nm elements, such that rank Hf,α,β =
rank Hf = nm. In this case, Onm equals Hf,α,β, O+

nm is the inverse of Hf,α,β, and Rnm is the
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identity matrix It then follows that the matrices returned by Algorithm 2 are continuous functions
of the entries of the matrices Hf,α,β, Hq,f,α,α,Hf,α,q,Hq,f,β , q ∈ Q.

Let HNf,α,β, HNq,f,α,α,HNf,α,q,HNq,f,β , q ∈ Q be the matrices constructed by replacing Mf (v) by

Mf
N (v) (note that the matrices Sf (q0vq) used in (12)-(15) are blocks of Mf (v), and hence the

matrices defined in (12)-(15) are functions {Mf (v)}v∈Q∗). Consider the DTLSS Σ̂N returned
by a version of Algorithm 2, where Hf,α,β, Hq,f,α,α,Hf,α,q,Hq,f,β , q ∈ Q are replaced by HNf,α,β,

HNq,f,α,α,HNf,α,q,HNq,f,β , q ∈ Q. Let Σ̂ be the DTLSS returned by Algorithm 2 when applied to the

true matrices Hf,α,β, Hq,f,α,α,Hf,α,q,Hq,f,β , q ∈ Q. Since for large enough N , the matrices HNf,α,β,

HNq,f,α,α,HNf,α,q,HNq,f,β , q ∈ Q are close to Hf,α,β, Hq,f,α,α,Hf,α,q,Hq,f,β , q ∈ Q, and the steps of

Algorithm 2 are continuous in the elements of those matrices, the matrices of Σ̂N will converges
to those of Σ̂ as N →∞. That is, Σ̂N can be viewed as an approximate realization of f .

The discussion above highlights the difference between persistently exciting inputs and asymp-
totically persistently exciting inputs. Namely, by Remark 5 persistently exciting inputs allow us to
reconstruct an exact model of the input-output map f from the output response of finite length. In
contrast, as Remark 6 indicates, asymptotically persistently excitating inputs allow us to construct
an approximate model of f from output responses of finite length, with the additional property that
as the length of the output response converges to ∞, the obtained approximate model converges
to an exact model of f . That is, the two concepts are different.

Remark 7 (Recovering finitely many Markov-parameters). The definition of (asymptotically) per-
sistenly exciting inputs involve the possibility of recovering all the Markov-parameters from the out-
put response to that input. At a first glance, this may seem ill-posed, as from inputs of finite length
one expects to be able to recover at best a finite number of Markov-parameters. However, Remark
5-6 clearly show that it is sufficient to recover only a finite number of Markov-parameters, as for
input-output maps realizable by DTLSSs, a finite number of Markov-parameters determine all the
Markov-parameters of the input-output map.

We will show that for every reversible DTLSS there exists some input which is persistently
exciting. In addition, we present a class of inputs which are persistently exciting of any input-
output map f realizable by a stable DTLSS.

4.1. Persistently exciting input for specific systems

In this section we present results which state that for any input-output map f which is realizable
by a reversible DTLSS, there exists a persistently exciting finite input.

Note that from (4) it follows that the Markov-parameters of f can be obtained from finitely
many input-output data. However, the application of (4) implies evaluating the response of the
system for different inputs, while started from a fixed initial state. In order to simulate this by
evaluating the response of the system to one single input (which is then necessarily persistently
exciting), one has to provide means to reset the system to its initial state. In order to be able to
do so, we restrict attention to reversible DTLSSs.

Definition 15. A DTLSS Σ of the form (1) is reversible, if for every discrete mode q ∈ Q, the
matrix Aq is invertible.

Reversible DTLSSs arise naturally when sampling continuous-time systems.

Theorem 4. Consider an input-output map f . Assume that f has a realization by a reversible
DTLSS. Then there exists an input w ∈ U+ such that w is persistently exciting for f .

Proof. The main idea behind the proof of Theorem 4 is as follows. If f admits a DTLSS realization
of dimension n, then by Remark 4, there exists a finite selections α, β and there exists a finite
set Γ(α, β) ⊆ Q∗ such that the Markov-parameters {Sf (v)}v∈Γ(α,β) determine all the Markov-
parameters of f uniquely. Hence, in order for a finite input w to be persistently exciting for f , it
is sufficient that {Sf (v)}v∈Γ(α,β) can be computed from the response (w,O(f, w)).
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Note that (4) implies that {Sf (v)}v∈Γ(α,β) can be computed from the responses of f from

finitely many inputs. More precisely, {Sf (v)}v∈Γ(α,β) can be computed from {f(s) | s ∈ S(α, β)},
where

S(α, β) = {(q0, ej) � (σ1, 0) � . . . � (σk, 0) � (q, 0) ∈ U+ | q0, q ∈ Q,
σ1, . . . , σk ∈ Q, q0σ1 · · ·σkq ∈ Γ(α, β), k ≥ 0, j = 1, . . . ,m, }.

(18)

That is, for each v ∈ Γ(α, β), each column of Sf (v) equals to f(s) for some s ∈ S(α, β). Hence,
if for each s ∈ S(α, β) there exists a prefix p of w such that f(s) = f(p), then this w will be
persistently exciting.

One way to construct such a w is to construct for each s ∈ S(α, β) an input s−1 ∈ U+ such
that

∀v ∈ U+ : f(s � s−1 � v) = f(v).

That is, the input s−1 neutralizes the effect of the input s. We defer the construction of the
input s−1 to the end of the proof. Assume for the moment being that such inputs s−1 exist. Let
S(α, β) = {s1, . . . , sd} be an enumeration of S(Γ). Then it is easy to see that f(s1�s−1

1 �s2) = f(s2),
f(s1 � s−1

1 � s2 � s−1
2 � s3) = f(s3), etc. Hence, if we define

w = s1 � s−1
1 � · · · � sd−1 � s−1

d−1 � sd, (19)

then each f(s), s ∈ S(α, β) can be obtained as a response of f to a suitable prefix of w. Hence, w
is persistently exciting.

It is left to show that s−1 exists. Consider a reversible realization Σ of f . Then the controllable
set and reachable set of Σ coincide by [38]. Hence, from any reachable state x of Σ, there exists
an input w(x) such that w(x) drives Σ from x to zero, i.e. xΣ(x,w(x)) = 0. For each s ∈ S, let
x(s) = xΣ(0, s) and define s−1 = w(x(s)) as the input which drives x(s) back to the initial zero
state.

It is easy to see that Theorem 4 can be extended to any input-output map which admits
a controllable DTLSS realization. However, it is not clear if every input-output map which is
realizable by a DTLSS is also realizable by a controllable DTLSS.

The proof of Theorem 4 can be used to formulate an algorithm for constructing a persistently
exciting input. In order to present this algorithm, we will need to adapt from [1] the following
procedure for constructing an input to drive a DTLSS from any state to zero.

Assume that Σ is a DTLSS of the form (1), and consider a finite column selection β ⊆ Q∗ ×
Q× {1, . . . ,m}

β = {(wi, qi, ji)}κi=1 (20)

such that the matrix
R(β) =

[
Aw1

Bq1 , Aw2
Bq2 , . . . , AwκBqκ

]
(21)

has rank n, i.e., rankR(β) = n. In particular, from [34] it follows that if Σ is span-reachable, then
there exists a set β of the form (20) such that rankR(β) = n. Moreover, β = Q≤n−1×Q×{1, . . . ,m}
is a valid choice for any span-reachable DTLSS. In fact, from [34] it follows that if rankHf,α,β =
rank Hf for some selections α, β, then rank R(β) = n for any minimal DTLSS realization Σ of f
such that dim Σ = n.

Let us define the switching sequences πi, i = 1, . . . , n recursively as follows:

π1 = q1w1, πi+1 = πi · · ·πi︸ ︷︷ ︸
(n+1)–times

qi+1wi+1, i = 1, . . . , κ− 1 (22)

From [39] it then follows that any state of Σ can be driven to 0 using the switching sequence πκ
and some continuous input. More precisely, assume that

πκ = q1 · · · qL, (23)
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q1, . . . , qL ∈ Q for L > 0. It then follows that for any x ∈ Rn there exists u1 · · ·uL ∈ Rm, such
that for

w(x) = (q1, u1) � (q2, u2) · · · (qL, uL) (24)

xΣ(x,w(x)) = 0. The input u1, . . . , ul can be computed as follows: let us define the matrix

Rπκ =
[
Aq2···qLBq1 , Aq3···qLBq2 , . . . , AqLBqL−1

, BqL
]

(25)

From [38] it follows that rankRπκ = n and u1, . . . , uL can be computed by solving the following
linear least squares problem

u1

u2

...
uL

 = argminũ1,ũ2,...,ũL∈Rm‖Aq1···qLx+Rπκ


ũ1

ũ2

...
ũL

 ‖22 (26)

Then using the proof of Theorem 4 yields the following algorithm for constructing a persistently
exciting input and switching sequence. From the proof of Theorem 4 the following results follow.

Algorithm 3 Input a reachable DTLSS realization Σ = (n, {Aq, Bq, Cq | q ∈ Q}) of f , and
selections α, β such that rankHf,α,β = rankHf . Output input w ∈ U+.

1: Construct the sequence πκ as defined in (22).
2: Consider Γ(α, β) from (17).
3: Fix an enumeration Γ(α, β) = {γ1, . . . , γR}. Then S(α, β) from (18) is of the form

S(α, β) = {s1, . . . , sd}, d = mR

where for every i = 1, . . . , d, if i = m(k − 1) + j for some k = 1, . . . , R, j = 1, . . . ,m and
γk = q0,kq1,k · · · qLk,k, q0,k, . . . , qLk,k ∈ Q, Lk ≥ 1,

si = (q0, ej) � (q1,k, 0) � · · · � (qLk , 0) (27)

4: For each i = 1, . . . , d, using (27), define

s−1
i = w(xi), xi = Aq1,k···qLk,kq1Bq0,kej (28)

where w(xi) is as in (26) for x = xi.
5: Construct w according to (19), i.e.,

w = s1 � s−1
1 � · · · � sd−1 � s−1

d−1 � sd

6: return w

Corollary 1 (Correctness of Algorithm 3). Assume that the selections α, β are such that rankHf,α,β =
rankHf . The input w returned by Algorithm 3 is persistently exciting for f .

Note that the Algorithm 3 requires the knowledge of selections α, β such that rankHf,α,β =
rankHf . This is not a restriction, as from Remark 3 it follows that we can always take α =
Q≤n × Q × {1, . . . , p} and β = Q≤n × Q × {1, . . . ,m} , where n is the dimension of a DTLSS
realization of f .

Remark 8 (Complexity of the persistently exciting input). If the selections α, β used in Algorithm
3 are chosen to have n elements and belong to Q≤n × Q × {1, . . . , p} and Q≤n × Q × {1, . . . ,m}
respectively, then the length of the persistently exciting input w returned by the Algorithm 3 is
O((n+1)n ·(n2 +3) ·mR) = O((n+1)n+4), i.e., it is exponential in n. Indeed, the length of πn is at
most (n+1)n, and hence so is the length of s−1

i . The length of each si is at most n2+3 ≤ O((n+1)2).
Finally, the number R of elements of Γ(α, β) is at most 2(|Q| · n) + (|Q|+ 1)n2, i.e, O((n+ 1)2).
This means that the length of the necessary input grows rapidly with the state-space dimension of
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the underlying DTLSS. The memory complexity of Algorithm 3 is then also O((n + 1)n+4). The
time complexity of Algorithm 3 is determined by the need for solving (26), which is polynomial in
R and n, i.e., the time complexity of Algorithm 3 is polynomial in n

Example 1. Consider the DTLSS of the form (1) such that Q = {1, 2} and

A1 =

0.67032 0.22099 0.00000
0.00000 0.44933 0.00000
0.00000 0.00000 0.44933

 , A2 =

0.44933 0.00000 0.00000
0.00000 0.72466 0.27534
0.00000 0.27534 0.72466

 ,
B1 =

1
1
1

 , B2 =

1
0
1

 , C1 = C2 =
[
1 0 0

] (29)

Consider α = {(ε, 1, 1), (1, 1, 1), (21, 1, 1)} and β = {(ε, 2, 1), (2, 1, 1), (21, 2, 1)}. Then by applying
Algorithm 3 we get a persistenly exciting input of length 864. In particular, the sequence πn from
(22) will be 222122122221222221 and its length is 18. The set Γ has 38 elements, the first couple
of elements of Γ(α, β) are as follows:

Γ(α, β) = {11, 21, 211, 221, 121, 1211, 1221, 2211, 22111, . . .}.

Then the first couple of inputs si from (27) are as follows: s1 = (1, 1) � (1, 0), s2 = (2, 1) �
(1, 0), . . . , s9 = (2, 1) � (2, 0) · (1, 0) � (1, 0) � (1, 0). Then for instance s−1

1 from (28) is

s−1
1 = (2, 0.00090) � (2,−0.00090) � (2,−0.00089) � (1,−0.00399) � (2,−0.00199) � (2,−0.00199)�

(1,−0.00886) � (2,−0.00443) � (2,−0.00440) � (2,−0.00434) � (2,−0.00421) � (1,−0.01924)�
(2,−0.00957) � (2,−0.00885) � (2,−0.00724) � (2,−0.00364) � (2, 0.00435) � (1, 0.00007)

s−1
9 = (2,−0.00009)�(2,−0.00009)�(2,−0.00009) � (1,−0.00040)�(2,−0.00020) � (2,−0.00020)�

(1,−0.00089)�(2,−0.00045) · (2,−0.00044) � (2,−0.00044) � (2,−0.00042) � (1,−0.00194) � (2,−0.00097)�
(2,−0.00089) � (2,−0.00073) � (2,−0.00037) � (2, 0.00044) � (1, 0.00001)

Then using (19), the persistenly exciting input w is of the form

w = (1, 1) � (1, 0)(2, 0.00090) � (2,−0.00090) � (2,−0.00089) � (1,−0.00399) � (2,−0.00199)�
(2,−0.00199) � (1,−0.00886) � (2,−0.00443) � (2,−0.00440) � (2,−0.00434) � (2,−0.00421)�
(1,−0.01924) � (2,−0.00957) � (2,−0.00885) � (2,−0.00724) � (2,−0.00364) � (2, 0.00435)�
(1, 0.00007) � (2, 1) � (1, 0) · · · (2, 1) � (2, 0)�(1, 0) � (1, 0) � (1, 0) � (2,−0.00009)�
(2,−0.00009)�(2,−0.00009) � (1,−0.00040)�(2,−0.00020) � (2,−0.00020) · · · (1,−0.00089)�
(2,−0.00045)�(2,−0.00044) � (2,−0.00044) � (2,−0.00042) � (1,−0.00194) � (2,−0.00097)�
(2,−0.00089) � (2,−0.00073) � (2,−0.00037) � (2, 0.00044) � (1, 0.00001)

By performing simulations we can see that (w,O(f, w)) can be used to recover the Markov-parameters.
For example, if O(f, w) = {yt}Tt=0 where T is the length of w, then y1 = C1B1 = 1 = Sf (11),
y21 = 1 = C1B2 = 1 = Sf (21), etc., for example, y9 = Sf (22111) = C1A1A1A2B2 = 0.27002.

Note that the construction of the persistently exciting w from Theorem 4 requires the knowledge
of a DTLSS realization of f . Moreover, the length of persistently exciting signal constructed in
Theorem 4 can grow very fast with the number of states necessary to implement f , Below we
present a subclass of input-output maps, for which the knowledge of a state-space representation
is not required to construct a persistently exciting input.

Definition 16. Fix a map .−1 : U 3 α 7→ α−1 ∈ U+. A input-output map f is said to be reversible
with respect to the map .−1, if for all α ∈ U , s, w ∈ U∗, |s � w| > 0,

f(s � α � α−1 � w) = f(sw).
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Intuitively, f is reversible with respect to .−1, if the effect of any input α = (q, u) can be
neutralized by the input α−1. Such a property is not that uncommon, think for example of turning
a valve on and off.

Remark 9 (Conditions for reversibility). For example, if f has a realization by a DTLSS Σ of the
form (1), and Q = {1, . . . , 2K} such that for each q ∈ {1, . . . ,K}, Aq = A−1

q+K , Bq = Bq+K , then

f is reversible and (q, 0)−1 = (q +K, 0) and for u 6= 0, (q, u)−1 = (q +K, 0) � (q,−u) � (q +K, 0),

From the proof of Theorem 4, we obtain the following corollary.

Corollary 2. If f is reversible with respect to .−1, then a persistently exciting input sequence w
can be constructed for f . The construction does not require the knowledge of a DTLSS state-space
realization of f . If the inputs α−1 from Definition 16 are computable from α, then the construction
of w is effective.

Proof of Corollary 2. The proof differs from that of Theorem 4 only in the definition of s−1 for
each s ∈ S. More precisely, if f is reversible, then for each s = (q0, u0) � · · · � (qt, ut) ∈ S define

s−1 = (qt, ut)
−1 � (qt−1, ut−1)−1 � · · · � (q0, u0)−1 (30)

The proof of Corollary 2 sugggests the following algorithm for computing persistently exciting
inputs for reversibel input-output maps.

Algorithm 4 Computing persistently exciting inputs for reversible input-output maps
Input Selections α, β such that rankHf,α,β = rankHf . Output input w ∈ U+

1: Consider Γ(α, β) from (17).
2: Repeat Step 3 of Algorithm 3, i.e., fix an enumeration Γ(α, β) = {γ1, . . . , γR} and an enu-

meration of S(α, β) = {s1, . . . , sd} from (18), where d = mR and for every i = 1, . . . , d, if
i = m(k − 1) + j for some k = 1, . . . , R, j = 1, . . . ,m and si is as in (27).

3: For each i = 1, . . . , d, using (27), define s−1
i as in (30) with s being replaced by si.

4: Construct w according to (19), i.e.,

w = s1 � s−1
1 � · · · � sd−1 � s−1

d−1 � sd

5: return w

Remark 10 (Complexity of persistently exciting inputs for reversible input-output maps). For
reversible input-output maps the length of persistently exciting inputs and the computational com-
plexity of computing it is much lower. Indeed, Algorithm 4 does not require the computation of the
sequence πκ from (22), length of which is O((n + 1)n+4). In fact, the length of s−1

i constructed
in Step 3 of Algorithm 4 will be the twice that of si. Therefore, if the selections α, β are chosen
to be subsets of Q≤N ×Q× {1, . . . , p} and Q≤N ×Q× {1, . . . ,m} respectively, n is the size of α,
κ ≥ n is the size of β and N ≥ n, then the length of w returned by the modified Algorithm 3 will
be O(Nκ2). Indeed, in this case the number of elements of Γ(α, β) is O(κ2) and their length is at
most 2N . In particular, for N = κ = n, the length of w is O(n3). This compares favorably with
the length of w returned by the original Algorithm 3, which was O((n+ 1)n+4). In particular, with
such a choice of selections α, β, the time and memory complexity of the Algorithm 4 is polynomial
and linear respectively in the state dimension.

If the selections α and β are chosen to be α = Q≤n × Q × {1, . . . , p} and β = Q≤n × Q ×
{1, . . . ,m}, then κ = O(|Q|n), and the length of the persistently exciting input returned by Algo-
rithm 4 is O(|Q|2n), i.e., it is still exponential in n. Then the storage complexity of Algorithm 4 is
also exponential in n. However, this still compares favorably with the complexity of Algorithm 3.

The persistently exciting input constructed in the proof of Theorem 4 and Corollary 2 can be
used to formulate a provenly system identification algorithm which finds an exact model based on
data. For the sake of completness we present the algorithm.
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Algorithm 5 Identification algorithm using persistently exciting input
Inputs: Selections α, β such that rankHf,α,β = rankHf = n and the data (w,O(f, w)) for some
w of the form (19) such that S(α, β) = {s1, . . . , sd}, where S(α, β) is as in (18).
Output: DTLSS Σ̂.

1: Compute Γ(α, β) as in (17) and choose an enumeration Γ(α, β) = {γ1, . . . , γR} and an indexing
function φ : {1, . . . , R} × {1, . . .m} → {1, . . . , d} such that

Sf (γk) =
[
f(sφ(k,1)) f(sφ(k,2)) · · · f(sφ(k,m))

]
.

For m = 1; φ(i, 1) = i could be taken, for m > 1, φ(k, j) = m(k − 1) + j could be taken.
2: Assume that O(f, w) = {yt}Tt=0 and for all k = 1, . . . , d, recover the Markov-parameters
{Sf (γi)}Ri=1 from {yt}Tt=0 as follows:

Sf (γk) =
[
yt(φ(k,1)) yt(φ(k,2)) . . . yt(φ(k,m))

]
t(j) =

j−1∑
i=1

(|si|+ |s−1
i |) + |sj | − 1, j = 1, . . . , d

(31)

where |s| denotes the length of a sequence of s ∈ U+, and t(j) + 1 equals the length of
s1 � s−1

1 � · · · sj−1 � s−1
j−1 � sj , i.e,

yt(j) = f(s1 � s−1
1 � · · · sj−1 � s−1

j−1 � sj)

for all j = 1, . . . , d.
3: Construct the matrices Hf,α,β , Hq,f,α,β , Hf,α,q and Hq,f,β , q ∈ Q from O(f, w) = {yt}Tt=0 by

using (31).
4: Let Σ̂ be the DTLSS returned by Algorithm 2 when applied to Hf,α,β Hq,f,α,β , Hf,α,q and
Hq,f,β .

5: return Σ̂

It is easy to see that the following holds.

Lemma 2 (Consistency of Algorithm 5). The DTLSS returned by Algorithm 5 is a realization of
f .

In general, in order to compute the persistently exciting input w, which is necessary for Algo-
rithm 5, the knowledge of the underlying system is required. However, Algorithm 4 for reversible
input-output maps does not require the knowledge of the underlying system. Hence, Algorithm 4 in
combination with Algorithm 5 is an example of a design of system identification experiment which
allows exact identification of the underlying system, assuming that there is no noise. Extensions
to the noisy case would require using stochastic realization theory for DTLSSs, see [40].

Example 2. Consider a DTLSS Σ of the form (1), where Q = {1, 2, 3, 4} and Ai, Bi, Ci, i = 1, 2
are as in (29), and A3 = A−1

1 and A4 = A−1
2 , B3 = B1, B4 = B2, C3 = C1, C4 = C2. Define

the operation .−1 : U 3 α 7→ α−1 ∈ U+ as follows: (1, 0)−1 = (3, 0), (2, 0)−1 = (4, 0), (1, u)−1 =
(3, 0) � (1,−u) � (1, 0), (2, u)−1 = (4, 0) � (2,−u) � (4, 0). Let us consider the selection α, β as in
Example 1. The set Γ contains 68 elements, for instance 11, 21, 211, 231, 241, 221, 121, 1211, 1221, 2211, 22111,
etc. Then Algorithm 4 will return the input of length 645 whose first couple of elements are as
follows

w = (1, 1) � (1, 0) � (3, 0) � (3, 0) � (1,−1) � (3, 0) � (2, 1) � (1, 0) � (3, 0) � (4, 0) � (2,−1) � (4, 0) · · ·

The resulting input is persistently exciting. This can also be seen by simulation: if O(f, w) =
{yt}Tt=0 then the Markov-parameters which are necessary to identify f can be extracted from {yt}Tt=0:
for instance y2 = C1B1 = 1, y6 = C1B2, y65 = C1A1A1A2B1 = 0.4493, etc.

The resulting persistently exciting input can be used in combination with Algorithm 5 to obtain
a DTLSS Σ̂ = (n, {Âq, B̂q, Ĉq}q∈Q), such that Σ̂ and Σ are related by an isomorphism S, i.e.,
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SAqS−1 = Âq, SBq = B̂q, CqS−1 = Ĉq, where

S =

 1.93101 −2.06335 2.93101
−1.18326 0.34841 1.18326
9.56433 5.26680 −9.56433

 .
In particular, the integers t(j) from (31) are as follows t(1) = 2, t(2) = 8, t(3) = 14, etc.,
t(10) = 65, etc..

The same result can be obtained if we use Algorithm 5 for the persistently exciting input from
Example 1.

Remark 11 (Extension to non-zero initial state). Note that realization theory and the notion of
Markov-parameters can be extended to systems with non-zero inital states [2, 41, 42]. That is, the
basic idea of the paper could in principle be extended to systems with non-zero initial state. More
precisely, Theorem 4 can be extended to systems which are controllable to the initial state, i.e., for
systems such that any state can be driven to the initial state for some input and switching signal.
Corollary 2 can be repeated for systems with non-zero initial states, by using the extended definition
of Markov-parameters [2, 41].

4.2. Universal asymptotically persistently exciting inputs

Next, we discuss classes of inputs which are asymptotically persistently exciting for all input-
output maps realizable by DTLSSs.

Definition 17 (Persistence of excitation condition). An infinite input w = {(qt, ut)}∞t=0 ∈ Uω
satisfies PE condition, if for any word v ∈ Q+ and any integer j ≥ 1, the limits below exist and
satisfy the following conditions,

lim
N→∞

1

N

N∑
t=0

ut+ju
T
t χ(qtqt+1 · · · qt+|v|−1 = v) = 0,

lim
N→∞

1

N

N∑
t=j

ut−ju
T
t χ(qt−jqt−j+1 · · · qt−j+|v|−1 = v) = 0,

R def
= lim

N→∞

1

N

N∑
t=0

utu
T
t > 0,

πv
def
= lim

N→∞

1

N

N∑
t=0

χ(qt · · · qt+|v|−1 = v) > 0,

lim
N→∞

1

N

N∑
t=0

utu
T
t χ(qt · · · qt+|v|−1 = v) = πvR.

where χ is the indicator function, i.e. χ(A) = 1 if A holds and χ(A) = 0 otherwise. Note that by
R > 0 we mean that R is a strictly positive definite m×m matrix.

Remark 12 (PE condition implies rich switching). Note that if w ∈ Uω satisfies the conditions
of Definition 17, then the signal is rich enough, i.e. any sequence of discrete modes occurs in the
switching signal infinitely often. Hence, our condition for persistence of excitation implies that the
switching signal should be rich enough. This is consistent with many of the existing definitions of
persistence of excitation for hybrid systems. The requirement that πv > 0 for all v ∈ Q∗ is quite a
strong one. At the end of this section we will discuss possible relaxations of this requirement.

Remark 13 (Relationship with stochastic processes). Fix a probability space (Ω,F , P ) and con-
sider ergodic discrete-time stochastic processes ut : Ω → Rm and qt : Ω → Q with values in Rm
and Q respectively. In addition, assume the following.

• The processes ut and qt are independent (i.e. the σ-algebras generated by {ut}∞t=0 and by
{qt}∞t=0 are independent.
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• The stochastic process ut is a colored noise, i.e. it is zero-mean, ut and us are uncorrelated
for s 6= t, and E[utu

T
t ] = R > 0, with E[·] denoting the expectation operator.

• For each v ∈ Q+, πv = P (qt · · · qt+|v|−1 = v) > 0.

It then follows that almost all sample paths of ut, qt satisfy the PE condition of Definition 17.
That is, there exists a set A ∈ F , such that P (A) = 0 and for all ω ∈ Ω \ A, the sequence
w = {(qt, ut) = (qt(ω),ut(ω)}∞t=0 satisfies the PE condition.

Remark 14. If ut is a white-noise Gaussian process and if the variables qt are uniformly dis-
tributed over Q (i.e. P (qt = q) = 1

|Q| and are independent from each other and from {us}∞s=0,

then ut and qt satisfy the conditions of Remark 13 and hence almost any sample path of ut and qt
satisfies the PE condition of Definition 17.

This special case also provides a simple practical way to generate inputs which satisfy the PE
conditions.

We will show that input sequences which satisfy the conditions of Definition 17 are asymp-
totically persistently exciting for a large class of input-output maps. The main idea behind the
theorem is as follows. Consider a DTLSS Σ which is realization of f , and suppose we feed a
stochastic input {qt,ut} into Σ. Then the state xt and the output response yt of Σ will also be
stochastic processes. Suppose that {qt,ut} are stochastic processes which satisfy the conditions of
Remark 13. It is easy to see that

yt =

t∑
k=0

CqtAqt−1
· · ·Aqk+1

Bqkuk.

and hence for all r, q ∈ Q, v ∈ Q∗, |rvq| = t+ 1,

E[ytu
T
0 χ(q0 · · ·qt = rvq)] =

t∑
k=0

CqAvBrE[uku
T
0 χ(q0 · · ·qt = rvq)] =

CqAvBrRπrvq = Sf (rvq)Rπrvq.

(32)

Hence, if we know the expectations E[ytu
T
0 χ(q0 · · ·qt = rvq)] for all r, q ∈ Q, v ∈ Q∗, |rvq| = t+1,

t > 0, then we can find all the Markov-parameters of f , by the following formula

Sf (rvq) = E[ytu
T
0 χ(q0 · · ·qt+1 = rvq)]R−1 1

πrvq
.

Hence, the problem of estimating the Markov-parameters reduces to estimating the expectations

E[ytu
T
0 χ(q0 · · ·qt = rvq)]. (33)

For practical purposes, the expectations in (33) have to be estimated from a sample-path of yt, ut
and qt. The most natural way to accomplish this is to use the formula

lim
N→∞

1

N

N∑
t=i

yi+tu
T
i χ(qi · · · qi+t = rvq) (34)

where yt, ut, qt denote the value at time t of a sample-path of yt, ut and qt respectively. Note
that yt is in fact the output of Σ at time t, if the input {ui}ti=0 and the switching signal {qi}ti=0

are fed to the system.
The problem with estimating (33) by (34) is that the limit (34) may fail to exist or to converge

to (33).
A particular case when (34) converges to (33) is when the process (yt,ut,qt) is ergodic, see [43]

for the definition of ergodic processes. Then there exists a sample path (yt, ut, qt) of (yt,ut,qt)
for which the limit in (34) equals the expectation (33) ; in fact ‘almost all’ sample paths will have
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this property. This means that we can choose a suitable deterministic input sequence {ut}∞t=0

and a switching signal {qt}∞t=0, such that for the resulting output {yt}∞t=0, the limit (34) equals
the expectation (33). That is, in that case the input w = (q0, u0) · · · (qt, ut) · · · is asymptotically
persistently exciting. However, proving ergodicity of yt is not easy. In addition, even if yt is
ergodic, the particular choice of the deterministic input w for which (34) equals (33) might depend
on the DTLSS itself.

For this reason, instead of using the concepts of ergodicity directly, we just show that for the
input sequences w which satisfy the conditions of Definition 17, the corresponding output {yt}∞t=0

has the property that the limit (34) exists and it equals Sf (rvq)Rπrvq, for any input-output map
f which is realizable by a l1-stable DTLSS. This strategy allows us to use elementary techniques,
while not compromising the practical relevance of the result.

In order to present the main result of this section, we have to define the notion of l1-stability
of DTLSSs.

Definition 18 (Stability of DTLSSs). A DTLSS Σ of the form (1) is called l1-stable, if for every
x ∈ Rn, the series

∑
v∈Q∗ ||Avx||2 is convergent.

Remark 15 (Sufficient condition for stability). If for all q ∈ Q, ||Aq||2 < 1
|Q| , where ||Aq||2 is the

matrix norm of Aq induced by the standard Euclidean norm, then Σ is l1-stable.

Remark 16 (Asymptotic stability). If Σ is l1-stable, then it is asymptotically stable, in the sense
that if si ∈ Q∗, i > 0 is a sequence of words such that limi→∞ |si| = +∞, then limi→∞Asix = 0
for all x ∈ Rn.

Intuitively it is clear why we have to restrict attention to stable systems. Recall that (4) allows
us to compute the Markov-parameters of f from the responses of f to finitely many inputs. In
order to obtain the response of f to several inputs from the response of f to one input, one has to
find means to suppress the contribution of the current state of the system to future inputs. In §4.1
this was done by feeding inputs which drive the system back to the initial state. Unfortunately, the
choice of such inputs depended on the system itself. By assuming stability, we can make sure that
the effect of the past state will asymptotically diminish in time. Hence, by waiting long enough,
we can approximately recover the response of f to any input.

Another intuitive explanation for assuming stability is that it is necessary for the stationarity,
and hence ergodicity, of the output and state processes yt, xt.

Equipped with the definitions above, we can finally state the main result of the section.

Theorem 5 (Main result). If w satisfies the PE conditions of Definition 17, then w is asymptoti-
cally persistently exciting for any input-output map f which admits a l1-stable DTLSS realization.

The theorem above together with Remark 14 imply that white noise input and a binary noise
switching signal are asymptotically persistently exciting. The proof of Theorem 5 relies on the
following technical result.

Lemma 3. Assume that Σ is a l1-stable DTLSS of the form (1), and assume that w satisfies the
PE conditions. Let {yt}∞t=0 and {xt}∞t=0 be the output and state response of Σ to w, i.e. yt = fΣ(wt)
and xt = xΣ(0, wt). Then for all v, β ∈ Q∗, r, q ∈ Q

πrvqβAvBrR =

limN→∞
1
N

∑N
t=0 xt+|v|+1u

T
t χ(t, rvqβ) (35)

πrvqβCqAvBrR =

limN→∞
1
N

∑N
t=0 yt+|v|+1u

T
t χ(t, rvqβ) (36)

Here we used the following notation: for all s ∈ Q+,

χ(t, s) =

{
1 if s = qtqt+1 · · · qt+|s|−1

0 otherwise

Informally, Lemma 3 implies that if f is realizable by a l1-stable DTLSS, then the limit (34)
equals (33). The proof of Lemma 3 can be found in Appendix A.

20



Proof of Theorem 5. For each t, denote by yt the response of f to the first t elements of w, i.e.
yt = f((q0, u0) · · · (qt, ut)). For each integer N ∈ N and for each word v ∈ Q∗, define the matrix
SN (rvq) as

SN (rvq) = (
1

N

N∑
t=0

yt+|v|+1u
T
t χ(t, rvq))R−1 1

πrvq
(37)

and define the matrix MN (v) by SN (1v1) · · · SN (Dv1)
...

...
...

SN (1vD) · · · SN (DvD)


From Lemma 3 it follows that

lim
N→∞

SN (rvq) = Sf (rvq) (38)

and hence limN→∞MN (v) = Mf (v). Hence, w is indeed asymptotically persistently exciting.

Remark 17 (Relaxation of PE condition). Assume that we restrict attention to input-output
maps which are realizable by a minimal l1-stable DTLSS of dimension at n, and let f be such
an input-output map. Furthermore, consider selections α, β such that rankHf,α,β = rankHf = n
and α, β have exactly n elements. Recall that such selections always exist. It then follows that
it is enough to estimate {Sf (v)}v∈Γ(α,β), where Γ(α, β) is as in (16) in order to estimate all the
Markov-parameters of f . . In this case, one can replace the conditions of Definition 17, that πv > 0
by the condition that πv > 0 for all v ∈ Γ(α, β) and still obtain asymptotically persistently exciting
inputs for f .

Indeed, consider now any w ∈ Uω which satisfies Definition 17 with the exception that πv > 0
is required only for v ∈ Γ(α, β). Then Lemma 3 remains valid for this case (the proof remains
literally the same) and from the proof of Theorem 5 we get that for all v ∈ Γ(α, β)

Sf (v) = lim
N→∞

(
1

N

N∑
t=0

yt+|v|−1u
T
t χ(t, v))R−1 1

πv
(39)

Hence, {Sf (v)}v∈Γ(α,β) can asymptotically be estimated from (wN ,O(f, wN )). Since the modi-

fied Algorithm 2 from Remark 6 determines a continuous map from {Sf (v)}v∈Γ(α,β) to the other
Markov-parameters of f , w is asymptotically persistently exciting for f .

The proof of Theorem 5 and the discussion of Remark 6 suggests the following system identi-
fication algorithm. Note that Algorithm 6 is an adaptation of the CRA method for LPV systems

Algorithm 6 Identification algorithm using PE condition
Inputs: Selections α, β such that rankHf,α,β = rankHf = n, integer N , and the data
(wN ,O(f, wN )) for some w ∈ U+ which satisfies the PE condition
Output: DTLSS ΣN .

1: Construct the matrices HNf,α,β , HNq,f,α,β , HNf,α,q and HNq,f,β q ∈ Q, by replacing in (12) – (15)

every occurrence of Sf (v) by SN (v) from (37).
2: Let ΣN be the DTLSS returned by Algorithm 2 when applied to HNf,α,β HNq,f,α,β , HNf,α,q and

HNq,f,β .
3: return ΣN

described in [35]. For linear systems, i.e., for |Q| = 1, Algorithm 2 becomes a version of the well
known CCA subspace identification algorithms [44, 45].

Lemma 4 (Consistency of Algorithm 6). Assume that rankHf,α,β = rankHf = n, α, β both contain
exactly n elements, and w satisfies the PE condition. Let ΣN returned by Algorithm 2 be of the
form ΣN = (nN , {NAq,NBq,NCq}q∈Q). Then limN→∞ nN = n and limN→∞(NAq,

NBq,
NCq) =

(Aq, Bq, Cq), q ∈ Q and the DTLSS Σ = (n, {Aq, Bq, Cq}q∈Q) is a realization of f .
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Proof of Lemma 4. As it was discussed in Remark 6, the matrices of the DTLSS returned by
Algorithm 2 are continuous in the entries of HNf,α,β , HNq,f,α,β , HNf,α,q and HNq,f,β q ∈ Q. By (39),

the matrices HNf,α,β , HNq,f,α,β , HNf,α,q and HNq,f,β q ∈ Q converge to Hf,α,β Hq,f,α,β , Hf,α,q and

Hq,f,β as N → ∞. It then follows that for large enogh N , rankHN
f,α,β = rankHf,α,β = n, and

limN→∞(NAq,
NBq,

NCq) = (Aq, Bq, Cq) holds, where Σ = (n, {Aq, Bq, Cq}q∈Q) is the DTLSS
returned by Algorithm 2. The rest of the statement of the lemma follows from Theorem 3.

Example 3. Consider the input-output map f generated by the DTLSS Σ of the form (1), where
Q = {1, 2} and

A1 =

0.2 0.2 0.2
0.2 0.2 0
0 0 0

 , A2 =

0 0 0
0 0.2 0.2
0 0.2 0.2

 B1 =

1
1
1

 , B2 =

1
0
1

 , C1 = C2 =
[
1 0 1

]
.

Notice that this DTLSS is minimal, it satisfies the rank conditions of [2] for observability and
span-reachability. However, the second linear subsystems is not minimal. In addition, A1 and A2

are not invertable. Hence, the results of Section 4.1 do not apply. However, ‖A1‖2 = 0.427 < 1/2
and ‖A2‖2 = 0.4 < 1/2, and hence by Remark 15 is minimal and l1-stable. Consider the selections
α = {(ε, 1, 1), (1, 1, 1), (22, 1, 1)} and β = {(ε, 2, 1), (2, 1, 1), (1, 2, 1)}. Then the first couple of
elements of Γ(α, β) are

21, 211, 2221, 121, 1211, 12221, . . .

By using random number generators, let us generate a time series {ut, qt}Nt=0 such that {ut}Nt=0 is
a sample of a uniformly distributed zero mean white noise process taking values in [−0.5, 0.5] and
{qt}Nt=0 is a sample path of a binary white noise process qt taking values in {1, 2}, such that the
probability of qt = i, i = 1, 2 is 0.5. We choose N = 2 · 107. Let {yt}Nt=0 be the corresponding
output response (we took the initial state as zero). If we estimate the Markov-parameters Sf (v) for
all v ∈ Γ(α, β) according to (37). The first couple of elements are as follows:

SN (21) = 1.9995, SN (211) = 0.3999, SN (121) = 0.4033, SN (1211) = 0.1601

For comparison, the corresponding values of Sf are as follows

Sf (21) = 2, Sf (21) = 0.4, Sf (211) = 0.4, Sf (2211) = 0.16

In fact, we can use Algorithm 6 to compute a DTLSS from the simulated data. In this case, the
matrices HNf,α,β, HNq,f,α,β, HNf,α,q and HNq,f,β q ∈ Q, are as follows

HNf,α,β =

1.9995 0.4021 0.3999
0.3999 0.1601 0.1174
0.0816 0.0655 0.0139

 , HN1,f,α,β =

0.3999 0.1601 0.1174
0.1174 0.0466 0.0442
0.0139 0.0075 0.0066

 ,
HN2,f,α,β =

0.2026 0.1611 0.0395
0.0828 0.0643 0.0179
0.0323 0.0273 0.0094

 , HNf,α,1 =

2.0000
0.5989
0.1611

 , HNf,α,2 =

1.9995
0.3999
0.0816


HN1,f,β = HN2,f,β =

[
2.0004 0.4002 0.3996

]
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For comparison, the true matrices Hf,α,β, Hq,f,α,β, Hf,α,q and Hq,f,β q ∈ Q as as follows:

Hf,α,β =

2.0000 0.4000 0.4000
0.4000 0.1600 0.1200
0.0800 0.0640 0.0160

 , H1,f,α,β =

0.4000 0.1600 0.1200
0.1200 0.0480 0.0480
0.0160 0.0064 0.0096

 ,
H2,f,α,β =

0.2000 0.1600 0.0400
0.0800 0.0640 0.0160
0.0320 0.0256 0.0064


Hf,α,1 =

2.0000
0.6000
0.1600

 , Hf,α,2 =

2.0000
0.4000
0.0800


H1,f,β = H2,f,β =

[
2.0000 0.4000 0.4000

]
The matrices of the DTLSS ΣN = (3, {Âq, B̂q, Ĉq}q∈Q) returned by Algorithm 6 can be computed
by applying Algorithm 2 to HNf,α,β, HNq,f,α,β, HNf,α,q and HNq,f,β q ∈ Q instead of Hf,α,β, Hq,f,α,β,
Hf,α,q and Hq,f,β q ∈ Q and they are as follows:

Â1 =

−0.0000 0.0099 −0.0392
−0.0000 0.0341 0.0577
1.0000 0.3165 0.4313

 , Â2 =

−0.0143 0.0032 0.0011
0.4930 0.4197 0.1550
0.0822 −0.0355 −0.0629


B̂1 =

0.3189
1.7007
1.6965

 , B̂2 =

1.0000
0.0000
0.0000


Ĉ1 = Ĉ2 =

[
2.0004 0.4002 0.3996

]
Simulations reveal that the output response of Σ̂N is very close to Σ, the Best Fit Rate (BFR)
is 99.5%. For illustration, let us consider the DTLSS Σ̄ = (3, {Āq, B̄q, C̄q}q∈Q returned by the
realization algorithm Algorithm 2:

Ā1 =

0 0 −0.04
0 0 0.1
1 0.4 0.4

 , Ā2 =

 0 0 0
0.5 0.4 0.1
0 0 0

 B̄1 =

0.3333
1.6667
1.6667

 B̄2 =

1
0
0


C̄1 = C̄2 =

[
2 0.4 0.4

]
Note that S =

 0.3333 −0.6667 0.6667
−0.8333 1.6667 0.8333
1.6667 1.6667 −1.6667

 an isomorphism from the original system Σ to Σ̄.

It is easy to see that the parameters of Σ̂ and Σ̄ are numerically close, the maximal relative error

max{‖Âq−Āq‖2‖Āq‖2
,
‖B̂q−B̄q‖2
‖B̄q‖2

,
‖Ĉq−C̄q‖2
‖C̄q‖2

| q ∈ Q} is 0.1839. Simulations revealed that the more data

points are used, the closer the matrices HNf,α,β, HNq,f,α,β, HNf,α,q and HNq,f,β q ∈ Q are Hf,α,β,

Hq,f,α,β, Hf,α,q and Hq,f,β, q ∈ Q. Moreover, by increasing N , the output responses of Σ̂N get

closer to those of Σ. In addition, the parameters of Σ̂N get closer to that of Σ̄. That is, Algorithm 6
behaves truly as an asymptotically consistent system identification algorithm. Note that for a good
performance, we need a lot of data points. Whether this is an inherent feature of the algorithm or
it is due to the choice of the example remains a topic of future research.

Remark 18 (Extension of PE condition to non-zero initial state). The results of this section rely
on exponential asymptotic stability of the underlying system. For such systems, the effect of the
initial state on the output decays exponentially fast. That is, the effect of the initial state is not
visible in the long run. For this reason, it is not clear how the derived results could be extended to
systems with non-zero initial state.

Remark 19 (Length of PE input required for identifying the system with a desired accuracy).
From the definition of asymptotic persistence of excitation it follows that the longer is the input
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sequence, the more accurate are the estimates of the Markov parameters. In turn, more accurate
estimates of the Markov-parameters lead to less error in the identified system. However, in general,
for a given N , the accuracy of the system identification algorithm depends on two factors: the rate
of convergence of the estimate (37) to the true Markov-parameter and the degree of robustness of
Algorithm 2. None of these questions are easy to answer and they are left for future research. As
the results of Example 3 indicate, in order to have a satisfactory accuracy, Algorithm 6 may require
long input sequences. Whether this is inherent to the problem of identification of switched systems
or can be improved by proposing better identification algorithms, remains a topic of future research.

5. Conclusions

We defined persistence of excitation for input signals of linear switched systems. We showed
existence of persistently exciting input sequences and we identified several classes of input signals
which are persistently exciting.

Future work includes finding less restrictive conditions for persistence of excitation and extend-
ing the obtained results to other classes of hybrid systems.

Appendix A. Technical proofs

The proof of Lemma 3 relies on the following result.

Lemma 5. With the notation and assumptions of Lemma 3, for all v ∈ Q+,

lim
N→∞

1

N

N∑
t=0

xtu
T
t χ(t, v) = 0

The intuition behind Lemma 5 is as follows. Each xt is a linear combination of inputs
u0, . . . , ut−1. Hence, 1

N

∑N
t=0 xtu

T
t can be expressed as linear combination of terms 1

N

∑N
t=k ut−ku

T
t χ(t, s)

for some s ∈ Q∗, k = 1, . . . , N . Since each such term converges to 0 as N → ∞, intuitively their
linear combination should converge to 0 as well. Unfortunately, the number of summands of the
above increases with N . In order to deal with this difficulty a technique similar to the M -test for
double series has to be used. The assumption that Σ is l1-stable is required for this technique to
work.

Proof of Lemma 3. We start with the proof of (35). The proof goes by induction on the length of
v.

If v = ε, then

1

N

N∑
t=0

xt+1u
T
t χ(t, rβ) =

1

N

N∑
t=0

(Aqtxt +Bqtut)u
T
t χ(t, rβ) =

1

N

N∑
t=0

Aqtxtu
T
t χ(t, rβ) +

1

N

N∑
t=0

Bqtutu
T
t χ(t, rβ).

(A.1)

Notice Aqtxtu
T
t χ(t, rβ) = Arxtu

T
t χ(t, rβ) and Bqtutu

T
t χ(t, rβ) = Brutu

T
t χ(t, rβ). Hence,

1

N

N∑
t=0

Aqtxtu
T
t χ(t, rβ) +

1

N

N∑
t=0

Bqtutu
T
t χ(t, rβ) =

Ar(
1

N

N∑
t=0

xtu
T
t χ(t, rβ)) +Br(

1

N

N∑
t=0

utu
T
t χ(t, rβ))

(A.2)
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From the assumptions on w it follows that

lim
N→∞

1

N

N∑
t=0

utu
T
t χ(t, rβ) = Rπrβ

Hence, from the PE conditions and Lemma 5 we get that

lim
N→∞

1

N

N∑
t=0

xt+1u
T
t χ(t, rβ) =

Ar( lim
N→∞

1

N

n∑
t=0

xtu
T
t χ(t, rβ))+

+Br( lim
N→∞

1

N

n∑
t=0

utu
T
t χ(t, rβ)) =

Ar0 +BrRπrβ = πrβBrR,

i.e. (35) holds.
Assume that (35) holds for all words of length at most L, and assume that v = wq, |w| = L for

some w ∈ Q∗ and q ∈ Q. Then by the induction hypothesis and the assumptions on w

lim
N→∞

1

N

N∑
t=0

xt+L+2u
T
t χ(t, rwqβ) =

lim
N→∞

1

N

N∑
t=0

Aqxt+L+1u
T
t χ(t, rwqβ)+

+ lim
N→∞

1

N

N∑
t=0

Bqut+L+1u
T
t χ(t, rwqβ) =

= AqAwBrπrwqβ +Br0 = AwqBrRπrwqβ .

(A.3)

Finally, we prove (36). Notice that

yt+|v|+2u
T
t χ(q, t, rvqβ) = Cqxt+|v|+2u

T
t χ(t, rvqβ)

and hence by applying (35),

lim
N→∞

1

N

N∑
t=0

yt+|v|+2u
T
t χ(t, rvqβ) =

Cq lim
N→∞

1

N

N∑
t=0

xt+|v|+2u
T
t χ(t, rvqβ) =

CqAvBrRπrvqβ .
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Proof of Lemma 5. Notice that

N∑
t=1

xtu
T
t χ(t, v) =

N∑
t=1

t∑
j=1

Aqt−1
· · ·AqjBqj−1

uj−1u
T
t χ(t, v) =

N∑
k=1

(

N∑
t=k

Aqt−1
· · ·Aqt−k+1

Bqt−kut−ku
T
t χ(t, v)) =

∑
r∈Q

N−1∑
k=0

∑
|s|=k

AsBr

N∑
t=k+1

ut−k−1u
T
t χ(t− k − 1, rsv) =

N(N)∑
i=1

∑
r∈Q

AviBr

N∑
t=|vi|+1

ut−|vi|−1u
T
t χ(t− |vi| − 1, rviv).

In the last step we used the lexicographic ordering of Q∗ from Remark 2. It then follows that

1

N

N∑
t=1

xtu
T
t χ(t, v) =

∑
r∈Q

N(N)∑
i=1

AviBr
1

N

N∑
t=|vi|+1

ut−|vi|−1u
T
t χ(t− |vi| − 1, rviv).

Define

bri,N =
1

N

N∑
t=|vi|+1

ut−|vi|−1u
T
t χ(t− |vi| − 1, rviv)

ari,N = AviBrb
r
vi,N .

Then the statement of the lemma can be shown by showing that for all r ∈ Q,

lim
N→∞

N(N)∑
i=1

ari,N = 0.

To this end, notice from the PE conditions that

lim
N→∞

ari,N =

AviBr lim
N→∞

1

N

N∑
t=|vi|+1

ut−k−1u
T
t χ(t− k − 1, rviv) = 0.

Moreover, for a fixed N and i, we can get the following estimate

||ari,N ||2 ≤ ||AviBr||2||bri,N ||2.

If we can show that ||brvi,N ||2 is bounded by a number K, then we get that

||ari,N ||2 ≤ ||AviBr||2K.

The latter inequality is already sufficient to finish the proof. Indeed, let Dr
i = ||AviBr||2K and
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notice from the l1-stability assumption on the realization Σ that

∞∑
i=1

Dr
i = K

∑
v∈Q∗

||AvBr||2

is convergent. Hence, we get that for every ε > 0 there exists a Iε such that

∞∑
i=Iε+1

Dr
i < ε/2.

For every N > Iε,

||
N(N)∑
i=1

ari,N ||2 = ||
Iε∑
i=1

ari,N +

N(N)∑
i=Iε+1

ari,N ||2 ≤

Iε∑
i=1

||ari,N ||2 +

N(N)∑
i=Iε+1

Dr
i <

Iε∑
i=1

||ari,N ||2 + ε/2.

Since limN→∞ ari,N = 0, there exists Nε ∈ N such that for all N > Nε, i = 1, . . . , Iε, ||ari,N ||2 < ε
2Iε

.

Define N̂ε to be an integer such that N̂ε > Nε and N(N̂ε) > Iε. Then for every N > N̂ε,
N(N) ≥ N(N̂ε) > Iε and

||
N(N)∑
i=1

ari,N ||2 ≤
Iε∑
i=1

||ari,N ||2 + ε/2 <

Iε
ε

2Iε
+ ε/2 = ε/2 + ε/2 = ε.

In other words, limN→0

∑N(N)
i=1 ari,N = 0.

It is left to show that ||bri,N ||2 ≤ K for some K > 0 and for all i = 1, 2, . . ., r ∈ Q.

||bri,N ||2 ≤
∥∥∥ 1

N

N∑
t=|vi|+1

ut−|vi|−1u
T
t χ(t− |vi| − 1, rviv)

∥∥∥
2
≤

∥∥∥ 1

N

N∑
t=|vi|+1

ut−|vi|−1u
T
t χ(t− |vi| − 1, rviv)

∥∥∥
F

=

[ m∑
i,j=1

1

N2

{ N∑
t=|vi|+1

(ut−|vi|−1)iχ(t− |vi| − 1, rviv)(ut)j

}2]1/2
.

(A.4)

where ||.||F denotes the matrix Frobenius-norm, and ||.||2 denotes the matrix norm induced by the

Euclidean norm. The application of the Cauchy-Schwartz inequality to (
∑N
t=|vi|+1(ut−|vi|−1)iχ(t−

|vi| − 1, rviv)(ut)j)
2 leads to

[ N∑
t=|vi|+1

(ut−|vi|−1)iχ(t− |vi| − 1, rviv)(uTt )j

]2
≤

( N∑
t=|vi|+1

(ut−|vi|−1)2
iχ(t− |vi| − 1, rviv)

)( N∑
t=|vi|

(ut)
2
j

)
.

(A.5)
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Notice that (ut−|vi|−1)2
iχ(t− |vi| − 1, rviv) ≤ (ut−|vi|−1)2

i , since χ(t− |vi| − 1, rviv) ∈ [0, 1]. Hence,

N∑
t=|vi|+1

(ut−|vi|−1)2
iχ(t− |vi| − 1, rviv) ≤

≤
N∑

t=|vi|+1

(ut−|vi|−1)2
i ≤

N∑
t=0

(ut)
2
i .

Similarly,
N∑

t=|vi|+1

(ut)
2
j ≤

N∑
t=0

(ut)
2
j .

Combining these remarks with (A.5), we obtain

[ 1

N2

N∑
t=|vi|+1

(ut−|vi|−1)iχ(t− |vi| − 1, rviv)(uTt )j

]2
≤
( 1

N

N∑
t=0

(ut)
2
i

)( 1

N

N∑
t=0

(ut)
2
j

)
.

(A.6)

Notice that limN→∞
1
N

∑N
t=0(ut)

2
i = Rii and hence 1

N

∑N
t=0(ut)

2
i is bounded from above by some

positive number Ki. Using this fact and by substituting (A.6) into (A.4), we obtain

||bri,N ||2 ≤ (

m∑
i,j=1

KiKj)
1/2.

Hence, if we set K =
∑m
i,j=1KiKj , then then ||bri,N ||2 ≤ K, which is what had to be shown.
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[14] L. Bako, G. Mercŕe, S. Lecoeuche, Online structured subspace identification with application
to switched linear systems, International Journal of Control 82 (2009) 1496–1515.

[15] J. Roll, A. Bemporad, L. Ljung, Identification of piecewise affine systems via mixed-integer
programming, Automatica 40 (1) (2004) 37–50.

[16] E. Fox, Bayesian nonparametric learning of complex dynamical phenomena, Ph.D. thesis,
MIT, Cambridge, MA (2009).

[17] V. Verdult, M. Verhaegen, Subspace identification of piecewise linear systems, in: Proc.Conf.
Decision and Control, 2004.

[18] S. Paoletti, J. Roll, A. Garulli, A. Vicino, Input/ouput realization of piecewise affine state
space models, in: 46th IEEE Conf. on Dec. and Control, 2007.

[19] L. Bako, Identification of switched linear systems via sparse optimization, Automatica
doi:10.1016/j.automatica.2011.01.036 (2011).

[20] L. Bako, Analysis of the least sum-of-minimums estimator for switched systems, IEEE Trans-
actions on Automatic Control 66 (8) (2021) 3733–3740.

[21] F. Lauer, G. Bloch, Hybrid System Identification: Theory and Algorithms for Learning Switch-
ing Models, Vol. 478 of Lecture Notes in Control and Information Sciences, Springer Interna-
tional Publishing, 2019.

[22] V. Breschi, D. Piga, A. Bemporad, Learning hybrid models with logical and continuous dy-
namics via multiclass linear separation, 2016, pp. 353–358.

[23] R. Vidal, S. Sastry, A. Chiuso, Observability of linear hybrid systems, in: Hybrid Systems:
Computation and Control, 2003.

[24] A. Hiskens, Identifiability of hybrid system models, in: Proceedings of the IEEE International
Conference on Control Applications, Anchorage, AK, 2000.

[25] R. Vidal, S. Soatto, Y. Ma, S. Sastry, An algebraic geometric approach to the identification
of a class of linear hybrid systems, in: IEEE Conference on Decision and Control, 2003.

[26] L. Ljung, System Identification: Theory for the user (2nd Ed.), PTR Prentice Hall., Upper
Saddle River, USA, 1999.

[27] J. C. Willems, P. Rapisarda, I. Markovsky, B. L. D. Moor, A note on persistency of excitation,
Systems & Control Letters 54 (4) (2005) 325 – 329.

[28] M. Petreczky, L. Bako, On the notion of persistence of excitation for linear switched systems,
in: 50th IEEE Conference on Decision and Control (CDC), 2011.

[29] M. Petreczky, L. Bako, On the notion of persistence of excitation for linear switched systems,
Tech. Rep. arXiv:1103.1349v1, ArXiv (2011).

[30] F. Gécseg, I. Peák, Algebraic theory of automata, Akadémiai Kiadó, Budapest, 1972.
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