A Continuous Time Framework for Discrete Denoising Models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

A Continuous Time Framework for Discrete Denoising Models

Andrew Campbell
  • Fonction : Auteur
Joe Benton
  • Fonction : Auteur
Valentin de Bortoli
  • Fonction : Auteur
  • PersonId : 1084097
  • IdRef : 249460300
Tom Rainforth
  • Fonction : Auteur
George Deligiannidis
  • Fonction : Auteur
Arnaud Doucet
  • Fonction : Auteur

Résumé

We provide the first complete continuous time framework for denoising diffusion models of discrete data. This is achieved by formulating the forward noising process and corresponding reverse time generative process as Continuous Time Markov Chains (CTMCs). The model can be efficiently trained using a continuous time version of the ELBO. We simulate the high dimensional CTMC using techniques developed in chemical physics and exploit our continuous time framework to derive high performance samplers that we show can outperform discrete time methods for discrete data. The continuous time treatment also enables us to derive a novel theoretical result bounding the error between the generated sample distribution and the true data distribution.

Dates et versions

hal-03945474 , version 1 (18-01-2023)

Identifiants

Citer

Andrew Campbell, Joe Benton, Valentin de Bortoli, Tom Rainforth, George Deligiannidis, et al.. A Continuous Time Framework for Discrete Denoising Models. 2023. ⟨hal-03945474⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

More