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Abstract

In this paper, we propose Barrier Hamiltonian Monte Carlo (BHMC), a version
of the HMC algorithm which aims at sampling from a Gibbs distribution π on
a manifold M, endowed with a Hessian metric g derived from a self-concordant
barrier. Our method relies on Hamiltonian dynamics which comprises g. Therefore,
it incorporates the constraints defining M and is able to exploit its underlying
geometry. However, the corresponding Hamiltonian dynamics is defined via non
separable Ordinary Differential Equations (ODEs) in contrast to the Euclidean case.
It implies unavoidable bias in existing generalization of HMC to Riemannian mani-
folds. In this paper, we propose a new filter step, called “involution checking step”,
to address this problem. This step is implemented in two versions of BHMC, coined
continuous BHMC (c-BHMC) and numerical BHMC (n-BHMC) respectively. Our
main results establish that these two new algorithms generate reversible Markov
chains with respect to π and do not suffer from any bias in comparison to previous
implementations. Our conclusions are supported by numerical experiments where
we consider target distributions defined on polytopes.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods is one of the primary algorithmic approaches to obtain
approximate samples from a target distribution π. They have been successively applied over these
past decades in a large panel of practical settings, (Liu & Liu, 2001). In particular, gradient-based
MCMC methods have shown their efficiency and robustness in high-dimensional settings, and come
nowadays with strong theoretical guarantees, (Dalalyan, 2017; Durmus & Moulines, 2017). However,
they still struggle in facing the case where the target distribution is supported on a constrained subset
M of Rd, (Gelfand et al., 1992; Pakman & Paninski, 2014; Lan & Shahbaba, 2015). Yet, this problem
appears in various fields; see e.g., (Morris, 2002; Lewis et al., 2012; Thiele et al., 2013) with some
important applications in computational statistics and biology.

Drawing samples from such distributions is indeed a challenging problem that has been intensively
studied in the literature, (Dyer & Frieze, 1991; Lovász & Simonovits, 1993; Lovász & Kannan, 1999;
Lovász & Vempala, 2007; Brubaker et al., 2012; Cousins & Vempala, 2014; Pakman & Paninski,
2014; Lan & Shahbaba, 2015; Bubeck et al., 2015). In particular, some recent extensions of the
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popular Metropolis-Hastings (MH) algorithm to constrained spaces consist in designing proposals
based on dynamics for which π is invariant, (Zappa et al., 2018; Lelièvre et al., 2019, 2022). In
practice, the corresponding solutions are numerically integrated based on implicit and symplectic
schemes, which however come with additional difficulties. As first observed by Zappa et al. (2018),
an additional “involution checking step” in the usual MH filter is necessary to ensure that the resulting
Markov kernel admits π as a stationary distribution.

In this paper, we aim at generalizing this family of methods by taking into account the geometry of
the constrained subspace, building on the Riemannian Manifold Hamiltonian Monte Carlo (RMHMC)
algorithm introduced by Girolami & Calderhead (2011). Similarly to HMC, (Duane et al., 1987; Neal
et al., 2011; Betancourt, 2017), RMHMC aims to target a positive distribution π on Rd and relies
on the integration of a canonical Hamiltonian equation. In contrast, RMHMC incorporates some
geometrical information in the definition of the Hamiltonian via a Riemannian metric g on Rd. When
considering applications of RMHMC to a convex, open and bounded subset M, a natural choice
for this metric is the Hessian metric associated with a self-concordant barrier on M, (Nesterov &
Nemirovskii, 1994), as suggested by Kook et al. (2022a). We adopt here the same approach and now
focus on a constrained subspace M which is assumed to be equipped with an appropriately designed
“self-concordant” metric, (Nesterov & Nemirovskii, 1994).

Given this setting, we propose the BHMC (Barrier HMC) algorithm. To the best of our knowledge,
this is the first version of RMHMC incorporating an “involution checking step” to assess the
issue of asymptotic bias arising from the use of implicit integration methods to solve the Hamiltonian
dynamics. In this work, we focus on the numerical version of BHMC (n-BHMC), for which we
provide a numerical implementation. We refer to Appendix D for an introduction to the ideal version
of BHMC, called continuous BHMC (c-BHMC), where it is assumed that we have access to the
continuous Hamiltonian dynamics but which cannot be computed in practice. For each algorithm, we
rigorously prove that the associated Markov chain preserves π.

The rest of the paper is organized as follows. In Section 2, we introduce our sampling framework and
review some background on self-concordance and Riemannian geometry. In Section 3, we present
n-BHMC, and derive theoretical results for this algorithm in Section 4. We review related works in
Section 5 and provide numerical experiments for n-BHMC in Section 6.

Notation. For any f ∈ C3(Rd,R), we denote by Df (and D2f ) the Jacobian (resp. the Hessian)
of f . For any A ∈ Rd×d and any (x, y) ∈ Rd × Rd, we denote by A : D3f(x) the vector
(Tr(A⊤{D3f(x)}i))i∈[d] ∈ Rd, and define D3f(x)[x, y] as the vector x⊤D3f(x)y ∈ Rd. For any
positive-definite matrix A ∈ Rd×d, ⟨·, ·⟩A stands for the scalar product induced by A on Rd, defined
by ⟨x, y⟩A = ⟨x,Ay⟩. The “momentum reversal” operator s : Rd × Rd → Rd × Rd is defined for
any (x, p) ∈ Rd × Rd by s(x, p) = (x,−p). Let E,F be two sets and h : E→ 2F, where 2F is the
set of sets of F. We say that h is a set-valued map. Note that any map g : E → F can be extended
to a set-valued map by identifying, for any x ∈ E, g(x) and {g(x)}. Let f : F → 2G. We define
f ◦ h : E→ 2G for any x ∈ E by f ◦ h(x) = ∪y∈h(x)f(y), where by convention ∪∅ = ∅. For any
topological space X, we denote B(X) its Borel sets. For any probability measure µ ∈ P(X) and
measurable map φ : X → Y, we denote φ#µ ∈ P(Y) the pushforward of µ by φ. In general, we
will equivalently denote by z or (x, p) a state of the Hamiltonian system.

2 Setting and Background

In this paper, we consider an open subset M ⊂ Rd, and we aim at sampling from a target distribution
π given for any x ∈ M by

dπ(x)/dx = exp[−V (x)]/Z ,

where V ∈ C2(M,R) and Z =
∫
M
exp[−V (x)]dx. We view M as an embedded d-dimensional

submanifold of Rd, equipped with a metric g, satisfying the following assumptions.
A1. M is an open convex bounded subset of Rd.
A2. There exists ϕ, a α-regular and ν-self-concordant barrier on M such that g = D2ϕ.

We provide in Section 2.1 basic Riemannian facts along with the definition of the Hamiltonian
dynamics of RMHMC and introduce self-concordance and α-regularity in Section 2.2.
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2.1 Riemannian Manifold Hamiltonian dynamics

Basics on Riemannian geometry. Let M be a d-dimensional smooth manifold, endowed with a
metric g. Denoting by dx a dual coframe, (Lee, 2006, Lemma 3.2.), we recall that the Riemannian
volume element corresponding to (M, g) is given in local coordinates by

dvolM(x) =
√

det(g)dx .

We denote by T⋆
xM the dual of the tangent space at x ∈ M, i.e., the cotangent space. For any x ∈ M,

T⋆
xM is a vector space naturally endowed with the scalar product ⟨·, ·⟩g(x)−1 , (Mok, 1977). We recall

that the cotangent bundle T⋆M is defined by T⋆M = ⊔x∈M{x} ∪T⋆
xM. This set is a 2d-dimensional

manifold endowed with a Riemannian metric g⋆ given by Mok (1977), inherited from g. With this
metric, the volume form on T⋆M does not depend on g anymore, and satisfies for any (x, p) ∈ T⋆M

dvolT⋆M(x, p) = dxdp ,

where dxdp is a dual coframe for T⋆M.

Therefore, under A1, identifying T⋆M with M× Rd, the volume form on T⋆M induced by g⋆ is the
Lebesgue measure of Rd × Rd restricted to T⋆M. Despite adopting at first a Riemannian perspective
on M, we actually recover the Euclidean setting on T⋆M, which motivates us to consider T⋆M as our
sampling space. We refer to Appendix B for details on the cotangent bundle and its metric g⋆.

Hamiltonian dynamics. Note that with the previously introduced notation, π can be expressed as
dπ/dvolM(x) = exp[−V (x)− 1

2 log(det(g(x)))]/Z .

This motivates the introduction of the following Hamiltonian on T⋆M

H(x, p) = V (x) + 1
2 log (det g(x)) +

1
2∥p∥

2
g(x)−1 . (1)

In this definition, we notably take into account the scalar product ⟨·, ·⟩g(x)−1 on T⋆
xM. Finally, we

consider the joint distribution π̄ on T⋆M

dπ̄(x, p) = (1/Z̄) exp[−H(x, p)]dvolT⋆M(x, p) , (2)
where Z̄ =

∫
T⋆M

exp[−H(x, p)]dvolT⋆M(x, p), for which the first marginal is π. Indeed, for any
φ ∈ C(M,R), we have∫

T⋆M
φ(x)dπ̄(x, p)=

∫
T⋆M

φ(x)dπ(x)Nx(p; 0, Id)dp =
∫
M
φ(x)dπ(x) ,

where we denote by Nx(0, Id) the centered standard Gaussian distribution w.r.t. ∥ · ∥g(x)−1 . The
Hamiltonian dynamics for H is given by the coupled Ordinary Differential Equations (ODEs)

ẋ = ∂pH(x, p) , ṗ = −∂xH(x, p) , (3)
where the derivatives of H can be computed explicitly as

∂pH(x, p) = g(x)−1p , ∂xH(x, p) = − 1
2Dg(x)[g(x)−1p, g(x)−1p] + L(x) ,

where L(x) = ∇V (x) + 1
2g(x)

−1 : Dg(x).

2.2 Self-concordance and regularity

Until now, we have considered an arbitrary Riemannian metric g. In the rest of this work, we focus
on metrics given by Hessian of self-concordant barriers.

Self-concordance. We first introduce self-concordant barriers, a family of smooth convex functions
which are well-suited for minimization by the Newton method.
Definition 1 (Nesterov & Nemirovskii (1994)). Let U be a non-empty open convex domain in Rd. A
function ϕ : U→ R is said to be a ν-self-concordant barrier (with ν ≥ 1) on U if it satisfies:
(a) ϕ ∈ C3(U,R) and ϕ is convex,
(b) ϕ(x) −→ +∞ as x→ ∂U,
(c) |D3ϕ(x)[h, h, h]| ≤ 2∥h∥3g(x), for any x ∈ M, h ∈ Rd,

(d) |Dϕ(x)[h]|2 ≤ ν∥h∥2g(x), for any x ∈ M, h ∈ Rd,

where g(x) = D2ϕ(x).

Balls for ∥·∥g(x), called Dikin ellipsoids, are key for the study of self-concordance, see Appendix C.
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Regularity. The property of α-regularity for some α ≥ 1 is shared by many self-concordant
barriers, including logarithmic and quadratic programming barriers. It ensures stability for interior
point polynomial-time methods. Definition and properties of α-regularity are recalled in Appendix C.

Figure 1: A polytope M ⊂ R2 with three Dikin
ellipsoids {y ∈ Rd : y⊤g(x)y < 1} derived from
its logarithmic barrier.

Example of the polytope. Let us assume that
M is the polytope M = {x : Ax < b}, where
A ∈ Rm×d and b ∈ Rm. We endow it with
the Riemannian metric g(x) = D2ϕ(x) where
ϕ : M→ R is the logarithmic barrier given for
any x ∈ M by ϕ(x) = −

∑m
i=1 log

(
bi −A⊤

i x
)
.

The barrier ϕ is both a m-self-concordant bar-
rier and a 2-regular function, (Nesterov & Ne-
mirovski, 1998, page 3). Moreover, we have
for any x ∈ M, g(x) = A⊤S(x)−2A, where
S(x) = Diag

(
bi −A⊤

i x
)
i∈[m]

. We provide in
Figure 1 an illustration of this barrier.

3 The n-BHMC algorithm

In practice, it is not possible to exactly compute the Riemannian Hamiltonian dynamics (3). We
thus introduce a numerical version of BHMC (n-BHMC), in which we replace the continuous ODE
integration by a symplectic numerical scheme. We first define the Hamiltonian integrators used in
n-BHMC in Section 3.1 and provide details on the different steps of our algorithm in Section 3.2.

3.1 Hamiltonian integrators of n-BHMC

In the same spirit as Shahbaba et al. (2014), we first rewrite the Hamiltonian H given in (1) as
H = H1 +H2, where we highlight the non separable aspect of H in H2, i.e., for any (x, p) ∈ T⋆M

H1(x, p) = V (x) + 1
2 log(det g(x)) , H2(x, p) =

1
2∥p∥

2
g(x)−1 .

Therefore, we have
∂xH1(x, p) = ∇V (x) + 1

2g(x)
−1 : Dg(x) , ∂pH1(x, p) = 0 , (4)

∂xH2(x, p) = − 1
2Dg(x)[g(x)−1p, g(x)−1p] , ∂pH2(x, p) = g(x)−1p . (5)

Leveraging the separable structure of H1, we now define an implicit scheme to discretize the
Hamiltonian dynamics (3) by splitting it into the Hamiltonian dynamics (4) and (5). In the rest of this
section, we consider some step-size h ∈ R.

Explicit integrator of H1. We first approximate the dynamics (4) on a step-size h/2 using a
first-order Euler method (Hairer et al., 2006, Theorem VI.3.3.). Since H1 is separable, this integrator
simply reduces to the map Sh/2 : T⋆M→ T⋆M defined by

Sh/2(x, p) = (x, p− h
2∂xH1(x, p)) .

We have: (i) Sh/2(T⋆M) ⊂ T⋆M, (ii) Sh/2 is symplectic (we refer to Appendix F for more details
on symplecticity), (iii) S−h/2 ◦ Sh/2 = Id and (iv) S−h/2 = s ◦ Sh/2 ◦ s. Note that s ◦ Sh/2 is an
involution on T⋆M, which inherits from properties (i) and (ii) of Sh/2.

Implicit integrator of H2. Since H2 is not separable, a common discretization scheme such as the
Euler method is not symplectic anymore, which requires to use an implicit method instead. We thus
approximate these dynamics on a step-size h with a symplectic second-order integrator denoted by
Gh. For theoretical purposes, we focus on the Störmer-Verlet scheme, (Hairer et al., 2006, Theorem
VI.3.4.), also known as the generalized Leapfrog integrator, which is widely used in geometric
integration, (Girolami & Calderhead, 2011; Betancourt, 2013; Cobb et al., 2019; Brofos & Lederman,
2021a). We refer to Appendix F for a discussion on other numerical schemes. For any z(0) ∈ T⋆M,
Gh(z

(0)) ⊂ T⋆M consists of points z(1) = (x(1), p(1)) which are solution of

p(1/2) = p(0) − h
2∂xH2(x

(0), p(1/2)) ,

x(1) = x(0) + h
2 [∂pH2(x

(0), p(1/2)) + ∂pH2(x
(1), p(1/2))] ,

p(1) = p(1/2) − h
2∂xH2(x

(1), p(1/2)) . (6)
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As defined, there is no guarantee that (6) admits a (unique) solution. As a matter of fact, the integrator
Gh can be seen as a set-valued map. Moreover, it is easy to check that: (i) Gh(T

⋆M) ⊂ 2T
⋆M,

(ii) G−h = s ◦ Gh ◦ s, since ∂pH2(s(z)) = −∂pH2(z) and ∂xH2(s(z)) = ∂xH2(z), and (iii) if
|Gh(z)| > 0 then z ∈ (G−h ◦Gh)(z).

Implicit integrator of H . Relying on the integrators Sh/2 and Gh previously defined, we now
explain how we approximate the Hamiltonian dynamics (3) on a step-size h. We first define the
set-valued maps Fh : T⋆M→ 2T

⋆M and Rh : T⋆M→ 2T
⋆M by

Fh = Gh ◦ s , Rh = (s ◦ Sh/2) ◦ Fh ◦ (s ◦ Sh/2) .

Using properties (ii) and (iii) of Gh, we have for any z ∈ T⋆M such that |Fh(z)| > 0, z ∈ (Fh ◦
Fh)(z), and for any z′ ∈ T⋆M such that |(Fh ◦s◦Sh/2)(z′)| > 0, we have z′ ∈ (Rh ◦Rh)(z

′). Thus,
Fh and Rh are involutive in the sense of set-valued maps. Note also that s ◦ Rh = Sh/2 ◦Gh ◦ Sh/2
boils down to the Strang splitting (Strang, 1968) of the dynamics (3) and thus, is a symplectic scheme
approximating the dynamics of Hamiltonian H on a step-size h.

Numerical integrators. In practice, we do not have access to Fh but approximate it with a
numerical map Φh. For clarity’s sake, we denote by domΦh

⊂ T⋆M the domain of this integrator
with Φh(domΦh

) ⊂ T⋆M. In practice, domΦh
corresponds to the set of points for which the

numerical integration of Fh outputs a solution. We also approximate Rh with the numerical map
RΦ

h : (s ◦ Sh/2)(domΦh
) ⊂ T⋆M→ T⋆M

RΦ
h = (s ◦ Sh/2) ◦ Φh ◦ (s ◦ Sh/2) .

Similarly to s ◦Rh, s ◦RΦ
h

2 approximates the dynamics of Hamiltonian H on a step-size h. In our
experiments, we design Φh using a fixed-point solver with a given number of iterations following
Brofos & Lederman (2021a,b). We refer to Appendix K for details on computations of Φh.

3.2 Steps of the algorithm

For any z = (x, p) ∈ T⋆M, we define on T⋆M the norm ∥ · ∥z by

∥(x′, p′)∥z = ∥x′∥g(x) + ∥p′∥g(x)−1 , ∀(x′, p′) ∈ T⋆M , (7)

where ∥ ·∥g(x)−1 is the canonical norm on T⋆
xM induced by the Riemannian metric g (see Section 2.1)

and ∥ · ∥g(x) is the common norm used on M to study properties of self-concordance (see Section 2.2).
As defined, this norm will be crucial to correct the bias of the numerical integration in n-BHMC,
presented in Algorithm 1, for which we are now ready to detail the steps.

Steps 1 and 5: applying a momentum update. Assume that the current state at stage n ≥
1 is (Xn−1, Pn−1) ∈ T⋆M. Then, the momentum is first partially refreshed such that P̃n ←√
1− βPn−1 +

√
βGn, where Gn ∼ Nx(0, Id) is independent from Pn−1. This update is applied

both at the beginning and the end of the iteration, similarly to Lelièvre et al. (2022).

Step 2: solving a discretized version of ODE (3). Starting from (X ′
n, P

′
n) = (Xn−1, P̃n), we

now approximate the dynamics of H on a step-size h with the integrators presented in Section 3.1,
while ensuring that the proposal state belongs to T⋆M. We proceed as follows:
1. We first run the explicit integrator Sh/2 and compute Z(0)

n = (s ◦ Sh/2)(Xn−1, P̃n).
2. If Z

(0)
n /∈ domΦh

, then (X ′
n, P

′
n) is not updated and we directly go to Step 3. Otherwise, we

define Z(1)
n = Φh(Z

(0)
n ). To ensure the reversibility of this step, we then perform an “involution

checking step”, (Zappa et al., 2018; Lelièvre et al., 2019), highlighted in yellow in Algorithm 1, i.e.,
we verify (a) Z(1)

n ∈ domΦh
and (b) Z(0)

n = Φh(Z
(1)
n ). In practice, we replace condition (b) by

combining an explicit tolerance threshold η with the norm defined in (7) and accept the proposal if

∥Z(0)
n − Φh(Z

(1)
n )∥

Z
(0)
n

+ ∥Z(0)
n − Φh(Z

(1)
n )∥

Φh(Z
(1)
n )
≤ η . (8)

We discuss the choice of this norm to perform the “involution checking step” in Appendix K. If
both of these conditions are satisfied, we finally set (X ′

n, P
′
n) = (s ◦ Sh/2)(Z

(1)
n ), to ensure the

reversibility of the update of (X ′
n, P

′
n). Otherwise, (X ′

n, P
′
n) is not updated and we go to Step 3.

2Note that s ◦ RΦ
h is a function and not a set-valued map.
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Algorithm 1: n-BHMC with Momentum Refresh
Input: (X0, P0) ∈ T⋆M, β ∈ (0, 1], N ∈ N, h > 0, η > 0, Φh with domain domΦh

Output: (Xn, Pn)n∈[N ]

1 for n = 1, ..., N do
2 Step 1: Gn ∼ Nx(0, Id), P̃n ←

√
1− βPn−1 +

√
βGn

3 Step 2: solving a discretized version of ODE (3)
4 X ′

n, P
′
n ← Xn−1, P̃n; X

(0)
n , P

(0)
n ← (s ◦ Sh/2)(Xn, P̃n)

5 if Z
(0)
n = (X

(0)
n , P

(0)
n ) ∈ domΦh then

6 Z
(1)
n = Φh(Z

(0)
n )

7 err0 = ∥Z(0)
n − Φh(Z

(1)
n )∥

Z
(0)
n

, err1 = ∥Z(0)
n − Φh(Z

(1)
n )∥

Φh(Z
(1)
n )

(if defined)

8 if Z
(1)
n ∈ domΦh & err0 + err1 ≤ η then X ′

n, P
′
n ← (s ◦ Sh/2)(Z

(1)
n )

9 end
10 Step 3: An ← min(1, exp[−H(X ′

n, P
′
n) +H(Xn−1, P̃n)]); Un ∼ U [0, 1]

11 if Un ≤ An then X̄n, P̄n ← X ′
n, P

′
n

12 else X̄n, P̄n ← Xn−1, P̃n

13 Step 4: Xn, P̂n ← s(X̄n, P̄n)

14 Step 5: G′
n ∼ Nx(0, Id), Pn ←

√
1− βP̂n +

√
βG′

n

15 end

Step 3: computing the acceptance filter. We denote by a(x′, p′|x, p) the acceptance probability to
move from (x, p) ∈ T⋆M to (x′, p′) ∈ T⋆M, which is given by

a(x′, p′|x, p) = 1 ∧ exp[−H(x′, p′) +H(x, p)] . (9)

After Step 2, we perform a simple MH filter by accepting the proposal with probability An =
a(X ′

n, P
′
n|Xn−1, P̃n) similarly to a classical HMC algorithm.

Step 4: applying momentum reversal. To ensure a move along the dynamics of H with step-size
h, we reverse the momentum after the acceptance step. Indeed, if the acceptance filter is successful,
then (Xn, P̂n) = (s ◦ RΦ

h )(Xn−1, P̃n−1) approximates the Hamiltonian dynamics (3) on a step-size
h starting at (Xn−1, P̃n−1), as seen in Section 3.1. Otherwise, (Xn, P̂n) = (Xn−1,−P̃n−1).

3.3 About the usefulness of the “involution checking step”

In their paper, Kook et al. (2022a) also incorporate self-concordance into RMHMC to sample from
distributions supported on polytopes. To integrate the Hamiltonian dynamics, they propose to use
a numerical version of the Implicit Midpoint integrator (Hairer et al., 2006, Theorem VI.3.5.),
which shares the same theoretical properties as the Störmer-Verlet scheme. This results in CRHMC
(Kook et al., 2022a, Algorithm 3), whose main difference compared to n-BHMC is the lack of the
“involution checking step” (Line 8 in Algorithm 1). Crucially, Kook et al. (2022a) assume that their
implicit integrator admits a unique solution given any starting point and any step-size h, which
is then approximated by their numerical scheme. However, this statement may not be true in the
self-concordant setting, as we explain below with a simple example. This explains why we always
refer to the implicit integrator as a set-valued map. In their setting, the numerical integrator is not
guaranteed to be involutive, which results in an asymptotic bias that the MH filter cannot solve.

In our paper, we do not make such an assumption on the Störmer-Verlet integrator, and consider
a numerical solver which outputs one approximate solution to this implicit scheme. By doing so,
our analysis is meant to be as close as possible to the practical implementation of RMHMC. Then,
the “involution checking step” is critical to make the numerical integrator locally involutive, which
enables us to derive rigorous reversibility results, see Theorem 3, and to solve the issue of asymptotic
bias caused by implicit integration, see Section 6. We refer to Appendix J for a detailed comparison
between n-BHMC and CRHMC. We now present a simple setting where the assumption made by
Kook et al. (2022a) does not hold in the case of the Störmer-Verlet integrator, which is defined in (6).

Consider the 1-dimensional setting M = (−∞, 0) with g : x 7→ 1/x2. Assume that β = 1. Let
h > 0 and let X0 ∈ M be the (position) state of the Markov chain at the beginning of the first
iteration in n-BHMC. In this case, P̃0 ∼ N(0, 1/X2

0 ) and we have P (0)
0 = P̃0− (h/2)∂xH1(X0, P̃0),

where the function H1 is defined in Section 3.1. Using (4), we have P (0)
0 ∼ N(µ0, 1/X

2
0 ), where
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µ0 = −(h/2)∂xH1(X0, P̃0) only depends on X0. Then, the implicit equation in P (1/2)
0 , given by

the first equation of (6), reads as P (1/2)
0 = P

(0)
0 − (h/2)∂xH2(X0, P

(1/2)
0 ). Using (5), it can be

rewritten as a polynomial equation of degree 2 in P (1/2)
0

h
2X0(P

(1/2)
0 )2 + P

(1/2)
0 − P (0)

0 = 0 . (10)

Denote ∆ = 1 + 2hX0P
(0)
0 . Then, (10) may admit 0,1 or 2 solutions depending on the sign of ∆. If

P
(0)
0 ≤ −1/(2hX0), i.e., ∆ ≥ 0, then (10) admits 1 or 2 solutions. However, if h is small enough,

only one solution is valid when considering the constraint on the position update in (6). Whenever
P

(0)
0 > −1/(2hX0), i.e., ∆ < 0, (10) admits no solution. Recalling that P (0)

0 ∼ N(µ0, 1/X
2
0 ), this

event occurs with positive probability, thus violating the assumption made by Kook et al. (2022a).

4 Theoretical results

We now study the reversibility of n-BHMC with respect to the target distribution. To do so, we
first present theoretical results on the exact integrators of the discretized Hamiltonian dynamics in
Section 4.1, from which we derive our assumption on the numerical integrator used in n-BHMC.
Finally, we state our main result on n-BHMC in Section 4.2.

4.1 From implicit to numerical integrators

We show in Proposition 2 that even though Fh is a set-valued map, it can locally be identified with a
C1-diffeomorphism. In a manner akin to Lelièvre et al. (2022), this justifies our assumption A3 that
the numerical map Φh used to approximate Fh in Step 2 of Algorithm 1 is locally a C1-involution.

Proposition 2. Assume A1, A2. Let z(0) ∈ T⋆M, then there exists h⋆ > 0 (explicit in Appendix G)
such that for any h ∈ (0, h⋆), there exist z(1)h ∈ Fh(z

(0)), a neighborhood U ⊂ T⋆M of z(0) and a
C1-diffeomorphism γh : U→ γh(U) ⊂ T⋆M with

(a) γh(z(0)) = z
(1)
h and |det Jac(γh)| = 1.

(b) γh(z) is the only element of Fh(z) in γh(U) for any z ∈ U.

Proposition 2 shows that while Fh can take multiple (or none) values on T⋆M, for any z(0) ∈ T⋆M,
there exists h small enough and a neighborhood U of z(0) such that the set-valued map Fh is locally
symplectic on U. The proof of Proposition 2 is given in Appendix G. It first relies on considering the
Störmer-Verlet scheme introduced in (6) as the composition of maps for which we derive the existence
of solutions and secondly applying the implicit function theorem on these maps. Motivated by this
result on the implicit map Fh and the fact that for any z ∈ T⋆M with |Fh(z)| > 0, z ∈ Fh ◦ Fh(z)
(see Section 3.1), we make the following assumption on the numerical map Φh.

A3. There exists λ ∈ (0, 1) s.t. for any z(0) ∈ T⋆M, there exists h⋆ > 0 and for any h ∈ (0, h⋆)

(a) B = B∥·∥
z(0)

(z(0), λr⋆(x(0))) ⊂ domΦh
,

(b) Φh ∈ C1(B,T⋆M) and Φh ◦ Φh = Id on B,
with r⋆ : M→ (0,+∞) depending only on g and defined in Appendix I.

Assumption A3 can be thought as a strengthening of Proposition 2-(a), where (i) h⋆ refers to h⋆, and
(ii) B and Φh correspond to explicit versions of U and γh. We conjecture that the involution condition
in A3-(b) could in fact be replaced by the condition that for any z ∈ B, Φh(z) ∈ Fh(z), in a manner
akin to Lelièvre et al. (2022). We leave this study for future work.

4.2 Reversibility results

Beyond n-BHMC. While Algorithm 1 can be implemented practically, it cannot be easily analysed
under A1, A2 and A3. The main reason for this limitation is that the self-concordance properties are
defined locally, whereas deriving reversibility results require global control. In particular, we cannot
ensure that Φh is locally an involution around z(0) if h > h⋆. To circumvent this issue, we enforce a
condition on h to be small enough in n-BHMC. Using the notation from A3, we define the set

Ah = {z ∈ T⋆M : h < minz̃∈B∥·∥z (z,1)
h⋆(z̃)} ⊂ domΦh

.
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Let z(0) ∈ Ah. By A3, we know that Φh is an involution on a neighbourhood of z(0); in particular, it
comes that (Φh ◦ Φh)(z

(0)) = z(0). Hence, the condition (b) of the “involution checking step” in
Algorithm 1 is de facto satisfied. This naturally leads to replace “Z(1)

n ∈ domΦh
”, i.e., the condition

(a) of the “involution checking step”, by the more restrictive condition “Z(1)
n ∈ Ah”, as presented in

Algorithm 3 (see Appendix H), for which we are able to derive a reversibility result.

We denote by Q : T⋆M × B(T⋆M) → [0, 1], the transition kernel of the (homogeneous) Markov
chain (Xn, Pn)n∈N obtained with Algorithm 3. We now state our main result on n-BHMC.
Theorem 3. Assume A1, A2, A3. Then, Q is reversible up to momentum reversal, i.e., we have for
any f ∈ C(T⋆M× T⋆M,R) with compact support∫

T⋆M×T⋆M
f(z, z′)dπ̄(z)Q(z,dz′) =

∫
T⋆M×T⋆M

f(s(z′), s(z))dπ̄(z)Q(z,dz′) .

In particular, π̄ is an invariant measure for Q.

Proof. We provide here a sketch of the proof, technical details being postponed to Appendix I. The
reversibility (up to momentum reversal) of the momentum update is straightforward. To establish the
reversibility up to momentum reversal of the numerical Hamiltonian integration step, we cover the
compact support of f with a finite family of open balls with respect to the metric g. Combining A2
and A3, we show that Φh is a volume-preserving C1-diffeomorphism on each one of these sets. We
then conclude upon combining this result with the fact that RΦ

h ◦ s ◦ Sh/2 = s ◦ Sh/2 ◦ Φh.

Although Algorithm 3 may be implemented, this would come with a huge (and unrealistic) com-
putational cost since verifying that z ∈ Ah implies to find the minimal critical step-size h⋆ on a
neighborhood of z. The question of the existence of a global step-size h such that Algorithm 1 can be
properly analyzed is not the topic of this paper and is left for future work.

Comparison with Theorem 8 in Kook et al. (2022a). Although Kook et al. (2022a) present a
theoretical result similar to Theorem 3, we claim that their statement is not correct. Indeed, the
authors make a critical confusion between the ideal integrator as considered in Hairer et al. (2006)
and the numerical version they implement. Then, in the proof of reversibility for their scheme, they
act as if the two algorithms were the same while it is not true (see Appendix J for further details).
On the other hand, (i) we make a clear distinction between the ideal integrator and its numerical
implementation (see Section 3.1), and (ii) implement the “involution checking step” to enforce
reversibility (Line 8 in Algorithm 1).

5 Related work

Sampling on manifolds. Traditional constrained sampling methods in Euclidean spaces include the
Hit-and-Run algorithm (Lovász & Vempala, 2004), the Random Walk Metropolis-Hastings (RWMH)
algorithm, also referred to as Ball Walk (Lee & Vempala, 2017a), and HMC, (Duane et al., 1987).
However, it has been empirically demonstrated that RWMH and HMC require small step-sizes in
order to correctly sample from a target distribution π over a submanifold M ⊂ Rd, thus resulting
in poor mixing time (Girolami & Calderhead, 2011, Figures 1 and 3). In the specific case where
M = {x ∈ Rd : c(x) = 0} for some c : Rd → Rm, Brubaker et al. (2012) combine HMC
with the RATTLE integrator (Leimkuhler & Skeel, 1994), incorporating the constraints of M in the
Hamiltonian dynamics via Lagrange multipliers. Girolami & Calderhead (2011) adopt an original
approach by endowing M with a Riemannian metric g and propose RMHMC (Riemannian Manifold
HMC), a version of HMC where the Hamiltonian depends on g as in (1). It consists of integrating the
Hamiltonian dynamics of (3) on short-time steps using the generalized Leapfrog integrator (6) and
the acceptance filter defined in (9). This method does not include an “involution checking step”, and
thus the reversibility of the algorithm cannot be ensured in practice and in theory. Similarly, Byrne &
Girolami (2013) propose to design a numerical integrator for RMHMC using geodesics.

Choice of the metric in RMHMC. There are various ways to design a meaningful metric g given
a submanifold M. In a Bayesian perspective, Girolami & Calderhead (2011) aim at computing the
a posteriori distribution of a statistical model of interest and thus choose g to be the Fisher-Rao
metric. In this paper, we consider another approach which exploits the geometrical structure of M.
For instance, one can always define a self-concordant barrier ϕ when M is a convex body, (Nesterov
& Nemirovskii, 1994), and choose g = D2ϕ, as done by Kook et al. (2022a).
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Self-concordance in RMHMC. Elaborating on Riemannian geodesics, Lee & Vempala (2018)
provide theoretical guarantees of fast mixing time for RMHMC when (i) M is a polytope, and (ii)
g is the Hessian of a self-concordant function ϕ (as in our setting). Their result notably improves
the complexity of uniform polytope sampling from algorithms relying on self-concordance such
as the Dikin Walk (Kannan & Narayanan, 2009) and the Geodesic Walk (Lee & Vempala, 2017b).
However, they only consider the case where the exact continuous Hamiltonian dynamics is used, as
in c-BHMC (see Appendix D). On the other hand, Kook et al. (2022a) integrate the Hamiltonian
dynamics via implicit schemes without any “involution checking step” in a similar self-concordant
setting. In particular, they consider a convex body K equipped with a self-concordant barrier ϕ,
combined with a linear equality constraint Ax = b. This is a special case of our framework (see
A1 and A2) by rewriting this whole set as K′ = {A†b + u ∈ K : u ∈ Ker(A)}3, equipped with
the self-concordant barrier u 7→ ϕ(A†b+ u). Besides this, Kook et al. (2022a) provide an efficient
implementation of their algorithm (CRHMC) in the case of a convex bounded manifold of the form
M = {x ∈ Rd : Ax = b, ℓ < x < u}. Although CRHMC demonstrates empirical fast mixing time,
we show in Section 6 that it suffers from an asymptotic bias. More recently, Kook et al. (2022b) built
upon the empirical results of Kook et al. (2022a) to derive theoretical results of fast mixing time.
However, they do not question the issue of asymptotic bias in CRHMC.

Enforcing reversibility. Zappa et al. (2018) propose a version of RWMH including projection
steps after each proposal. To our knowledge, they are the first to practice “involution checking” of
the proposal, and thus enforce the reversibility of the Markov chain with respect to π. Lelièvre et al.
(2019) notably combine this method with the discretization suggested by Brubaker et al. (2012) to
also enforce the constraints of the manifold. Lelièvre et al. (2022) elaborate on this framework, by
designing a symplectic numerical integrator with multiple possible outputs, and provide a rigorous
proof of reversibility. Note that it only applies when g is induced by the flat metric of Rd and therefore
cannot be combined with our approach as such.

6 Numerical experiments
In our experiments4, we illustrate the performance of n-BHMC (Algorithm 1) to sample from
target distributions which are supported on polytopes. We compare our method with the numerical
implementation of CRHMC5 provided by Kook et al. (2022a). In all of our settings, we compute g
as the Hessian of the logarithmic barrier, see Section 2.2. The algorithms are always initialized at
the center of mass of the considered polytope. At each iteration of n-BHMC, we perform one step
of numerical integration, using the Störmer-Verlet scheme with K = 30 fixed-point steps and keep
the refresh parameter β equal to 1. We refer to Appendix K for more details on the setting of our
experiments and additional results.

Synthetic data. We first consider the problem of sampling from the truncated Gaussian distribution

(dπ/dLeb)(x) = exp[−∥x− µ∥2 /2]1M(x)/
∫
M
exp[−∥x̃− µ∥2 /2]dx̃, ∀x ∈ Rd ,

where M is the hypercube or the simplex, and µ ∈ Rd is defined by

µ = (10/
√
d− 1)× {1− e1 + (

√
d− 1− 1)e2} ,

where ei stands for the i-th canonical vector of Rd and 1 =
∑d

i=1 ei. In particular, µ1 = 0, µ2 = 10

and µj = µ2/
√
d− 1 for any j ∈ {3, . . . , d}. Therefore, the mass of π is not evenly distributed

on the boundary of M, which is key to observe the impact of the reversibility condition. For this
experiment, we consider the low-dimensional setting d ∈ {5, 10}. To sample from π, we run 10 times
the algorithms CRHMC and n-BHMC for N = 105 iterations, and update the step-size h such that
the average acceptance rate in the MH filter is roundly equal to 0.5, following Roberts & Rosenthal
(2001). We discuss the setting of the tolerance parameter η for n-BHMC in Appendix K. In order
to correctly assess the bias of each numerical method, we aim at accurately computing the target
quantity Q =

∫
M
⟨x, µ⟩2dπ(x). Although our choice of Q is arbitrary, it highlights well the bias in

CRHMC, which is corrected when using n-BHMC.

3A† is the pseudo-inverse of A.
4Our code: https://github.com/maxencenoble/barrier-hamiltonian-monte-carlo.
5https://github.com/ConstrainedSampler/PolytopeSamplerMatlab
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Figure 2: Comparison between n-BHMC and CRHMC on the
hypercube (left) and the simplex (right).

We evaluate their performance by
taking as ground truth the esti-
mate given by (i) the Metropolis-
Adjusted Langevin Algorithm
(MALA) (Roberts & Stramer,
2002) for the hypercube and (ii)
the Independent MH (IMH) algo-
rithm (Liu, 1996) for the simplex,
which are also run 10 times, but
10 times longer than n-BHMC
and CRHMC, i.e., for N = 106

iterations. To compute the target
quantity Q, we keep the whole
trajectories and report the confi-
dence intervals in Figure 2. For
both polytopes, we notably ob-
serve that our method is less bi-
ased than CRHMC.

Model d NNZ n-BHMC CRHMC

ecoli 95 291 0.08822 5.719
cardiac-mit 220 228 0.1905 5.304
Aci-D21 851 1758 141.9 46.17
Aci-MR95 994 2859 325.1 61.34
Abi-49176 1069 2951 179.4 74.22
Aci-20731 1090 2946 0.7124 88.82
Aci-PHEA 1561 4640 2.343 100.8
iAF1260 2382 6368 537.9 170.5
iJO1366 2583 7284 537.9 169.4
Recon1 3742 8717 3.740 3280

Table 1: Real-world data setting: comparison
with Kook et al. (2022a).

Real-world data. We then consider 10 polytopes
given in the COBRA Toolbox v3.0 (Heirendt et al.,
2019), which model molecular systems, and follow
the method provided in (Kook et al., 2022a, Ap-
pendix A) to pre-process them. Here, we aim at
uniformly sampling from these polytopes. How-
ever, we do not have access to a realistic baseline
that yields an unbiased estimator, since the sam-
pling dimension is too high and running MALA or
IMH would be too costly. Hence, instead of assess-
ing the bias of the algorithms, we rather want to
highlight that the “involution checking step” does
not hurt the convergence properties of BHMC com-
pared to CRHMC. We evaluate the efficiency of the
algorithms by computing the sampling time per effective sample (in seconds), defined as the total
sampling time until termination divided by the Effective Sample Size. We set the initial step-size
to 0.01 for both algorithms and η = 10 in n-BHMC. We then follow the exact same procedure as
in (Kook et al., 2022a, Table 1) by drawing 1000 uniform samples with limit on running time set
to 1 day. Results are given in Table 1. For each molecular model, we specify by NNZ the number
of non-zero entries in the matrix A defining the corresponding pre-processed polytope, which thus
reflects its complexity. In particular, the sampling dimension d corresponds to the number of columns
of A. Note that the sampling time values are not of interest in themselves, but are only meant to
compare CRHMC and n-BHMC. While it is clear that adding an “involution checking step” implies a
trade-off between accuracy and complexity of the method, our results demonstrate that it does not
penalize BHMC in the considered settings, and may even make it more efficient in some cases.

7 Discussion
In this paper, we introduced a novel version of RMHMC, Barrier HMC (BHMC), which addresses the
problem of sampling from a distribution π over a constrained convex subset M ⊂ Rd equipped with
a self-concordant barrier ϕ. Our contribution highlights that the use of well known implicit schemes
for ODE integration combined with these space constraints leads to asymptotic bias when it comes to
their numerical implementation. We propose to solve it in a straightforward manner via our algorithm,
n-BHMC, which relies on an additional “involution checking step”. Under reasonable assumptions,
our theory shows that this critical step removes the asymptotic bias. This result is supported by
numerical experiments where we highlight this lack of bias compared to state-of-the-art methods. In
future work, we would like to investigate the “coupled” behaviour of the hyperparameters h and η in
practice, the study of irreductiblity of n-BHMC and the influence of η on the bias. Moreover, we are
interested in the application of n-BHMC for efficient polytope volume computation. More generally,
we are convinced that our study is a first step for future work on designing implicit integration
schemes for unbiased constrained sampling methods.
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Organisation of the supplementary

This appendix is organized as follows. Appendix A summarizes general facts that will be useful
for proofs. Appendix B and Appendix C provide additional details on Riemannian metrics and
technicalities on self-concordance, respectively. The c-BHMC algorithm is presented in Appendix D
with some results whose proofs are given in Appendix E. Appendix F presents general facts about
numerical integration and specific facts on the integrators used in n-BHMC. Appendix G dispenses the
proof of the result on implicit integrators of n-BHMC, stated in Section 4.1. Appendix H presents the
modified version of n-BHMC, incorporating a step-size condition, for which we state the reversibility
with respect to the target distribution in Section 4.2. Proof of this last result is given in Appendix I. A
detailed comparison between n-BHMC and CRHMC (Kook et al., 2022a) is given in Appendix J.
Finally, Appendix K provides more details on the experiments of Section 6.

Notation. For any Riemannian manifold (M, g) and any z = (x, p) ∈ T⋆M, we denote by ∥ · ∥z
the norm (7) defined on T⋆M by ∥(x′, p′)∥z = ∥x′∥g(x) + ∥p′∥g(x)−1 for any (x′, p′) ∈ T⋆M. For
any open subset U ⊂ Rd and any k ∈ N, we denote by Ck(U,Rd′

) the set of functions f : U→ Rd′

such that f is k times continuously differentiable.

A Useful facts and lemmas

We recall here some basic knowledge on linear algebra and probability, and state useful inequalities
for our proofs.

Linear algebra reminders. For any matrices A,B ∈ Rd×d, we write A ⪯ B if for any x ∈ Rd,
x⊤(B − A)x ≥ 0. Any positive-definite matrix A ∈ Rd×d induces a scalar product ⟨·, ·⟩A on
Rd, defined by ⟨x, y⟩A = ⟨x,Ay⟩. This scalar product induces the norm ∥ · ∥A on Rd, defined by
∥x∥A =

√
⟨x, x⟩A = ∥A1/2x∥2. For any positive-definite matrices A,B ∈ Rd×d and for any α ≥ 0,

A ⪯ αB is equivalent to ∥ · ∥A ≤
√
α∥ · ∥B. The canonical norm of Rd induces the norm ∥ · ∥2

on Rd×d, defined by ∥A∥2 = sup∥u∥2=1 ∥Au∥2. In particular, for any matrices A,B ∈ Rd×d and
any vector x ∈ Rd, ∥Ax∥2 ≤ ∥A∥2∥x∥2 and ∥AB∥2 ≤ ∥A∥2∥B∥2. Moreover, if A is non-negative-
definite, then ∥A∥2 = λ(A), where λ(A) is the largest eigenvalue of A, and ∥Aα∥2 = λ(A)α for any
α > 0.

Probability reminders. In this section, we consider a smooth manifold M ⊂ Rd. We first recall
the definition of reversibility (Douc et al., 2018, Definition 1.5.1) before stating general results on
reversibility.

Definition 4. Let Q : T⋆M × B(T⋆M) → [0, 1] be a transition probability kernel and let π̄ be a
probability distribution on T⋆M. Then,

(a) Q is said to be reversible with respect to π̄ if for any f ∈ C(T⋆M × T⋆M,R) with compact
support ∫

T⋆M×T⋆M
f(z, z′)Q(z,dz′)π̄(dz) =

∫
T⋆M×T⋆M

f(z′, z)Q(z,dz′)π̄(dz) .

(b) Q is said to be reversible up to momentum reversal with respect to π̄ if for any f ∈ C(T⋆M×
T⋆M,R) with compact support∫

T⋆M×T⋆M
f(z, z′)Q(z,dz′)π̄(dz) =

∫
T⋆M×T⋆M

f(s(z′), s(z))Q(z,dz′)π̄(dz) ,

where we recall that for any (x, p) ∈ Rd × Rd, s(x, p) = (x,−p).
Lemma 5. Let Q : T⋆M × B(T⋆M) → [0, 1] be a transition probability kernel and let π̄ be a
probability distribution on T⋆M. Assume that s#π̄ = π̄ and that Q is reversible up to momentum
reversal with respect to π̄. Then π̄ is an invariant measure for Q, i.e., for any f ∈ C(T⋆M,R) with
compact support ∫

T⋆M×T⋆M
f(z′)Q(z,dz′)π̄(dz) =

∫
T⋆M×T⋆M

f(z)π̄(dz) .
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Proof. Let f ∈ C(T⋆M,R) with compact support. We have∫
T⋆M×T⋆M

f(z′)Q(z,dz′)π̄(dz)

=
∫
T⋆M×T⋆M

f(s(z))Q(z,dz′)π̄(dz) (Definition 4)

=
∫
T⋆M×T⋆M

f(z)Q(s(z),dz′)(s#π̄)(dz) =
∫
T⋆M

f(z)π̄(dz) (momentum reversal on z) ,

which concludes the proof.

Lemma 6. Let Q : T⋆M × B(T⋆M) → [0, 1] be a transition probability kernel and let π̄ be a
probability distribution on T⋆M. Assume that s#Q = Q and that Q is reversible with respect to π̄.
Then, Q is reversible up to momentum reversal with respect to π̄.

Proof. Let f ∈ C(T⋆M,R) with compact support. We have∫
T⋆M×T⋆M

f(z, z′)Q(z,dz′)π̄(dz)

=
∫
T⋆M×T⋆M

f(z, s(z′))(s#Q)(z,dz′)π̄(dz) (momentum reversal on z′)

=
∫
T⋆M×T⋆M

f(z′, s(z))Q(z,dz′)π̄(dz) (Definition 4)

=
∫
T⋆M×T⋆M

f(s(z′), s(z))(s#Q)(z,dz′)π̄(dz) (momentum reversal on z′)

=
∫
T⋆M×T⋆M

f(s(z′), s(z))Q(z,dz′)π̄(dz) ,

which concludes the proof.

Useful inequalities. The following inequalities hold:

(a) For any u ∈ [0, 1/5], (1− u)−2 ≤ 1 + 3u and (1− u)−3 ≤ 1 + 5u.

(b) For any u ∈ [0, 1/2], (1− u)−1 ≤ 1 + 2u.

(c) For any u ∈ [0, 1], |(1− u)2 − 1| ≤ 3u.

(d) For any u ≥ 0, we have 1− (1 + u)−1 ≤ u and (1− u)2 − 1 ≥ −2u.

B Details on Riemannian metrics

Let M be a smooth d-dimensional manifold, endowed with a metric g. We recall that the Riemannian
volume element corresponding to (M, g) is given in local coordinates by dvolM(x) =

√
det(g)dx,

where dx is a dual coframe, (Lee, 2006, Lemma 3.2.). For any x ∈ M, we respectively denote by
TxM and T⋆

xM, the tangent space at x and its dual space, i.e., the cotangent space at x. Note that
TxM and T⋆

xM are space vectors, and TxM is endowed with the scalar product ⟨·, ·⟩g(x) by definition
of the Riemannian metric. For clarity sake, we denote by v (resp. p) an element of the tangent
(resp. cotangent) space. We recall that the tangent bundle TM and the cotangent bundle T⋆M are
respectively defined by TM = ⊔x∈M{x} ∪ TxM and T⋆M = ⊔x∈M{x} ∪ T⋆

xM. These two sets are
2d-dimensional manifolds.

Metric on the tangent bundle TM. Sasaki (1958) originally introduced on TM a Riemannian
metric ĝ, which, among other properties, preserves the Euclidean metric induced by g on each tangent
space. This metric is defined by

ĝ =

(
gij + vkvlΓk

isΓ
l
tjg

st −gjsvkΓk
is

−gisvkΓk
js gij

)
,

where gij and gij respectively refer to g and g−1, and Γ corresponds to the Christoffel symbol. Since
(TM, ĝ) is a Riemannian manifold, the volume form on TM satisfies for any (x, v) ∈ TM

dvolTM(x, v) =
√
det(ĝ(x, v))dxdv = det(g(x))dxdv .
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Metric on the cotangent bundle T⋆M. Elaborating on the metric defined by Sasaki (1958), Mok
(1977) showed that for any x ∈ M, T⋆

xM is naturally endowed with the scalar product ⟨·, ·⟩g(x)−1 ,
and proposed a Riemannian metric g⋆ on T⋆M, which notably preserves this result on each cotangent
space. This metric is closely related to ĝ and is defined by

g⋆ =

(
gij + pkplΓk

isΓ
l
tjg

st −gjspkΓk
is

−gispkΓk
js gij

)
.

Since (T⋆M, g⋆) is a Riemannian manifold, the volume form on T⋆M satisfies for any (x, p) ∈ T⋆M

dvolT⋆M(x, p) =
√
det(g⋆(x, p))dxdp = dxdp .

In contrast to the tangent bundle, the volume form on the cotangent bundle does not depend on g,
which motivates to augment on T⋆M (instead of TM) any target measure π defined on M.

C Properties of self-concordance

We first recall the definition of self-concordance and derive some of its properties in Lemmas 8 and 9.
Definition 7 (Nesterov & Nemirovskii (1994)). Let U be a non-empty open convex domain in Rd. A
function ϕ : U→ R is said to be a ν-self-concordant barrier (with ν ≥ 1) on U if it satisfies:

(a) ϕ ∈ C3(U,R) and ϕ is convex,

(b) ϕ(x) −→ +∞ as x→ ∂U,

(c) |D3ϕ(x)[h, h, h]| ≤ 2∥h∥3g(x), for any x ∈ M, h ∈ Rd,

(d) |Dϕ(x)[h]|2 ≤ ν∥h∥2g(x), for any x ∈ M, h ∈ Rd,

where g(x) = D2ϕ(x).

Self-concordance can be thought as a certain kind of regularity. Indeed, if ϕ is a ν-self-concordant
barrier on a convex body U, then D2ϕ is 2-Lipschitz continuous on U with respect to the local norm
induced by g (see Property (c)), and more restrictively, ϕ is ν-Lipschitz continuous with respect to
the same norm (see Property (d)).
Lemma 8. Let ϕ : U→ R be a ν-self-concordant barrier with g = D2ϕ. Assume that U is bounded.
Then, ∥∇ϕ(x)∥2 −→ +∞ and ∥g(x)∥2 −→ +∞ as x→ ∂U.

Proof. Since ϕ is convex, we have, for any (x, y) ∈ U2

ϕ(x)≤ ϕ(y) +∇ϕ(x)(x− y) ,
|ϕ(x)|≤ |ϕ(y)|+ ∥∇ϕ(x)∥2∥x− y∥2

≤ |ϕ(y)|+ ∥∇ϕ(x)∥2 diam(U) ,

where we used Cauchy-Schwartz inequality in the second line. Using Property (b) of ϕ, we obtain
that ∥∇ϕ(x)∥2 −→ +∞ as x→ ∂U. By combining this result with Property (d) of ϕ, we obtain that
∥g(x)∥2 −→ +∞ as x→ ∂U.

According to Nesterov (2003) (see Lemma 4.1.2), Property (c) of self-concordance is equivalent to

|D3ϕ(x)[h1, h2, h3]| ≤ 2
∏3

i=1 ∥hi∥g(x) ,

for any x ∈ M and any (h1, h2, h3) ∈ Rd × Rd × Rd.

Let u : Rd → Rd be a linear operator. For any x ∈ Rd, we define the operator norms ∥u∥g(x) and
∥u∥g(x)−1 by

∥u∥g(x) = sup{u(g(x)h) : ∥h∥g(x) = 1} ,
∥u∥g(x)−1 = sup{u(g(x)−1h) : ∥h∥g(x)−1 = 1} .

In addition, a set V ⊂ Rd contains no straight line if for any Dx0
= {tx0 : t ∈ R} with x0 ̸= 0, we

have Vc ∩ Dx0
̸= ∅.
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Lemma 9. Let ϕ : U→ R be a ν-self-concordant barrier with g = D2ϕ. Assume that U contains no
straight line. For any x ∈ U and any r > 0, we denote by W0(x, r) the open Dikin ellipsoid of ϕ at
x, given by W0(x, r) = {y ∈ Rd | ∥y − x∥g(x) < r}. Then, the following properties hold:

(a) For any x ∈ U and any (h1, h2) ∈ Rd × Rd

∥D3ϕ(x)[h1, h2]∥g(x)−1 ≤ 2∥h1∥g(x)∥h2∥g(x) .

(b) For any x ∈ U, W0(x, 1) ⊂ U, and for any y ∈W0(x, 1)

(1− ∥y − x∥g(x))2g(x) ⪯ g(y) ⪯ (1− ∥y − x∥g(x))−2g(x) .

(c) For any x ∈ U, any y ∈W0(x, 1) and any h ∈ Rd, the following hold

∥h∥g(x) ≤ (1− ∥y − x∥g(x))−1∥h∥g(y) ,
∥h∥g(y) ≤ (1− ∥y − x∥g(x))−1∥h∥g(x) ,
∥h∥g(x)−1 ≤ (1− ∥y − x∥g(x))−1∥h∥g(y)−1 ,

∥h∥g(y)−1 ≤ (1− ∥y − x∥g(x))−1∥h∥g(x)−1 .

Proof. The result is a direct consequence of (Nesterov, 2003, Theorem 4.1.3, Theorem 4.1.5, Theorem
4.1.6).

We now introduce α-regularity, which slightly strengthens self-concordance, by ensuring that D3ϕ
is α(α+ 1)-Lipschitz continuous with respect to the local norm induced by g (see (11)). We state
below the definition of α-regularity as well as some of its properties in Lemma 11.

Definition 10 (Nesterov & Nemirovski (1998)). Let α ≥ 1 and U be non-empty open convex domain
in Rd. A self-concordant function ϕ on U is said α-regular, if ϕ ∈ C4(U,R) and for any x ∈ U and
any h ∈ Rd

|D4ϕ(x)[h, h, h, h]| ≤ α(α+ 1)∥h∥2g(x)∥h∥
2
U,x ,

where ∥h∥U,x := inf{t−1 | t > 0, x± th ∈ U}.
Lemma 11. Let ϕ : U → R be a α-regular function with g = D2ϕ. Assume that U contains no
straight line.

(a) For any x ∈ U and any h ∈ Rd

|D4ϕ(x)[h, h, h, h]| ≤ α(α+ 1)∥h∥4g(x) . (11)

(b) For any x ∈ U, any (h1, h2, h3, h4) ∈ Rd × Rd × Rd × Rd

|D4ϕ(x)[h1, h2, h3, h4]| ≤ α(α+ 1)

4∏
i=1

∥hi∥g(x) . (12)

(c) For any x ∈ U, any y ∈W0(x, 1) and any (h1, h2) ∈ Rd × Rd

∥D3ϕ(x)[h1, h2]−D3ϕ(y)[h1, h2]∥g(x)−1 ≤ α(α+ 1)/3∥h1∥g(x)∥h2∥g(x)((1− ∥y − x∥g(x))−3 − 1) .
(13)

Proof. We first prove (11). First remark that the result is true for h = 0. Consider now h ̸= 0.
Let ε > 0. We define tε = (1 + ε)−1∥h∥−1

g(x) > 0, y+ε = x + tεh and y−ε = x − tεh. We have
∥x − y+ε ∥g(x) = ∥x − y−ε ∥g(x) = 1/(1 + ε) < 1. Hence, y−ε ∈ U and y+ε ∈ U by Lemma 9.
Therefore, ∥h∥U,x ≤ t−1

ε and

|D4ϕ(x)[h, h, h, h]| ≤ α(α+ 1)∥h∥4g(x)(1 + ε)2 .
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We conclude upon taking ε→ 0. Then, (12) is an immediate consequence of (11) using (Nesterov &
Nemirovskii, 1994, Proposition 9.1.1). We now prove (13). Using Lemma 9, we have

∥D3ϕ(x)[h1, h2]−D3ϕ(y)[h1, h2]∥g(x)−1

≤
∫ 1

0
∥D4ϕ(x+ t(y − x))[h1, h2, y − x]∥g(x)−1dt

≤
∫ 1

0
(1− t∥y − x∥g(x))−1∥D4ϕ(x+ t(y − x))[h1, h2, y − x]∥g(x+t(y−x))−1dt

≤
∫ 1

0
α(α+ 1)/(1− t∥y − x∥g(x))∥h1∥g(x+t(y−x))∥h2∥g(x+t(y−x))∥y − x∥g(x+t(y−x))dt

≤ α(α+ 1)∥h1∥g(x)∥h2∥g(x)
∫ 1

0
∥y − x∥g(x)/(1− t∥y − x∥g(x))4dt

≤ α(α+ 1)/3∥h1∥g(x)∥h2∥g(x)((1− ∥y − x∥g(x))−3 − 1) ,

which concludes the proof.

We now prove the equivalence between the Euclidean norm and the norms induced by g and g−1.
Lemma 12. Let (U, g) be non-empty Riemannian manifold in Rd. For any x0 ∈ U, any (x, p) ∈
U× Rd, we have

∥g(x0)−1∥−1/2
2 ∥x∥2 ≤ ∥x∥g(x0) ≤ ∥g(x0)∥1/22 ∥x∥2 ,

∥g(x0)∥−1/2
2 ∥p∥2 ≤ ∥p∥g(x0)−1 ≤ ∥g(x0)−1∥1/22 ∥p∥2 .

In addition, let

Cx0
= max(∥g(x0)∥1/22 , ∥g(x0)−1∥1/22 ) > 0 .

Then, we have

1/Cx0(∥x∥2 + ∥p∥2) ≤ ∥x∥g(x0) + ∥p∥g(x0)−1 ≤ Cx0
(∥x∥2 + ∥p∥2) .

D C-BHMC: Algorithm and Results

In this section, we first state general results on the Hamiltonian dynamics (3) under our main
assumptions. It allows us to introduce the continuous version of BHMC (c-BHMC), for which we
derive the reversibility with respect to π. Full proofs of this section are provided in Appendix E.

Results on the Hamiltonian dynamics. Using Cauchy-Lipschitz’s theorem, we obtain in Proposi-
tion 13 the existence and uniqueness of the Hamiltonian dynamics (3), starting from any z0 ∈ T⋆M.
Proposition 13. Assume A1, A2. Let z0 ∈ T⋆M. Then (3) admits a unique maximal solution (Jz0 , z),
where (i) Jz0 ⊂ R is an open neighbourhood of 0, (ii) z ∈ C1(Jz0 ,T

⋆M), (iii) z(0) = z0 and (iv)
for any t ∈ Jz0 , H(z(t)) = H(z0).

In contrast to the Euclidean case (i.e., g(x) = Id), the Hamiltonian dynamics (3) relies on a metric
derived from a self-concordant barrier, and thus is defined up to an explosion time. In the next result,
we characterize the behaviour of the solutions when this explosion time is finite.
Proposition 14. Assume A1, A2. Let z0 ∈ T⋆M, (Jz0 , z) as in Proposition 13. Assume Tz0 =
sup Jz0 < +∞, then we have
(a) limt→Tz0

∥p(t)∥2 = +∞.
(b) There exists xM ∈ ∂M such that limt→Tz0

x(t) = xM.

In the rest of this section, we define the Hamiltonian flow as the map T : D → T⋆M, where
D = {(h, z0) : z0 ∈ T⋆M, h < sup Jz0}, such that Th(z0) = z(h) for any (h, z0) ∈ D, z being
uniquely defined from z0 in Proposition 13.

Introduction to c-BHMC. In the case where D = T⋆M × R, the definition of the Hamiltonian
dynamics ensures that Th is involutive (up to momentum reversal) for any h > 0, which is key to
derive reversibility in BHMC. However, in our manifold setting, there is one subtlety that needs to be
checked, namely that the Hamiltonian flow does not leave the cotangent bundle in finite time. As
detailed in Proposition 14, there is indeed no guarantee that this flow is defined for all times, i.e., that
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we have D = T⋆M× R, due to the ill-conditioned behavior of the dynamics near the boundary of
the manifold. Therefore, given a time horizon h > 0, we restrict the cotangent bundle to the points
where the Hamiltonian flow is defined up to time h. Hence, we define, for any h > 0, the sets

Eh = {z0 ∈ T⋆M : h < sup Jz0} , Ēh = {z0 ∈ Eh : h < sup J(s◦Th)(z0)} .
Note that elements of Ēh correspond to points z0 for which:

(a) we are able to compute exactly the Hamiltonian dynamics (3) starting from z0 on the time interval
[0, h], by considering {Tt(z0)}t∈[0,h] (since Ēh ⊂ Eh),
(b) we are also able to compute exactly the reversed dynamics - up to momentum reversal - starting
from (s ◦ Th)(z0) on the time interval [0, h].

In Appendix E, we prove that Th is symplectic (up to momentum reversal) on Ēh for any h > 0,
which thus ensures that the Hamiltonian dynamics is reversible with respect to π̄, see Lemma 16.

Let h > 0. Our algorithm c-BHMC, whose pseudo-code is provided in Algorithm 2, then proceeds
as follows at stage n ≥ 1. Assume that the current state is (Xn−1, Pn−1) ∈ T⋆M. First define
a partial refreshment of the momentum P̃n ←

√
1− βPn−1 +

√
βGn, where Gn ∼ Nx(0, Id) is

independent from Pn−1. Then, verify that (Xn−1, P̃n) ∈ Ēh, which ensures that the Hamiltonian
flow is involutive on the time interval [0, h], starting at this state. In the same spirit as in Algorithm 1,
we refer to this step as an “involution checking step”, which is highlighted in yellow in Algorithm 2,
although the involution property directly derives from the Hamiltonian dynamics. If this step is valid,
define (Xn, P̄n) = Th(Xn−1, P̃n); otherwise, set (Xn, P̄n) ← s(Xn−1, P̃n). Finally, update the
momentum as in the beginning of the iteration to obtain the new state (Xn, Pn).

Algorithm 2: c-BHMC with Momentum Refresh
Input: (X0, P0) ∈ T⋆M, β ∈ (0, 1], N ∈ N, h > 0
Output: (Xn, Pn)n∈[N ]

1 for n = 1, ..., N do
2 Step 1: Gn ∼ Nx(0, Id), P̃n ←

√
1− βPn−1 +

√
βGn

3 Step 2: solving continuous ODE (3)
4 if (Xn−1, P̃n) ∈ Ēh then (Xn, P̄n)← Th(Xn−1, P̃n)

5 else (Xn, P̄n)← s(Xn−1, P̃n)

6 Step 3: G′
n ∼ Nx(0, Id), Pn ←

√
1− βP̄n +

√
βG′

n

7 end

Denote by Qc : T
⋆M× B(T⋆M)→ [0, 1], the transition kernel of the (homogeneous) Markov chain

(Xn, Pn)n∈[N ] obtained with Algorithm 2. Using the properties of the Hamiltonian dynamics, we get
the following result.
Theorem 15. Assume A1, A2. Then, Qc is reversible up to momentum reversal, i.e., we have for any
f ∈ C(T⋆M× T⋆M,R) with compact support∫

T⋆M×T⋆M
f(z, z′)dπ̄(z)Qc(z,dz

′) =
∫
T⋆M×T⋆M

f(s(z′), s(z))dπ̄(z)Qc(z,dz
′) .

In particular, π̄ is an invariant measure for Qc.

E Proofs of Appendix D

E.1 Existence, uniqueness and explosion time of Hamiltonian dynamics

We prove below Proposition 13 and Proposition 14.

Proof of Proposition 13. Assume A1, A2. In particular, M contains no straight line, and Lemmas 9
and 11 apply here. We rewrite the ODE (3) as a Cauchy problem defined on Banach space E =
(Rd × Rd, ∥ · ∥E) where ∥(a, b)∥E = ∥a∥2 + ∥b∥2 for any pair (a, b) ∈ Rd × Rd. We define
Ω = M× Rd, which is an open set in E. A solution (J, z) to this Cauchy problem is defined for all
t ∈ J by

ż(t) = F (z(t)) , z(0) = z0 , where F (x, p) = (∂pH(x, p),−∂xH(x, p)) ,
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such that J is an open interval of R with 0 ∈ J , and z = (x, p) : J → Ω is differentiable on J . We
now prove two results on F to establish existence and uniqueness of a maximal solution (J, z) for
this Cauchy problem:

(a) F is continuously differentiable on Ω.

(b) F is locally Lipschitz-continuous on Ω with respect to ∥ · ∥E.

Since∇V,Dg ∈ C1(M,R), we directly obtain Item (a). We now prove Item (b). Let z̄ = (x̄, p̄) ∈ Ω.
We endow E with the norm ∥ · ∥z̄ . Since M is an open subset of Rd, there exists 0 < r ≤ 1/(11Cx̄),
where we recall that Cx̄ is defined in Lemma 12, such that B∥·∥2

(x̄, r) ⊂ M. We consider such r,
and we define B = B∥·∥E

(z̄, r) and Bg = B∥·∥z̄
(z̄, r̄), where r̄ = Cx̄r ≤ 1/11. In particular, we

have by Lemma 9-(b) that Bg ⊂ B∥·∥g(x̄)
(x̄, r̄)×B∥·∥g(x̄)−1

(p̄, r̄) ⊂ Ω since r̄ < 1. Moreover, using
Lemma 12, we have B ⊂ Bg ⊂ Ω.

Since V ∈ C2(M,R), ∇V is Lipschitz-continuous on Bg, i.e., there exists CV > 0 such that for any
(z, z′) ∈ Bg × Bg,

∥∇V (x)−∇V (x′)∥g(x̄)−1 ≤ CV ∥x− x′∥g(x̄) . (14)

We first show that F is Lipschitz-continuous on Bg with respect to ∥ · ∥z̄ . Consider (z, z′) ∈
Bg × Bg denoted by z = (x, p) and z′ = (x′, p′). Note that (x, x′) ∈ W 0(x̄, 1) × W 0(x̄, 1),
where W 0(x̄, 1) is defined in Lemma 9. We first bound ∥F (1)(z) − F (1)(z′)∥g(x̄) = ∥∂pH(z) −
∂pH(z′)∥g(x̄). We have

∂pH(z)− ∂pH(z′) = g(x)−1p− g(x′)−1p′ = g(x)−1(p− p′) + (g(x)−1 − g(x′)−1)p′ ,

then,
∥∂pH(z)− ∂pH(z′)∥g(x̄) ≤ ∥g(x̄)1/2g(x)−1g(x̄)1/2∥2∥p− p′∥g(x̄)−1 (15)

+ ∥g(x̄)1/2(g(x)−1 − g(x′)−1)g(x̄)1/2∥2∥p′∥g(x̄)−1 .

Using Lemma 9-(b), we have
(1− ∥x̄− x∥g(x))2g(x̄)−1 ⪯ g(x)−1 ⪯ (1− ∥x̄− x∥g(x))−2g(x̄)−1 ,

and thus,
(1− ∥x̄− x∥g(x))2Id ⪯ g(x̄)1/2g(x)−1g(x̄)1/2 ⪯ (1− ∥x̄− x∥g(x))−2Id

(1− r̄)2Id ≺ g(x̄)1/2g(x)−1g(x̄)1/2 ≺ (1− r̄)−2Id .

Therefore, we have
∥g(x̄)1/2g(x)−1g(x̄)1/2∥2 ≤ (1− r̄)−2 . (16)

In addition, we have
∥x− x′∥g(x) ≤ (1− ∥x̄− x′∥g(x̄))−1∥x− x∥g(x̄)

< (1− r̄)−12r̄

< 1/5, (17)

where we used Lemma 9-(c) in the first inequality and r̄ ≤ 1/11 in the last inequality. Therefore,
x′ ∈W0(x, 1) and we have using Lemma 9-(b)

{(1− ∥x′ − x∥g(x))2 − 1}g(x′)−1 ⪯ g(x)−1 − g(x′)−1

⪯ {(1− ∥x′ − x∥g(x))−2 − 1}g(x′)−1

{(1− ∥x′ − x∥g(x))2 − 1}(1− r̄)2Id ⪯ g(x̄)1/2(g(x)−1 − g(x′)−1)g(x̄)1/2

⪯ {(1− ∥x′ − x∥g(x))−2 − 1}(1− r̄)−2Id .

Then,
∥g(x̄)1/2(g(x)−1 − g(x′)−1)g(x̄)1/2∥2 (18)

≤ max(|(1− ∥x′ − x∥g(x))2 − 1|(1− r̄)2, {(1− ∥x′ − x∥g(x))−2 − 1}(1− r̄)−2)

≤ (1− r̄)−2 max(|(1− ∥x′ − x∥g(x))2 − 1|, (1− ∥x′ − x∥g(x))−2 − 1) .

Using Inequalities (a) and (c) with u = ∥x′ − x∥g(x), where u ≤ 1/5 by (17), we obtain
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(a) |(1− ∥x′ − x∥g(x))2 − 1| ≤ 3∥x′ − x∥g(x) < 3(1− r̄)−1∥x− x′∥g(x̄) ,

(b) (1− ∥x′ − x∥g(x))−2 − 1 ≤ 3∥x′ − x∥g(x) < 3(1− r̄)−1∥x− x′∥g(x̄) .

Moreover, we have

∥p′∥g(x̄)−1 = ∥p′ − p̄+ p̄∥g(x̄)−1 ≤ r̄ + ∥p̄∥g(x̄)−1 .

Combining (15), (16) and (18), it comes that

∥F (1)(z)−F (1)(z′)∥g(x̄) ≤ (1−r̄)−2∥p−p′∥g(x̄)−1+3(1−r̄)−3(r̄+∥p̄∥g(x̄)−1)∥x−x′∥g(x̄) . (19)

We define Ax̄,1 = (1 − r̄)−2 + 3(1 − r̄)−3(r̄ + ∥p̄∥g(x̄)−1) such that ∥F (1)(z) − F (1)(z′)∥g(x̄) ≤
Ax̄,1∥z − z′∥z̄ and we aim to bound ∥F (2)(z) − F (2)(x′)∥g(x̄)−1 = ∥∂xH(z) − ∂xH(z′)∥g(x̄)−1 .
We have

∂xH(z)− ∂xH(z′) =∇V (x)−∇V (x′) (20)

+ 1
2Dg(x′)[g(x′)−1p′, g(x′)−1p′]− 1

2Dg(x)[g(x)−1p, g(x)−1p]

+ 1
2g(x)

−1 : Dg(x)− 1
2g(x

′)−1 : Dg(x′)

We have

∥Dg(x′)[g(x′)−1p′, g(x′)−1p′]−Dg(x)[g(x)−1p, g(x)−1p]∥g(x̄)−1

≤ ∥Dg(x)[g(x)−1p, g(x)−1p]−Dg(x)[g(x′)−1p′, g(x′)−1p′]∥g(x̄)−1

+ ∥Dg(x)[g(x′)−1p′, g(x′)−1p′]−Dg(x′)[g(x′)−1p′, g(x′)−1p′]∥g(x̄)−1 (21)

Note that we have g(x)−1p = F (1)(z) (resp. g(x′)−1p′ = F (1)(z′)). Using Lemma 9-(c), the first
upper bound in (21) is bounded by

(1− r̄)−1∥Dg(x)[F (1)(z), F (1)(z)]−Dg(x)[F (1)(z′), F (1)(z′)]∥g(x)−1

≤ 2(1− r̄)−1∥Dg(x)[F (1)(z′)− F (1)(z), F (1)(z′)]∥g(x)−1

+ (1− r̄)−1∥Dg(x)[F (1)(z′)− F (1)(z), F (1)(z′)− F (1)(z)]∥g(x)−1

≤ 4(1− r̄)−1∥F (1)(z′)− F (1)(z)∥g(x)∥F (1)(z′)∥g(x)
+ 2(1− r̄)−1∥F (1)(z′)− F (1)(z)∥2g(x) (Lemma 9-(a))

≤ 4(1− r̄)−3∥F (1)(z′)− F (1)(z)∥g(x̄)∥F (1)(z′)∥g(x̄)
+ 2(1− r̄)−3∥F (1)(z′)− F (1)(z)∥2g(x̄) (Lemma 9-(c))

≤ 4(1− r̄)−3Ax̄,1∥z − z′∥z̄∥F (1)(z′)∥g(x̄) + 2(1− r̄)−3A2
x̄,1∥z − z′∥2z̄ (see (19))

≤ {4Ax̄,1(1− r̄)−5(r̄ + ∥p̄∥g(x̄)−1) + 4(1− r̄)−3A2
x̄,1r̄}∥z − z′∥z̄ ,

where we used that ∥F (1)(z′)∥g(x̄) ≤ (1− r̄)−2(r̄ + ∥p̄∥g(x̄)−1) in the last inequality. Combining
Lemma 9-(c) and Lemma 11-(c), the second upper bound in (21) is bounded by

(1− r̄)−1∥Dg(x)[F (1)(z′), F (1)(z′)]−Dg(x′)[F (1)(z′), F (1)(z′)]∥g(x)−1

≤ α(α+ 1)(1− r̄)−1/3
{
(1− ∥x′ − x∥g(x))−3 − 1

}
∥F (1)(z′)∥2g(x)

≤ α(α+ 1)(1− r̄)−3/3
{
(1− (1− r̄)−1∥x′ − x∥g(x̄))−3 − 1

}
∥F (1)(z′)∥2g(x̄)

≤ α(α+ 1)(1− r̄)−7(r̄ + ∥p̄∥g(x̄)−1)2/3
{
(1− (1− r̄)−1∥x′ − x∥g(x̄))−3 − 1

}
.

Using Inequality (a) with u = (1− r̄)−1∥x′ − x∥g(x̄), where u ≤ 1/5 by (17), we obtain

(1− (1− r̄)−1∥x′ − x∥g(x̄))−3 − 1 ≤ 5(1− r̄)−1∥x′ − x∥g(x̄) . (22)

Then, the second upper bound in (21) is bounded by

(5/3)α(α+ 1)(1− r̄)−8(r̄ + ∥p̄∥g(x̄)−1)2∥x′ − x∥g(x̄) .
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We now define h : y ∈ M → g(y)−1 : Dg(y). Since ϕ ∈ C4(M), h ∈ C1(M). Moreover,
[x, x′] ∈ M by convexity of M and we can define Aϕ = supy∈[x,x′] ∥Dh(y)∥, where ∥Dh(y)∥ =
sup∥u∥g(x̄)=1 ∥Dh(y)[u]∥g(x̄)−1 . Using the mean value theorem on h, we have

∥h(x)− h(x′)∥g(x̄)−1 ≤ Aϕ∥x′ − x∥g(x̄) . (23)

By combining (14), (20), (21) and (23), we have

∥F (2)(z)− F (2)(z′)∥g(x̄)−1

≤ CV ∥x− x′∥g(x̄)
+ (1/2){4Ax̄,1(1− r̄)−5(r̄ + ∥p̄∥g(x̄)−1) + 4A2

x̄,1(1− r̄)−3r̄}∥z − z′∥z̄
+ (1/2) · (5/3)α(α+ 1)(1− r̄)−8(r̄ + ∥p̄∥g(x̄)−1)2∥x′ − x∥g(x̄)
+ (1/2)Aϕ∥x′ − x∥g(x̄) .

We define Ax̄,2 = CV + 2Ax̄,1(1− r̄)−5(r̄+ ∥p̄∥g(x̄)−1) + 2A2
x̄,1(1− r̄)−3r̄+ (5/6)α(α+ 1)(1−

r̄)−8(r̄ + ∥p̄∥g(x̄)−1)2 +Aϕ/2 such that

∥F (2)(z)− F (2)(z′)∥g(x̄) ≤ Ax̄,2∥z − z′∥z̄ .

Finally, we have

∥F (z)− F (z′)∥z̄ = ∥F (1)(z)− F (1)(z′)∥g(x̄) + ∥F (2)(z)− F (2)(z′)∥g(x̄)−1

≤ (Ax̄,1 +Ax̄,2)∥z − z′∥z̄ ,

i.e., F is (Ax̄,1 +Ax̄,2)-Lipschitz-continuous on Bg with respect to ∥ · ∥z̄ .

We now show that F is Lipschitz-continuous on B with respect to ∥ · ∥E. Consider (z, z′) ∈ B×B
denoted by z = (x, p) and z′ = (x′, p′). In particular, (z, z′) ∈ Bg × Bg. Using the previous result
and Lemma 12, we have

∥F (z)−F (z′)∥E ≤ Cx̄∥F (z)−F (z′)∥z̄ ≤ Cx̄(Ax̄,1+Ax̄,2)∥z−z′∥z̄ ≤ C2
x̄(Ax̄,1+Ax̄,2)∥z−z′∥E ,

which proves that F is C2
x̄(Ax̄,1 +Ax̄,2)-Lipschitz-continuous on B with respect to ∥ · ∥E.

Conclusion. Combining Items (a) and (b), we obtain the results (i), (ii) and (iii) of Proposition 13
upon using Cauchy-Lipschitz’s theorem. Moreover, for any t ∈ Jz0 , ∂tH(z(t)) = ∂xH(z(t))⊤ẋ(t)+
∂pH(z(t))⊤ṗ(t) = −ṗ(t)⊤ẋ(t)+ ṗ(t)⊤ẋ(t) = 0, which proves the result (iv) of Proposition 13.

Proof of Proposition 14. Assume A1, A2. Let z0 ∈ T⋆M, (Jz0 , z) as in Proposition 13. Assume that
Tz0 = sup Jz0 < +∞. Then, by Cauchy-Lipschitz’s theorem, z leaves any compact set of E at the
neighbourhood of Tz0 . By construction of ∥ · ∥E, this property is induced on both variables x ∈ M
and p ∈ Rd, each with respect to ∥ · ∥2. We directly obtain the result of Proposition 14 by continuity
of (x, p).

E.2 Proof of reversibility in Algorithm 2

In (RM)HMC, one often sets the time horizon of the Hamiltonian dynamics with a hyperparameter h.
However, under A1 and A2, we are not able to prove that the Hamiltonian dynamics (3) is defined
at time h > 0, given any starting point z0 ∈ T⋆M. Actually, this dynamics explodes if the time
horizon is finite (see Proposition 14). This theoretical limitation requires to implement some sort of
“involution checking step” (see Line 4 in Algorithm 2), which is theoretically explained below.

In the rest of this section, for any z0 ∈ T⋆M, we will denote by z(·, z0) ∈ C1(Jz0 ,T
⋆M) the maximal

solution to (3) with starting point z0, uniquely defined in Proposition 13. For any h > 0, we recall
below the definition of the sets Eh and Ēh the map Th introduced in Appendix D:

(a) Eh = {z0 ∈ T⋆M : h < sup Jz0},
(b) Ēh = {z0 ∈ Eh : h < sup J(s◦Th)(z0)},
(c) the map Th : Eh → T⋆M is such that Th(z0) = z(h, z0) for any z0 ∈ Eh.
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In particular, we have

Ēh = Eh ∩ (s ◦ Th)
−1(Eh) . (24)

We first prove that the restriction of s ◦Th to Ēh is an involutive integrator, which is crucial to derive
the “reversibility“ of Algorithm 2 in Theorem 15.

Lemma 16. Assume A1, A2. Then, for any h > 0, s ◦ Th is a C1-diffeomorphism on Ēh such that
|detJac[s ◦ Th]| ≡ 1.

Proof. Assume A1, A2. Let h > 0. It is clear that Th (and thus s ◦ Th) is well defined and
continuously differentiable on Eh (in particular on Ēh), by elaborating on the proof of Proposition 13
combined with Cauchy-Lipschitz’s theorem. Let z0 ∈ Ēh. By definition of Ēh, Th(z0), resp. Jz0 , and
(Th ◦ s ◦Th)(z0), resp. J(s◦Th)(z0), are well defined. We now aim to prove that (Th ◦ s ◦Th)(z0) =
s(z0).

We define z′ : t ∈ [0, h] 7→ s(z(h− t, z0)), which existence is straightforward since (h− t) ∈ Jz0 for
any t ∈ [0, h]. In particular, z′(0) = (s ◦ Th)(z0) and z′ is a solution of the ODE (3) on the interval
[0, h]. Yet, [0, h] ⊂ J(s◦Th)(z0), and z′(0) = z(0, (s◦Th)(z0)). Then, by unicity of z(·, (s◦Th)(z0))
(see Proposition 13), z(·, (s ◦ Th)(z0)) and z′ coincide on [0, h]. In particular, we have at time h

s(z0) = z′(h) = z(h, (s ◦ Th)(z0)) = (Th ◦ s ◦ Th)(z0) .

Then for any z0 ∈ Ēh, (s ◦ Th ◦ s ◦ Th)(z0) = z0, i.e., s ◦ Th is an involution on Ēh. Since
s ◦ Th ∈ C1(Ēh,T

⋆M), s ◦ Th is a C1-diffeomorphism on Ēh such that |detJac[s ◦ Th]| ≡ 1.

We recall that we denote by Qc : T
⋆M×B(T⋆M)→ [0, 1], the transition kernel of the (homogeneous)

Markov chain (Xn, Pn)n∈[N ] obtained with Algorithm 2. We also denote by:

(a) Q0 : T⋆M × B(T⋆M) → [0, 1], the transition kernel referring to Step 1 (also Step 3) in
Algorithm 2.

(b) Qc,1 : T⋆M× B(T⋆M)→ [0, 1], the transition kernel referring to Step 2 in Algorithm 2.

We provide below details on Markov kernels Q0, Qc,1 and Qc.

Kernel Q0. This kernel corresponds to the Gaussian momentum update with refreshing rate β. For
any (z, z′) ∈ T⋆M× T⋆M, we have

Q0(z,dz
′) = Nx(p

′;
√

1− βp, βId)dp′δx(dx′) (25)

= (2πβ)−d/2 det(g(x))−1/2exp[−(2β)−1∥p′ −
√
1− βp∥2g(x)−1 ]dp′δx(dx

′) .

Kernel Qc,1. This kernel is deterministic and corresponds to the exact integration of the Hamiltonian
up until time h. For any (z, z′) ∈ T⋆M× T⋆M, we have

Qc,1(z,dz
′) = 1Ēh

(z)δTh(z)(dz
′) + 1Ēc

h
(z)δs(z)(dz

′) . (26)

Kernel Qc. This kernel corresponds to one step of Algorithm 2 (i.e., comprising Steps 1 to 3). For
any (z, z′) ∈ T⋆M× T⋆M, we have

Qc(z,dz
′) =

∫
T⋆M×T⋆M

Q0(z,dz1)Qc,1(z1,dz2)Q0(z2,dz
′) . (27)

We recall that π̄, as defined in (2), admits a density with respect to the product Lebesgue measure
given for any z = (x, p) ∈ T⋆M by

(dπ̄/(dxdp))(x, p) = (1/Z) exp[−(1/2)∥p∥2g(x)−1 ] det(g(x))−1/2 exp[−V (x)] .

Lemma 17. Assume A1. Then, the Markov kernel Q0, defined in (25), is reversible (up to momentum
reversal) with respect to π̄.
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Proof. Assume A1. For any (z, z′) ∈ T⋆M× T⋆M, we have

Q0(z,dz
′)π̄(dz)= (1/Z)(2π)−d/2β−d/2 det(g(x))−1 exp[−V (x)]dxdpdp′δx(dx

′)

exp[−(2β)−1∥p′ −
√
1− βp∥2g(x)−1 ] exp[−(1/2)∥p∥2g(x)−1 ]

= (1/Z)(2π)−d/2β−d/2 det(g(x))−1 exp[−V (x)]dxdpdp′δx(dx
′)

exp[−(2β)−1{∥p∥2g(x)−1 − 2
√
1− β⟨p′, p⟩g(x)−1 + ∥p′∥2g(x)−1}]

= (1/Z)(2π)−d/2β−d/2 det(g(x′))−1 exp[−V (x′)]dx′dp′dpδx(dx)

exp[−(2β)−1{∥p′∥2g(x′)−1 − 2
√
1− β⟨p, p′⟩g(x′)−1 + ∥p∥2g(x′)−1}]

= Q0(z
′,dz)π̄(dz′) ,

which proves the reversibility of Q0 with respect to π̄. Since s#Q0 = Q0, we conclude the proof
with Lemma 6.

Lemma 18. Assume A1, A2. Then, for any h > 0, the Markov kernel Qc,1 with step-size h, defined
in (26), is reversible up to momentum reversal with respect to π̄.

Proof. Assume A1, A2. We recall that the set Ēh is defined in (24). Let f ∈ C(T⋆M × T⋆M,R)
with compact support. According to Definition 4, we aim to show that∫

T⋆M×T⋆M
f(z, z′)Qc,1(z,dz

′)π̄(dz) =
∫
T⋆M×T⋆M

f(s(z′), s(z))Qc,1(z,dz
′)π̄(dz) . (28)

We denote by I the left integral of (28). We have I = I1 + I2 where
I1 =

∫
Ēh
π̄(z)f(z,Th(z))dz , I2 =

∫
Ēc
h
π̄(z)f(z, s(z))dz .

We denote by J the right integral of (28). By symmetry, we have J = J1 + J2 where
J1 =

∫
Ēh
π̄(z)f((s ◦ Th)(z), s(z))dz , J2 =

∫
Ēc
h
π̄(z)f(z, s(z))dz .

We directly have I2 = J2. Let us now prove that I1 = J1. By change of variable z 7→ (s ◦ Th)(z) in
I1, we have
I1 =

∫
Ēh
π̄(z)f(z,Th(z))dz

=
∫
(s◦Th)(Ēh)

π̄((s ◦ Th)(z))f((s ◦ Th)(z), s(z))dz (Lemma 16)

=
∫
Ēh
π̄(z)f((s ◦ Th)(z), s(z))dz (Proposition 13-(iv) & (s ◦ Th)(Ēh) = Ēh)

= J1 .

Finally, we obtain I = J and thus prove (28) for any continuous function with compact support,
which concludes the proof.

We are now ready to prove Theorem 15, which states that Qc is reversible up to momentum reversal
with respect to π̄.

Proof of Theorem 15. Assume A1, A2. Let f : T⋆M × T⋆M → R be a continuous function with
compact support. We have∫
T⋆M×T⋆M

f(z, z′)Qc(z,dz
′)π̄(dz)

=
∫
(T⋆M)4

f(z, z′)Q0(z,dz1)Qc,1(z1,dz2)Q0(z2,dz
′)π̄(dz) (see (27))

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(z,dz1)Qc,1(s(z),dz2)Q0(z2,dz

′)π̄(dz) (Lemma 17)

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(s(z),dz1)Qc,1(z,dz2)Q0(z2,dz

′)π̄(dz) (momentum reversal on z)

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(z2,dz1)Qc,1(z,dz2)Q0(s(z),dz

′)π̄(dz) (Lemma 18)

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(z2,dz1)Qc,1(s(z),dz2)Q0(z,dz

′)π̄(dz) (momentum reversal on z)

=
∫
(T⋆M)4

f(s(z1), s(z))Q0(z2,dz1)Qc,1(z
′,dz2)Q0(z,dz

′)π̄(dz) (Lemma 17)

=
∫
T⋆M×T⋆M

f(s(z′), s(z))Qc(z,dz
′)π̄(dz) .
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Moreover, s#π̄ = π̄. Hence, by combining Definition 4 and Lemma 5, we obtain the result of
Theorem 15.

F Numerical integration in HMC

In this section, we first recall the definition of symplectic maps, and then discuss the choice of
integrators in RMHMC. Finally, we focus on the implicit integrator defined in (6) and provide some
notations, which will be notably used in appendix G.

Reminders on symplecticity. We define Jd =

(
0 Id
−Id 0

)
∈ R2d×2d.

Definition 19 (Hairer et al. (2006)). A linear mapping A : R2d → R2d is called symplectic if
A⊤JdA = Jd.

Definition 20 (Hairer et al. (2006)). A differentiable mapF : U→ R2d, where U ⊂ R2d is an open set,
is called symplectic if the Jacobian matrix Jac[F ] is symplectic, i.e., if Jac[F ](z)⊤Jd Jac[F ](z) = Jd
for any z ∈ U. In particular, if F is symplectic, then |detJac[F ]| ≡ 1.

Choice of the integrators in RMHMC. Introducing a Riemannian metric g in the Hamiltonian a
priori makes it non separable. Thus, designing an integrator which is (i) symplectic, (ii) reversible
and (iii) not too computationally heavy is challenging. The generalized Leapfrog integrator (GLI), or
equivalently the Störmer-Verlet integrator, combined with fixed point iterations, as chosen by Girolami
& Calderhead (2011), is considered as the standard scheme for RMHMC. Brofos & Lederman (2021b)
analyze the impact of GLI on the ergodicity of RMHMC under a metric which is designed in the same
manner as Cobb et al. (2019). In particular, they show that the convergence threshold used to compute
the fixed-point process only matters to an extent, and identify a diminishing return to using smaller
convergence thresholds. They compare the fixed-point approach with Newton’s method, which gives
less iterations to converge. On the other hand, the implicit midpoint integrator (IMI) enjoys the same
theoretical properties as GLI, when these two integrators are combined with fixed-point iterations.
As shown by Brofos & Lederman (2021a), IMI may also show numerical advantages in terms of
reversibility and volume preservation for specific target distributions. However, this integrator is hard
to use for reversibility proofs due to its non-separability. Besides this, Cobb et al. (2019) combine a
2-state augmented Hamiltonian, based on the work of Tao (2016), with Strang splitting (Strang, 1968)
to propose a symplectic explicit integrator which thus has the advantage not to rely on fixed-point
iterations. Yet, this integrator does not satisfy reversibility in theory.

Details on the Störmer-Verlet integrator. The scheme defined in (6) can be written as Gh =
Gh ◦Gh where:

(a) Gh : T⋆M→ 2T
⋆M is the set-valued map implicitly defined by the first two aligns of (6), i.e., for

any (z, z′) ∈ T⋆M× T⋆M, z′ ∈ Gh(z) if and only if

p′ = p− h
2∂xH2(x, p

′), x′ = x+ h
2 [∂pH2(x, p

′) + ∂pH2(x
′, p′)] , (29)

We also define the map g
h
: T⋆M× T⋆M→ Rn × Rn by

g
h
(z, z′) = (x′ − x− h

2 [∂pH2(x, p
′) + ∂pH2(x

′, p′)], p′ − p+ h
2∂xH2(x, p

′)) . (30)

such that g
h
(z, z′) = 0 if and only if z′ ∈ Gh(z).

(b) Gh : T⋆M→ T⋆M is explicitly defined by the last align of (6), i.e., for any z ∈ T⋆M,

Gh(z) = (x, p− h
2∂xH2(x, p)) . (31)

G Proofs of Section 4.1

In this section, we state several results on the maps defined by the implicit integrators of the
Hamiltonian (see Section 3.1), in order to prove Proposition 2.
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Lemma 21. Let U ⊂ Rd a non-empty open set and z ∈ U. Assume there exist a neighbourhood
Uz ⊂ U of z, L > 0 and a L-Lipschitz-continuous map ψ : Uz → Rd such that ψ ∈ C1(Uz,Rd).
Then, for any h ∈ (0, 1/L) and any a ∈ Rd, the map ψh : Uz → Rd defined for any z′ ∈ Uz by
ψh(z

′) = z′ + hψ(z′) + a is a C1-diffeomorphism on a neighbourhood U′
z ⊂ Uz of z.

Proof. Assume we are provided with U, z,Uz, L and ψ as described in Lemma 21. Let h ∈ (0, 1/L)
and a ∈ Rd. We define the map ψh : Uz → Rd by ψh(z

′) = z′ + hψ(z′) + a, for any z′ ∈ Uz .
Since ψ ∈ C1(Uz,Rd) , it is clear that ψh ∈ C1(Uz,Rd). We have, for any z′ ∈ Uz , Dψh(z

′) =
Id+hDψ(z′). In particular, for any w ∈ Rd, it comes that

∥Dψh(z)w∥ ≥ ∥w∥ − hL∥w∥ = (1− hL)∥w∥ .
Since 1−hL > 0, Jac[ψh](z) is invertible. We conclude the proof by using the local inverse function
theorem.

We recall that the set-valued map Gh, defined in (6), is the generalised Leapfrog integrator, or
equivalently the Störmer-Verlet integrator, of the non-separable HamiltonianH2 defined in Section 3.1.
We state below a result of local smoothness of this integrator.
Lemma 22. Let (M, g) be a a smooth manifold of Rd and h > 0. Then, for any (x(0), x(1)) ∈ M×M,
the vector p(0) ∈ T⋆

x(0)M such that (x(1), p(1)) ∈ Gh(x
(0), p(0)) for any p(1) ∈ T⋆

x(1)M is uniquely
determined by p(0) = Gh,x(0)(x(1)), where the map Gh,x(0) : M→ T⋆

x(0)M is defined by

Gh,x(0)(y) = p(1/2)(y)− h

4
Dg(x(0))[g(x(0))−1p(1/2)(y), g(x(0))−1p(1/2)(y)] , (32)

with p(1/2)(y) = 2
h (g(x

(0))−1 + g(y)−1)−1(y − x(0)). In particular, if g ∈ C2(M,Rd×d), then, for
any x(0) ∈ M, Gh,x(0) ∈ C1(M,T⋆

x(0)M).

For any α ≥ 1, we define r⋆α > 0 by

r⋆α = min(1/50000, 1/{1000α(α+ 1)}) . (33)

We recall that we denote by W0(x, r) the open Dikin ellipsoid (w.r.t. g) at x ∈ M of radius r > 0,
given by W0(x, r) = {y ∈ Rd : ∥y − x∥g(x) < r}. Assume A1, A2. Let x(0) ∈ M and r ∈ (0, r⋆α],
where α is given by A2. Then, for any x ∈W0(x(0), r), x ∈ M and Jac[Gh,x(0) ](x) is invertible for
any h > 0.

Proof. Let (M, g) be a a smooth manifold of Rd and h > 0. We first prove the existence and
uniqueness of the map defined in (32). Let (x(0), x(1)) ∈ M×M. We define for any y ∈ M

p(1/2)(y) =
2

h
(g(x(0))−1 + g(y)−1)−1(y − x(0)) , p̃(y) = p(1/2)(y) +

h

2
∂xH2(x

(0), p(1/2)(y)) .

Note that these expressions are obtained by simply inverting the first two aligns of (6). Then, by
definition of Gh, the vector p ∈ T⋆

x(0)M such that (x(1), p(1)) ∈ Gh(x
(0), p) for any p(1) ∈ T⋆

x(1)M

is uniquely determined by p = p̃(x(1)). We thus obtain (32), using the expression of ∂xH2 given in
Section 3.1. Moreover, it is clear that Gh,x(0) is continuously differentiable if g ∈ C2(M,Rd×d).

We are now going to prove the second result of Lemma 22. Assume A1, A2. Let x(0) ∈ M and
r ∈ (0, r⋆α], where r⋆α is defined in (33) and α is given by A2. In particular r⋆α ≤ 1/11. For the sake
of clarity, we will now denote g(x(0)) by g0 for the rest of the proof.

We define the open Dikin ellipsoid B0 = W0(x(0), r). Since r < 1, B0 ⊂ M by Lemma 9-(b). Let
h > 0. We now define the following maps on B0

M0 =

{
B0 → S++

d (R)
y 7→ g−1

0 + g(y)−1 , K0 =

{
B0 → Rd

y 7→ g−1
0 M0(y)

−1(y − x(0)) ,

ϕ0 =

{
B0 → Rd

y 7→ M0(y)Dg0[K0(y),K0(y)]
, ϕ̃0 =

{
B0 → Rd

y 7→ h
2M0(y)Gh,x(0)(y)

.
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Note that we have, for any y ∈ B0, ϕ̃(y) = (y − x(0)) − 1
2ϕ0(y). Since g is twice continuously

differentiable on B0, the maps previously defined are continuously differentiable. We now compute
the derivatives of these maps. Let y ∈ B0 and w ∈ Rd. We have

DM0(y)[w] = −g(y)−1Dg(y)[w]g(y)−1 ,

DK0(y)[w] = −g−1
0 M0(y)

−1DM0(y)[w]M0(y)
−1(y − x(0)) + g−1

0 M0(y)
−1w

= −g−1
0 {g(y)g

−1
0 + Id}−1g(y)DM0(y)[w]g(y){g−1

0 g(y) + Id}−1(y − x(0))
+ g−1

0 M0(y)
−1w

= g−1
0 {g(y)g

−1
0 + Id}−1Dg(y)[w]{g−1

0 g(y) + Id}−1(y − x(0)) + g−1
0 M0(y)

−1w ,

Dϕ0(y)[w] = DM0(y)[w]Dg0[K0(y),K0(y)] + M0(y)Dg0[DK0(y)[w],K0(y)]

+ M0(y)Dg0[K0(y), DK0(y)[w]] ,

Dϕ̃0(y)[w] = Id −
1

2
Dϕ0(y)[w] .

We have in particular ϕ̃0(x(0)) = 0 and Dϕ0(x(0)) = 0. Let us first study the smoothness of Dϕ0 on
B0.

Smoothness of Dϕ0. We prove here that Dϕ0 is (r⋆α)
−1-Lipschitz-continuous on B0 with respect

to ∥ · ∥g0 . Let (y, y′) ∈ B0 and w ∈ Rd. We have

∥Dϕ0(y)[w]−Dϕ0(y′)[w]∥g0 (34)

≤ ∥DM0(y)[w]Dg0[K0(y),K0(y)]−DM0(y
′)[w]Dg0[K0(y

′),K0(y
′)]∥g0

+ ∥M0(y)Dg0[DK0(y)[w],K0(y)]−M0(y
′)Dg0[DK0(y

′)[w],K0(y
′)]∥g0

+ ∥M0(y)Dg0[K0(y), DK0(y)[w]]−M0(y
′)Dg0[K0(y

′), DK0(y
′)[w]]∥g0 .

Remark that the two last terms in (34) are very similar and can be bounded in the same way. The rest
of the proof on the Lipschitz-continuity of Dϕ0 is separated in two steps, each of them consisting of
bounding from above a term of (34).

Step 1. Let us first bound the first term in (34). For any x ∈ B0, we denote
DM0(x)[w]Dg0[K0(x),K0(x)] by a1(x). We have

g
1/2
0 (a1(y)− a1(y′)) (35)

= {g1/20 (DM0(y)[w]−DM0(y
′)[w])g

1/2
0 }{g

−1/2
0 Dg0[K0(y),K0(y)]}

+ {g1/20 DM0(y
′)[w]g

1/2
0 }{g

−1/2
0 (Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)])} .

We now aim to bound each one of the four terms that appear in (35).

Step 1.1. First, we have

g
1/2
0 (DM0(y)[w]−DM0(y

′)[w])g
1/2
0 = g

1/2
0 (g(y′)−1Dg(y′)[w]g(y′)−1 − g(y)−1Dg(y)[w]g(y)−1)g

1/2
0

= g
1/2
0 {g(y′)−1 − g(y)−1}Dg(y′)[w]g(y′)−1g

1/2
0

+ g
1/2
0 g(y)−1{Dg(y′)[w]−Dg(y)[w]}g(y′)−1g

1/2
0

+ g
1/2
0 g(y)−1Dg(y)[w]{g(y′)−1 − g(y)−1}g1/20 .

We recall that r ≤ r⋆α ≤ 1/11, and thus, we have for any x ∈ {y, y′} the following inequalities

∥g1/20 {g(y′)−1 − g(y)−1}g1/20 ∥2 ≤ 3(1− r)−3∥y − y′∥g0 , (on the model of (18))

∥g1/20 g(x)−1g
1/2
0 ∥2 ≤ (1− r)−2 , (Lemma 9-(b))

∥g−1/2
0 Dg(x)[w]g

−1/2
0 ∥2 ≤ (1− r)−2∥g(x)−1/2Dg(x)[w]g(x)−1/2∥2 .

27



In particular, we have for any x ∈ {y, y′}

∥g(x)−1/2Dg(x)[w]g(x)−1/2∥2 = sup
{w′∈Rd : ∥w′∥2=1}

∥Dg(x)[w, g(x)−1/2w′]∥g(x)−1 (36)

≤ 2∥w∥g(x) sup
{w′∈Rd : ∥w′∥2=1}

∥g(x)−1/2w′∥g(x) (Lemma 9-(a))

≤ 2(1− r)−1∥w∥g0
, (Lemma 9-(c))

and using again that r ≤ r⋆α ≤ 1/11, we have

∥g(y)−1/2{Dg(y′)[w]−Dg(y)[w]}g(y′)−1/2∥2 (37)

= sup
{w′∈Rd : ∥w′∥2=1}

∥Dg(y′)[w, g(y′)−1/2w′]−Dg(y)[w, g(y′)−1/2w′]}∥g(y)−1

≤ α(α+ 1)/3∥w∥g(y)((1− ∥y − y′∥g(y))−3 − 1) (Lemma 11-(c))

≤ 5α(α+ 1)/3(1− r)−2∥w∥g0
∥y − y′∥g0

. (on the model of (22))

Thus, by using (36) and (37), we have

∥g1/20 (DM0(y)[w]−DM0(y
′)[w])g

1/2
0 ∥2 ≤ (12(1− r)−8 + 5α(α+ 1)/3(1− r)−6)∥y − y′∥g0

∥w∥g0
.

Step 1.2. Secondly, we have

∥g−1/2
0 Dg0[K0(y),K0(y)]∥2 ≤ 2∥K0(y)∥2g0

(Lemma 9-(a))

≤ 2∥g−1/2
0 M0(y)

−1(y − x(0))∥22 (definition of K0)

≤ 2∥g−1/2
0 M0(y)

−1g
−1/2
0 ∥22∥y − x(0)∥2g0

≤ 2r2∥g−1/2
0 M0(y)

−1g
−1/2
0 ∥22 ,

where we have by Lemma 9-(b)

g
−1/2
0 M0(y)

−1g
−1/2
0 = (Id + g

1/2
0 g(y)−1g

1/2
0 )−1 ⪯ (1 + (1− r)2)−1Id . (38)

Hence, we obtain

∥g−1/2
0 Dg0[K0(y),K0(y)]∥2 ≤ 2r2(1 + (1− r)2)−2 . (39)

Step 1.3. Thirdly, we have

∥g1/20 DM0(y
′)[w]g

1/2
0 ∥2 ≤ (1− r)−2∥g(x)−1/2Dg(y′)[w]g(x)−1/2∥2 (40)

≤ 2(1− r)−3∥w∥g0 . (using (36))

Step 1.4. Fourthly, we have

∥g−1/2
0 (Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)])∥2 (41)

≤ 2∥Dg0[K0(y)−K0(y
′),K0(y)]∥g−1

0
+ ∥Dg0[K0(y)−K0(y

′),K0(y)−K0(y
′)]∥g−1

0

≤ 2∥K0(y)−K0(y
′)∥g0

∥K0(y)∥g0
+ ∥K0(y)−K0(y

′)∥g0
∥K0(y)−K0(y

′)∥g0
(Lemma 9-(a))

≤ 4∥M0(y)
−1(y − x(0))−M0(y

′)−1(y′ − x(0))∥g−1
0
∥M0(y)

−1(y − x(0))∥g−1
0

+ 2∥M0(y)
−1(y − x(0))−M0(y

′)−1(y′ − x(0))∥2
g−1
0
.

In particular, M0(y)
−1(y − x(0)) − M0(y

′)−1(y′ − x(0)) = M0(y)
−1(y − y′) + (M0(y)

−1 −
M0(y

′)−1)(y′ − x(0)), and thus we have

∥M0(y)
−1(y − x(0))−M0(y

′)−1(y′ − x(0))∥g−1
0

(42)

≤ ∥g−1/2
0 M0(y)

−1g
−1/2
0 ∥2∥y − y′∥g0 + r∥g−1/2

0 (M0(y)
−1 −M0(y

′)−1)g
−1/2
0 ∥2

≤ (1 + (1− r)2)−1∥y − y′∥g0
+ r∥g−1/2

0 (M0(y
′)−1 −M0(y

′)−1)g
−1/2
0 ∥2 . (using (38))
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We now aim to find an upper bound for ∥g−1/2
0 (M0(y)

−1 −M0(y
′)−1)g

−1/2
0 ∥2. We have

g
−1/2
0 (M0(y)

−1 −M0(y
′)−1)g

−1/2
0

= (Id + g
1/2
0 g(y)−1g

1/2
0 )−1 − (Id + g

1/2
0 g(y′)−1g

1/2
0 )−1

= (Id + g
1/2
0 g(y′)−1g

1/2
0 + g

1/2
0 {g(y)−1 − g(y′)−1}g1/20 )−1 − (Id + g

1/2
0 g(y′)−1g

1/2
0 )−1

= B(y′)−1/2[(Id +B(y′)−1/2g
1/2
0 {g(y)−1 − g(y′)−1}g1/20 B(y′)−1/2)−1 − Id]B(y

′)−1/2 ,

where B(y′) = Id + g
1/2
0 g(y′)−1g

1/2
0 . In particular, we have

(1 + (1− r)−2)−1/2Id ⪯ B(y′)−1/2 ⪯ (1 + (1− r)2)−1/2Id ,

by Lemma 9-(b). Note that (17) still holds, where x, x′ and r̄ are respectively replaced by y, y′ and r.
Thus, on the model on (18), we have

{(1− ∥y′ − y∥g(y))2 − 1}(1− r)2Id ⪯ g
1/2
0 {g(y)−1 − g(y′)−1}g1/20 ⪯ {(1− ∥y′ − y∥g(y))−2 − 1}(1− r)−2Id ,

and then

(1 + {(1− ∥y′ − y∥g(y))2 − 1}(1− r)2(1 + (1− r)−2)−1)Id

⪯ Id +B(y′)−1/2g
1/2
0 {g(y)−1 − g(y′)−1}g1/20 B(y′)−1/2

⪯ (1 + {(1− ∥y′ − y∥g(y))−2 − 1}(1− r)−2(1 + (1− r)2)−1)Id .

Therefore, we have ∥g−1/2
0 (M0(y

′)−1−M0(y
′)−1)g

−1/2
0 ∥2 ≤ (1+(1−r)2)−1 max(|f1(r)|, f2(r))

where

f1(r) = (1 + {(1− ∥y′ − y∥g(y))−2 − 1}(1− r)−2(1 + (1− r)2)−1)−1 − 1,

f2(r) = (1 + {(1− ∥y′ − y∥g(y))2 − 1}(1− r)2(1 + (1− r)−2)−1)−1 − 1 .

We now aim to control the upper bound max(|f1(r)|, f2(r)).

(a) We first bound |f1(r)|. Since ∥y′ − y∥g(y) ≥ 0, it is clear that f1(r) ≤ 0. Using Inequality (a)
with u = ∥y′ − y∥g(y), where u ≤ 1/5 by (17), we obtain

|f1(r)| = −f1(r)
≤ 1− (1 + 3(1− r)−2(1 + (1− r)2)−1∥y′ − y∥g(y))−1

≤ 3(1− r)−2(1 + (1− r)2)−1∥y′ − y∥g(y) (Inequality (d))

≤ 3(1− r)−3(1 + (1− r)2)−1∥y′ − y∥g0
. (Lemma 9-(c))

(b) We now bound f2(r). We have

f2(r) ≤ (1− 2(1− r)2(1 + (1− r)−2)−1∥y′ − y∥g(y))−1 − 1

≤ 4(1− r)2(1 + (1− r)−2)−1∥y′ − y∥g(y)
≤ 4(1− r)(1 + (1− r)−2)−1∥y′ − y∥g0 , (Lemma 9-(c))

where we used (i) Inequality (d) in the first line with u = ∥y′ − y∥g(y) and (ii) Inequality (b) in the
second line with u = 2(1− r)2(1+(1− r)−2)−1∥y′−y∥g(y) ≤ 4r(1− r)(1+(1− r)−2)−1 ≤ 1/2
with r ≤ 1/11.

We recall that r ∈ (0, 1), and thus, we have respectively (1− r)−3 ≥ (1− r) and (1+(1− r)2)−1 ≥
(1 + (1− r)−2)−1. Therefore, max(|f1(r)|, f2(r)) ≤ (4/3)|f1(r)| and

∥g−1/2
0 (M0(y

′)−1 −M0(y
′)−1)g

−1/2
0 ∥2 ≤ 4(1− r)−3(1 + (1− r)2)−2∥y′ − y∥g0

, (43)

∥K0(y)−K0(y
′)∥g0

≤ (1 + (1− r)2)−1{1 + 4r(1− r)−3(1 + (1− r)2)−1}∥y′ − y∥g0
.
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By combining (41), (42) and (43), we finally have

∥g−1/2
0 (Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)])∥2

≤ 4r(1 + (1− r)2)−2{1 + 4r(1− r)−3(1 + (1− r)2)−1}∥y − y′∥g0

+ 4r(1 + (1− r)2)−2{1 + 4r(1− r)−3(1 + (1− r)2)−1}2∥y − y′∥g0

≤ 4r(1 + (1− r)2)−2{2 + 4r(1− r)−3(1 + (1− r)2)−1}2∥y − y′∥g0
.

Conclusion of Step 1. By combining the results of Steps 1.1 to 1.4, it comes that

∥DM0(y)[w]Dg0[K0(y),K0(y)]−DM0(y
′)[w]Dg0[K0(y

′),K0(y
′)]∥g0

= ∥g1/20 (a1(y)− a1(y′))∥2
≤ {2r2(1 + (1− r)2)−2(12(1− r)−8 + 5α(α+ 1)/3(1− r)−6)

+ 8r(1− r)−3(1 + (1− r)2)−2{2 + 4r(1− r)−3(1 + (1− r)2)−1}2}∥y − y′∥g0
∥w∥g0

.

Step 2. Let us now bound the second term in (34). For any x ∈ B0, we denote
M0(y)Dg0[DK0(y)[w],K0(y)] by a2(x). We have

g
1/2
0 (a2(y)− a2(y′)) = {g1/20 (M0(y)−M0(y

′))g
1/2
0 }{g

−1/2
0 Dg0[DK0(y)[w],K0(y)]} (44)

+ {g1/20 M0(y
′)g

1/2
0 }{g

−1/2
0 (Dg0[DK0(y)[w],K0(y)]−Dg0[DK0(y

′)[w],K0(y
′)])} .

We now aim to bound each of the four terms that appear in (44).

Step 2.1. First, we have

∥g1/20 (M0(y)−M0(y
′))g

1/2
0 ∥2 = ∥g1/20 (g(y)−1 − g(y′)−1)g

1/2
0 ∥2

≤ 3(1− r)−3∥y − y′∥g0
. (on the model of (18))

Step 2.2. Secondly, we have

∥g−1/2
0 Dg0[DK0(y)[w],K0(y)]∥2 ≤ 2∥DK0(y)[w]∥g0∥M0(y)

−1(y − x(0))∥g−1
0

(Lemma 9-(a))

≤ 2r(1 + (1− r)2)−1∥DK0(y)[w]∥g0
, (see Step 1.2.)

where
∥DK0(y)[w]∥g0 ≤ r∥g

−1/2
0 (g(y)g−1

0 + Id)
−1g

1/2
0 ∥22∥g

−1/2
0 g(y)1/2∥22∥g(y)−1/2Dg(y)[w]g(y)−1/2∥2

+ ∥M0(y)
−1w∥g−1

0
.

Using (36) and (38), it comes that
∥DK0(y)[w]∥g0

≤ {2r(1− r)−3(1 + (1− r)2)−2 + (1 + (1− r)2)−1}∥w∥g0
.

Then, we have

∥g−1/2
0 Dg0[DK0(y)[w],K0(y)]∥2 ≤ 2r(1 + (1− r)2)−2{1 + 2r(1− r)−3(1 + (1− r)2)−1}∥w∥g0 .

Step 2.3. Thirdly, we have ∥g1/20 M0(y
′)g

1/2
0 ∥2 = ∥g1/20 g(y′)−1g

1/2
0 + Id∥2 ≤ 1 + (1− r)−2.

Step 2.4. Fourthly, using Lemma 9-(a), we have

∥g−1/2
0 (Dg0[DK0(y)[w],K0(y)]−Dg0[DK0(y

′)[w],K0(y
′)])∥2

≤ ∥Dg0[DK0(y)[w]−DK0(y
′)[w],K0(y)]∥g−1

0
+ ∥Dg0[DK0(y)[w],K0(y)−K0(y

′)]∥g−1
0

+ ∥Dg0[DK0(y)[w]−DK0(y
′)[w],K0(y)−K0(y

′)]∥g−1
0

≤ 2∥DK0(y)[w]−DK0(y
′)[w]∥g0

∥K0(y)]∥g0
+ 2∥DK0(y)[w]∥g0

∥K0(y)−K0(y
′)∥g0

+ 2∥DK0(y)[w]−DK0(y
′)[w]∥g0

∥K0(y)−K0(y
′)∥g0

≤ 2{∥K0(y)]∥g0 + ∥K0(y)−K0(y
′)∥g0}∥DK0(y)[w]−DK0(y

′)[w]∥g0

+ 2∥DK0(y)[w]∥g0
∥K0(y)−K0(y

′)∥g0
.
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We recall that the following inequalities hold
∥K0(y)]∥g0 ≤ r(1 + (1− r)2)−1 ,

∥DK0(y)[w]∥g0
≤ (1 + (1− r)2)−1{1 + 2r(1− r)−3(1 + (1− r)2)−1}∥w∥g0

,

∥K0(y)−K0(y
′)∥g0 ≤ (1 + (1− r)2)−1{1 + 4r(1− r)−3(1 + (1− r)2)−1}∥y′ − y∥g0 .

We are now going to bound ∥DK0(y)[w]−DK0(y
′)[w]∥g0 . We have

∥DK0(y)[w]−DK0(y
′)[w]∥g0

≤ ∥(M0(y)
−1 −M0(y

′)−1)w∥g−1
0

+A1 +A2 +A3 +A4 ,

where
A1 = ∥{(Id + g

−1/2
0 g(y)g

−1/2
0 )−1 − (Id + g

−1/2
0 g(y′)g

−1/2
0 )−1}

× g
−1/2
0 Dg(y)[w]g

−1/2
0 (Id + g

−1/2
0 g(y)g

−1/2
0 )−1g

1/2
0 (y − x(0))∥2 ,

A2 = ∥(Id + g
−1/2
0 g(y′)g

−1/2
0 )−1g

−1/2
0 {Dg(y)[w]−Dg(y′)[w]}g−1/2

0 (Id + g
−1/2
0 g(y)g

−1/2
0 )−1g

1/2
0 (y − x(0))∥2 ,

A3 = ∥(Id + g
−1/2
0 g(y′)g

−1/2
0 )−1g

−1/2
0 Dg(y)[w]g

−1/2
0

× {(Id + g
−1/2
0 g(y)g

−1/2
0 )−1 − (Id + g

−1/2
0 g(y′)g

−1/2
0 )−1}g1/20 (y − x(0))∥2 ,

A3 = ∥(Id + g
−1/2
0 g(y′)g

−1/2
0 )−1g

−1/2
0 Dg(y)[w]g

−1/2
0 (Id + g

−1/2
0 g(y′)g

−1/2
0 )−1g

1/2
0 (y − y′)∥2 .

In particular, we have
∥(M0(y

′)−1 −M0(y
′)−1)w∥g−1

0
≤ 4(1− r)−3(1 + (1− r)2)−2∥y′ − y∥g0

∥w∥g0
, ((43))

max(A1, A3) ≤ 8r(1− r)−6(1 + (1− r)2)−3∥y − y′∥g0
∥w∥g0

, ((36), (38), (43))

A2 ≤ 5α(α+ 1)/3r(1− r)−4(1 + (1− r)2)−2∥y − y′∥g0
∥w∥g0

, ((37), (38))

A4 ≤ 2(1− r)−3(1 + (1− r)2)−2∥y − y′∥g0
∥w∥g0

. ((36) and (38))
Therefore, we have
∥g−1/2

0 (Dg0[DK0(y)[w],K0(y)]−Dg0[DK0(y
′)[w],K0(y

′)])∥2
≤ 2r(1 + (1− r)2)−1{3 + 4r(1− r)−3(1 + (1− r)2)−1)}
× {4(1− r)−3(1 + (1− r)2)−2 + 16r(1− r)−6(1 + (1− r)2)−3

+ 5α(α+ 1)/3r(1− r)−4(1 + (1− r)2)−2 + 2(1− r)−3(1 + (1− r)2)−2}∥y − y′∥g0∥w∥g0

+ 2{1 + 2r(1− r)−3(1 + (1− r)2)−1}
× (1 + (1− r)2)−2(1 + 4r(1− r)−3(1 + (1− r)2)−1)∥y − y′∥g0∥w∥g0 .

Conclusion of Step 2. By combining the results of Steps 2.1 to 2.4, it comes that

∥M0(y)Dg0[DK0(y)[w],K0(y)]−M0(y
′)Dg0[DK0(y

′)[w],K0(y
′)]∥g0

= ∥g1/20 (a2(y)− a2(y′))∥2
≤ {6r(1− r)−3(1 + (1− r)2)−2[1 + 2r(1− r)−3(1 + (1− r)2)−1]

+ 2r[1 + (1− r)−2](1 + (1− r)2)−1{3 + 4r(1− r)−3(1 + (1− r)2)−1)}
× {4(1− r)−3(1 + (1− r)2)−2 + 16r(1− r)−6(1 + (1− r)2)−3

+ 5α(α+ 1)/3r(1− r)−4(1 + (1− r)2)−2 + 2(1− r)−3(1 + (1− r)2)−2}
+ 2[1 + (1− r)−2]{1 + 2r(1− r)−3(1 + (1− r)2)−1}
× (1 + (1− r)2)−2(1 + 4r(1− r)−3(1 + (1− r)2)−1)}∥y − y′∥g0

∥w∥g0
.

Conclusion. Finally, we have ∥Dϕ0(y)[w]−Dϕ0(y′)[w]∥g0 ≤ c(r)∥y − y′∥g0∥w∥g0 , where
c(r) ≤ 24r2(1− r)−12 + 10α(α+ 1)/3r2(1− r)−10

+ 32r(1− r)−7 + 128r2(1− r)−12 + 128r3(1− r)−17

+ 12r(1− r)−7 + 24r2(1− r)−12

+ {48r(1− r)−9 + 192r2(1− r)−14 + 20α(α+ 1)r2(1− r)−10 + 24r(1− r)−9}{1 + (1− r)−2}
+ {64r2(1− r)−14 + 256r3(1− r)−19 + 80α(α+ 1)/3r3(1− r)−15 + 32r2(1− r)−14}{1 + (1− r)−2}
+ {4(1− r)−4 + 24r(1− r)−9 + 32r2(1− r)−14}{1 + (1− r)−2} ,
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by combining the results of Step 1 (two first lines) and Step 2 (following lines). Hence, using that
r ≤ 1/11, we have

c(r) ≤ max(24× 256, 5× 80α(α+ 1)/3)(1− r)−21

≤ max(6144, 400α(α+ 1)/3)15/2

≤ max(46080, 1000α(α+ 1))

≤ 1/r⋆α , (see (33))

i.e., for any (y, y′) ∈ B0 × B0 and w ∈ Rd, we have

∥Dϕ0(y)[w]−Dϕ0(y)[w]∥g0 ≤ (r⋆α)
−1∥y − y′∥g0∥w∥g0 ,

and thus
∥Dϕ0(y)−Dϕ0(y)∥g0

≤ (r⋆α)
−1∥y − y′∥g0

.

This last inequality finally proves that Dϕ0 is (r⋆α)
−1-Lipschitz-continuous on B0 with respect to

∥ · ∥g0
.

Inequality onDϕ̃0. Elaborating on the smoothness ofDϕ0, we prove here that ∥Dϕ̃0(y)∥g0
> 1/2

for any y ∈ B0. Let y ∈ B0, we have

∥Id∥g0 = ∥Dϕ̃0(y) + 1/2Dϕ0(y)∥g0 ,

1 ≤ ∥Dϕ̃0(y)∥g0
+ 1/2∥Dϕ0(y)∥g0

,

1− 1/2∥Dϕ0(y)∥g0 ≤ ∥Dϕ̃0(y)∥g0 .

We recall that Dϕ0(x(0)) = 0 and that Dϕ0 is (r⋆α)
−1-Lipschitz-continuous on B0. Thus, we obtain

∥Dϕ0(y)∥g0
= ∥Dϕ0(y)−Dϕ0(x(0))∥g0

≤ (r⋆α)
−1∥y − x(0)∥g0

< (r⋆α)
−1r ≤ 1 ,

and then ∥Dϕ̃0(y)∥g0 > 1/2, which proves the result.

Smoothness of ϕ0 and ϕ̃0. We prove here that ϕ0 (and thus ϕ̃0) is Lipschitz-continuous on B0 with
respect to ∥ · ∥g0

. Let (y, y′) ∈ B0 × B0. We have

∥ϕ0(y)− ϕ0(y′)∥g0
≤ ∥{M0(y)−M0(y

′)}Dg0[K0(y),K0(y)]∥g0
(45)

+ ∥M0(y
′){Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)]}∥g0

.

To prove the Lipschitz-continuity of ϕ0, we are going to proceed in two steps, each of them consisting
of bounding from above a term of (45).

Step 1. Let us first bound the first term in (45). Since r ≤ 1/11, we have

∥{M0(y)−M0(y
′)}Dg0[K0(y),K0(y)]∥g0

≤ ∥g1/20 {M0(y)−M0(y
′)}g1/20 ∥2∥Dg0[K0(y),K0(y)]∥g−1

0

≤ 3(1− r)−3∥y − y′∥g0
× 2∥K0(y)∥2g0

(see (18) and Lemma 9-(a))

≤ 6r2(1− r)−3(1 + (1− r)2)−2∥y − y′∥g0 . (see (39))

Step 2. Let us now bound the second term in (45). We have

∥M0(y
′){Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)]}∥g0

≤ ∥g1/20 M0(y
′)g

1/2
0 ∥2∥Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)]∥g−1

0

≤ {1 + (1− r)−2}{2∥Dg0[K0(y)−K0(y
′),K0(y)]∥g−1

0
+ ∥Dg0[K0(y)−K0(y

′),K0(y)−K0(y
′)]∥g−1

0
}

≤ {1 + (1− r)−2}{4∥K0(y)−K0(y
′)∥g0∥K0(y)∥g0 + 2∥K0(y)−K0(y

′)∥2g0
}

≤ 1{1 + (1− r)−2}∥K0(y)−K0(y
′)∥g0

{2∥K0(y)∥g0
+ ∥K0(y)−K0(y

′)∥g0
} ,
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where we recall that the following inequalities hold

∥K0(y)]∥g0 ≤ r(1 + (1− r)2)−1 ,

∥K0(y)−K0(y
′)∥g0

≤ (1 + (1− r)2)−1{1 + 4r(1− r)−3(1 + (1− r)2)−1}∥y′ − y∥g0
.

Thus, we have

∥M0(y
′){Dg0[K0(y),K0(y)]−Dg0[K0(y

′),K0(y
′)]}∥g0

≤ 4r{1 + (1− r)2}−2{1 + 4r(1− r)−3(1 + (1− r)2)−1}2∥y − y′∥g0
.

Conclusion. Since r ≤ 1/11, we finally have

∥ϕ0(y)− ϕ0(y′)∥g0 ≤ {6r2(1− r)−3(1 + (1− r)2)−2

4r{1 + (1− r)2}−2{1 + 4r(1− r)−3(1 + (1− r)2)−1}2}∥y − y′∥g0

≤ {6r2(1− r)−7 + 4r(1− r)−4 + 32r2(1− r)−9 + 64r3(1− r)−14}∥y − y′∥g0

≤ 4× 64r(1− r)−14∥y − y′∥g0

≤ 4864/5r∥y − y′∥g0
.

Therefore, ϕ0 and ϕ̃0 are respectively (4864/5r) and (1 + 2432/5r)-Lipschitz-continuous on B0

with respect to ∥ · ∥g0 .

We are now ready to prove the second result of Lemma 22.

Invertibility of Jac[Gh,x(0) ]. Let x ∈ B0 and w ∈ Rd. We have (h/2)Gh,x(0) = M0(y)
−1ϕ̃0(y)

and thus,

(h/2)DGh,x(0)(x)[w] = M0(x)
−1Dϕ̃0(x)[w] +DM0(x)

−1[w]ϕ̃0(x) ,

Dϕ̃0(x)[w] = (h/2)M0(x)DGh,x(0)(x)[w]−M0(x)DM0(x)
−1[w]ϕ̃0(x) .

Then, we have

∥Dϕ̃0(x)[w]∥g0
≤ (h/2)∥g1/20 M0(x)g

1/2
0 ∥2∥DGh,x(0)(x)[w]∥g−1

0
(46)

+ ∥g1/20 M0(x)g
1/2
0 ∥2∥g

−1/2
0 DM0(x)

−1[w]g
−1/2
0 ∥2∥ϕ̃0(x)∥g0

≤ {1 + (1− r)−2}{(h/2)∥DGh,x(0)(x)[w]∥g−1
0

+ ∥g−1/2
0 DM0(x)

−1[w]g
−1/2
0 ∥2∥ϕ̃0(x)∥g0

} ,

where DM0(x)
−1[w] = −M0(x)

−1DM0(x)[w]M0(x)
−1 and

∥g−1/2
0 DM0(x)

−1[w]g
−1/2
0 ∥2 ≤ ∥g−1/2

0 M0(x)
−1g

−1/2
0 ∥22∥g

−1/2
0 DM0(x)[w]g

−1/2
0 ∥2 (47)

≤ 2(1− r)−3(1 + (1− r)2)−1∥w∥g0 (see (40))

≤ 2(1− r)−7∥w∥g0
.

Moreover, using the Lipschitz-continuity of ϕ̃0 on B0 and ϕ̃0(x(0)) = 0, we have

∥ϕ̃0(x)∥g0
≤ ∥ϕ̃0(x)− ϕ̃0(x(0))∥g0

+ ∥ϕ̃0(x(0))∥g0
≤ (1 + 2432/5r)∥x− x(0)∥g0

< (1 + 2432/5r)r .
(48)

Since r ≤ 1/11, we have 1 + (1− r)−2 ≤ 5/2, and by combining (46),(47) and(48), we obtain

∥Dϕ̃0(x)[w]∥ ≤ (5h/4)∥DGh,x(0)(x)[w]∥g−1
0

+ 4874(1− r)−7r∥w∥g0
.

Since ∥Dϕ̃0(x)[w]∥g0
> ∥w∥g0

/2 and (1− r)−7 ≤ 2 with r ≤ 1/11, the last inequality becomes

(5h/4)∥DGh,x(0)(x)[w]∥g−1
0
≥ {1/2− 9748r}∥w∥g0

,

≥ 1/2− r/(4r⋆α) ≥ 1/4 . (see (33))

In particular, Jac[Gh,x(0) ](x) is invertible, which concludes the proof.
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We prove below that, for any z(0) ∈ T⋆M, the set Gh(z
(0)) is reduced to a single point, for h small

enough depending on z(0).
Lemma 23. For any w ≥ 0, any r ∈ (0, 1) and any α ≥ 1, we define

h1(w, r, α) = min

(
1

1 + (1− r)−2 + 2(2r + w)
,
(1− r)3

3(r + w)
,

r

(r + w)(1 + 3r/2) + 1/2(r + w)2

)
.

(49)

We recall that the set-valued map Gh is defined in (29). Assume A1, A2. Then, for any r ∈ (0, 1/11],
any z = (x, p) ∈ T⋆M and any h ∈ (0, h1(∥p∥g(x)−1 , r, α)), there exists a unique z′ ∈ B∥·∥z

(z, r) ⊂
T⋆M such that z′ ∈ Gh(z).

Proof. Assume A1, A2. Let r ∈ (0, 1/11], z = (x, p) ∈ T⋆M and h ∈ (0, h1(∥p∥g(x)−1 , r, α)),
where h1 is defined in (49). We recall that the map g

h
is defined in (30). We define B = B∥·∥z

(z, r)

and the map g
h,z

: T⋆M → Rn × Rn by g
h,z

(z′) = z′ − g
h
(z, z′) for any z′ ∈ T⋆M. Then,

g
h,z

(z′) = z′ if and only if z′ ∈ Gh(z). The proof is divided in two steps.

Step 1. We first prove that g
h,z

(B) ⊂ B. Let z′ ∈ B, we have by Lemma 9-(a)

∥g
h,z

(z′)− z∥z = h
2 ∥{g(x)

−1 + g(x′)−1}p′∥g(x) + h
4 ∥Dg(x)[g(x)−1p′, g(x)−1p′]∥g(x)−1

= h
2 ∥2g(x)

−1p′ + {g(x′)−1 − g(x)−1}p′∥g(x) + h
4 ∥Dg(x)[g(x)−1p′, g(x)−1p′]∥g(x)−1

≤ h
2 (2∥p

′∥g(x)−1 + ∥g(x)1/2(g(x′)−1 − g(x)−1)g(x)1/2∥2∥p′∥g(x)−1) + h
2 ∥p

′∥2g(x)−1 ,

where the following inequalities hold

(a) ∥p′∥g(x)−1 = ∥p′ − p+ p∥g(x)−1 ≤ r + ∥p∥g(x)−1 .

(b) ∥g(x)1/2(g(x′)−1 − g(x)−1)g(x)1/2∥2 ≤ 3∥x − x′∥g(x) ≤ 3r, on the model of (18), using
r ≤ 1/11.

Therefore, we have

∥g
h,z

(z′)− z∥z ≤ h((r + ∥p∥g(x)−1) + 3
2r(r + ∥p∥g(x)−1) + 1

2 (r + ∥p∥g(x)−1)2)

≤ h((r + ∥p∥g(x)−1)(1 + 3
2r) +

1
2 (r + ∥p∥g(x)−1)2)

≤ hr/h1(∥p∥g(x)−1 , r, α) < r ,

which proves the statement.

Step 2. We now prove that g
h,z

is a contraction on B. This proof notably recovers some elements of the
proof of Proposition 13 (see Appendix E). Let (z1, z2) ∈ B×B with z1 = (x1, p1) and z2 = (x2, p2).
Remark that x1, x2 ∈W0(x, 1)×W0(x, 1). Let us first bound ∥g(1)h,z(z1)− g

(1)
h,z(z2)∥g(x). We have

g(1)
h,z

(z1)− g(1)
h,z

(z2) =
h
2 {g(x)

−1(p1 − p2) + g(x1)
−1p1 − g(x2)

−1p2}

= h
2 {g(x)

−1(p1 − p2) + g(x1)
−1(p1 − p2) + (g(x1)

−1 − g(x2)
−1)p2} ,

and then, since r ≤ 1/11, we have on the model of (18)

∥g(1)
h,z

(z1)− g(1)
h,z

(z2)∥g(x) ≤ h
2 {1 + ∥g(x)

1/2g(x1)
−1g(x)1/2∥2}∥p1 − p2∥g(x)−1

+ h
2 ∥g(x)

1/2(g(x1)
−1 − g(x2)

−1)g(x)1/2∥2∥p2∥g(x)−1

≤ h
2 {1 + (1− r)−2}∥p1 − p2∥g(x)−1 + 3h

2 (1− r)−3∥x1 − x2∥g(x)(r + ∥p∥g(x)−1) .

Let us now bound ∥g(2)h,z(z1)− g
(2)
h,z(z2)∥g(x)−1 . We have

g(2)
h,z

(z1)− g(2)
h,z

(z2) =
h
4 {Dg(x)[g(x)−1p1, g(x)

−1p1]−Dg(x)[g(x)−1p2, g(x)
−1p2]} ,
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which gives using Lemma 9-(a)

∥g(2)
h,z

(z1)− g(2)
h,z

(z2)∥g(x)−1 = h
2 ∥Dg(x)[g(x)−1(p1 − p2), g(x)−1p2]∥g(x)−1

+ h
4 ∥Dg(x)[g(x)−1(p1 − p2), g(x)−1(p1 − p2)]∥g(x)−1

≤ h∥g(x)−1(p1 − p2)∥g(x)∥g(x)−1p2∥g(x) + h
2 ∥g(x)

−1(p1 − p2)∥2g(x)
≤ h(r + ∥p∥g(x)−1)∥p1 − p2∥g(x)−1 + hr∥p1 − p2∥g(x)−1 .

Finally, it comes that

∥g
h,z

(z1)− g
h,z

(z2)∥z ≤ h
2 {1 + (1− r)−2 + 4r + 2∥p∥g(x)−1}∥p1 − p2∥g(x)−1

+ 3h
2 (1− r)−3(r + ∥p∥g(x)−1)∥x1 − x2∥g(x)

≤ (1/2)h{∥x1 − x2∥g(x) + ∥p1 − p2∥g(x)−1}/h1(∥p∥g(x)−1 , r, α)

< (1/2)∥z1 − z2∥z,

which proves that g
h,z

is a contraction on B.

Conclusion. We obtain the result of Lemma 23 by applying the fixed point theorem on g
h,z

and
B.

Elaborating on Lemma 23, we prove in Lemma 24 that the only element of Gh(z
(0)) verifies

smoothness properties if h is chosen small enough, depending on z(0).
Lemma 24. For any z = (x, p) ∈ T⋆M, any r ∈ (0, 1) and any α ≥ 1, we define

h̄(z, r, α) = min
(
h1(∥p∥g(x)−1 , r, α), h2(z), h3(z, r)

)
(50)

where h1 is defined in (49), and h2 and h3 are defined by

h2(z) =
1

3/2 + 3∥p∥g(x)−1

, h3(z, r) =
1

1 + (1− r)−1(r + ∥p∥g(x)−1)
.

We recall that r⋆α is defined in (33). We also recall that the maps Gh, g
h

, Gh and Gh,x(0) are
respectively defined in (29), (30), (31) and (32). Assume A1, A2. Then, for any z(0) ∈ T⋆M

and any h ∈ (0, h̄(z(0), r⋆α, α)), there exists a unique element z(1/2)h ∈ T⋆M such that z(1/2)h ∈
Gh(z

(0)) ∩ B∥·∥
z(0)

(z(0), r⋆α). Moreover, we have

(a) Jacz′ [g
h
](z(0), z

(1/2)
h ) and Jac[Gh](z

(1/2)
h ) are invertible,

(b) Jac[Gh,x(0) ](x
(1/2)
h ) is invertible.

Proof. Assume A1, A2. Let z(0) ∈ T⋆M and h ∈ (0, h̄(z(0), r⋆α, α)), where h̄ is defined in (50).
Since r⋆α ≤ 1/11, Lemma 23 ensures the existence and uniqueness of z(1/2)h = (x

(1/2)
h , p

(1/2)
h ) ∈

T⋆M such that z(1/2)h ∈ Gh(z
(0)) ∩ B∥·∥

z(0)
(z(0), r⋆α). Moreover, we have x(1/2)h ∈ W0(x(0), r⋆α),

and thus Jac[Gh,x(0) ](x
(1/2)
h ) is invertible by Lemma 22. Let us prove that Jacz′ [g

h
](z(0), z

(1/2)
h )

and Jac[Gh](z
(1/2)
h ) are invertible.

Invertibility of Jacz′ [g
h
](z(0), z

(1/2)
h ). We first remark that Jacz′ [g

h
](z(0), z

(1/2)
h ) =

Jac[ψ0,h](z
(1/2)
h ) where ψ0,h = Id + h

2ψ0 and ψ0 is defined on T⋆M by

ψ0(z) = (−{g(x(0))−1 + g(y)−1}−1p,− 1
2Dg(x(0))[g(x(0))−1p, g(x(0))−1p]) .

We recall that ∥z(1/2)h − z(0)∥z(0) < r⋆α ≤ 1/11 and thus define r1 = 1/11−∥z(1/2)h − z(0)∥z(0) > 0

and B1 = B∥·∥
z(0)

(z
(1/2)
h , r1). We set r̃ = 1/11. Note that B1 ⊂ B∥·∥

z(0)
(z(0), 1/11). We show
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below that ψ0 is Lipschitz-continuous on B1 with respect to ∥ · ∥z(0) . Let (z, z′) ∈ B1×B1. Similarly
to the proof of Lemma 23, we have

∥ψ(1)
0 (z)− ψ(1)

0 (z′)∥g(x(0)) ≤ ∥p− p′∥g(x(0))−1

+ ∥g(x(0))1/2g(x)−1g(x(0))1/2∥2∥p− p′∥g(x(0))−1

+ ∥g(x(0))1/2{g(x)−1 − g(x′)−1}g(x(0))1/2∥2∥p∥g(x(0))−1

≤ (1 + (1− r̃)−2)∥p− p′∥g(x(0))−1

+ 3(1− r̃)−3(r̃ + ∥p(0)∥g(x(0))−1)∥x− x′∥g(x(0)) .

In the same manner, we have

∥ψ(2)
0 (z)− ψ(2)

0 (z′)∥g(x(0))−1 ≤ 2(2r̃ + ∥p(0)∥g(x(0))−1)∥p− p′∥g(x(0))−1 .

Therefore, recalling that r̃ = 1/11, we obtain with the previous inequalities

∥ψ0(z)− ψ0(z
′)∥z(0) ≤ {3 + 6∥p(0)∥g(x(0))−1}∥z − z′∥z(0)

≤ 2∥z − z′∥z(0)/h2(z
(0)) .

Hence, ψ0 is (2/h2(z
(0)))-Lipschitz-continuous on B1 with respect to ∥ · ∥z(0) . Then, since

h < h2(z
(0)), Jac[ψ0,h](z) is invertible for any z ∈ B1 by Lemma 21. In particular,

Jacz′ [g
h
](z(0), z

(1/2)
h ) = Jac[ψ0,h](z

(1/2)
h ) is invertible.

Invertibility of Jac[Gh](z
(1/2)
h ). Let us remark that Gh = Id + hζ where ζ is defined on T⋆M by

ζ(z) = (0,
1

4
Dg(x)[g(x)−1p, g(x)−1p]).

We define r2 = 1/2 and B2 = B∥·∥
z
(1/2)
h

(z
(1/2)
h , r2). We show below that ζ is Lipschitz-continuous

on B2 with respect to ∥ · ∥
z
(1/2)
h

, with a Lipschitz constant which does not depend on z(1/2)h . Let
(z, z′) ∈ B2 × B2. Using Lemma 9-(a) with r2 = 1/2, it is clear that

∥ζ(z)− ζ(z′)∥
z
(1/2)
h

≤ (1 + ∥p(1/2)h ∥
g(x

(1/2)
h )−1)∥z − z′∥z(1/2)

h

.

Moreover, since ∥z(1/2)h − z(0)∥z(0) < r⋆α, we have by Lemma 12

∥p(1/2)h ∥
g(x

(1/2)
h )−1 ≤ (1− r⋆α)−1∥p(1/2)h ∥g(x(0))−1

≤ (1− r⋆α)−1(r⋆α + ∥p(0)∥g(x(0))−1) ,

and thus

∥ζ(z)− ζ(z′)∥
z
(1/2)
h

≤ {1 + (1− r⋆α)−1(r⋆α + ∥p(0)∥g(x(0))−1)}∥z − z′∥
z
(1/2)
h

≤ ∥z − z′∥
z
(1/2)
h

/h3(z
(0), r⋆α) .

Hence, ζ is (1/h3(z
(0), r⋆α))-Lipschitz-continuous on B2 with respect to ∥ · ∥

z
(1/2)
h

. Since h <

h3(z
(0), r⋆α), Jac[Gh](z) is invertible for any z ∈ B2 by Lemma 21. In particular, Jac[Gh](z

(1/2)
h ) is

invertible, which concludes the proof.

The following lemma states the existence of a diffeomorphism between z(0) ∈ T⋆M and z(1) ∈
Gh(z

(0)) under smoothness conditions verified by z(1).

Lemma 25. Let (z(0), z(1)) ∈ T⋆M×T⋆M. We recall that the maps g
h

, Gh and Gh are respectively
defined in (30), (31) and (6). Assume that g ∈ C2(M,Rd×d) and that there exist h > 0 and
z
(1/2)
h ∈ T⋆M with the following properties:

(a) g
h
(z(0), z

(1/2)
h ) = 0 and z(1) = Gh(z

(1/2)
h ).
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(b) Jacz′ [g
h
](z(0), z

(1/2)
h ) and Jac[Gh](z

(1/2)
h ) are invertible.

Then, there exists a neighbourhood U ⊂ T⋆M of z(0) and a C1-diffeomorphism ξ : U → ξ(U) ⊂
T⋆M such that (i) ξ(z(0)) = z(1), (ii) for any z ∈ U, ξ(z) ∈ Gh(z) and (iii) |detJac ξ| ≡ 1.

Proof. Let (z(0), z(1)) ∈ T⋆M × T⋆M. Assume that g ∈ C(M,Rd×d) and consider h > 0 and
z
(1/2)
h ∈ T⋆M as described in Lemma 25. Under the assumption on g, g

h
and Gh are continuously

differentiable respectively on T⋆M × T⋆M and T⋆M. We are going to prove Lemma 25, by first
deriving intermediary results on g

h
and Gh.

Result on g
h

. We recall that g
h
(z(0), z

(1/2)
h ) = 0 and Jacz′ [g

h
](z(0), z

(1/2)
h ) is invertible. Then,

by applying the implicit function theorem on g
h

at (z(0), z(1/2)h ), we obtain the existence of a
neighbourhood U0 ⊂ T⋆M of z(0) and a C1-diffeomorphism ξ0 : U0 → ξ0(U0) ⊂ T⋆M such that
ξ0(z

(0)) = z
(1/2)
h and for any z ∈ U0, g

h
(z, ξ0(z)) = 0, i.e., ξ0(z) ∈ Gh(z). Moreover, for any

z ∈ U0, the Jacobian of ξ0 at z is given by

Jac[ξ0](z) = − Jacz′ [g
h
](z, ξ0(z))

−1 Jacz[gh](z, ξ0(z)) .

Result on Gh. We recall that z(1) = Gh(z
(1/2)
h ) and Jac[Gh](z

(1/2)
h ) is invertible. Then, we apply

the inverse function theorem on Gh at z(1/2)h and obtain the existence of a neighbourhood U1 ⊂ T⋆M

of z(1/2)h such that ξ1 = Gh|U1 is a C1-diffeomorphism on U1.

Final result. We now consider the subset U and the map ξ, respectively defined by

(a) U = ξ−1
0 (U1 ∩ ξ0(U0)) ⊂ T⋆M, neighbourhood of z(0).

(b) ξ = ξ1|ξ0(U) ◦ ξ0, C1-diffeomorphism on U such that ξ(z(0)) = z(1), and for any z ∈ U,
ξ(z) ∈ Gh(z).

Let us now prove that |detJac ξ| ≡ 1. Let z ∈ U. We define z0 = ξ0(z). By the chain rule, we have

Jac[ξ](z) = Jac[ξ1 ◦ ξ0](z)
= Jac[ξ1](ξ0(z)) Jac[ξ0](z)

= − Jac[ξ1](ξ0(z)) Jacz′ [g
h
](z, ξ0(z))

−1 Jacz[gh](z, ξ0(z)) ,

where we have

(a) Jac[ξ1](z
′) =

(
Id 0

−h
2∂x,xH2(z

′) Id − h
2∂x,pH2(z

′)

)
,

(b) Jacz′ [g
h
](z, z′) =

(
Id − h

2∂x,pH2(z
′) −h

2 {∂p,pH2(x, p
′) + ∂p,pH2(x

′, p′)}
0 Id +

h
2∂x,pH2(x, p

′)

)
,

(c) Jacz[gh](z, z
′) =

(
−Id − h

2∂x,pH2(x, p
′) 0

h
2∂x,xH2(x, p

′) −Id

)
.

Therefore, we obtain

|detJac[ξ](z)|

= det(Id −
h

2
∂x,pH2(z0)) det({Id −

h

2
∂x,pH2(z0)}{Id +

h

2
∂x,pH2(x, p0)})−1 det(Id +

h

2
∂x,pH2(x, p0)) = 1 ,

which concludes the proof.

Lemma 26. Let h > 0. We recall that the set-valued map Fh is defined in Section 3.1. Let z ∈ T⋆M.
Assume that there exist (z′, z′′) ∈ T⋆M× T⋆M such that
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(a) z′ ∈ Fh(z),

(b) z′′ ∈ Fh(z), and

(c) x′ = x′′.

Then, we have p′ = p′′, and thus z′ = z′′.

Proof. Let h > 0. Let z ∈ T⋆M. We consider (z′, z′′) ∈ Fh(z) × Fh(z) such that x′ = x′′ = x̃.
By using the last two aligns from (6) with z′ and z′′, we have p′ = −p(1/2) + h

2 g(x̃)
−1p(1/2) = p′′,

where p(1/2) = 2
h (g(x)

−1 + g(x̃)−1)−1(x̃− x), which concludes the proof.

Under the assumption A2, we define, for any z(0) ∈ T⋆M, h⋆(z(0)) = h̄(s(z(0)), r⋆α, α), where α
is given by A2, and r⋆α and h̄ are respectively defined in (33) and (50). Note that h⋆ appears in
Proposition 2, for which we derive the proof below.

Proof of Proposition 2. We recall that maps Gh, g
h

and Gh are respectively defined in (29), (30) and
(31). Assume A1, A2. Let z(0) ∈ T⋆M. We define z̃(0) = s(z(0)). Let h ∈ (0, h⋆(z(0))). By using
Lemma 24 on z̃(0), we obtain the existence of z(1/2)h ∈ T⋆M with the following properties:

(a) z(1/2)h ∈ Gh(z̃
(0)), i.e., g

h
(z̃(0), z

(1/2)
h ) = 0,

(b) Jacz′ [g
h
](z̃(0), z

(1/2)
h ) and Jac[Gh](z

(1/2)
h ) are invertible,

(c) Jac[Gh,x(0) ](x
(1/2)
h ) is invertible.

We then define z(1)h = Gh(z
(1/2)
h ). In particular, z(1)h ∈ Gh(z̃

(0)), i.e., z(1)h ∈ Fh(z
(0)) and

Jac[Gh,x(0) ](x
(1)
h ) = Jac[Gh,x(0) ](x

(1/2)
h ) is invertible. By combining the properties of z(1/2)h and

with Lemma 25, we also obtain the existence of a neighbourhood U′ ⊂ T⋆M of z̃(0) and a C1-
diffeomorphism ξh : U′ → ξh(U

′) ⊂ T⋆M such that (i) ξh(z̃(0)) = z
(1)
h , (ii) for any z ∈ U′,

ξh(z) ∈ Gh(z) and (iii) |det Jac ξh| ≡ 1. Therefore, we can define the subset U and the map γh of
Proposition 2 by

(a) U = s(U′), neighbourhood of z(0) in T⋆M,

(b) γh = ξh ◦ s, such that (i) γh(z(0)) = z
(1)
h , (ii) for any z ∈ U, γh(z) ∈ Fh(z) and (iii)

det Jac[γh] ≡ 1.

We now prove that U can be reduced to a smaller subset such that γh(z) is the only element of Fh(z)
in γh(U) for any z ∈ U. Motivated by Lemma 22, we first define, for any (x, x′) ∈ M×M, Fh,x(x

′)
as the only element p ∈ T⋆

xM such that (x′, p′) ∈ Fh(x, p) for any p′ ∈ T⋆
x′M. It is clear that

Fh,x(x
′) = −Gh,x(x

′), where Gh,x is defined in (32). We also define Zh : M×M→ T⋆M by

Zh(x, x
′) = (x,Fh,x(x

′)) = (x,−Gh,x(x
′)) ,

which is continuously differentiable since g ∈ C2(M,Rd×d). Besides this, we obtain by Lemma 22
that Jac[Gh,x(0) ](x(0), x

(1)
h ) is invertible, and then Jac[Zh](x

(1)
h ) is invertible. Therefore, by applying

the inverse function theorem on Zh at (x(0), x(1)h ), it comes that Zh is a C1-diffeomorphism in a
neighbourhood of (x(0), x(1)h ). We are now going to prove the result by contradiction. Assume for
now that there is no neighbourhood U of z(0) such that γh(z) is the only element of Fh(z) in γh(U),
for any z ∈ U. Then, we can find a sequence (zi)i∈N which converges to z(0) such that for any
i ∈ N, there exist two different elements zi,1 ∈ Fh(zi) and zi,2 ∈ Fh(zi). Therefore, for any i ∈ N,
xi,1 ̸= xi,2 and by Lemma 26, we have

Fh,xi
(xi,1) = Fh,xi

(xi,2) = pi ,
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and thus
Zh(xi, xi,1) = Zh(xi, xi,2) = zi . (51)

Moreover, by continuity of γh, the sequences (zi,1)i∈N and (zi,2)i∈N converge to z(1)h , and therefore,
(xi,1)i∈N and (xi,2)i∈N also converge to x(1). Combined with (51), this result of convergence is in
contradiction with the fact that Zh is a diffeomorphism in a neighbourhood of (x(0), x(1)h ). Therefore,
we can reduce U to a smaller subset such that γh(z) is the only element of Fh(z) in γh(U) for any
z ∈ U, which concludes the proof of Proposition 2.

H Modification of n-BHMC algorithm with step-size conditioning

In the rest of the paper, for any z(0) ∈ T⋆M, we will denote by h⋆(z(0)) the value of h⋆ given by A3.

Beyond n-BHMC. A crucial part of the proof of reversibility in BHMC, as much for c-BHMC
as for n-BHMC, relies on local symplectic properties of the integrator of the Hamiltonian dynamics.
Although Algorithm 1 can be implemented without any practical limitation, it is hard to state such
properties for its numerical integrator Φh under A1, A2 and A3, given any value of h. Indeed,
we know from A3 that Φh is a local involution around z(0) ∈ T⋆M when h < h⋆(z

(0)); however,
we cannot ensure this result when h > h⋆(z

(0))... To circumvent this issue, we propose to study
Theoretical n-BHMC (Tn-BHMC), presented in Algorithm 3. In this modified version of n-BHMC,
we actually enforce a condition on h to be small enough. We now get into the details of this new
algorithm and assume A3 for the rest of this section.

Theoretical motivations. Let h > 0. We recall the definition of the set Ah introduced in Section 4.2

Ah = {z ∈ T⋆M : h < minz̃∈B∥·∥z (z,1)
h⋆(z̃)} .

It is clear that Ah ⊂ domΦh
: indeed, if z(0) ∈ Ah, we have in particular that h < h⋆(z

(0)), and
therefore z(0) ∈ domΦh

by A3. Let z(0) ∈ Ah. By A3, we know that Φh is an involution on a
neighbourhood of z(0); in particular, it comes that (Φh ◦ Φh)(z

(0)) = z(0). Hence, the condition (b)
of the “involution checking step” in Algorithm 1 is de facto satisfied. This naturally leads to replace
the condition “z ∈ domΦh

” by the more restrictive condition “z ∈ Ah”.

Algorithm 3: Tn-BHMC with Momentum Refreshment
Input: (x0, p0) ∈ T⋆M, β ∈ (0, 1], N ∈ N, h > 0, η > 0, Φh with domain domΦh

, Ah

Output: (Xn, Pn)n∈[N ]

1 for n = 1, ..., N do
2 Step 1: Gn ∼ Nx(0, Id), P̃n ←

√
1− βPn−1 +

√
βGn

3 Step 2: solving a discretized version of ODE (3)
4 X ′

n, P
′
n ← Xn−1, P̃n; X

(0)
n , P

(0)
n ← (s ◦ Sh/2)(Xn, P̃n)

5 if Z
(0)
n = (X

(0)
n , P

(0)
n ) ∈ Ah then

6 Z
(1)
n = Φh(Z

(0)
n )

7 if Z
(1)
n ∈ Ah then

8 X ′
n, P

′
n ← (s ◦ Sh/2)(Z

(1)
n )

9 end
10 end
11 Step 3: An ← min(1, exp[−H(X ′

n, P
′
n) +H(Xn−1, P̃n)])

12 Un ∼ U [0, 1]

13 if Un ≤ An then X̄n, P̄n ← X ′
n, P

′
n

14 else X̄n, P̄n ← Xn−1, P̃n

15 Step 4: Xn, P̂n ← s(X̄n, P̄n)

16 Step 5: G′
n ∼ Nx(0, Id), Pn ←

√
1− βP̂n +

√
βG′

n

17 end
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Implementation of Tn-BHMC. In Algorithm 3, we highlight in yellow the modifications of
Tn-BHMC in contrast to n-BHMC. Namely, we replace

(a) “Z(0)
n ∈ domΦh

“ (Line 5 in Algorithm 1) by “Z(0)
n ∈ Ah“ (Line 5 in Algorithm 3).

(b) “Z(1)
n ∈ domΦh

“ (Line 8 in Algorithm 1) by “Z(1)
n ∈ Ah“ (Line 7 in Algorithm 3).

Note that there is no need to maintain the “involution checking step" of Algorithm 1, since it is
automatically verified once Z(0)

n ∈ Ah. On the whole, these new conditions are more restrictive
than the conditions of Algorithm 1 since Ah ⊂ domΦh

; moreover, they can be thought as conditions
directly applied on the step-size h. The specific choice of Ah, instead of another subset of domΦh

, is
actually sufficient to derive the proof of reversibility of Tn-BHMC (see Section 4.2).

I Proofs of Section 4.2

I.1 Expression and properties of r⋆

Given a Riemannian manifold (M, g), we define r⋆(x) for any x ∈ M by

r⋆(x) = min(∥g(x)∥−1/2
2 , ∥g(x)−1∥−1/2

2 ) . (52)

Note that r⋆ is used in A3 and that r⋆(x) = 1/Cx, where Cx is defined in Lemma 12. We prove
below that r⋆ has a smooth behaviour on M under our main assumptions.

Lemma 27. Assume A1, A2. Also assume that x ∈ M 7→ ∥g−1(x)∥2 is bounded from above. As
defined in (52), r⋆ : M→ (0,+∞) satisfies the following properties:

(a) r⋆(x)→ 0 as x→ ∂M .

(b) There exists L > 0 such that r⋆ is L-Lipschitz-continuous on M with respect to ∥ · ∥2.

(c) There exists M > 0 such that r⋆(x) ≤ M for any x ∈ M.

Proof. Assume A1, A2. Also assume that x ∈ M 7→ ∥g−1(x)∥2 is bounded from above. We first
define r1 : x ∈ M 7→ ∥g(x)∥−1/2

2 and r2 : x ∈ M 7→ ∥g(x)−1∥−1/2
2 , such that r⋆ = min(r1, r2).

Since g ∈ C2(M,Rd×d), it is clear that r1 and r2 are continuously differentiable on M. We have:

(a) r1(x)→ 0 as x→ ∂M by Lemma 8, and

(b) r2(x) ̸→ 0 as x→ ∂M, since 1/r22 : x 7→ ∥g(x)−1∥2 is bounded on M.

Combining the fact that r2(x) > 0 for any x ∈ M and item (a), we obtain item (a) of Lemma 27. We
denote by d the distance induced by ∥ · ∥2 and now define, for any ε > 0,

(i) µε = inf{y∈M : d(y,∂M)≤ϵ} r2(y).

(ii) Mε = Int({x ∈ M : d(x, ∂M) ≤ ε, r1(x) ≤ µε}), open set in M.

(iii) M−ε = M\Mε, closed and bounded (and thus, compact) set in M.

Using items (a) and (b), we can ensure the existence of some ε ∈ (0,diam(M)) such that (i) µε > 0
and (ii) Mε and M−ε are not empty. We consider such ε for the rest of the proof.

Smoothness of r2. We define δ = d(Mc,M−ε) and Mδ = Mc + B̄(0, δ/4). Note that

(i) δ > 0 since M−ε ⊂ M,

(ii) Mδ is closed since the ball B̄(0, δ/4) is compact, and

(iii) Mδ ∩M−ε = ∅.
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According to the smooth version Urysohn’s lemma applied to Mδ and M−ε, there exists χ ∈
C1(Rd, [0, 1]) such that χ(M−ε) = 1 and χ(Mδ) = 0. We then define r̃2 : Rd → (0,+∞) by
r̃2 = χr2 + (1− χ)µε. In particular, (i) there exists L2 > 0 such that r̃2 is L2-Lipschitz-continuous
on M̄ with respect to ∥ · ∥2, since r̃2 ∈ C1(Rd, [0, 1]), and (ii) for any x ∈ Mε, r̃2(x) > µε.

Smoothness of r1. We now prove that r1 is 1-Lipschitz continuous on M with respect to ∥ · ∥2. Let
x ∈ M. Note that r1(x) = (∥g(x)∥22)−1/4 and we thus have

∇r1(x) = (−1/4)∥g(x)∥−5/2
2 h(x) : Dg(x) ,

where h(x) = ∂g(x)∥g(x)∥22 = 2∥g(x)∥2u(x)u(x)⊤, u(x) being a normal eigenvector of g(x)
corresponding to the eigenvalue ∥g(x)∥2. Hence,

∥∇r1(x)∥2 ≤ (1/2)∥g(x)∥−3/2
2 ∥u(x)u(x)⊤ : Dg(x)∥2

≤ (1/2)∥g(x)∥−3/2
2 ∥u(x)u(x)⊤∥2∥Dg(x)∥2

≤ (1/2)∥g(x)∥−3/2
2 × 2∥g(x)∥3/22 ≤ 1 (Definition 1-(c))

which proves the result on r1.

Smoothness of r. Let x ∈ M. We can face two cases: either, x ∈ M−ε, then r2(x) = r̃2(x); or,
x ∈ Mε, then r̃2(x) > µε ≥ r1(x) and r2(x) ≥ r1(x) by definition of Mε. Thus, we have for any
x ∈ M, r⋆(x) = min(r1(x), r̃2(x)) where r1 and r̃2 are respectively 1 and L2 Lipschitz-continuous
on M with respect to ∥ · ∥2. By observing that 2min(r1, r̃2) = r1+ r̃2−|r1− r̃2|, we set L = 1+L2
and thus obtain item (b) of Lemma 27. Finally, item (c) of Lemma 27 directly derives from item (b),
since M is bounded.

Note that the extra-assumption on g−1 used in Lemma 27 is not directly ensured by self-concordance
but can be proved when M is a polytope, as shown below.

Lemma 28. Consider a polytope M defined by m constraints with m > d such that M = {x :
Ax < b}, where A ∈ Rm×d is a full-rank matrix and b ∈ Rm. We endow M with the Riemannian
metric g(x) = D2ϕ(x) where ϕ : M → R is the logarithmic barrier given for any x ∈ M by
ϕ(x) = −

∑m
i=1 ln

(
bi −A⊤

i x
)
. In particular, M and g verify A1 and A2. Then, the function

r : M→ (0,+∞) defined by r(x) = ∥g−1(x)∥2, for any x ∈ M, is bounded from above.

Proof. Consider such manifold M and metric g. We aim to show that the smallest eigenvalue of g(x)
is bounded from below for any x ∈ M by a constant c > 0, which does not depend on x, i.e., for any
h ∈ Rd and any x ∈ M, g(x)[h, h] ≥ c∥h∥22.

Since A is full-ranked, A⊤A is positive-definite. In particular, for any h ∈ Rd, (A⊤A)[h, h] ≥
λmin(A

⊤A)∥h∥22, where λmin(A
⊤A) > 0 is the smallest eigenvalue of A⊤A. We recall that we

have for any x ∈ M, g(x) = A⊤S(x)−2A, where S(x) = Diag(bi −A⊤
i x)i∈[m]. Let i ∈ [m]. The

function ri : x ∈ M 7→ S(x)−2
i,i has the following properties: (i) ri is continuous on M, (ii) ri(x) > 0

for any x ∈ M and (iii) r(x)→ +∞ as x→ ∂M. Thus, there exists ci > 0 such that for any x ∈ M,
ri(x) ≥ ci. We define c̃ = mini∈[m] ci and we have for any x ∈ M, S(x)−2 ⪰ c̃Id. We now define
c = c̃λmin(A

⊤A) and we have for any x ∈ M

g(x)[h, h] ≥ c̃ · (A⊤A)[h, h] ≥ c∥h∥22 .

In particular, g(x)−1 ⪯ (1/c)Id, i.e., ∥g(x)−1∥2 ≤ (1/c), which concludes the proof.

I.2 Markov kernels of Algorithm 1

Based on the model of Ēh defined in (24), we define the set ĒΦ
h ⊂ T⋆M, which will ensure that the

maps derived from implicit integrators of n-BHMC are properly expressed

ĒΦ
h = (s ◦ Sh/2)−1(domΦh

∩ Φ−1
h (domΦh

)) = (s ◦ Sh/2)(domΦh
∩ Φ−1

h (domΦh
)) . (53)
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For any (z, z′) ∈ ĒΦ
h × T⋆M, we define the acceptance probability ā(z′|z) to move from z to z′ by

ā(z′|z) = a(z′ | z)1(s◦Sh/2)(z)=(Φh◦Φh◦s◦Sh/2)(z) = a(z′ | z)1z=(RΦ
h◦RΦ

h )(z) ,

where a(z′ | z) is the acceptance probability defined in (9). We denote by Qn : T⋆M× B(T⋆M)→
[0, 1], the transition kernel of the (homogeneous) Markov chain (xn, pn)n∈[N ] generated by Algo-
rithm 1. We also denote by:

(a) Q0 : T⋆M × B(T⋆M) → [0, 1], the transition kernel referring to Step 1 (also Step 5) in
Algorithm 1, defined in (25).
(b) Qn,1 : T⋆M× B(T⋆M)→ [0, 1], the transition kernel referring to Step 2-3-4 in Algorithm 1.

We provide below details on Markov kernels Qn and Qn,1.

Kernel Qn,1. This kernel is deterministic and corresponds to the numerical integration of the
Hamiltonian up until time h. For any (z, z′) ∈ T⋆M× T⋆M, we have

Qn,1(z,dz
′) = 1ĒΦ

h
(z)(s#Qn,2)(z,dz

′) + 1(ĒΦ
h )c(z)δs(z)(dz

′) , (54)

where

Qn,2(z,dz
′) = ā(RΦ

h (z) | z)δRΦ
h (z)(dz

′) + [1− ā(RΦ
h (z) | z)]δz(dz′) . (55)

Kernel Qn. This kernel corresponds to one step of Algorithm 1 (i.e., comprising Steps 1 to 5). For
any (z, z′) ∈ T⋆M× T⋆M, we have

Qn(z,dz
′) =

∫
T⋆M×T⋆M

Q0(z,dz1)Qn,1(z1,dz2)Q0(z2,dz
′) .

I.3 Proof of reversibility in Algorithm 3

Let h > 0. Using notation from A3, we recall definition of the set Ah introduced in Section 4.2

Ah = {z ∈ T⋆M : h < minz̃∈B∥·∥z (z,1)
h⋆(z̃)} ⊂ domΦh

. (56)

We also recall that π̄, as defined in (2), admits a density with respect to the product Lebesgue measure
given for any z = (x, p) ∈ T⋆M by

(dπ̄/(dxdp))(x, p) = (1/Z) exp[−(1/2)∥p∥2g(x)−1 ] det(g(x))−1/2 exp[−V (x)] .

Since Algorithm 3 can be thought as a restrictive version of Algorithm 1, the Markov kernels from
Tn-BHMC are similar to the kernels from n-BHMC, defined in Appendix I.2. In particular, the
transition kernel corresponding to the Gaussian momentum update (Step 1 and 5 in Algorithm 3, Step
1 and 5 in Algorithm 1) is the same and is reversible (up to momentum reversal) with respect to π̄
(see Lemma 17). Namely, we replace

(a) the set ĒΦ
h , defined in (53), by ẼΦ

h ,
(b) the kernels Qn,1 and Qn,2, respectively defined in (54) and (55), by Q1 and Q2,

where

ẼΦ
h = (s ◦ Sh/2)−1(Ah ∩ Φ−1

h (Ah)) = (s ◦ Sh/2)(Ah ∩ Φ−1
h (Ah)) , (57)

Q1(z,dz
′) = 1ẼΦ

h
(z)(s#Q2)(z,dz

′) + 1(ẼΦ
h )c(z)δs(z)(dz

′) , (58)

Q2(z,dz
′) = a(RΦ

h (z) | z)δRΦ
h
(dz′) + [1− a(RΦ

h (z) | z)]δz(dz′) . (59)

We denote by Q : T⋆M × B(T⋆M) → [0, 1], the transition kernel of the (homogeneous) Markov
chain (xn, pn)n∈[N ] generated by Algorithm 3. For any (z, z′) ∈ T⋆M× T⋆M, we have

Q(z,dz′) =
∫
T⋆M×T⋆M

Q0(z,dz1)Q1(z1,dz2)Q0(z2,dz
′) . (60)

We first turn to the reversibility up to momentum reversal of Q1 with respect to π̄. We start with the
following lemma which is key to establish this result.
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Lemma 29. Assume A1, A2, A3. Then, for any compact set G ⊂ T⋆M, for any g ∈ C(T⋆M ×
T⋆M,R) such that supp(g) ⊂ G× G, we have∫

Gh
g(z,Φh(z))dz =

∫
Gh
g(Φh(z), z)dz ,

where Gh = Fh ∩ G ∩ Φ−1
h (G), Fh = Ah ∩ Φ−1

h (Ah), Ah being defined in (56).

Proof. Assume A1, A2, A3. Let G ⊂ T⋆M be a compact set, g ∈ C(T⋆M × T⋆M,R) such that
supp(g) ⊂ G × G. We first define the sets Fh = Ah ∩ Φ−1

h (Ah), Gh = Fh ∩ G ∩ Φ−1
h (G) and the

integrals I ′ and J ′

I ′ =
∫
Gh
g(z,Φh(z))dz , J ′ =

∫
Gh
g(Φh(z), z)dz . (61)

We recall the existence under A1 and A2 of L > 0 and M > 0 such that r⋆, given by A3 and defined
in (52), is L-Lipschitz-continuous on M with respect to ∥ · ∥2 and bounded from above by M (see
Lemma 27).

We define r : T⋆M → (0,+∞) by r(x, p) = r⋆(x)/m for any (x, p) ∈ T⋆M, where m =
max{1/λ, 4M, 4L} and λ is given by A3. Using the properties of r⋆, it comes that

(a) r is L-Lipschitz on T⋆M with respect to ∥ · ∥2,

(b) r(x, p) ≤ 1/(4LCx) for any (x, p) ∈ T⋆M, where Cx is defined in Lemma 12,

(c) r ≤ 1/4, and

(d) r ≤ λr⋆.

Note that G ⊂ ∪z∈GB∥·∥z
(z, r(z)). Since G is a compact set, there exist K ∈ N and (zi)i∈[K] ∈

T⋆MK such that G ⊂
⋃K

i=1 Bi, where Bi = B∥·∥zi
(zi, r(zi)).

We consider the sequence {Vi}Ki=1 constructed as follows: V1 = G∩B1 and for any i ∈ {2, . . . ,K},
Vi = (G∩Bi)∩ (∪i−1

j=1Vj)
c. Then, we have that, for any i ∈ {1, . . . , N}, ∪ij=1Vj = G∩ (∪ij=1Bj),

and that for any i1, i2 ∈ {1, . . . ,K}, Vi1 ∩ Vi2 = ∅ if i1 ̸= i2. Therefore, we get that G = ⊔Ki=1Vi

and Φ−1
h (G) = ⊔Ki=1Φ

−1
h (Vi). In particular, for any A ∈ B(T⋆M) and any ζ ∈ Cc(T

⋆M,R)∫
G∩A

ζ(z)dz =
∑K

i=1

∫
Vi∩A

ζ(z)dz , (62)

and for any Ã ∈ B(T⋆M) and any ζ̃ ∈ Cc(T
⋆M,R)∫

Φ−1
h (G)∩Ã

ζ̃(z)dz =
∑K

i=1

∫
Φ−1

h (Vi)∩Ã
ζ̃(z)dz . (63)

Using (62) and (61), we obtain I ′ =
∑K

i=1 I
′
i, where I ′i =

∫
Vi∩Φ−1

h (G)∩Fh
g(z,Φh(z))dz for any

i ∈ [K]. We are now going to show that, for any i ∈ [K]

I ′i =
∫
Φ−1

h (Vi)∩G∩Fh
g(Φh(z), z)dz . (64)

Let i ∈ [K]. We proceed by making the following case disjunction:

(a) Either Vi ∩ Φ−1
h (G) ∩ Fh = ∅, and then I ′i = 0. We prove by contradiction in this case that

Φ−1
h (Vi)∩G∩Fh = ∅. Assume that there exists z ∈ Φ−1

h (Vi)∩G∩Fh. By definition of Fh, z ∈ Ah,
Φh(z) ∈ Ah, and we get that Φh(Φh(z)) = z using A3. Hence, we have:

• Φh(z) ∈ Vi,
• Φh(Φh(z)) = z ∈ G,
• Φh(z) ∈ Ah,
• Φh(Φh(z)) = z ∈ Ah.

Therefore, we get Φh(z) ∈ Vi ∩ Φ−1
h (G) ∩ Fh = ∅, which is absurd. Finally, (64) holds since

I ′i = 0 =
∫
Φ−1

h (Vi)∩G∩Fh
g(Φh(z), z)dz .
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(b) Either, there exists some z̃ ∈ Vi ∩ Φ−1
h (G) such that z̃ ∈ Fh. In particular, z̃ ∈ Bi, and thus

∥z̃−zi∥zi < r(zi) < 1. In this case, by combining A3 with Lemma 9-(c), we have for any z′ ∈ T⋆M

∥z′∥z̃ ≤ (1− ∥z̃ − zi∥zi)−1∥z′∥zi < (1− r(zi))−1∥z′∥zi .

By considering z′ = zi − z̃, it comes that

∥zi − z̃∥z̃ < (1− r(zi))−1∥z̃ − zi∥zi < (1− r(zi))−1r(zi) .

By combining properties (a) and (b) of r with Lemma 12, we have the following upper bound of
r(zi)

r(zi) ≤ r(z̃) + L∥z̃ − zi∥2 ≤ r(z̃) + LCxi
∥z̃ − zi∥zi < r(z̃) + LCxi

r(zi) < r(z̃) + 1/4 ,

and thus

∥zi − z̃∥z̃ < (1− r(z̃)− 1/4)−1(r(z̃) + 1/4) < 1 ,

using property (c) of r. Hence, zi ∈ B∥·∥z̃
(z̃, 1). Moreover, z̃ ∈ Fh ⊂ Ah, and then it comes that

h < h⋆(zi). Therefore, by combining property (d) of r with A3, we have

(i) Vi ⊂ Bi ⊂ B∥·∥zi
(zi, λr

⋆(zi)) ⊂ domΦh
,

(ii) the restriction of Φh to Vi is a C1-diffeomorphism such that Φh ◦ Φh = Id.

This last result provides proper assumptions on Φh to operate a change of variable in I ′i. We now
define G1,h = Φh(Vi ∩ Φ−1

h (G) ∩ Fh) and G2,h = Φ−1
h (Vi) ∩ G ∩ Fh, and prove that G1,h = G2,h

in two steps.

(i) We first prove that G1,h ⊂ G2,h. Let z ∈ G1,h. Then, there exists z′ ∈ Vi ∩ Φ−1
h (G) ∩ Fh such

that z = Φh(z
′). Since Φh is an involution on Vi, we have Φh(z) = z′. Since z′ ∈ Vi ∩Ah, it comes

that z ∈ Φ−1
h (Vi)∩Φ−1

h (Ah). Moreover, z′ ∈ Φ−1
h (G)∩Φ−1

h (Ah), and thus, z ∈ G∩Ah. Then, we
have z ∈ G2,h, which proves this first result.
(ii) We now prove that G2,h ⊂ G1,h. Let z ∈ G2,h. In particular, z ∈ G. Then, there exists
j ∈ [K] such that z ∈ Vj . Therefore, z ∈ Bj and thus ∥z − zj∥zj < r(zj) < 1. Since z ∈ Ah,
we obtain that h < h⋆(zj) with the same computations as those written above. In particular, this
proves with A3 that Φh is an involution on Vj . Then, z = Φh(Φh(z)), with Φh(z) ∈ Vi ∩ Ah and
Φh(z) ∈ Φ−1

h (G) ∩ Φ−1
h (Ah), since z ∈ G ∩ Ah. Therefore, we have z ∈ G1,h, which proves this

last result.

Given the fact that Φh is an involution on Vi, we operate the change of variable z 7→ Φh(z) in I ′i and
obtain

I ′i =
∫
Φh(Vi∩Φ−1

h (G)∩Fh)
g(Φh(z), z)dz =

∫
Φ−1

h (Vi)∩G∩Fh
g(Φh(z), z)dz ,

which gives (64).

Therefore, combining (62), (63) and (64), we get

I ′=
∑K

i=1

∫
Vi∩Φ−1

h (G)∩Fh
g(z,Φh(z))dz =

∑K
i=1

∫
Φ−1

h (Vi)∩G∩Fh
g(Φh(z), z)dz = J ′ ,

which concludes the proof.

We are now ready to establish the reversibility up to momentum reversal of Q1, defined in (58), with
respect to π̄.
Lemma 30. Assume A1, A2, A3. Then, for any h > 0, the Markov kernel Q1 with step-size h,
defined in (58), is reversible up to momentum reversal with respect to π̄.

Proof. Assume A1, A2, A3. Let h > 0. We recall that the kernels Q1 and Q2 are respectively defined
in (58) and (59). We define the transition kernel Q3 : T⋆M× B(T⋆M)→ [0, 1] by

Q3(z,dz
′) = 1ẼΦ

h
(z)Q2(z,dz

′) + 1(ẼΦ
h )c(z)δz(dz

′) , (65)

such that Q1 = s#Q3. The rest of the proof is divided into two parts. First, we prove that Q3 is
reversible with respect to π̄. Then, we prove that Q1 is reversible up to momentum reversal with
respect to π̄.
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(a) Let f ∈ C(T⋆M× T⋆M,R) with compact support. We consider a compact set K with respect
to the topology induced by the set {B∥·∥z

(z, r), z ∈ T⋆M, r ∈ (0, 1)} such that supp(f) ⊂ K× K.
According to Definition 4, we aim to show that∫

T⋆M×T⋆M
f(z, z′)Q3(z,dz

′)π̄(dz) =
∫
T⋆M×T⋆M

f(z′, z)Q3(z,dz
′)π̄(dz) . (66)

We denote by I the left integral of (66). By combining (59) and (65), we have I = I1 + I2 + I3
where

I1 =
∫
ẼΦ
h
π̄(z)a(RΦ

h (z) | z)f(z,RΦ
h (z))dz ,

I2 =
∫
ẼΦ
h
π̄(z)[1− a(RΦ

h (z) | z)]f(z, z)dz ,

I3 =
∫
(ẼΦ

h )c
π̄(z)f(z, z)dz .

Since supp(f) ⊂ K × K, we have for any z ∈ Kc, f(z, ·) = 0 and f(·, z) = 0. Note also that for
any z ∈ ((RΦ

h )
−1(K))c, RΦ

h (z) /∈ K, and thus f(RΦ
h (z), ·) = 0 and f(·,RΦ

h (z)) = 0. By combining
these preliminary results with (9), we get

I1 =
∫
ẼΦ
h∩K∩(RΦ

h )−1(K)
π̄(z)a(RΦ

h (z) | z)f(z,RΦ
h (z))dz

= (1/Z)
∫
ẼΦ
h∩K∩(RΦ

h )−1(K)
min{e−H(z), e−H(RΦ

h (z))}f(z,RΦ
h (z))dz

I2 =
∫
ẼΦ
h∩K

π̄(z)[1− a(RΦ
h (z) | z)]f(z, z)dz ,

I3 =
∫
(ẼΦ

h )c
π̄(z)f(z, z)dz .

We denote by J the right integral of (66). By symmetry, we have J = J1 + J2 + J3 where
J1 =

∫
ẼΦ
h∩K∩(RΦ

h )−1(K)
π̄(z)a(RΦ

h (z) | z)f(RΦ
h (z), z)dz

= (1/Z)
∫
ẼΦ
h∩K∩(RΦ

h )−1(K)
min{e−H(z), e−H(RΦ

h (z))}f(RΦ
h (z), z)dz ,

J2 =
∫
ẼΦ
h∩K

π̄(z)[1− a(RΦ
h (z) | z)]f(z, z)dz ,

J3 =
∫
(ẼΦ

h )c
π̄(z)f(z, z)dz .

We directly have I2 = J2 and I3 = J3. Let us now prove that I1 = J1.

We recall that s ◦Sh/2 is a symplectic C1-diffeomorphism (see Section 3.1) and ẼΦ
h = (s ◦Sh/2)(Fh)

where Fh = Ah∩Φ−1
h (Ah), using (57). We define Kh = Fh∩(s◦Sh/2)(K)∩Φ−1

h ((s◦Sh/2)(K)), such
that ẼΦ

h ∩K∩(RΦ
h )

−1(K) = (s◦Sh/2)(Kh), and we operate the change of variable z 7→ (s◦Sh/2)(z)
in I1 and J1
I1 = (1/Z)

∫
Kh

min{e−H((s◦Sh/2)(z)), e−H((s◦Sh/2◦Φh)(z))}f((s ◦ Sh/2)(z), (s ◦ Sh/2 ◦ Φh)(z))dz ,

J1 = (1/Z)
∫
Kh

min{e−H((s◦Sh/2)(z)), e−H((s◦Sh/2◦Φh)(z))}f((s ◦ Sh/2 ◦ Φh)(z), (s ◦ Sh/2)(z))dz .
We now define the map g : T⋆M× T⋆M→ R and the set G ⊂ T⋆M by

g(z, z′) = min{e−H((s◦Sh/2)(z)), e−H((s◦Sh/2)(z
′))}f((s ◦ Sh/2)(z), (s ◦ Sh/2)(z′)) ,

G = (s ◦ Sh/2)(K) .
Note that G is a compact set of T⋆M by continuity of s ◦ Sh/2 and g is a continuous function by
continuity of H and s ◦Sh/2. Then, we obtain I1 = J1, by applying Lemma 29 with g and G. Finally,
we obtain I = J and thus prove (66) for any continuous function f with compact support.

(b) Let f : T⋆M× T⋆M→ R be a continuous function with compact support. We have∫
T⋆M×T⋆M

f(z, z′)Q1(z,dz
′)π̄(dz)

=
∫
T⋆M×T⋆M

f(z, z′)(s#Q3)(z,dz
′)π̄(dz)

=
∫
T⋆M×T⋆M

f(z, s(z′))Q3(z,dz
′)π̄(dz) (momentum reversal on z′)

=
∫
T⋆M×T⋆M

f(z′, s(z))Q3(z,dz
′)π̄(dz) (using (66))

=
∫
T⋆M×T⋆M

f(s(z′), s(z))(s#Q3)(z,dz
′)π̄(dz) (momentum reversal on z′)

=
∫
T⋆M×T⋆M

f(s(z′), s(z))Q1(z,dz
′)π̄(dz) ,

which concludes the proof.
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We are now ready to prove Theorem 3, which states that Q is reversible up to momentum reversal
with respect to π̄.

Proof of Theorem 3. Assume A1, A2, A3. This proof is very similar to the proof of Theorem 15 (see
Appendix E.2). Let f : T⋆M× T⋆M→ R be a continuous function with compact support. We have∫

T⋆M×T⋆M
f(z, z′)Q(z,dz′)π̄(dz)

=
∫
(T⋆M)4

f(z, z′)Q0(z,dz1)Q1(z1,dz2)Q0(z2,dz
′)π̄(dz) (see (60))

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(z,dz1)Q1(s(z),dz2)Q0(z2,dz

′)π̄(dz) (Lemma 17)

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(s(z),dz1)Q1(z,dz2)Q0(z2,dz

′)π̄(dz) (momentum reversal on z)

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(z2,dz1)Q1(z,dz2)Q0(s(z),dz

′)π̄(dz) (Lemma 30)

=
∫
(T⋆M)4

f(s(z1), z
′)Q0(z2,dz1)Q1(s(z),dz2)Q0(z,dz

′)π̄(dz) (momentum reversal on z)

=
∫
(T⋆M)4

f(s(z1), s(z))Q0(z2,dz1)Q1(z
′,dz2)Q0(z,dz

′)π̄(dz) (Lemma 17)

=
∫
T⋆M×T⋆M

f(s(z′), s(z))Q(z,dz′)π̄(dz) .

Moreover, s#π̄ = π̄. Hence, by combining Definition 4 and Lemma 5, we obtain the result of
Theorem 3.

J Comparison with Kook et al. (2022a).

In this section, we provide a precise comparison between our work and the results stated in Kook
et al. (2022a). We first dwell on the differences related to the general setting and the algorithms, and
then explain how our methodology may solve the limitations of Kook et al. (2022a).

J.1 General framework

Given a convex body K ⊂ Rd and a function c : Rd → Rm, consider
M = {x ∈ K : c(x) = 0} . (67)

In their paper, Kook et al. (2022a) aim at sampling from a target distribution π, with density given for
x ∈ M by

dπ(x)/dx = exp[−V (x)]/Z ,

where V ∈ C2(M,R), Z =
∫
M
exp[−V (x)]dx. They make the following assumptions:

(a) K is provided with a self-concordant barrier ϕ.
(b) The differential of c at x, Dc(x), is full-ranked for any x ∈ M.

Although this setting might be more general than ours (consider for instance the case where K is a
polytope and c is a non-trivial function), Kook et al. (2022a) focus on the case

K = {x ∈ Rd : ℓ ≤ x ≤ u}, c(x) = Ax− b (68)

where ℓ, u ∈ Rd with ℓ < u, b ∈ Rm, and A ∈ Rd×m. Combined with assumptions (a) and (b), A
must have independent rows and the Hessian of ϕ at x given by g(x) = D2ϕ(x) is a diagonal positive
matrix for any x. Moreover, M defined by (67)-(68) is a polytope. However, not any polytope can
be rewritten in a manner akin to (68), and therefore, the setting chosen by Kook et al. (2022a) can
actually be considered as a special case of our setting, see Section 2.

Then, they consider the extended state-space M̄ = {(x, p) ∈ Rd × Rd : x ∈ M, p ∈ Ker(Dc(x))}
and define on M̄ a constrained Hamiltonian H , given by

H(x, p) = H̄(x, p) + λ(x, p)⊤c(x) ,

with H̄(x, p) = V (x) +
1

2
log pdetM(x) +

1

2
p⊤M(x)†p ,

and M(x) = Q(x)⊤g(x)Q(x) ,
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where Q is the orthogonal projection into Ker(Dc(x)), implying that M is semi-definite positive,
and λ(x, p) is a Lagrangian term given by

λ(x, p) = (Dc(x)Dc(x)⊤)−1{D2c(x)[p, dx/dt]−Dc(x)∂H̄(x, p)/∂x} .
Remark that λ simplifies when c is chosen as in (68), but may not be well suited for higher order
constraints. Then, Kook et al. (2022a) provide simplifications of H for the setting (68) based on
formulas for pdetM and M†.

Finally, they consider the joint distribution π̄ given for any (x, p) ∈ M̄ by

dπ̄ = (1/Z̄) exp[−H(x, p)]dxdp,

where Z̄ =
∫
M̄
exp[−H(x, p)]dxdp, for which the first marginal is π. They naturally propose to

sample from π̄ by implementing a version of RMHMC relying on the constrained Hamiltonian H ,
which they call CRHMC.

Similarly to our approach, they consider two cases.

(a) First, Kook et al. (2022a) assume that the Hamiltonian dynamics given by H can be explicitly
computed in continuous time (which is not the case in practice). They present the continuous version
of RMHMC which incorporates the simplified constrained Hamiltonian H , see Algorithm 1. We
refer to this algorithm as c-CRHMC. This algorithm is identical to our algorithm c-BHMC provided
in Appendix D, apart from the involution checking step (see Line 4 in Algorithm 2). They state in
Theorem 6 that the Markov kernel corresponding to one iteration of c-CRHMC satisfies detailed
balance with respect to π̄, thus ensuring that it preserves π̄.
(b) Then, Kook et al. (2022a) provide a practical implementation of CRHMC, which is similar
to n-BHMC, based on a time-discretization of the Hamiltonian dynamics for a given time-step
h > 0. They first split the simplified constrained Hamiltonian H into H1 and H2, by leveraging the
non-separable aspect of H in H2, as we do in Section 3.1. Then, they propose to use the first-order
Euler method to solve the discretized ODE associated to H1, as we also suggest, and the Implicit
Midpoint Integrator (IMI) to solve the discretized ODE associated with H2, while we implement the
Generalized Leapfrog Integrator (GLI). We insist on the fact that these two second-order methods
share the same theoretical properties (Hairer et al., 2006). Since IMI is implicit, they propose to
approximate it with a numerical integrator Φh, which is computed with a fixed-point method (as
we do) detailed in Algorithm 3. Finally, they implement CRHMC which contains the same steps
as n-BHMC apart from the involution checking step (see Line 8 in Algorithm 1): (i) refreshing
the momentum with a symplectic scheme (Step 1 in both algorithms), (ii) solving the discretized
ODE associated to H in three steps according to the splitting given by H1 and H2 (Step 2 in both
algorithms), (iii) applying a Metropolis-Hastings filter (Step 3 in both algorithms), and (iv) operating
a final momentum reversal (Step 4 in n-BHMC). They state in Theorem 8 that the Markov kernel
corresponding to one iteration of CRHMC satisfies detailed balance with respect to π̄, thus ensuring
that it preserves π̄.

J.2 Theoretical gaps in the reversibility of CRHMC Kook et al. (2022a)

First, we call into question the proof of the reversibility of c-CRHMC stated in (Kook et al., 2022a,
Theorem 6). Indeed, Kook et al. (2022a) implicitly assume that the time-continuous Hamiltonian
dynamics have a solution at any time, but do not provide any proof of this result. We emphasize here
that this result is not trivial and possibly may not hold due to the pathological behaviour of the barrier
at the border of M, see Proposition 14. In contrast, the involution checking step implemented in
c-BHMC verifies this condition for the forward and the reversed dynamics after momentum reversal,
which then allows us to derive the reversibility of c-BHMC, see Theorem 15.

Finally, we report some gaps in the proof of reversibility of CRHMC provided in (Kook et al., 2022a,
Theorem 8). Indeed, while Kook et al. (2022a) claim that (Hairer et al., 2006, Theorem VI.3.5.)
applies to CRHMC which contains the numerical integrator detailed in (Kook et al., 2022a, Algorithm
3), in fact (Hairer et al., 2006, Theorem VI.3.5.) only applies to the implicit integrator (IMI). This is
a fundamental limitation of their theory. This theoretical confusion thus leads to numerical errors, as
we detail in Section 6. In contrast, we present in Section 4 theoretical results on the implicit integrator
(GLI), which allows us to derive reasonable assumptions on the numerical integrator Φh to obtain
reversibility of n-BHMC in Theorem 3. Contrary to Kook et al. (2022a), our proof relies on the
properties of Φh and highlights the critical role of the involution checking step.
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K Experimental details

The numerical experiments presented in Section 6 are based on the MATLAB implementation of
CRHMC provided by Kook et al. (2022a). We adapt this code for n-BHMC for sake of fairness.
In particular, our implementation differs from CRHMC by the use of the Generalized Leapfrog
integrator and the “involution checking” mechanism.

Details on experiments with synthetic data. In these experiments, the hypercube refers to the
set [−1/2, 1/2]d where d ∈ {5, 10}. We recall that the ground truth on the quantities we estimate is
given by the Metropolis Adjusted Langevin Algorithm (MALA) (Roberts & Stramer, 2002) for the
hypercube and the Independent Metropolis Hastings (IMH) sampler (Liu, 1996) for the simplex. We
now give details on how the parameters of these two algorithms are chosen. For MALA, we use a
constant step-size h = 0.05 for both dimensions, which results in an average acceptance probability
equal to 0.55 for d = 5 and 0.44 for d = 10. For IMH, we use as proposal the uniform distribution,
which is simply a Dirichlet distribution, resulting in an average acceptance probability of order 0.36.
We recall that we use an adaptive step-size h in CRHMC and n-BHMC such that we obtain an average
acceptance probability of order 0.5 in the MH filter. We now discuss the setting of the tolerance
parameter η in n-BHMC. We choose η so that (i) the step-size h is at least greater than 10−2 over the
iterations of the algorithm and (ii) the average acceptance probability is roundly equal to 0.5. This
heuristic results in defining (a) for the hypercube, η = 5 if d = 5 and η = 10 if d = 10 and (b) for
the simplex, η = 10 if d = 5 and η = 200 if d = 10.

Details on experiments with real-world data. For these experiments, we consider the exact same
setting as in Kook et al. (2022a). In particular, we use the same adaptation strategies to update the
step-size and the barrier functions.

Influence of the norm in (8). The norm chosen for the “involution checking step” is arbitrary and
many options are available. In particular, one could design ∥z(0) − Φh(z

(1))∥2 > η, and thus pick
the Euclidean norm in (8). However, while this approach should theoretically also reduce the bias in
the method, we remark that the obtained Markov chains have very poor mixing time. This is due to
the fact that in practice the update on the momentum is of order ∥g(x)∥1/22 while the update on the
position is of order ∥g(x)−1∥1/22 . Hence the Euclidean norm is ill-suited for the “involution checking
step” and the proposal states are rejected a lot more near the boundaries, see Figure 3.

Figure 3: Outputs of n-BHMC after 25k iterations to sample from the uniform distribution over
[−1, 1]2 with η = 10−3, h = 0.8, using in (8) the “self-concordant” norm (left) or the Euclidean
norm (right). Red samples are rejected and blue samples are accepted.
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