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Abstract

This paper addresses the noise-minimal trajectory optimization problem for a specific
type of aircraft: rotorcraft. It relies on a realistic noise footprint computation software
provided by industry that is black-box. Locally optimal trajectories are computed through
a tailored solution approach based on the Mesh-Adaptive Direct Search algorithm. We
propose multiple surrogates defined according to our knowledge of the problem, including a
surrogate relying on the physics of the problem (approximating the rotorcraft noise model),
and another based on a machine learning (neural network) method. The proposed solution
approach is further enhanced by the computation of an appropriate starting guess through
a path planning algorithm tailored to the problem, and by the reduction of the variable
space domain. The performance of the proposed methodology both in terms of quality of
the solutions (trajectories exhibiting significant noise reduction compared to those currently
flown in practice) and computing time is illustrated through numerical experiments on real-
world case studies.

1 Introduction

Rotorcraft play an essential role in the aviation landscape, thanks to their specific maneuvering
abilities, which enable them to conduct specific missions that other types of aircraft cannot
accomplish. This includes performing Emergency Medical Services (EMS), civil Search & Rescue
(SAR), as well as carrying out logistic missions in remote areas. Rotorcraft environmental impact
(CO2 and noise emissions) could be considered negligible compared to that of fixed-wing traffic,
as the number of rotorcraft operations is significantly smaller. However, the specific missions
of rotorcraft lead them to operate at low altitudes and in close proximity to populated areas.
Therefore, rotorcraft environmental impact is significant in terms of noise annoyance. Taking
into account the foreseen growth in helicopter operations (Grand View Research, 2022), and
even more the emergence of Urban Air Mobility (UAM), that also relies on the use of some kind
of rotorcraft, the noise reduction of rotorcraft operations is urgently needed (ICAO, 2008). A
way to reduce emitted noise is based on modifying the structural design of rotorcraft (e.g. Rauch
et al., 2011), but this usually implies some compromise in vehicle performances, besides requiring
a long-time development process. Another promising way to address the mitigation of noise, that
we consider in this paper, is the design of noise-abatement operations, and more specifically the
design of rotorcraft trajectories whose associated noise impact is minimized.

The problem at hand thus belongs to the framework of aircraft trajectory optimization. The
objective function to be minimized is evaluated by computer simulations through an industrial
software, that is therefore a black-box. The problem we address is then an emerging application in



air transportation, which is challenging as it combines both the difficulties of optimal trajectory
design and of black-box optimization.

Aircraft trajectory optimization has been widely addressed in the literature (Betts, 1998;
Delahaye et al., 2014). This problem has been studied for different types of aircraft: airplanes
(Hagelauer and Mora-Camino, 1998; Sridhar et al., 2011; Rodionova et al., 2014), rotorcraft
(Guntzer et al., 2014; Morris et al., 2016) and more recently UAVs (Unmanned Aerial Vehicles)
(Raap et al., 2017; Coelho et al., 2017; Dasdemir et al., 2020). Several objectives to be minimized
are considered, such as fuel consumption and operational costs (Hagelauer and Mora-Camino,
1998), traffic congestion (Rodionova et al., 2014), contrails formation (Sridhar et al., 2011) and
noise annoyance (Prats et al., 2010; Guntzer et al., 2014). The design of rotorcraft trajectories
whose associated noise footprint is minimized relies on optimization levers usually including the
position and the velocity of the rotorcraft. In the literature, many works focus on optimizing
rotorcraft straight approach profiles, such as in (Padula et al., 2009; Guntzer et al., 2014). In these
works, the horizontal path is fixed, letting the altitude and speed of the rotorcraft be the only
optimization variables. Significant noise reduction (up to 6 dB) have been obtained by Guntzer
et al. (2014). However, the increase of operations in (more constrained) urban areas makes it
needed to investigate the possibility to modify additionally the horizontal path. More recent
research by Greenwood (2019, and references therein) have considered more complex rotorcraft
trajectories. The trajectory is optimized in 3D, but it relies on a coarse discretization of the
space, with a limited choice for heading changes. Another work by Greenwood (2017) takes into
account both time and 3D positioning of the rotorcraft in trajectory modeling. However, only
some simplified trajectories (e.g. straight approach, level turn) are optimized. In our work, both
the horizontal and vertical paths, along with speed, are degrees of freedom in the optimization.
As regards to the solution of aircraft trajectory optimization problems, many different approaches
can be found in the literature, including integer linear programming (Raap et al., 2017), optimal
control (Prats et al., 2010; Sridhar et al., 2011) and heuristic methods (Rodionova et al., 2014;
Dasdemir et al., 2020). For the considered problem of rotorcraft noise abatement trajectory
design, population-based heuristic methods are typically used (Padula et al., 2009; Guntzer
et al., 2014). However, in the framework of black-box optimization, these methods remain
computationally very expensive. As an example, Padula et al. (2009) fix a maximum number of
function evaluations to 300 to limit the computing time. More efficient heuristic methods based
on space discretization, such as A*, have also been used (Morris et al., 2016; Greenwood, 2019)
but without any guarantee of optimality in the continuous space. Additionally, Morris et al.
(2016) assume that noise is factorable (i.e. the noise impact associated to two joined segments of
trajectory equals the sum of the noise impact of each individual segment), while in practice it is
not. The approach that we propose in this paper takes into account the relevant characteristics
of the real-world problem at hand while handling the computational complexity of the black-box.

Black-box optimization is receiving an increasing attention for efficiently addressing problems
arising in engineering and economy, where the evaluation of the objective and/or the constraints
is obtained through a computer simulation (e.g. Audet et al., 2008; Manno et al., 2020). In
this context, the use of surrogate models (sometimes referred to as meta-models) has proved to
be effective in enhancing the performance of black-box optimization, in particular for problems
where computer simulation is expensive, and derivatives are costly or not available (Sébester
et al., 2014; Vu et al., 2017; Xia and Shoemaker, 2021).

In this paper, we address the problem of designing minimal-noise rotorcraft trajectories. We
propose to design 4D trajectories, where both the rotorcraft 3D position and speed are optimized.
The computation of the associated noise footprint, which is minimized, relies on an accurate
noise footprint simulator provided by industry. The design of realistic 4D rotorcraft trajectories
combined to accurate noise predictions is rarely present in the literature and appears to be of



particular interest in the considered application framework. We propose a solution approach
relying on a state-of-the-art method for black-box optimization. Despite the complexity of the
problem, we show that we are able to provide good quality (locally) optimal solutions exhibiting
significant noise reduction compared to trajectories currently flown in practice.

Another main contribution of this paper relies on the definition of multiple surrogate models
of the original black-box simulator, based on our knowledge of the problem. On the one hand,
we propose some surrogates that are defined from a simplification of the original black-box,
while keeping the black-box nature. They include in particular a surrogate based on the physics
(acoustics principles) of the problem. On the other hand, we propose a surrogate relying on a
machine learning process, where the knowledge of the problem plays again an important role in
its construction. We propose an algorithmic scheme relying on these surrogates and on a state-
of-the-art algorithm for black-box problems. Numerical results on real-world problem instances
show significant benefits from the proposed approach in terms of both quality of the computed
solution and computing time.

The paper is structured as follows. Section 2 presents the mathematical modeling of the
problem. Section 3 details the algorithmic scheme proposed to solve the problem. Section 4
introduces the different surrogate models that we propose to enhance the optimization and
how to use them in the proposed algorithmic scheme. Section 5 presents and discusses the
numerical results obtained with the proposed approaches on real-world instances. Section 6
draws conclusions and gives some perspectives for future work.

2 Modeling the minimum-noise rotorcraft trajectory opti-
mization problem

This section gives first a brief description of the model that we consider for rotorcraft trajectories.
Then, it presents the mathematical formulation of the problem at hand, comprising the definition
of the decision variables, the objective function and the constraints.

2.1 Trajectory modeling

In this paper, a trajectory is modeled as a succession of waypoints. A (flyable) trajectory is
determined afterwards, as the result of an interpolation of these points, as depicted in Figure 1.
A waypoint is generally defined by coordinates in the 3-dimensional space identifying the physical
position of the rotorcraft. They are widely used in the aeronautical domain, according to the
International Civil Aviation Organization (ICAO, 2006), to define the flight path of a rotorcraft
employing area navigation.

In this work, we consider a set W of waypoints in a 4-dimensional space. Each element w of
this set is a quadruplet (T, Yuw, 2w, Vo) € RY, where the first three coordinates, ., yuw, and z,,
identify the rotorcraft position in the 3-dimensional space, and the fourth one, v,,, sets its speed.
More precisely, v,, denotes the rotorcraft true air speed (TAS), which is defined as the speed of
the rotorcraft relative to the air mass in which it is flying. Ground speed (relative to the Earth’s
surface) is calculated as the sum of the TAS and the wind speed. All speeds are expressed in
knots (kt). The number of waypoints Ny, = |W] is a parameter, whose value depends on the
problem instance.
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Figure 1: A trajectory (in red) is built by interpolation of waypoints (in blue).

2.2 Optimization problem formulation

The problem of designing rotorcraft trajectories so as to minimize the associated noise footprint
takes the general form in (1):

min  f(x) (1)

xeQ
subject to ¢;(x) <0, j=1,...,m

As detailed in the following, the vector x of decision variables follows directly from the trajec-
tory model. The objective function f is derived from typical noise metrics, whose computation
is based on noise values resulting from computer simulations through the considered industrial
black-box simulator. Finally, the constraints g; are mainly related to operational requirements.

Decision variables. The decision variables are the degrees of freedom used to minimize
the noise impact associated to the trajectory. They derive directly from the trajectory modeling
introduced in Section 2.1 and correspond to the 4-dimensional coordinates defining the waypoints
that can be optimized. The set of decision variables is defined as follows:

x={z,yi,zi,v; :i=1,...,N} (2)

where N = Ny, — 2 is the number of variable waypoints. Indeed, there are two particular way-

points in the set W: the starting waypoint (2o, yo, 20, vo) and the end waypoint (XN 11, YN+1; ZN+1, UN+1)-
Their coordinates do not belong to x, since they are data of the problem and remain fixed during

the optimization.

Constraints. The constraints of the addressed problem are mainly related to operational
requirements. The trajectory must respect rotorcraft performance limitations (e.g. maximum



rate of turn), flyability constraints (ensuring pilot and passengers comfort) and Air Traffic Man-
agement (ATM) regulations (e.g. obstacle avoidance). All these constraints can be represented
through non-linear functions g;, satisfying:

Vie{l,...,m}, g¢g;(x)<0, x € RN (3)

First, all variables are bounded. The lower and upper bounds for the position variables (x, y,
and z) are set in such a way that the variable space domain remains out of obstacles. A minimum
speed, Vmin, iS set to avoid hazardous flying conditions at low speed, while a maximum speed,
Umaz, 18 fixed by rotorcraft performance limitations. Contrary to the bounds on the position
variables, those on velocity are the same for all the waypoints:

r; <y ST
Yi <Y <Y
2 <2 <7

Vie{l,...,N}
Umin S O S Umax

Second, the main constraints that characterize the problem involve the rotorcraft flight path
angle v (expressed in degrees, ©), its vertical speed V, (expressed in feet per minute, ft.min™!)
and its heading ¥ (expressed in degrees, °). They are defined in terms of the decision variables

as follows:
t Az,
; — arctan [ ———
L dlsti,H_l

Vie{0,...,N}, < V., =sin(y)v
U, = g — arctan2 (

dt’ dt

where A,, = z41 — % is the altitude change and dist; ;11 is the Euclidean ground distance
between successive waypoints ¢ and ¢ + 1.

The flight path angle and the vertical speed are lower bounded by Y and V. i, respectively,
to ensure passenger comfort and to limit pilot workload. They are also upper bounded by
respectively Vmqe to avoid blade stall and V. ;4. due to rotorcraft performance limitations.
Operational limitations also impose additional constraints such as a maximum acceleration, d,qz
(expressed in knots per second, kt.s!), and a maximum rate of turn, Uaw (expressed in degrees
per second, °.st). The latter represents the maximum number of degrees of heading change
allowed per second. Note that in practice most of the turns are performed at a standard rate
turn, which corresponds to ¥ = 3°.s7L.

The formulation of the above constraints reads:

dy; dmi)

’Ymin S Yi é Ymaz
Vz,min S ‘/z,i S ‘/z,maac

vie{o,... Ny [dv)
at | =
aw;| .

<‘I]maz
at | =

We remark that in practice the lower bound on the vertical speed is the most binding constraint
in most cases. Indeed, on the one hand, flying as high as possible seems to be a good way to
reduce noise on the ground. This would indeed allow to benefit from a larger attenuation of
noise resulting from the increased propagation distance compared to that of a lower altitude



flight. On the other hand, it seems also interesting to fly as fast as possible to reduce the
population overflight duration. The combination of these two intuitive ways to reduce noise
during the approach phase of the flight would lead to a steep and fast descent with a very low,
thus non-flyable, vertical speed.

Finally, obstacles such as forbidden areas, terrain (hills, mountains) and buildings represent
also some kind of additional constraints. Indeed, as obstacles have to be avoided to ensure flight
safety, the feasible domain is restricted. Unlike the preceding ones, the constraints associated
to obstacles are not described by an analytical expression. We instead take them into account
through a definition of the feasible space for the decision variables that does not include points of
the 3D-space corresponding to obstacles. Further details about the management of the obstacles
are given in Section 3.2.2.

Objective function. We address the minimization of the noise perceived on the ground,
associated to the rotorcraft trajectory to be designed. Since we consider the optimization of a
single trajectory, its associated noise impact is typically measured by single-event noise metrics,
such as Perceived Noise Level (PNL), Sound Exposure Level (SEL) or maximum A-weighted
sound level (LA max) (Watson and Downey, 2008). These noise metrics are defined taking into
account the time evolution of noise at different ground locations. In this paper, we consider the
SEL metric, which is widely used in the application framework we address. SEL values are the
result of a computationally expensive computer simulation performed by an industrial software
from Airbus Helicopters. The objective function to be minimized relies on these SEL values, and
is defined as follows.

Let N,, be the number of relevant ground locations, where the noise has been computed.
For all k € {1,..., Ny}, pi is a problem data denoting the number of people at ground location
k, and SEL(k) denotes the Sound Exposure Level at ground location k, computed through the
black-box computer simulation. SEL noise contours are defined as areas where the predicted
SEL is higher than given values. Let £ = {Lo, L1, ...,100} dB(A) be the set of values defining
the noise contours. In this paper, we consider 5 dB(A) contours, hence £; = Ly + 5j dB(A) for
all j € {0,...,|£]|—1}, |£]| being the cardinality of the set £. The lowest noise contour threshold,
denoted as Lo, is a user-defined parameter typically set to 70 dB(A). The total population
considered exposed to noise, Pj.;, is then defined as:

Prot = Z Pk (4)
k€{l,....Np}:
Lo<SEL(k)
Let M; be the subset of ground locations whose SEL value is between £;_; and L;:
Vie{l,....|f] =1}, M,;={ke{l,...,Ny},Lj—1 <SEL(k) < L;},
and let P; denote the number of people associated with the set of ground locations M;:
Vie{l,... |Ll—1}, Pi= > pk

keM;

The population exposure to rotorcraft noise, denoted as fioise, iS defined as a normalized
weighted sum of the population in the different SEL contours. It is defined as follows:

[£]-1

by
fnoise - ]:21 ay - Pto (5)




The weighting factors values, o; > 0, are user-defined parameters used to give more or less weight

to the different noise exposure levels. In this paper, these weighting factors are set according to
dose-response relationships for aircraft noise defined by the World Health Organization (WHO,
2018). Finally, we consider the following objective function f to be minimized, accounting for
both distance travelled and population exposure to rotorcraft noise:

.f =A- fdist + (1 - >\) ’ fnoise (6)

where A € [0,1) is a user-defined weighting parameter, that can be adjusted to reach a good
compromise between trajectory length and population exposure to noise, and fg;4: is a normalized
measure of the trajectory length.

The two terms, fgise and froise, of the objective function depend on the decision variables
x, y, z and v defined above. The length of the trajectory is directly related to the 3D position
of the waypoints, which is defined through the variables x, y and z. As for the fi,0ise term, first
remark that the population exposure to noise strongly depends on the population overflown by
the horizontal path of the rotorcraft, defined through variables = and y. In addition, the SEL
perceived on the ground closely depends on the propagation distance between the noise source
and the receiver. The height of the rotorcraft, controlled by variable z, thus plays a major role:
the higher the rotorcraft, the lower the noise level on the ground. The rotorcraft speed, controlled
by variable v, also has a strong influence on the objective function. First, the noise emitted by
the rotorcraft depends on its speed. In addition, as the SEL is a time-integrated metric, the
speed also has a strong influence on the objective function: the faster the rotorcraft, the lower
the population overflight duration, hence the lower the SEL value.

As the computation of the objective function values relies on an industrial black-box simula-
tor, we do not have access to an analytical expression of f,.;se, nor to its derivatives in function
of the decision variables. Derivatives can neither be approximated through finite differences
due to the computational cost involved. We consequently use solution algorithms for black-box
optimization, which do not rely on gradient information to compute descent directions.

3 Optimizing rotorcraft trajectories

In this section, we first present methods typically used for the resolution of black-box optimization
(BBO) problems. Then, we describe the chosen method and the dedicated algorithmic scheme
proposed to solve the problem at hand.

3.1 Literature review on BBO methods

Computational approaches to solve BBO problems are based on methods that do not need any
gradient information. Such methods can be classified in different categories.

First, meta-heuristic methods, and especially population-based algorithms, are widely used
to solve BBO problems (Padula et al., 2009; Guntzer et al., 2014). Such methods manage a
collection of individual candidate solutions, forming what is called a population. They iteratively
update the population keeping the most promising individuals and generating new individuals.
To proceed this way, these methods evaluate the black-box at each iteration on each individual
of the population, and as a consequence they are generally computationally expensive. The
computational cost of a single run of the black-box simulator that we use is already too high to
consider such population-based methods to solve our problem.

Statistical-based methods can also be used to address black-box optimization problems (Jones
et al., 1998). Among them, Bayesian Optimization (Mockus, 1989; Frazier, 2018) is a class of



global optimization methods, which is particularly adapted to problems with expensive black-box
functions. It benefits from the use of a statistical model, typically a Gaussian Process. However,
statistical-based methods, as well as population-based ones mentioned above, do not provide any
guarantee of optimality for the computed solutions.

In this paper, we focus on deterministic derivative-free optimization (DFO) methods. They
can be essentially divided into two major categories: model-based and direct-search (Audet and
Hare, 2017; Larson et al., 2019).

On the one hand, model-based methods typically use a model as a surrogate of the objective
function, to determine candidate solutions and guide the optimization. Polynomials or radial
basis functions are widely used surrogate models in the literature (Gutmann, 2001; Costa and
Nannicini, 2018; Xia and Shoemaker, 2021). These models can then be used within several
methods. As an example, in line-search methods, the descent directions are determined according
to the gradient information of the model. In trust-region methods, the next iterate is determined
by minimizing the model over a trusted region, where it is assumed to be a faithful approximation
of the objective function. These model-based methods are particularly appropriate when the
objective function is assumed to be smooth, that cannot be intuitively stated for our problem.

On the other hand, direct-search methods only rely on objective function evaluations of
candidate points (solutions). At each iteration k, these methods generate a set of poll points
around the current candidate point x;, according to a finite set of predefined directions of search,
denoted as Dy. Given a step size ay and a polling direction d € Dy, a poll point is obtained as
X + aid. The objective function f is then evaluated at the poll points in order to determine the
next candidate point xx11. If a poll point providing a lower (in case of a minimization problem)
value of the objective function is found, xx41 is set to that point and the step size is possibly
increased. Otherwise, Xiy1 is set to x; and the step size is decreased. This local exploration
around the current candidate point is called the poll step. Most of direct-search methods also
include a search step, which allows for a wider exploration in the variables space. This step is very
important in practice as it can guide the method to promising regions and help to escape local
solutions. In the search step, the objective function is evaluated at any finite set of points T
that can be generated by any user-defined procedure. If this step fails to find a better candidate
solution, then the poll step is performed. A general description of direct-search methods is given
in Algorithm 1.

There are in the literature several direct-search methods that mainly differ from each other
on how to generate the set of polling directions. One of the first approaches is the Coordinate
Search (CS) (Fermi and Metropolis, 1952), for which the set Dy, of polling directions is composed
of the positive and negative coordinate directions. The pattern-search methods advance the CS
in that they include a search step, as described above. In addition, they allow for a broader finite
set of directions than the coordinate ones in the poll step. The Brute Force Optimizer (BFO),
introduced by Porcelli and Toint (2018) is an example of a recent algorithm implementing a
pattern-search method. The Mesh Adaptive Direct Search (MADS) method (Audet and Dennis
(2006)) further improves pattern-search methods in that it allows for an infinite set of polling
directions whose union across the iterations is asymptotically dense in the search space. In
addition, convergence to a locally optimal solution can be proved for both unconstrained and
constrained problems.

Some more recent works (Conn and Le Digabel, 2013; Manno et al., 2020) propose methods
that cannot be clearly classified as direct-search or model-based methods as they combine some
characteristics of both. Conn and Le Digabel (2013) introduced an adaptation of the MADS
algorithm using quadratic models. They propose to use the models whether directly in the
search step or for ordering the candidate points in both the search and poll steps. Another
method, RQLIF, is defined by Manno et al. (2020) as an hybrid method which consists of the



Algorithm 1 Direct-search method

Choose an initial point xg and a step size ag
x§ < x0, k<0
while stopping criterion not reached do
Generate a finite set T > search step
if f(t) < f(xx) for some t € T}, then
x,i' —t
end if
if xz = x;, then
Generate the set of polling directions Dy > poll step
if f(t) < f(xg) for some t € {x; + oyd : d € Dy} then
X;: —t
end if
end if
if xz = x; then > update
Decrease(ay)
else
Increase(ay)
end if
Xft1 <—xz, k+—k+1
end while

alternation of direct-search and model-based steps.

In this paper, we consider direct-search methods, and in particular the MADS method. It
features indeed some characteristics that makes it particularly appropriate for the problem we
address. First, it uses an infinite set of polling directions, which can be a key element to promote
efficiency in the presence of multiple local optima. Furthermore, it provides a guarantee of
local convergence to an optimal solution for constrained optimization, where the constraints are
handled through a penalization approach. Finally, its performance on the problem considered in
this paper have been compared, using the NOMAD solver, against a well-known pattern search
algorithm, BFO (Porcelli and Toint, 2018) and the above-mentioned hybrid method RQLIF
(Manno et al., 2020). The results presented in Section 5.3 show the interest in the use of MADS
for our problem.

3.2 Solution approach

In this section, we present the algorithmic scheme that we propose to solve the problem of design-
ing a minimal-noise rotorcraft trajectory. Our approach is based on a local direct-search method,
and specifically on MADS. In order to enhance the performance of MADS and more generally
of any local direct-search method, we rely on different levers, which include the computation of
a suitable starting guess for the optimization, the reduction of the space of variables and the use
of surrogate models. The two former levers are introduced in subsections 3.2.1 and 3.2.2, while
different types of surrogates, appropriate to the problem at hand, are discussed in Section 4. The
proposed algorithmic scheme is sketched in Algorithm 2.



Algorithm 2

1: Compute an initial solution Xg through a dedicated path planning algorithm (FMT¥*).
> See Subsection 3.2.1
2: Define an appropriate variable space domain according to obstacles.
> See Subsection 3.2.2

3: while stopping criterion not reached do
Run one iteration (search and poll steps) of the MADS algorithm.
> See Algorithm 1
where all function evaluations are performed by the black-box.
5: end while
6: Return a (locally) optimal trajectory Xopt-

3.2.1 Providing a good starting point

It is widely known that for local optimization methods, the computed optimal solution is closely
dependent on the choice of the initial candidate solution. Therefore, it is important to provide
such methods with a good starting guess. In the considered context, the aim is to define an
initial trajectory, referred to as Xg in the following, which is feasible with respect to the prob-
lem constraints. Furthermore, one expects the design of such initial trajectory being not time
consuming within the whole trajectory optimization process.

In this paper, the initial trajectory is determined by solving an auxiliary optimization prob-
lem, that differs from the one defined in Section 2 on two main points. First, in order to save
computing time, the criterion to be minimized does not rely on the costly black-box. Its expres-
sion is similar to the one given in Equation (6), except that fyise is replaced by a measure of the
population overflown, as defined in the following. Second, the auxiliary problem also differs from
the one defined in Section 2 in that it is a path planning problem, where the decision variables
are only the 3-dimensional x, y and z variables identifying the rotorcraft position. There are no
variables depending on time, as it is the case in trajectory optimization problems. A pre-defined
speed profile is assigned to the obtained solution afterwards to get the initial trajectory design.

This auxiliary problem is solved using a sampling-based path planning algorithm: the Fast
Marching Tree algorithm (FMT*) (Janson et al., 2015). The authors (Janson et al.) show that
FMT* is asymptotically optimal and outperforms state-of-the-art path planning algorithms such
as RRT* and PRM* (Karaman and Frazzoli, 2011). Like other sampling-based path planning
algorithms, FMT* performs a dynamic programming recursion: it generates a tree in the search
space and builds an optimal path on this tree, from the starting to the destination point. Its
efficiency is due to several reasons. First, it operates in a pre-sampled search space. Therefore,
it can perform concurrently the graph construction and the search. At each iteration, the tree
is extended towards the destination point by building the locally optimal connection (i.e. with
the minimal cost) between one of the neighbor points (i.e., which have not been connected yet
to the tree) of the current most promising node (tree leaf) and one of its neighbor node. FMT*
takes also advantage, as detailed in the following paragraph, of a restricted selection of neighbors
within a given radius r. In addition, FMT* performs a “lazy” computation in that it ignores the
obstacles for the evaluation of the potential connections. Then, if the locally optimal connection
crosses an obstacle, it is simply skipped instead of looking for other connections to extend the
tree. More details about the algorithm are given in (Janson et al., 2015) and an illustration of a
generated tree is given in Figure 2a.

In this paper, FMT* has been tailored to our problem. As the aim is to build a flight path,
the starting point and the destination point are obviously respectively the starting waypoint and
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the end waypoint of the trajectory. As regards the neighbors selection of a given node, FMT*
considers that the neighbor is defined as a sphere centered on that node. The value of the sphere
radius, 7, depends on the predetermined number of sampled points, that in turns depends on
the granularity of the search space discretization. The higher the number of sampled points,
the closest these points each other, the smaller the radius r. In this paper, some points located
in that sphere are omitted when looking for locally optimal connections because the resulting
connections would violate the flyability constraints (e.g., maximum turn rate, maximum flight
path angle).

The function ¢, evaluating the cost of a potential connection between a node of the tree u
and one of its neighbors v, is similar to the objective function introduced in Equation (6), but
does not relies on the black-box simulator. Its formulation is the following:
dist(u, v) pop(u,v)

c(u,v) =X~ po o

+ (1=

where A € [0,1] is an user-defined parameter, dist(u,v) is the Euclidean distance between u
and v, p(u,r) is the population located in the r-radius sphere centered on the tree node u,
and pop(u,v) is the population overflown from u to v as defined hereafter. Population data is
available in a grid format, and each grid cell is associated with the number of people lying in it.
The value of pop(u,v) is computed summing up the number of people in every grid cell crossed
by the straight line between u and v and in all the surrounding cells lying within a predetermined
noise spanning distance value. We typically consider a noise spanning distance of 1000 m.

The weighting factor A allows the user to set the expected balance between the reduction of
the population overflown and the increase in the travelling distance. The role of X is illustrated
in Figure 2b. For low values (e.g. A = 0.1), the focus is put on reducing population overflown,
which typically results in an increased path length due to the detours taken to avoid high-densely
populated areas (see the blue path in Figure 2b). On the contrary, for high values (A = 0.9),
the travelling distance takes a greater importance and the resulting path is more straight to the
destination (see the black path in Figure 2b).

3.2.2 Reducing the variables space domain

The second lever, enhancing the efficiency of the problem resolution, consists in reducing the
variable space domain. The interest of this lever is twofold. On the one hand, the reduction of
the space of variables usually helps any optimization method to converge faster. On the other
hand, the constraint related to obstacle avoidance is handled directly through the use of this
restricted space of variables, which will be referred to as corridor in the following.

The corridor is defined as an area around the initial trajectory computed through the algo-
rithm presented in the previous subsection. It must be as large as possible to allow variables to
vary (within their bound-constrained domain) along the optimization process, but always keep-
ing the associated flight path collision-free with respect to the obstacles. In practice, the corridor
is built piecewise linearly from the starting waypoint to the end waypoint of the trajectory. It
connects pairwise special points that can whether be defined according to the lower and upper
bounds of each decision variable x and y representing the rotorcraft position, or added around the
obstacles in order to get collision-free connections between two successive points. An illustration
of a corridor is given in dashed black in Figure 3.
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Figure 2: FMT* algorithm representation on a given instance of our problem.

4 Surrogates

In this section, we first introduce the surrogate models that we propose for the considered black-
box. Then, we propose an effective algorithmic scheme, based on Algorithm 2 and relying on the
use of these surrogates within a direct-search method.

12



T
— Initial solution " 50000
=== Corridor
® Departure point =~
48.88 - - 1 .
® Arrival point ot
40000 NE
> =
L
©
— 48.86 | £
e 30000 =,
L =]
=] w
E c
= ]
S 4884 - ﬂ -
' : 20000 .2
e I
R E
o
[=]
=9
48.82 - L 10000
48.80 T T T T 1 —0
2.20 2.22 2.24 2.26 2.28 2.30

Longitude (*)

Figure 3: Tllustration of a corridor (black dashed lines) around an initial trajectory, avoiding
obstacles. In this example, there is only one obstacle, represented in blue, corresponding to a
prohibited area (no-fly zone).

4.1 Designing surrogates

The goal is to design surrogates of the original black-box function that are cheaper to evaluate.
We build on our knowledge of the addressed problem to propose different types of surrogates
tailored to such a problem. First, we introduce surrogates which are based on different simpli-
fications of the original black-box. Then, we present another type of surrogate model based on
machine learning.

4.1.1 Physics-based surrogates

We present in the following two surrogates that are based on simplifications of the original black-
box. While keeping their black-box nature, these surrogates are less costly to evaluate than the
original function, thanks to their reduced complexity.

The first surrogate that we propose relies on an approximation of the physical noise model on
which the noise footprint computation, thus the black-box, is based. It is widely agreed in the
literature (Schmitz, 1995; Gopalan et al., 2003; Guntzer et al., 2014) that for steady-state flight
and moderate acceleration/deceleration, the noise emitted by a rotorcraft can be parametrized
by two flight parameters: the true air speed v and the flight path angle v. In addition, due to
their rotary parts (e.g. the main and tail rotors for an helicopter), rotorcraft do not emit the
same noise in all directions, they have their own sound directivity patterns. As a consequence, for
a given flight condition determined by the couple (v,y), the rotorcraft noise source is typically
represented by an hemisphere of noise levels centered on the rotorcraft (Padula et al., 2009;
Guntzer et al., 2014; Morris et al., 2016). More details about the rotorcraft noise modeling
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approach used by the original black-box simulator considered in this paper can be found in
(Guntzer et al., 2014; Dieumegard et al., 2022). The approximation that we propose consists in
considering that, rather than presenting some sound directivity patterns, such as the hemisphere
represented in Figure 4a, the helicopter noise source is isotropic. In this case, the total emitted
noise is equally distributed over the whole hemisphere, as illustrated in Figure 4b.

Quiet Noisy

H2 1 -1 H1

(b) Isotropic approximation of the rotorcraft
noise source. The emitted noise is equally
spread in all directions.

(a) Realistic rotorcraft noise source presenting
specific sound directivity patterns.

Figure 4: Definition of the surrogate model considering an approximation of the noise source as
isotropic.

The noise footprint associated to a given representative trajectory, resulting from this surro-
gate model, is shown in Figure 5b. We can see that the noise contours are smoother than those
resulting from the computation with the original black-box simulator (Figure 5a). However, the
general pattern remains the same, as expected since we chose to keep constant the total noise
emitted.

The second surrogate that we propose is based on a simplification of the black-box-based noise
footprint computation. The noise footprint results from the computation of the time evolution
of the noise at different ground locations, which are typically placed on a regular grid with a
user-defined resolution. The finer the grid, the more accurate the noise footprint but the higher
the computational cost. The simplification that we propose consists in evaluating the noise on a
coarse grid. As a consequence, the computation may not accurately capture the rotorcraft noise
footprint, especially in areas where the noise is expected to vary significantly, e.g. in the vicinity
of the landing point.

An example of the noise footprint computed for the same trajectory on a fine (Fig. 6a) and
on a coarse (Fig. 6b) grid is given in Figure 6. The color scale is the same than in Figure 5:
the yellower the contour, the noisier. We can observe some differences in the noise contours in
Fig. 6a and Fig. 6b, in particular nearby the end of the trajectory: the yellowest contour is not
captured in Figure 6b. Yet, the degraded noise footprint evaluated on a coarse grid keeps an
overall shape similar to the more accurate one. In addition, its computing time is significantly
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(a) Noise footprint computed by the original (b) Noise footprint computed by the isotropic
black-box simulator. surrogate model.

Figure 5: Comparison of the noise footprints, represented by 5 dB(A) SEL contours, associated
to the same trajectory evaluated by the original black-box simulator and with the isotropic
surrogate model.

reduced. More details about the computing time savings are given in Section 5.3.

4.1.2 Machine-Learning based surrogate

Contrary to the above presented ones, the surrogate model detailed in this section is not based
on a simplification of the original black-box. We propose an application of a widely used machine
learning algorithm to build a surrogate model tailored to our problem. Machine learning tech-
niques are more and more used to generate surrogates, in particular in applications where the
problem relies on the computation of costly black-boxes (Mengistu and Ghaly, 2008; Kocuk et al.,
2015; Wang et al., 2019). Furthermore, previous works (Gervais and Schmitz, 2005; Greenwood,
2018) have shown the interest of using machine learning for the prediction of rotorcraft noise.
In this paper, the aim is to learn how the black-box works, i.e. to learn the rotorcraft noise
emission and noise propagation models. The learning consists in finding a relationship between
some inputs and a single output. In order to simplify the process, we consider that the rotorcraft
emits noise at given time instants. Thus, the trajectory is sampled in successive emission instants
(typically every second) and the noise is estimated at each prescribed ground location for each
emission instant. The inputs of the learning process, which will be referred to as input features,
are the flight parameters that affect rotorcraft noise emission (i.e. true air speed, v, and flight
path angle, ), the direction and the length of the acoustic ray between the rotorcraft and the
position on the ground where the noise is to be estimated. Since the noise source is represented
as an hemisphere centered on the rotorcraft (see Fig. 4a), the direction of the acoustic ray (i.e. of
the noise propagation) is given by two angles (6, ¢). These two angles describe the coordinates of
the intersection point of the acoustic ray with the noise hemisphere. The length of the acoustic
ray (i.e. the propagation distance) is denoted as dObs. All the input features are illustrated in
Figure 7. The output is a single value representing the predicted noise level for a given ground
location and emission instant. Data considered for the machine learning process has thus a simple
shape: a one-dimensional array gathers all the input features and a single value represents the
output. Feed-forward artificial neural networks (multi-layer perceptrons) (Hertz et al., 1991;
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(a) Noise footprint computed by the original (b) Noise footprint computed by the original
black-box simulator on a fine observer grid black-box simulator on a coarse observer grid
(~100m step). (~500m step).

Figure 6: Comparison of the noise footprints, represented by 5 dB(A) SEL contours, associated
to the same trajectory evaluated on the original black-box simulator with different resolutions
of the observer grid.

Haykin, 2009), like the one chosen to address the considered learning problem, are widely used
for similarly-shaped data.

Figure 7: Illustration of the input features for our machine learning-based surrogate model.

A neural network, like the one that we build, is a collection of connected nodes, which are
typically organized in layers. The input layer gathers all the input features and the output layer
provides the final output of the network (a noise level in our case). In between, there is at least
one hidden layer. Each node of a hidden layer behaves like a neuron: it receives a signal (i.e.
a processed information) from the nodes of the preceding layer, processes and transmits it to
those of the following layer. The hidden layers are fully connected, meaning that each node is
connected to every node of the following layer, with a specific connection weight. The processing
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of each node consists in the computation of the weighted sum of all the input signals coming
from the nodes of the preceding layer. Then, a (non-linear) activation function is applied to this
weighted sum and the result is transmitted to every neuron of the following layer. The learning
process, i.e. the training of the neural network, consists in solving another optimization problem.
This problem aims at minimizing a loss function, which generally measures the error between
the output predicted by the network and a target output. This is done by setting the weights of
the neuron connections.

In this paper, the considered loss function (MSE) is the mean sum of squares of the difference
between the predicted and the target noise level as defined below. This function has been chosen
in order to have a strong penalization of large errors:

n

1 -
MSE = - Z(Lk — Ly)?
k=1

where n is the number of examples considered for the evaluation of the loss function, Ly is the
target noise value computed by the original black-box and Ly, is the noise value predicted by the
neural network.

Feature 1: v
Feature 2: 7 . @@/ L (dB)

Feature 3: 6

Feature 4: ¢

Input layer Hidden layers (10 Output layer
(5 input features) nb. neurons/layer: 100-80-50-50-50-50-50-50-30-10

Figure 8: Feed-forward neural network architecture for our problem.

The architecture of the neural network that we build to predict rotorcraft noise is represented
in Figure 8. It is known that the prediction accuracy of a neural network depends on several
hyperparameters, such as the number of hidden layers, the number of neurons per layer, and
the activation function, whose values are fixed at the beginning of the learning process. We
have carried out some parametric studies to investigate the influence of the values of these
hyperparameters, assuming that a prediction accuracy of approximately RMSE = vMSE =
1 dB is very acceptable as it is below typical noise measurement uncertainty and because a
1 dB sound variation is almost imperceptible for the human ear. As a result, we set the number
of hidden layers of the multi-layer perceptron to 10, with a decreasing number of neurons per
layer, as detailed in Figure 8. For every neuron, the same activation function is applied: the
Rectified Linear Unit (ReLu) function, which is defined by a : £ — max(0, z) and widely used for
multi-layer perceptrons. It is particularly appropriate for the output layer, where it is expected
to behave like a linear activation (a(z) = x), since the final output is a noise level, positive by
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definition. Finally, the optimization algorithm chosen to minimize the considered loss function
(MSE) is a stochastic gradient method (Kiefer and Wolfowitz, 1952), which is typically used in
the case of large datasets.

In this paper, the dataset is composed of fifty million examples, which have been gener-
ated according to specific probabilistic distributions for each input feature. These distributions
have been defined according to real flight data recordings. Direction angles (6 € [0,90]° and
¢ € [0,360]°) follow uniform distributions within their whole range since we want the model to
be able to capture all the sound directivities of the rotorcraft noise source. The propagation
distance (dObs € [15,3000]m) also follows a uniform distribution. We do not consider propaga-
tion distances below 15m because the assumption of the rotorcraft as a point source is not valid
for distances smaller than 15m. Above 3000m, it is assumed that the noise attenuation is such
that on the ground the rotorcraft noise is not perceptible. Noise-dependent flight parameters
(v € 10,130] kt, v € [—15,15]°) follow a normal distribution for each of three different flight
phases (take-off/climb, cruise and approach). Mean and standard deviation for the different
phases have been estimated from real flight data. All the examples in the dataset have been
associated to a noise value, calculated offline using the original black-box simulator. The dataset
has been split into three distinct subsets. The training set used to fit the model comprises 64% of
the examples. A validation dataset, comprising 16% of the examples, is used for the evaluation
of the model at different phases of the training process. Finally, the test set, comprising 20% of
the examples, is used for the evaluation of the final model trained on the training set.

The neural network has been developed using the Keras Python library (Chollet et al., 2015),
which runs on top of TensorFlow backend. The CPU time required for training the neural
network is 41595 seconds (11 hours 33 minutes). This seems relatively long compared to the
running of the original black-box, but it is done offline only once. Afterwards, evaluating a
trajectory through the neural network based surrogate model is very fast (~0.5 seconds). After
the training, the model reaches a root mean squared error of 0.27 dB on the test set, which is very
accurate when considering noise levels. A comparison between the noise footprints computed
by this surrogate model and by the original black-box is given in Figure 9 for a representative
problem instance. The figure shows that the absolute difference in SEL levels is lower than 0.5
dB, which is much lower than typical noise measurement uncertainty as mentioned previously.
This fully validates the accuracy of the proposed neural network model.

4.2 Algorithmic scheme using surrogates

In this section, we propose an optimization algorithmic scheme for the problem at hand, embed-
ding the above defined surrogates in order to enhance the efficiency of MADS. We recall (see
Section 3.1) that NOMAD proposes several ways to embed surrogate models in the implemented
MADS algorithm (Conn and Le Digabel, 2013). The surrogate can be used either in the search
step or in the poll step to order the candidate points. These candidate points are then evaluated
by the original black-box simulator in an opportunistic way, i.e., the most promising one is eval-
uated first and so on, according to their ranking, until a candidate point improving the objective
function value is found. Some points are thus evaluated twice (first with the surrogate model
and then with the original black-box).

In this paper, we propose a different framework to use surrogate models. The surrogate is
called for the evaluation of the candidate points during both the search and poll steps. Moreover,
we resort to the surrogate during a first phase of the optimization process, while, to refine the
search until reaching the local optimal solution, we propose to switch from the surrogate model
to the original black-box. This allows the use of the more accurate noise footprint computation
in the second phase of the optimization process, to get the optimal solution. A sketch of the
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Figure 9: Comparison between the noise footprint computed by the original black-box and by
the neural network based surrogate model for the same trajectory (plotted in red): absolute
difference of SEL values.

proposed algorithmic scheme embedding surrogates is given in Algorithm 3.

In this algorithmic scheme, it is crucial to decide when the algorithm has to switch between
the surrogate model and the original black-box. This choice results from a compromise. In the
case of early switching, one would loose the advantage of using a surrogate, as the computing
time reduction would not be significant. In the case of late switching, the algorithm could
get stuck in a local minimum specific to the surrogate. This might lead to a degraded (local)
solution, or could require a high number of iterations with the original black-box, subsequent to
the switch, to escape from that local minimum, loosing the benefit of using the surrogate. In
this work, the switch is done as soon as one iteration of the MADS algorithm (in the first phase,
using the surrogate) has failed, i.e., no improving solution has been found neither in the search
nor in the poll step. The final stopping criterion (of the second phase, using the original black
box simulator) is similar to the switching one, apart from the number of failed iterations: the
MADS algorithm stops as soon as it reaches n consecutive failed iterations, n being the number
of decision variables.

Another important algorithmic choice occurs after the switch, regarding the mesh parameters.
On the one hand, they could keep their current values. It means that, after the switch, the search
continues on the same mesh but using the original black-box simulator. On the other hand, after
the switch, the search could be relaunched on a completely new, reinitialized mesh. This choice
is discussed in Section 5.3.
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Algorithm 3

1: Compute an initial solution Xg through a dedicated path planning algorithm (FMT¥*).
> See subsection 3.2.1
2: Define an appropriate variable space domain according to obstacles.
> See subsection 3.2.2

3: while switch criterion not satisfied do
4: Run one iteration (search and poll steps) of the MADS algorithm,
> See Algorithm 1
where all function evaluations are performed using a surrogate model.
> See subsection 4.1
5: end while
6: while stopping criterion not satisfied do
7: Run one iteration (search and poll steps) of the MADS algorithm,
> See Algorithm 1
where all function evaluations are performed using the original black-box.
8: end while
9: Return a (locally) optimal trajectory Xept-

5 Numerical results

In this section, we first present the computational setting and the main characteristics of the
considered problem instances used for our numerical experiments, then numerical results are
presented and discussed.

5.1 Computational setting

We first give the numerical values of the parameters appearing in the constraints formulation.
These values depend on the type of considered rotorcraft. Each type of rotorcraft has indeed
different performance limitations and has its own acoustic signature. In this paper, numerical
tests are run for a single type of rotorcraft: a H130 helicopter. For this particular rotorcraft,
minimum and maximum speed values are imposed by its performance limitations:

Umin = 40 kt  and vy = 125 kt

In addition, we assume that the rotorcraft is operated under Visual Flight Rules (VFR), which
means that the safety of the flight relies on visual reference rather than on navigation instruments
(Instrument Flight Rules (IFR)). In this context, the vertical speed is limited to:

V,.min = —1200 ft.min™"

Finally, to ensure passenger comfort and manageable pilot workload, the rate of turn and the
maximum acceleration are bounded by the following values:

\i/mam =9 O.S_l and Amazr = 3 kt.S_1

Contrary to the previous ones, these last two values are applicable to any instance, since they
do not depend on the rotorcraft type.
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5.2 Problem instances

Most of the instances considered in the following correspond to real-world rotorcraft trajectory
problems. For each of these instances, the optimal trajectories computed through the proposed
approaches (embedding or not the surrogate models) are compared to really-flown rotorcraft
trajectories, referred to as reference trajectories in the following. These reference trajectories
are typically retrieved from rotorcraft-radar communications or from rotorcraft flight recorder.
Each instance is characterized by the following elements, which are illustrated in Figure 10:

e A search space. It has generally a cube shape and corresponds to a small portion of
the Earth surface (see Fig. 10a). It is defined around the reference trajectory by lati-
tude/longitude boundaries and a height ceiling.

e Obstacles. They can be of different types (buildings, forbidden areas...) and can take
different shapes. In this paper, obstacles are described by either prisms or cylinders in the
3-dimensional space. As an example, obstacles are represented in blue in Figure 10a.

e Population data. For the instances corresponding to real-world test cases, population
density is associated to the latitude/longitude coordinates of the considered search space.
Such data are publicly available for France, published by INSEE (National Institute of
Statistics and Economic Studies), with a precision of 200 m (INSEE, 2022). A 2D repre-
sentation of population density is given in Figure 10b. The browner the area the higher
the population density.

e Terrain elevation data. As for population data, terrain elevation can be associated
to the considered search space. In this paper, we used DTED1 (Digital Terrain Elevation
Data), which is available for the whole Earth surface with a precision of 90 m (NGA, 1990).
A representation of terrain elevation data is given in Figure 10c. The yellower the area,
the higher the terrain.

e A trajectory starting waypoint. In this paper, we focus on cruise and approach flight
phases of the trajectory. Therefore, the starting waypoint of the trajectory is a waypoint of
the cruise phase, represented by a green dot in Figure 10. It is defined by four coordinates:
latitude, longitude, altitude above mean sea level (AMSL) and speed. We use typical values
for rotorcraft altitude and speed in cruise flight, that are respectively 1500 ft and 115 kt
for the H130 helicopter considered in this paper, while latitude and longitude depend on
the problem instance.

e A trajectory ending waypoint. It is the last considered waypoint of the trajectory,
represented by a red dot in Figure 10. In practice, it is a point in space (PinS), where
the pilot decides to perform landing or to go-around. The final landing procedure, coming
after this PinS, is not considered in the optimization because it is strongly constrained in
order to ensure a safe landing. The optimization is done up to this PinS, which is defined
with four coordinates, like the starting waypoint. Typical values for rotorcraft height above
ground level (AGL) and speed at this waypoint are 100 ft and 50 kt, respectively.

The results of our numerical experiments are in particular illustrated and discussed in the
following on five instances. The first instance is the only one that does not correspond to a real-
world traffic test case. Indeed, it has been generated in order to assess the performances of the
different proposed approaches with respect to state-of-the-art results from the literature. This
instance is defined as a 2D approach flight, where the horizontal path is considered fixed (i.e. z
and y are not optimization variables anymore). In this case, only the vertical (z) and speed (v)

21



@ Starting waypoint
e Ending waypoint

T

[ 500

-
N

Altitude (m)

[ 200

4886 |
48.84 .o\
882 |00
2.30 48.80

(a) Example of a 3D view of the search space. Obstacles are
represented in blue.

48.90 ~ .

[ T — |
e Starting waypoint "W # ’ 50000
Endi int c e
# Ending u?ypoln - >
48.88 + p ’ 48.88
] 40000 T -
> - E
raBB6| Q@ £ 4886 <
- d 30000 > ]
9] b 2 @ ©
k-1 - ‘w0 e >
3 - - | i
= [T w
= 3 =
3 a8.84 c 3 assa g
; < :
20000 £ g
5 o]
a
o
a
48.82 10000 48.82
48.80 . . ‘ ‘ 0 28.80 ‘ .
2.20 2.22 2.24 2.26 2.28 2.30 g ;

Longitude (°)

Longitude (*)

(b) Population density distribution. Obstacles

(c) Terrain elevation data. Obstacles are
are represented in blue (2D upper view).

represented in red (2D upper view).

Figure 10: Illustration of the main characteristics of problem instances on a representative one
(instance n°2)

profiles can vary. As the instance is not associated to a specific location, a uniform population
density and a flat terrain are assumed. All the other instances correspond to real-world traffic
examples. The second and third instances both address a cruise and approach flight to an heliport
located in a very high densely populated area. They only differ on the cruise altitude: 1500ft
and 2000ft, respectively. The environmental characteristics of these two instances are illustrated
in Figure 10: the population density and the terrain elevation corresponding to the considered
area are shown in Figure 10b and 10c, respectively. The fourth instance addresses a cruise and
approach flight to a landing point that is located on a sea coast. The considered area is associated
with a particularly uneven population distribution comprising both very high densely populated
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zones (on the coast) and uninhabited areas (above the sea), as depicted in Figure 11a. Terrain
elevation is represented in Figure 11b. The fifth instance is similar to the fourth instance in
terms of population distribution while referring to a different geographic location.
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Figure 11: Illustration of the environmental characteristics of instance n°4.

5.3 Results

In this section, we present numerical results obtained by applying the proposed approaches
on the previously described problem instances. We first compare three well-known local DFO
algorithms applied to multiple instances of the problem at hand. Then, we select the algorithm
that performs best on our problem and keep it for the numerical experiments presented in the
remaining of this section. The purpose of such numerical experiments is twofold.

First, we show that our proposed approach, relying on a state-of-the-art DFO algorithm and
taking advantage from the tailored computation of the initial trajectory candidate and from the
definition of the corridor to handle obstacles, allows (local) optimal solutions to be computed,
featuring a significant reduction of the noise impact on population.

Second, we show the benefits of using the proposed surrogate models within an appropriate
algorithmic scheme. The different surrogates are first compared to the original black-box simula-
tor in terms of computational efficiency. Then, setting and handling the mesh parameters of the
search within the proposed algorithmic scheme (Algorithm 3) is discussed. We show afterwards
that this algorithmic scheme embedding the surrogates is able to provide good quality solutions
within a reduced computing time compared to the algorithm based on the original black-box
simulator alone (Algorithm 2). Finally, we present the results of the optimization relying only
on the surrogate based on the neural network, where it totally replaces the original black-box
simulator over the whole computation.

All the numerical tests have been carried out on a Linux platform with 48 CPUs (3.00 GHz)
and 130 GB of RAM, and using NOMAD solver version 3.9.1.

5.3.1 Comparing DFO algorithms

In this section, we assess the performance, on several instances of the problem at hand,
of three well-known local DFO algorithms: MADS (Audet and Dennis, 2006), RQLIF (Manno

23



et al., 2020) and BFO (Porcelli and Toint, 2018). They have been selected among other local DFO
algorithms because their efficiency has been proven on many standard DFO problems (Rios and
Sahinidis, 2013). The selected algorithms have been compared on 55 problem instances, among
which 5 instances correspond to the ones described previously (Section 5.2) and the 50 others
have been randomly generated around several heliports, considering local population density,
terrain elevation and obstacles.

In order to carry out a fair comparison, the three tested algorithm are provided, for each
problem instance, with the same initial trajectory. In addition, the same value is set for the
user-defined parameters for the three algorithms. In particular, the values of the reduction and
expansion factors of the mesh are set to 0.08 and 1.5, respectively (default RQLIF values). The
maximum number of function evaluations is set to 1000 and is used as the stopping criterion for
the three algorithms. The MADS algorithm is applied through its NOMAD (Le Digabel, 2011)
implementation.

To compare these three algorithms, we use performance profiles introduced by Dolan and
Moré (2002). In this paper, we define the performance of an algorithm on a given problem
instance as the objective function value obtained after a fixed number (1000) of function evalua-
tions. Figure 12 shows the performance profiles for the three tested algorithm on the 55 problem
instances. For 7 > 1, pa(7) € [0,1] is the percentage of problem instances for which the per-
formance of algorithm a is within a factor 7 of the best one. Note that the higher the profile,
the better the algorithm performs. We can see that, for the considered problem instances, the
NOMAD implementation of the MADS algorithm outperforms both BFO and RQLIF. In partic-
ular, p,(1) is interesting in that it gives the fraction of problems for which algorithm a is better
(i.e., in our case, provides a lower objective function value) than all the other tested algorithms.
The value p,(1) is 64.0% for NOMAD, 18.0% for RQLIF and 18.0% for BFO.
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Figure 12: Performance profiles comparing the quality of the solution obtained after a fixed
number of function evaluations by three well-known DFO algorithms on a set of 55 problem
instances.

All the following numerical experiments have been carried out using the NOMAD imple-
mentation of the MADS algorithm within the different approaches proposed in the paper. The
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results are detailed for the five instances described in Section 5.2, representative of the problem
at hand.

5.3.2 Computing local optimal solutions of the black-box optimization problem

We show in the following that we are able to obtain good quality solutions by applying the first
proposed solution approach (Algorithm 2), which does not make use of surrogate models. Table 1
reports, for the 5 real-world instances, the objective function values of the reference trajectory
Xrer, the initial trajectory X, and the computed optimal trajectory Xopt, respectively f(Xo),
f(Xrer) and f(Xopt). The required CPU time (in seconds) for the computation of X and Xopst
is also given. In addition, the table gives the percentage reduction of the objective function value
for the initial and the optimal trajectories with respect to that of the reference trajectory.

Problem Reference Initial Computed optimal
instance | trajectory (Xyef) trajectory (Xo) trajectory (Xopt)
F(Xret) f(Xo) CPU Time (s) F(Xopt) CPU Time (s)
N°1 6794.1 6794.1 (0.0%) N/A 6064.5 (10.8%) 15251
N°2 755116.6 527396.4 (30.2%) 6.8 429709.3 (43.1%) 10327
N°3 762795.4 528115.7 (30.8%) 7.3 437270.7 (42.7%) 9350
N°4 35190.2 24700.4 (29.8%) 5.4 5160.7 (85.3%) 8687
N°5 39064.5 7374.8 (81.1%) 5.8 3732.7 (90.4%) 13625

Table 1: Results for the optimal trajectories computed by the proposed solution approach (Al-
gorithm 2) using the original black-box simulator.

On the one hand, we observe that the initial trajectory, which is used as a starting guess for
the black-box optimization, shows already a significant improvement compared to the reference
trajectory. This was expected as such initial trajectory is not randomly chosen but computed
through a dedicated path planning algorithm, as described in Section 3.2.1. We notice that,
for the first instance only, the initial trajectory does not improve the reference one. This is
due to the specific characteristics of that instance: it addresses a straight approach flight, i.e.,
only the altitude and speed of the rotorcraft can vary. As the horizontal path is fixed and
the path planning algorithm aims at minimizing population overflown and distance travelled,
no improvement can be obtained at this stage. For the other instances, we get at least a 30%
reduction in the objective function value compared to that of the reference trajectory. This
shows that this first step is effective in finding a good initial trajectory candidate, while being
computationally inexpensive compared to the whole optimization process.

On the other hand, Table 1 shows that the optimal trajectory Xopt computed through the
first proposed solution approach always exhibits a reduction in the objective function value
with respect to the trajectory currently flown in practice. We recall that the objective function
measures the population exposure to the noise generated by a rotorcraft flying the considered
trajectory. Its value is thus strongly correlated to the population density in the area above which
the trajectory goes through. As the instances are characterized by very different population
distributions (see the color scales in Figures 10b and 11a), the objective function values and
their associated percentage reductions vary widely amongst them. In particular, we see that the
improvement is the least significant (only 10.8%) for the first instance. First, as explained above,
this is due to the fact that the horizontal path is not optimized. Then, for this particular instance,
a uniform population distribution is considered. Therefore, the population density, that appears
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in the definition of the objective function, takes the same value over all the considered area and
does not actually guide the optimization. The second and third instances feature a reduction of
approximately 43% in the objective function value. In terms of population exposure to noise, this
is equivalent to a reduction of approximately 230000 people exposed to a SEL € [75,80] dB(A).
The percentage reduction is even more significant for the fourth and fifth instances (>85%). This
can be explained by observing that there is a greater flexibility to reduce the population exposure
to noise in sparsely populated areas rather than in high densely ones. Yet, for these instances, the
improvement brought by the computed optimal trajectories is equivalent to a reduction of only
about 21200 people exposed to a SEL € [75,80] dB(A). This number is very low compared to
that of second and third instances, again mainly due to a much lower population density. From
the application standpoint, obtaining such good quality locally optimal solutions, i.e. rotorcraft
trajectories whose noise footprint is significantly reduced compared to reference trajectories, is
valuable for practitioners.

In the following, we further detail the results for the first two instances: the first one because
of its particular characteristics, and the second one, as it is representative of the instances based
on real traffic.

As regards the first instance, the results are illustrated in Figure 13. In particular, Figure 13a
shows the difference in terms of SEL between the noise footprints associated to the computed
optimal trajectory and the reference one. Significant reductions, up to -6 dB(A), can be obtained,
that is consistent with the results of previous work in the literature (Padula et al., 2009; Guntzer
et al., 2014). These reductions are very much related to the flight parameters variations, illus-
trated in Figure 13b. The computed optimal trajectory features a much steeper descent slope
(v = —10°) than the reference one (y = —6°). As a consequence, the speed profile is also very
different: a strong deceleration occurs from the cruise phase in order to be able to conduct such
a steep descent, while sticking to the constraint on the vertical speed.

As regards the second instance, Figure 14 gives a 2D upper view of both the reference tra-
jectory (plotted in black) and the computed optimal trajectory (plotted in red). On top of that,
their associated SEL noise footprints are shown in Fig.14a and Fig.14b, respectively. We remark
that the computed optimal trajectory comes with a much smaller noise footprint compared to
that of the reference one. This strongly correlates with the reduced noise impact on population
discussed previously. Again, reductions of noise exposure are directly related to changes in flight
parameters during the flight, shown in Figure 15. This time, the altitude profile of the computed
optimal trajectory remains similar, in terms of descent slope, to that of the reference one. How-
ever, the speed profile greatly differs: in the computed solution, the deceleration occurs as late as
possible to reduce the overflight duration, thus the time-integrated SEL value on the ground. In
addition to the flight parameters variations, we notice that, for the second instance, the reduced
noise footprint is also very much related to the reduction in the trajectory length (see Fig. 14
and Fig. 15).

As regards the computing time, from the considered application standpoint optimal trajectory
planning is done at a strategic level, that means from some days up to some hours in advance
with respect to the flight. As a consequence, short computing times are not necessarily expected
and even a magnitude of several minutes up to a few hours can still be considered acceptable.
Table 1 first shows, as expected, that the computation of the initial trajectory Xg through the
dedicated path planning algorithm is very efficient. The second phase of the optimization using
the MADS algorithm is much more computationally expensive. This is due to the computational
complexity of the black-box simulator.

Even though computing time is not critical it is still of interest to find ways to reduce it.
This motivates the proposed approach relying on surrogate models, whose associated numerical
results are discussed in the next subsection.
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Figure 13: Results for instance n°l. Comparison in terms of both SEL and flight parameters
variations between the computed optimal and the reference trajectories.

5.3.3 Investigating the impact of surrogate models

We focus hereafter on the usage of the different proposed surrogates introduced in Section 4.1.
Prior to presenting the detailed results on all the instances, we recall that the surrogate models
considered in this study are of different nature. In the following, they will be referred to as
isotropic approximation, microphone grid simplification and neural network. The results obtained
making use of these surrogates are compared to the ones obtained with the original black-box
simulator.

First, we give an insight on their computational performance, without considering their em-
bedding in any optimization algorithm. Table 2 reports the CPU time required to evaluate the
trajectory represented in Figure 14a with the original black-box simulator and with the proposed
surrogate models. As expected, the surrogates are much cheaper to evaluate than the original
black-box simulator. The required CPU time is reduced by a factor of 4 with the isotropic ap-
proximation, 10 with the microphone grid simplification, and up to 130 with the neural network.
In addition, regarding the shape of the computed noise footprint, the surrogates share strong
similarities with the original black-box as discussed previously in Section 4.1. While illustrated
here on one trajectory only for the sake of simplicity, a similar behavior can be observed on
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(a) Noise footprint associated to the reference tra- (b) Noise footprint associated to the computed op-
jectory. timal trajectory.

Figure 14: Results for instance n°2. Noise footprints associated to the computed optimal and
the reference trajectories, illustrated by 5 dB(A) SEL noise contours. The considered rotorcraft
(H130) flies from North to South.
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Figure 15: Results for instance n°2. Flight parameters variations (altitude z, speed v, and flight
path angle 7) in function of the remaining distance to the landing point for the computed optimal
and the reference trajectories.

other trajectories. This justifies the use of the proposed surrogates in combination to the MADS
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Original Isotropic Microphone grid  Neural
Surrogate type ) ] o ]
black-box approximation simplification network

CPU Time (s) 68.2 16.4 7.0 0.5

Table 2: CPU time required for the evaluation of a single trajectory (see Figure 14a) with the
original black-box simulator and with the proposed surrogate models.

algorithm through the algorithmic scheme (Algorithm 3) introduced in Section 4.2.

Then, the results in terms of both quality of the computed solutions and computational
savings, with respect to the use of the original black-box only, are shown in Tables 3-7 for
the five problem instances considered. The structure of the tables is the following. The first
column indicates whether the original black-box is used or which surrogate is used among the
ones defined in Section 4.1. In the following columns, Xswitch denotes the current trajectory
candidate when the switch criterion has been reached and f(Xswiten) the corresponding value
of the objective function. The CPU time (expressed in seconds) up to the switch criterion is
satisfied is denoted as tsyiten. Similarly, Xope denotes the computed optimal trajectory, f(Xopt)
the corresponding objective function value, and ¢,,; the CPU time. Finally, the total number of
function evaluations is reported in the last column.

. CPU Time Mesh parameters CPU Time Number of
Surrogate type f(Xswitch) . f(XOpt) .
tswiteh (S) setting topt (S) evaluations
Original
st N/A N/A N/A 6064.5 15251 1368
black-box
Isotropi K 15. 2 1
sotropic 6762.6 2656 eep 5815.5 973 89
approximation Reinitialize 5755.7 10809 981
Mi h id K 5985.4 11375 1050
icrophone gri 61175 2861 eep
simplification Reinitialize 5934.7 13371 1232
K 1.7 1097 1392
Neural network 6561.6 610 eep 593 0970 39
Reinitialize 6054.0 11932 1514

Table 3: Numerical results obtained, for instance n°l, with the original black-box simulator
and with the proposed surrogates, in terms of objective function value and of CPU time. A
comparison is also done, for each surrogate, between the performances using two mesh parameters
settings. For comparison purpose, the objective function value of the initial trajectory is f(Xo) =
6794.1

In Tables 3 and 4 two lines are reported for each surrogate model. We recall that the
MADS algorithm relies on a discretization of the search space as a mesh. In our proposed
algorithmic scheme embedding surrogates (Algorithm 3), the MADS algorithm switches between
the surrogate and the original black-box for the evaluation of the trajectory candidates. We
investigate whether, when performing the switch, it is better to keep the mesh parameters to
their current values or to reinitialize them to their initial values. We can see in Tables 3 and 4 that
computed optimal solutions of a better quality are generally obtained when the mesh parameters
are reinitialized to their initial values at the switch. This could be expected, as a reinitialization
may help the MADS algorithm to escape from a local minimum of the surrogate model. However,
this setting often comes with a higher number of function evaluations, thus a higher computing
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CPU Time Mesh parameters CPU Time Number of

Surrogate type Xswite X,
& P I teh) tswiteh (8) setting F(Xopt) topt (S) evaluations
Original
rema N/A N/A N/A 429709.3 10327 929
black-box
Isotropi K 430852.5 6419 577
sovropie 523310.8 3445 neer
approximation Reinitialize 425625.4 7652 688
Mi h id K 430170.2 8341 750
ICTOPRONE BHE 519028.3 3656 eer
simplification Reinitialize 426719.4 9076 816
K 449878.7 5280 475
Neural network  470560.3 255 P
Reinitialize 430852.5 5311 478

Table 4: Numerical results obtained, for instance n°2, with the original black-box simulator
and with the proposed surrogates. A comparison is also done, for each surrogate, between
the performances using two mesh parameters settings. For comparison purpose, the objective
function value of the initial trajectory is f(Xo) = 755116.6

time compared to that obtained with the other setting (i.e. when the mesh parameters are
kept to their actual values at the switch). As such computing time increase remains limited, we
decided to reinitialize the mesh parameters after the switch for all the instances.

CPU Time CPU Time Number of
Surrogate type f(Xswitch) f(Xopt) .
tswitch (S) topt (S) evaluations
Original
rsma N/A N/A  437270.7 9350 848
black-box
Isotropi
sovropie 511361.1 1153 4608172 6160 560
approximation
Mi h id
HCHOPRORE SR 511361.1 1852 460817.2 6835 624
simplification
Neural network 486633.1 156 436066.2 9185 1032

Table 5: Numerical results obtained, for instance n°3, with the original black-box simulator and
with the proposed surrogates. For comparison purpose, the objective function value of the initial
trajectory is f(Xo) = 762795.4

In the following, we discuss the benefits of using the proposed surrogates through the numer-
ical results reported in Tables 3-7.

First, we focus on the quality of the different computed optimal solutions. We notice for all
instances that different optimal solutions are computed (and so different values of the objective
function are obtained) when using the surrogates. This can be explained by the fact that the
problem at hand exhibits a large number of local minima. One could therefore expect MADS,
being a local optimization method, to converge to different local optimal solutions. For the
first three instances (Tables 3-5), some better quality solutions are obtained when using the
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CPU Time CPU Time Number of

Surrogate type Xswite Xo
8 yp g teh) tswiteh (8) f(Xopt) topt (8) evaluations

Original

rsma N/A N/A 5160.7 8687 785
black-box
Isotropic

] ) 6232.8 1199 5198.1 6062 546

approximation
Mi h id

HCTOPRONE BHE 93037.2 689 5529.9 2075 271
simplification
Neural network 6986.6 333 5198.1 4045 579

Table 6: Numerical results obtained, for instance n°4, with the original black-box simulator and
with the proposed surrogates. For comparison purpose, the objective function value of the initial
trajectory is f(Xgo) = 24700.4

CPU Time CPU Time Number of
Surrogate type f(Xswitch) f(Xopt) .
tswitch (8) topt (8) evaluations
Original
Hstna N/A N/A 3732.7 13625 1233
black-box
Isotropi
sovropie 7081.4 6372 4088.4 9080 834
approximation
Microphone grid
6619.8 2632 4100.3 7782 710
simplification
Neural network 4216.5 848 4008.2 4988 997

Table 7: Numerical results obtained, for instance n°5, with the original black-box simulator and
with the proposed surrogates. For comparison purpose, the objective function value of the initial
trajectory is f(Xo) = 7374.8

surrogates. Nevertheless, there is no surrogate that generally outperforms the others. On the
contrary, for the last two instances (Tables 6 and 7), the optimal solutions computed when using
the surrogates are of lower quality than those computed using the original black-box all over
the optimization. Even though using the surrogates might lead to solutions of lower quality,
it turns out that the solutions remain very close to each other both in terms of corresponding
objective function values and trajectory shape. The objective function values of the computed
solutions using surrogates differ from that of the computed solution using the original black-box
simulator by less than 3% for all the considered instances. Furthermore, the third and fourth
instances reveal the presence of equivalent local optimal solutions. In addition, the local solutions
computed using the surrogates exhibit similar values of the decision variables, in particular in
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terms of altitude and speed. Figure 16 shows, for a representative instance, that the gap in
altitude, respectively in speed, between the optimal trajectories computed using the surrogates
and using the original black-box is lower than 100ft, respectively 5kt.
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Figure 16: Altitude and speed profiles of the local optimal trajectories computed using the
different surrogates and the original black-box simulator on instance n°2.

Then, as regards the computing time, we recall that short computing times are not necessar-
ily expected. Tables 3-7 show that the CPU time is significantly reduced (up to 50%) for the
computation using the different surrogates within Algorithm 3 in comparison to the computation
relying on the original black-box only. The reason for this computing time reduction is twofold.
The CPU time reduction is closely linked, on the one hand, to the reduction in the number of
function evaluations to reach the optimum, and on the other hand to a more efficient evaluation
of the candidate trajectories through the proposed surrogates. We observe a reduction in the
number of function evaluations, and thus a reduction in CPU time, when using the surrogates
built from an approximation of the original black-box (i.e. the isotropic approximation or the
microphone grid simplification). When using the surrogate based on the neural network, a CPU
time reduction is observed even though the number of function evaluations required to reach the
optimum is higher than that with the original black-box. This is due to its very high efficiency
in the evaluation of candidate trajectories, as discussed previously (see Table 2). While compu-
tational savings are observed for all the proposed surrogate models, we can see that there is no
surrogate that outperforms the others over all the considered instances. This computing time
reduction is interesting, as it may allow practitioners to move from a strategic to a pre-tactical
level of decision making, that means only less than one hour prior to the flight.

Recall that surrogate based on the neural network looks very promising as it has been shown
able to predict accurately the noise footprint of rotorcraft trajectories (see Fig. 9), and with a
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reduced computational cost with respect to that of the original black-box simulator. Indeed, as
detailed in Section 4.1.2, all the computational effort related to the neural network is done during
the training, which is performed only once off-line, prior to the optimization. Taking into account
such characteristics, one could consider the neural network totally replacing the original black-
box simulator for an entire run of the MADS algorithm (not switching to the original black-box
anymore). We investigate this possibility in Table 8 for all the problem instances considered. The
second column gives the value of the objective function of the optimal solution computed by the
neural network. The associated percentage reduction with respect to the solution computed with
the original black-box simulator is given in parenthesis. The third column gives the CPU time
and its associated reduction compared to that of the optimization with the original black-box.
As regards the solutions, their quality remains very satisfactory compared to the ones computed
with the original black-box: even though a reduced solution quality is naturally observed when
using the surrogate, the gaps remain very low (< 2.5%). As regards the CPU time, as expected,
huge reductions in the CPU time are obtained (> 90%) when the neural network replaces the
original black-box simulator for all the evaluations.

Thanks to such huge CPU time reductions while keeping good quality solutions, practitioners
could consider to use this approach, based on the use of the neural network surrogate over all the
optimization process, for pre-tactical trajectory planning even up to a few minutes before flight.

Problem instance f(Xopt) CPU Time (s)
N°1 6088.4 (0.3%) 871 (94.3%)
N°2 440308.5 (14%) 441 (95.7%)
N°3 454442.3 (2.3%) 519 (94.5%)
N°4 5601.7 (1.3%) 839 (90.3%)
N°5 4138.8 (1.0%) 1042 (92.4%)

Table 8: Numerical results relying on the neural network replacing the original black-box simu-
lator throughout the optimization.

6 Conclusion

In this paper, we address an emerging application of Operations Research focusing on rotorcraft
minimal-noise trajectory design. We propose an algorithmic scheme, based on the MADS al-
gorithm and relying on an effective computation of a good-quality initial candidate trajectory
through a FMT* algorithm as well as on a tailored definition of the search space, allowing to
reduce the variable domain while computing obstacle collision-free trajectories. We show that
the locally optimal rotorcraft trajectories computed through the proposed approach relying on
an industrial black-box simulator exhibit a significant noise reduction with respect to trajectories
flown in practice.

We then propose multiple surrogate models to be embedded in such algorithmic scheme.
They are defined building on our knowledge of the problem and relying, on the one hand, on
the physics of the problem, and on the other hand on a machine learning model. The numerical
results, obtained for representative real-world instances, show the interest of using surrogate
models defined from the knowledge of the problem to enhance the optimization process and
obtain good quality (i.e., associated to significantly reduced noise impacts) solutions, within
reduced computing times. The proposed surrogate based on a neural network model exhibits,
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in particular, very significantly reduced computing times, that appear promising for pre-tactical
decision making for the considered application.

As the addressed problem typically exhibits a large number of local minima, future work
will address global approaches to be combined with the presented algorithmic scheme. Defining
multiple feasible trajectories representing possible alternatives in case of huge traffic appears also
interesting to investigate.
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