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Comment on “Harvesting information to control non-equilibrium states of active
matter”

Antoine Bérut∗

Université de Lyon, Université Claude Bernard Lyon 1, CNRS,
Institut Lumière Matière, F-69622, Villeurbanne, France

(Dated: January 18, 2023)

In the article Phys. Rev. E 106, 054617 “Harvesting information to control non-equilibrium
states of active matter”, the authors study the transition from one non-equilibrium steady-state
(NESS) to another NESS by changing the correlated noise that is driving a Brownian particle held
in an optical trap. They find that the amount of heat that is released during the transition is directly
proportional to the difference of spectral entropy between the two colored noises, in a fashion that
is reminiscent of Landauer’s principle. In this comment I argue that the found relation between the
released heat and the spectral entropy does not hold in general, and that one can provide examples
of noises where it clearly fails. I also show that, even in the case considered by the authors, the
relation cannot be rigorously true and is only approximately verified experimentally.

INTRODUCTION

In the article “Harvesting information to control non-equilibrium states of active matter” [1] the authors consider
a Brownian particle, held in an optical trap, and submitted to an external correlated (i.e. “colored”) noise η. The
displacement of the particle is accurately described by the overdamped Langevin equation:

ẋ = −κ

γ
x+

√
2Dξ +

√
2Daη (1)

Where κ is the trap stiffness, γ is the Stokes viscous drag (γ = 6πRµ with R the particle’s radius, and µ the fluid’s
viscosity), ξ is a Gaussian white noise with unit variance, accounting for the thermal fluctuations of the bath, D is
the equilibrium diffusion coefficient (D = kBT/γ with kB the Bolztmann constant and T the temperature), Da is a
control parameter that allows to change the amplitude of the colored noise η.

The authors then consider what they call a “STEP Protocol”: at time t1 the particle is initially in a non-equilibrium
steady-state (NESS) with a given colored noise η1, then at a given time tc > t1 the noise is abruptly changed to another
colored noise η2, and the particle is let to reach a different NESS at time t2 > tc. Using the framework of stochastic
thermodynamics [2, 3], they compute the average amount of excess heat that is released in the transition between
the two NESS: ∆QEX .Their main result, is then that this amount of heat is directly proportional to the difference of
spectral entropy (which is the Shannon entropy in the frequency domain [4]), ∆HS between the two noises η1 and η2:

∆QEX ∝ ∆HS (2)

They claim that this relation is “akin to Landauer’s principle”, as it relates a thermodynamics quantity (∆QEX), to
an informational quantity (∆HS). Their interpretation of the result is that “the protocol harvests information from
the colored noise, turns it into heat necessary for the transition between the two NESS, and finally releases it to the
surrounding environment”.

In this comment, I argue that the found relation between the heat released and spectral entropy is not true in
general, and that, even in the exact case considered by the authors, it does not hold rigorously. In a first section I,
starting from the definitions of stochastic heat and spectral entropy, I derive a general equation (8) to compute both
quantities for any kind of colored noise. This result shows that the claimed relation 2 is invalid for the vast majority
of noises. In a second section II I give several examples of noises for which the relation clearly fails. In the third
section III, I discuss analytical results obtained when one considers the exact situation described by the authors,
and show numerical simulations to verify that, even in this case, the relation 2 fails. Finally, I discuss a possible
explanation to why the relation seems approximately verified in the experimental data of the article [1].
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I. THEORETICAL CALCULATIONS

We first consider the two quantities of interest ∆QEX and ∆HS .

The spectral entropy HS of a noise η is defined as the Shannon entropy applied to the Power Spectral Density
(PSD) of that noise [4]:

HS(η) =

N∑
j=1

S∗
η(ωj) ln

(
S∗
η(ωj)

)
(3)

with S∗
η(ωj) the normalized PSD of the noise at the (discretized) angular frequency ωj :

S∗
η(ωj) = Sη(ωj)/

N∑
j=1

Sη(ωj) (4)

where Sη stands for the PSD of the noise η.
This quantity is a measurement of the “flatness” of the noise’s PSD. As stated by the authors: it vanishes for a
monochromatic signal, it reaches its maximum ln(N) for a white noise, and any correlated noise has an intermediate
value of HS .

The average amount of excess heat that is released in the transition between two NESS is given by [2, 3]:

∆QEX =
1

2

∫ t2

t1

κ
d⟨x2⟩
dt

dt′ (5)

where κ is the trap stiffness, ti (with i ∈ {1, 2}) is a time at which the particle is in a NESS with the colored noise ηi,
and ⟨·⟩ stands for the ensemble average. This relation can be written:

∆QEX =
κ

2

(
σ2
x(t2)− σ2

x(t1)
)

(6)

where σ2
x stands for the variance of the particle’s position (σ2

x = ⟨x2⟩).
Thus, we see that the amount of heat dissipated when the external noise is switch from η1 to η2 can simply be
calculated by measuring the variance of the particle’s position in the first NESS σ2

x1
and in the second NESS σ2

x2
. In

the article [1], the authors have only considered those equations in the case of an exponentially-correlated noise, and
state that “[the] extension to other classes of noises is less clear”. In the following, we show that it is actually possible
to analytically compute both ∆HS and ∆QEX for any kind of colored noise, as long as their PSD is known.

To do that, we recall that in a NESS the system is both stationary and ergodic [5]. Therefore, the Wiener–Khinchin
theorem [6, 7] allows us to link the variance of the position to the PSD of the particle’s position Sx, through the
relation:

σ2
xi

=
1

2π

∫ ∞

−∞
Sxi

(ω) dω

=
1

2π

∫ ∞

−∞

1

ω2 + ω2
0

(2DSξ(ω) + 2DaSηi
(ω)) dω

(7)

where ω0 is the natural frequency of the system (ω0 = κ/γ), Sξ is the PSD of the Gaussian white noise (which is a
constant), and Sηi

is the PSD of the noise ηi.
In the end, for a STEP protocol where the noise is switch from η1 to η2, we have the formulas:

∆HS =

N∑
j=1

[
S∗
η1
(ωj) ln

(
S∗
η1
(ωj)

)
− S∗

η2
(ωj) ln

(
S∗
η2
(ωj)

)]
∆QEX =

κ

2π

∫ ∞

−∞

2Da

ω2 + ω2
0

[Sη2(ω)− Sη1(ω)] dω

(8)
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As one can see, both quantities ∆QEX and ∆HS are directly linked to the PSD of the two noises Sη1
and Sη2

.
However, there are critical differences:

� HS(η) only depends on the “flatness” of Sη, but it does not depend on the noise amplitude, nor on the way that
the power is distributed along frequencies. Since the terms of the sum 3 can be permuted without changing the
result, a PSD that has “most of its power at high frequencies” can have the same spectral entropy as a PSD
that has “most of its power at low frequencies”.

� On the contrary, the position variance σ2
x, depends explicitly on the noise amplitude, and the frequency content

of the PSD. Indeed, as seen in equation 7, σ2
x is the integral of Sη(ω) weighted by the mechanical response of

the system (the term 1/(ω2 + ω2
0) here). Since the overdamped Brownian particle trapped in optical tweezers

acts as a first-order low-pass filter with cut-off frequency ω0, only the “low frequency content” of the noise’s
PSD will have a significant impact on the variance of particle’s position.

We want to stress that equation 8 alone contradicts the main result of the article [1]. For the very vast majority
of usual colored noises, the relation of direct proportionality between the spectral entropy difference ∆HS and the
released heat ∆QEX is not verified. In the following section II, as a pedagogical example, we provide several couples
η1 and η2 that are designed such that they have the same spectral entropy (∆HS = 0), but still produce a non-zero
amount of heat released when the STEP protocol is applied (∆QEX ̸= 0), which clearly shows the failure of the
relation 2.

II. EXAMPLES OF NOISES FOR WHICH THE SPECTRAL ENTROPY IS NOT DIRECTLY
PROPORTIONAL TO THE HEAT RELEASED

We first note that, in the article [1], the authors have considered noises with the same amplitude to study only the
influence of the noise’s “color” on ∆HS and ∆QEX . Therefore, in the rest of this comment, we will only consider
noises that are normalized so that their variance is equal to one.

The simplest way to design noises that have the same spectral entropy, but do not result in the same variance for
the particle’s position, is to consider noises with a finite bandwidth, or noises with a finite band rejection in their
PSD. Examples are shown in figure 1. In this case, the value of the spectral entropy HS is the same for each noise
with the same finite bandwidth (respectively band rejection), regardless of the central frequency of the band-pass
(respectively band-stop) range. On the contrary, the value of the particle’s position variance σ2

x, highly depends on
this central frequency. Indeed, we recall that the overdamped trapped particle acts as a low-pass filter: σ2

x will be
higher for a noise with a high power at low frequency (such as the blue curve η1 in figure 1a) than for a noise with
a high power at high frequency (such as the green curve η3 in figure 1a). Therefore, using such noises, it is possible
to design a STEP protocol with no change of spectral entropy (∆HS = 0) while having a non-zero amount of heat
released (∆QEX ̸= 0).

Of course, we are not limited to noises with a finite bandwidth or finite band rejection. It is also possible to design
noises with a continuous PSD that have the same spectral entropy, but do not result in the same variance for the
particle’s position. For example, one can consider a noise η1 with a low-frequency content, and a noise η2 with a high
frequency content:

Sη1(ω) ∝
1

ω2
c1 + ω2

and Sη2(ω) ∝
ω2

ω2
c2 + ω2

(9)

If the two cut-off frequencies ωc1 and ωc2 are chosen such that the two PSD of the noises crosses exactly in the middle
of the considered frequency range, they will have the same spectral entropy (∆HS = 0). However, it is clear that the
two noises will not produce the same position variance when they are applied to the particle. For example, suppose
that the two cut-off frequencies are bigger than the natural frequency of the particle ωc1 ≫ ω0 and ωc2 ≫ ω0. Then,
η1 will act nearly as a white noise on the particle, and on the contrary, η2 will have nearly no influence on it’s position.
This will result in σ2

x1 > σ2
x2, and therefore ∆QEX ̸= 0.

An example is shown in figure 2 for ωc1 = ωc2 = 157 079 rad s−1 (corresponding to 25 000Hz), and ω0 = 884 rad s−1

(corresponding to 140Hz). As seen in figure 2a, the two noises η1 and η2 have the same variance and the same spectral
entropy. However, as seen in figure 2b, the PSD of the particle’s position Sx1 and Sx2, obtained by numerically
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FIG. 1: Examples of noises with a finite bandwidth (a) or finite band rejection (b), centered around different
frequencies. As shown in legend, all the noises in each category have the same spectral entropy HS regardless of the
value of the central frequency. Noises are generated by numerically filtering a Gaussian white noise, the spectral

entropy is computed using equation 3.
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FIG. 2: Example of two continuous noises with the same variance and same spectral entropy that do not result in
the same variance for the Brownian particle to which they are submitted. (a) PSD of two noises η1 (blue) and η2
(orange) designed to have the same spectral entropy HS (values indicated in legend). Inset: same curves plotted in
semilogy to show that the cut-off frequencies are indeed chosen such that the two PSD crosses in the middle of the
considered frequency range. The noises are obtained by numerically filtering a Gaussian white noise. (b) PSD of the

Brownian particle’s position when it is submitted to no external noise (black-dashed), to η1 (blue), and to η2
(orange) respectively. PSD clearly show different behaviors (values of variances σ2

x1 and σ2
x2 indicated are in legend).

The particle position is obtained by numerically integrating the Langevin equation 1 using Heun’s method [8].

integrating the Langevin equation 1 with η1 and η2 respectively, are very different, and do not produce the same
variance for the particle’s position.

Thus, we have seen that it is possible to design noises such that the relation of direct proportionality between ∆QEX

and ∆HS clearly fails in the STEP protocol [9]. This further emphasizes that the relation is not true in general, and
cannot be used with any colored noise. In the next section we will show that, even in the exact case that is considered
by the authors in the article [1], the relation is does not hold rigorously.
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III. THE SPECTRAL ENTROPY IS NOT DIRECTLY PROPORTIONAL TO THE HEAT RELEASED
EVEN IN THE CASE CONSIDERED BY THE AUTHORS

A. Analytical and simulated results of the case considered by the authors

In the article [1], the colored noise η, that is driving the Brownian particle, is generated by an Ornstein-Uhlenbeck
process:

dη = −ωcηdt+
√
2αωcdW (10)

where dW is a δ-correlated Wiener process. This noise η is characterized by its variance α, and by its cut-off angular
frequency ωc. It’s Power Spectral Density (PSD) is given by:

Sη(ω) =
2αωc

ω2
c + ω2

(11)

For the STEP protocol, the authors have chosen to keep the amplitude of the colored noise constant (α1 = 1 = α2),
and to only change its cut-off frequency from ωc1 to ωc2. Then, using the PSD of the noises 11, and the general
formulas 8, we directly obtain:

∆HS = ln

(
ωc1

ωc2

)
∆QEX =

κDa

ω0

(ωc1 − ωc2)

(ω0 + ωc2)(ω0 + ωc1)

(12)

Therefore, we see that the relation ∆HS ∝ ∆QEX fails analytically, even in the case considered by the authors. Note
that those results are identical to the ones obtained by the authors, namely eqs. (H5) and (G9) in the Sup. Mat.
of [1] (except for a missing κ prefactor in equation (G9) that is probably a typo).
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FIG. 3: Spectral entropy difference ∆HS (a) and dissipated heat ∆QEX (b) obtained from numerical simulations of
a STEP protocol where the colored noise is changed from η1 (α1 = 1 and fc1 = 1600Hz) to η2 (α2 = 1 and
fc2 ∈ [50, 100, 200, 500, 1000, 1250, 1400, 1600]Hz). The simulated results are compared to the analytical

expressions 12.

The failure of the linearity relation can be verified in numerical simulations. Using Heun’s scheme [8], we have
first integrated equation 10 to obtain colored noises ηi with the desired properties. Then, we have integrated
the Langevin equation 1 during a STEP protocol, where we change the noise from η1 to η2 (characterized by
α1 = 1 = α2 and ωc1 ̸= ωc2) in the middle of the trajectory. We have used parameters close to the experi-
mental ones [10]: bead radius R = 1.5 µm, water viscosity µ = 1 × 10−3 Pa s, temperature T = 298.15K, trap
stiffness κ = 25pN/µm, Boltzmann constant kB = 1.381 × 10−23 J/K, amplification of the noise Da = 10000D with
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D = kBT/κ ≈ 1.456 × 10−13 m2/s, cut-off frequency of first noise fc1 = ωc1/(2π) = 1600Hz, cut-off frequency of
second noise fc2 = ωc2/(2π) ∈ [50, 100, 200, 500, 1000, 1250, 1400, 1600]Hz, compared to f0 = ω0/(2π) ≈ 140Hz, and
integration time-step δt = 1 × 10−5 s. Finally, we have computed both ∆HS and ∆QEX for a thousand runs, and
compared the mean results to the predictions 12. All the numerical simulation Python codes are available on a Zenodo
depository [11], and can be consulted directly online on the associated GitHub page [12].

As seen in figure 3, both quantities correctly follow the analytical predictions 12, within the numerical accuracy.
We stress that there is no reason to believe that these results would not hold experimentally, unless the Langevin
equation 1 does not correctly describe the experimental system [13].

B. Why the relation seems verified experimentally?

So far, we have seen that the relation of direct proportionality between the spectral entropy difference and the heat
released 2 does not hold in the general case. We have also seen that it is not verified analytically, nor numerically, in
the case considered by the authors in [1]. Therefore, one can wonder how this relation can appear to be experimentally
verified. In this subsection, we propose an explanation, based on the way that was used to verify the validity of the
relation. We show that the graphical representation chosen by the authors can lead to wrong interpretations, and
propose a more reliable way to plot the data.

Experimentally, the authors have found a good agreement for the relation:

∆QEX

kBTeq
= ∆HS (13)

where Teq is an experimental quantity, equal to the effective temperature (Teq = κ⟨x2⟩/kB) that is measured when
the particle is submitted to a white noise with the same amplitude as the colored noise.

First, we stress that Teq is a quantity only accessible experimentally, and that its value depends on the particular
set-up that is used to measure it. In particular, here Teq depends on the properties of the different apparatus used to
generate the white noise acting on the trapped particle, such as the dynamic range of the digital-to-analogue card, and
the response function of the acousto-optic modulator. Therefore, Teq has no theoretical predicted value, and cannot be
easily computed numerically. Moreover, equations using Teq can hardly be seen as general results, since their value is
system-dependent. Then, we note that the authors have plotted ∆QEX/(kBTeq) as a function of ∆HS to verify their
relation (Figure 4 in [1]). Here, we have reproduced this figure with the results of our own numerical simulations in
figure 4a. As one can see, with this particular graphical representation, it is possible to find that ∆QEX ≈ kBTeq∆HS ,
with Teq = 622K, which is compatible with the experimental values measured by the authors. Moreover, the validity
of the linear relation is more likely to be found given that experimental values have inevitable error bars. Yet, it is
only an approximation, and not a rigorous result.

A more reliable way to verify the relation of direct proportionality 2, would be to plot the ratio of the dissipated
heat and the spectral entropy Teff = ∆QEX/(kB∆HS), as a function of fc2. In particular, this verification does not
rely on theoretically unknown quantities, such as Teq, or parameters that are difficult to measure experimentally, such
as Da. If the relation of direct proportionality is true, then Teff must be a constant. The values of Teff obtained in
our numerical simulations are as shown in figure 4b. The quantity is clearly not constant, which is expected since we
have already shown that the relation 2 is not verified in the numerical simulations.

IV. CONCLUSION

In conclusion, despite being approximately verified in a nice experimental configuration, the relation of direct
proportionality between the spectral entropy and the dissipated heat ∆QEX ∝ ∆HS , is not true in the general case,
and is not rigorously verified even in the framework of the original article that introduced it. We also recall that
this relation is not predicted by any theoretical work [14]. All this cast serious doubts on the claim that this relation
is “akin to Landauer’s principle”, and its interpretation in terms of “the protocol harvesting information from the
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FIG. 4: (a) Normalized dissipated heat ∆QEX/(kBTeq) plotted as a function of the spectral entropy difference ∆HS .
The value of Teq is obtained by computing the best linear fit of ∆QEX/kB as a function of ∆HS . (b) Effective

temperature Teff = ∆QEX/(kB∆HS) computed for several STEP protocols. As expected, the value is not constant,
as the dissipated heat and the spectral entropy are not directly proportional.

colored noise”. Therefore, we believe that it is very unlikely that this relation “could serve as a new tool for the study
of non-equilibrium systems in non-trivial baths”.
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