
HAL Id: hal-03945265
https://hal.science/hal-03945265v1

Preprint submitted on 18 Jan 2023 (v1), last revised 24 Jan 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning of a Communication Policy for an
Event-Triggered Observer for Linear Systems

Mathieu Marchand, Vincent Andrieu, Sylvain Bertrand, Steeven Janny,
Hélène Piet-Lahanier

To cite this version:
Mathieu Marchand, Vincent Andrieu, Sylvain Bertrand, Steeven Janny, Hélène Piet-Lahanier. Deep
Learning of a Communication Policy for an Event-Triggered Observer for Linear Systems. 2023.
�hal-03945265v1�

https://hal.science/hal-03945265v1
https://hal.archives-ouvertes.fr

Deep Learning of a Communication Policy
for an Event-Triggered Observer for Linear

Systems

Mathieu Marchand ∗ Vincent Andrieu ∗∗ Sylvain Bertrand ∗

Steeven Janny ∗∗∗ Hélène Piet-Lahanier ∗

∗Université Paris-Saclay, ONERA, Traitement de l’information et
systèmes, 91123, Palaiseau, France (e-mail: {mathieu.marchand;

sylvain.bertrand; helene.piet-lahanier}@onera.fr).
∗∗Université Lyon, CNRS, LAGEPP, Villeurbanne, France

(e-mail: vincent.andrieu@gmail.com).
∗∗∗ INSA Lyon, LIRIS Villeurbanne, France

(e-mail: steeven.janny@insa-lyon.fr).

Abstract: The problem of learning a communication policy is investigated in this paper for the
design of an event-triggered observer for discrete-time LTI systems. Firstly, the event-triggered
observer problem is formulated as an optimisation problem. The existence of a solution to this
problem (communication policy) is investigated and it is verified if this solution still preserves
the stability of the estimation error dynamics. Secondly, an algorithm is provided to approximate
this optimal solution using neural networks and deep learning. Simulation examples are provided
to illustrate the effectiveness of the learned communication policies.

Keywords: Observer design; Event-triggered communications; Neural networks; Deep learning.

1. INTRODUCTION

For many applications it is mandatory to have access to
the value of state of a system, eg. for control, supervision,
decision making, etc. Nevertheless, there exist many situa-
tions where the state, or some of its components, can not
be directly accessible from available information provided
by the system or measurements generated by some sensors.
In that case, one solution consists in designing an observer
to compute an estimate of the state of the system from
available information/measurements. For linear systems,
Luenberger observers are one well-known class of such
algorithms.

When the measurements are not directly accessible to the
observer, they have to be transmitted from the system to
the observer. However, many applications do not benefit
from transparent and unlimited access to measurement.
In this case, a parsimonious use of the sensors must
be implemented, e.g. to limit energy consumption, or
interferences on communication channels. However, this
strategy of communication may have an impact on the
performance, the robustness and the stability of the
observer. Straightforward periodic policy are very limited,
as measurements occur on a regular time basis regardless
of the accuracy of the observer.

In event-triggered communication (Tabuada [2007]), ex-
change of information is decided by evaluating a Com-
munication Triggering Condition (CTC) usually defined
from a function depending on measured output of the

1 *This work was funded by French grant ANR Delicio (ANR-19-
CE23-0006).

system and/or state estimate from an observer. Such a
communication policy usually leads to reduced number of
transmissions while preserving good performances.

Literature on event-triggered mechanisms for control and
estimation is vast, see e.g. Ge et al. [2021]. Event-triggered
schemes have been developed for distributed control law
of multi-agent systems, see e.g. Garcia et al. [2014], Liu
et al. [2017, 2019], Seyboth et al. [2013], Wang et al.
[2019], Xie et al. [2015]. Or to know when the model of a
system needs to be learned, see e.g. Schlüter et al. [2020],
Solowjow et al. [2018], Solowjow and Trimpe [2020]. In
these applications, the state of the system is assumed to
be fully accessible and the CTC is a function of the error
between the current state of the system and its estimate.
The event-triggered paradigm has also been applied to
decide when communicate information from a sensor to
an observer (Li et al. [2010]). Various works propose to
implement the dynamics of the observer in the sensor,
see e.g. Scheres et al. [2021], Trimpe [2014], but when
the sensor has limited computation capabilities, an event-
trigger scheme which uses only the measured output and
the past transmitted values has to be implemented, see
e.g. Etienne and Di Gennaro [2016], Petri et al. [2021].
In theses papers, the triggering structures are obtained
from Lyapunov analysis which allows to obtain stability
and robustness certificates. However, these approaches
implies strong conservatism on the design parameters of
the triggering law, which yields intensive communication
flows.

Here, another approach is considered. Indeed, the com-
munication policy is obtained as an approximation of the

solution of an optimal control problem. More precisely,
we introduce the formulation of an optimisation problem
involving a cost function with a discount factor which
quantifies the quality of the estimation and the number
of communications required. Our approach allows us to
approximate optimal communication policy in a way that
minimises communication while maintaining state estima-
tion low. As a preliminary step, we show that a solution
to this problem exists and guarantees a certain level of
estimation of the unknown state. In a second step, the
solution to this optimal control problem is approximated
by training a neural network to predict a binary commu-
nication triggering signal from the current measured and
estimated output of the system corresponding to either a
communication needs to be done or not.

The remainder of the paper is organised as follows. The
problem statement is provided in Section 2. In Section 3,
the existence of an optimal communication policy for
the system is proved and its property is analysed. The
considered learning method is explained in Section 4 and
some examples are studied in Section 5. Conclusions are
finally given in Section 6.

Notations: The notation R stands for the set of real
numbers. We denote by R+ the set of real positive
numbers and R∗ the set of non null numbers. The set
N≤k corresponds to the set of integers inferior to k. We
also denote by C1, the set of differentiable functions
with continuous derivative. The notation K refers to the
continuous functions defined on R+ to R+ which are strictly
increasing, and vanishing at zero. A continuous function
β : [0, a) × [0, ∞) → [0, ∞), a ∈ R+, is said to belong to
class KL if for each fixed s the mapping β(s, r) is class K
with respect to r, and for fixed r the mapping β(s, r) is
decreasing with respect to s and β(s, r) → 0 as s→ ∞. The
standard Euclidean norm is denoted by | · |.

2. PROBLEM STATEMENT

Consider the following Linear Time-Invariant discrete-time
system

{
xk+1 = Axk +B uk,

yk = C xk,

(1a)

(1b)

where xk ∈ Rn is the state of the system, uk ∈ Rm is
a known control input of the system and yk ∈ Rp is
the measured output. The pair (A, C) is assumed to be
observable. Hence, a standard Luenberger observer can be
designed in the following form

{
x̂sk+1 = A x̂sk +B uk + L

(
yk − ŷsk

)
,

ŷsk = C x̂sk,

(2a)

(2b)

where x̂sk ∈ Rn is the state estimate, ŷsk ∈ Rp is the estimated
output, L ∈ Rn×p a matrix. If A − LC is Schur, i.e. the
eigenvalues of A−LC are contained within the unity circle,
this observer guarantees that the estimation error between
xk and x̂sk exponentially converges to zero. In our case,
we are considering a scenario where it is expensive for
the observer to access the measurement yk. Thus we want
to design a mechanism to sporadically transmit it, while
maintaining the estimation error low. An illustration of the
whole considered setup is presented in Figure 1.

System Observer

Smart Sensor

yk ȳk x̂k

ŷkyk
vk

uk

Fig. 1. Illustration of the considered event-triggered ob-
server

A smart sensor is placed on the system to decide when
to transmit the measurement yk to the observer. Commu-
nications from the observer to system are not considered
expensive and therefore the observer can ”continuously”
transmit its estimated measurements ŷk. An example of
such a structure could be an experiment, represented
by the system, which is performed far from where its
measurements are going to be processed, i.e. the observer.
And the place where the experience takes place is limited
in upstream bandwidth but not in downstream bandwidth.
Another example could be a mobile robot with very re-
stricted embedded energy resource and that must therefore
reduce its energy consumption by limiting emission of
communication signals as much as possible.

Assuming that the control input u is accessible from the
observer at each time instant k, we suggest the following
observer structure

{
x̂k+1 = A x̂k +B uk + L

(
ȳk − ¯̂yk

)
,

ŷk = C x̂k,

(3a)

(3b)

where x̂ ∈ Rn is the state estimate, L is the matrix defined
in (2), ȳk ∈ Rp the last value of yk transmitted, and ¯̂yk
corresponding to the value of ŷk at the last instant of
transmission of yk hence

ȳk+1 = vk yk+1 + (1− vk) ȳk, (4)

and
¯̂yk+1 = vk ŷk+1 + (1− vk) ¯̂yk, (5)

with the communication triggering signal vk ∈ {0, 1}
representing whether the measured output is transmitted
(vk = 1) or not (vk = 0).

Let us define the estimation error as x̃k = xk − x̂k ∈ Rn. Its
dynamics are given by the following relation

x̃k+1 = A x̃k − L
(
ȳk − ¯̂yk

)
. (6)

One can notice that

ȳk+1 − ¯̂yk+1 = vk C x̃k+1 + (1− vk)
(
ȳk − ¯̂yk

)
. (7)

Introduce W = Rn+p × {0, 1}. From the relations (6) and
(7), an extended system can be designed as

ξk+1 = f(ξk, vk) (8)

where ξk =
[
ξ1k

⊤
, ξ2k

⊤]⊤
=

[
x̃⊤k ,

(
ȳk − ¯̂yk

)⊤]⊤
∈ Rn+p, and

the function f : W → Rn+p such that,

f(ξk, vk) =



Aξ1k − Lξ2k

vk C
(
Aξ1k − Lξ2k

)
+ (1− vk) ξ

2
k


 , (9)

representing the dynamics of ξk. Now, we will consider vk
as the input of the extended system (8).

We denote the solution to (8) at the k-th step from the

initial condition ξ0 ∈ Rn+p by Ξ
(
k, ξ0, {vl}l∈N<k

)
. We are

considering the following cost function

Jγ({vk}k∈N, ξ0)=
∞∑

k=0

γk
(∣∣∣Ξ

(
k, ξ0, {vl}l∈N≤k

)∣∣∣+λ vk
)
, (10)

with γ ∈ (0, 1) a discount factor, and λ ∈ R+ a parameter,
which represents the compromise between communication
and estimation performances.

Subject to the existence of an optimal solution, we denote
by Vγ(ξ0) the optimal cost obtained from the initial state
ξ0 by minimising the cost function (10), i.e.

Vγ(ξ0) = min
{vk}k∈N

Jγ({vk}k∈N, ξ0). (11)

In this work, we will first investigate the existence of
an infinite length sequence {v∗γ, k}k∈N such that the cost
function (10) is minimal and such that it guarantees a
bounded error estimation of the state xk of the system
(1) by the the observer (3), i.e. there exists a δ ∈ R+ such
that limk→∞ |xk − x̂k| ≤ δ. Secondly we will propose a Deep
Learning (DL) approach to obtain an approximation of
v∗γ, k using only the measured and estimated outputs, i.e.
yk and ŷk.

3. EXISTENCE AND PROPERTIES OF THE
OPTIMAL COMMUNICATION POLICY

In this section, it is proven that there exists an optimal
communication policy which minimises the cost function
(10) and that this solution ensures an asymptotic bound
on the estimation error which is related to the discount
factor γ and the parameter λ. Contrary to the results in
Postoyan et al. [2016], it is not possible to obtain a positive
definite bound on the value function due to the particular
structure of the cost function in (10). Before stating the
theorem, we introduce the following lemma.

Lemma 1. There exists ᾱv ∈ R∗
+ such that for any γ ∈ (0, 1)

and ξ ∈ Rn+p,

Vγ(ξ) ≤ ᾱv |ξ|+ λ

1− γ
. (12)

Proof. Assume that ∀ k ∈ N, vk = 1. In this case, for any
ξ0 ∈ Rn+p it yields

Vγ(ξ0) ≤ Jγ({vk}k∈N, ξ0)=
∞∑

k=0

γk
(∣∣∣Ξ(k, ξ0, {vl}l∈N≤k

)
∣∣∣+λ

)
.

Since ∀ k, vk = 1 then ∀ k ≥ 1, ξ2k = C ξ1k. It implies

ξ1k = (A− LC)k−1 ξ11 ,

ξ1k = (A− LC)k−1
(
Aξ10 − Lξ20

)
. (13)

Therefore∣∣∣Ξ(k, ξ0 , {vl}l∈N≤k
)
∣∣∣ ≤

∣∣∣ξ1k
∣∣∣+

∣∣∣ξ2k
∣∣∣ ,

≤ (1 + |C|)
∣∣∣(A− LC)k−1

∣∣∣
(
|A|

∣∣∣ξ10
∣∣∣+ |L|

∣∣∣ξ20
∣∣∣
)
,

≤ (1 + |C|)
∣∣∣(A− LC)k−1

∣∣∣ (|A|+ |L|)
(∣∣∣ξ10

∣∣∣+
∣∣∣ξ20

∣∣∣
)
. (14)

Since A− LC is Schur stable, there exist two positive real
numbers κ1, and c with 0 < κ1 < 1 and c > 1 such that∣∣∣(A− LC)k

∣∣∣ ≤ c κk1 ,∀k ≥ 0 . (15)

Consequently,
∣∣∣ Ξ(k, ξ0 , {vl}l∈N≤k

)
∣∣∣ ≤ 1√

2
κ2 κ

k
1

(∣∣∣ξ10
∣∣∣+

∣∣∣ξ20
∣∣∣
)
, (16)

with κ2 =
√
2 c

κ1
(1 + |C|) (|A|+ |L|). Moreover, since the

considered norm | · | is the Euclidean second-order norm,
we have (∣∣∣ξ10

∣∣∣+
∣∣∣ξ20

∣∣∣
)
≤

√
2 |ξ0| . (17)

Thus,

Vγ(ξ0) ≤
∞∑

k=0

γk
(
κ2 κ

k
1 |ξ0|+ λ

)
. (18)

Hence,

Vγ(ξ0) ≤
∞∑

k=0

κ2(γ κ1)
k |ξ0|+ λ

∞∑

k=0

γk . (19)

Therefore using the fact that γ < 1 and κ1 < 1 , we obtain

Vγ(ξ0) ≤
κ2

1− γ κ1
|ξ0|+

λ

1− γ
, (20)

which concludes the proof by choosing ᾱv = κ2/(1− γκ1).
■

Remark 2. Lemma 1 gives an upper bound on the value
function Vγ in which a constant term λ

1−γ appears. Note
that this is different from the bound obtained in Postoyan
et al. [2016] and prevents us from obtaining asymptotic
convergence of the estimation error to zero. This is directly
linked to the structure of the cost function.

Theorem 3. Consider the system (8). Then, there exists
an optimal input sequence {v∗γ, k}k∈N that minimises the
cost function (10), and there exist β ∈ KL and γ∗ ∈ (0, 1)
such that for any γ ∈ (γ∗, 1) and ξ0 ∈ Rn+p, any solution
Ξ(k, ξ0, {v∗γ, l}l∈N≤k

) to the system (8) satisfies, ∀ k
∣∣∣Ξ

(
k, ξ0, {v∗γ, l}l∈N≤k

)∣∣∣ ≤ max

{
β

(
ᾱv |ξ0|+

λ

1− γ
, k

)
, δ

}
,

(21)

where δ =
(

λ
ᾱv(1−γ)

)(
1
ᾱv

− 1−γ
γ

)−1
.

This theorem suggests that there exists an optimal infinite
length sequence of vk such that the estimation error
converges to a ball of radius δ. One can notice that this
bound δ can be made as small as desired by decreasing the
parameter λ. However, as λ decreases, the penalisation of
communications in the cost function (10) decreases as well.
This implies that for smaller parameter λ, the amount of
communications for the optimal policy will be higher.

Proof. The proof in inspired by the results developed in
Postoyan et al. [2016]. By applying [Keerthi and Gilbert,
1985, Theorem 1], for each γ in (0, 1), and each ξ0 in Rn+p

there exists an infinite length sequence {v∗γ, k}k∈N in {0, 1}N
such that

Vγ(ξ0) = Jγ({v∗γ, k}k∈N, ξ0). (22)

Define ξ∗1 = f(ξ0, v
∗
γ, 0), where v

∗
γ, 0 is the first element of

the optimal sequence {v∗γ, k}k∈N. One has

|ξ0|+λ v∗γ,0 ≤ Vγ(ξ0) ≤ ᾱv |ξ0|+
λ

1− γ
. (23)

Moreover according to the Bellman equation,

Vγ(ξ0) = |ξ0|+λ v∗γ,0 + γ Vγ(ξ
∗
1). (24)

Therefore

Vγ(ξ
∗
1)− Vγ(ξ0) = −|ξ0|−λ v∗γ,0 + (1− γ)Vγ(ξ

∗
1). (25)

Since γ Vγ(ξ∗1) ≤ Vγ(ξ0), thus

Vγ(ξ
∗
1)− Vγ(ξ0) ≤ −|ξ0|−λ v∗γ,0 + (1− γ) γ−1Vγ(ξ0),

≤ −|ξ0|+(1− γ) γ−1Vγ(ξ0). (26)

On another hand, with (23), we have

− |ξ0| ≤
1

ᾱv

(
−Vγ(ξ0) +

λ

1− γ

)
. (27)

Injecting the relation (27) into (26), we have

Vγ(ξ
∗
1)− Vγ(ξ0) ≤ − 1

ᾱv

(
Vγ(ξ0)−

λ

1− γ

)
+

1− γ

γ
Vγ(ξ0),

≤ −
(

1

ᾱv
− 1− γ

γ

)
Vγ(ξ0) +

λ

ᾱv (1− γ)
. (28)

Since 1−γ
γ converges to 0 as γ tends to 1, there exists a

γ∗ ∈ (0, 1) such that ∀γ > γ∗, 1
αv

− 1−γ
γ > 0. By proceeding

by iteration and using Theorem 8 in Nešić et al. [1999], we
deduce that there exists a function β ∈ KL such that for
any solution Ξ of (8), initialised at ξ0 and with the optimal
control input {v∗γ, k}k∈N, we have

Vγ
(
Ξ
(
k, ξ0, {v∗γ, l}l∈N≤k

))
≤ max {β(Vγ(ξ0), k), δ} , (29)

with δ =
(

λ
αv(1−γ)

)(
1
αv

− 1−γ
γ

)−1
. Using Lemma 1, we

have∣∣∣Ξ
(
k, ξ0, {v∗γ, l}l∈N≤k

)∣∣∣ ≤ max

{
β

(
ᾱv |ξ0|+

λ

1− γ
, k

)
, δ

}
,

(30)
which completes the proof.

■

According to Theorem 3, if the cost function is well
designed, there exists an infinite-length sequence of {vk}k∈N
that minimises the cost function and this sequence guaran-
tees an asymptotic bound on the estimation error. In the
next section, we will investigate how this sequence can be
approximated.

4. APPROXIMATION OF THE OPTIMAL
COMMUNICATION POLICY VIA DEEP LEARNING

In Section 3, we have shown that the optimisation problem
associated to system (8) and cost function (10) has a
solution which guarantees an asymptotically bounded
estimation error. In order to approximate this optimal
solution, we propose to investigate the use of a learning
method.

Reinforcement learning (RL) has been explored in Bau-
mann et al. [2018] to learn an optimal event-triggered state
feedback controller for a linear system. This approach relies
on ”trial and error”, in the sense that the RL agent interacts
with its environment and tries to maximise a user-defined
reward R =

∑∞
k=0 γ

k rk, where rk is the reward at instant k.
Derivation to our problem follows readily but considering
the maximisation of −Jγ defined in (10) Reinforcement
learning is however hinder by many limitations making
the training difficult and time-consuming since (i) the
agent have to learn a communication policy from a poorly
informative reward signal that is weakly linked to its action
in the environment, and (ii) RL methods requires carefully
designed exploration policy which may prevent from finding
optimal solution and leads to unwanted behaviour.

Another approach consists in relying on (potentially ap-
proximated) models of the system of interest, which allows
to use standard deep learning algorithms. In that case, the
communication policy have direct access to the physical

equations of the environment and can learn by directly
back-propagating the error through the dynamical model.
Moreover, exploration issues can be alleviated by manual
design.

For these reasons, an DL approach have been implemented
in our study. It could be interesting to investigate RL
approaches with safe exploration methods. This is left for
future research studies. In this section, we present the
considered learning algorithm.

4.1 Feedback nature of the communication policy

One can notice that the minimisation of the loss (10) can be
written as a Markov Decision Process, and thus according
to the principle of Optimality of Bellman (Bellman [1954]),
the optimal decision v∗k at the instant k depends only
on the state resulting from the previous decision, i.e. ξk.
Nevertheless, in the common case, the state of the system
(1) is not completely known, so is ξk.

If the control input uk is equal to 0 at each time step k, and
if the system (1) is observable then, according to Kalman
theory (Kalman [1960]), the state of the system can be
reconstructed from n−p data of the measurement. Therefore
a function ψ : (Rp)n−p × (Rp)n−p → {0, 1} can be designed
such that v∗k = ψ(yk, . . . , yk−(n−p), ŷk, . . . , ŷk−(n−p)).

If the control input uk is not equal to 0 at each time step
k, then the sequences {yk}k∈N and {ŷk}k∈N depend on the
sequence of inputs and ξk can not be obtained anymore
through the sole data of yk and ŷk.

Note that the measurement yk can be written as

yk = C Ak x0 +

k−1∑

i=0

C AiB ui . (31)

In order to make the measurements no longer dependent
on the control input, the variable y̆k defined as

y̆k = yk −
k−1∑

i=0

C AiB ui (32)

is introduced. In order to evaluate y̆k, the previous control
inputs, i.e. ui, ∀ i ≤ k, are required. To avoid this drawback,
we introduce the following dynamic system

zk+1 = Azk +B ui, (33)

initialised at z0 = 0. One can notice that the solution of
(33) is

zk =

k−1∑

i=0

AiB ui , (34)

and thus y̆k = yk − C zk . Similarly, we introduce ˘̂yk = ŷk −
C zk. Doing so, the state xk and its estimate x̂k can be
reconstructed through data of y̆k and ˘̂yk.

4.2 Recurrent Neural Network

We propose to model the function vk = σ(y̆k, ˘̂yk) that
maps the known measurements y̆k and ˘̂yk to the triggering
decision vk as deep neural network. However, unique
measurements at a given time k do not yield enough
information to find the optimal v∗k. In what follows, we
leverages the results in section 4.1 showing that the
dynamics of y̆ and ˘̂y can be used to recover the state
ξk, and therefore to evaluate v∗k.

Dynamical information are embedded in the model through
a recurrent neural network (RNN). Such class of deep
learning models are particularly suited to handle time-
dependent signals. A RNN leverages a latent memory vector
hk storing temporal information across time. This memory
is recursively updates based on the current value of a
time-varying input ik via a learned non-linear function:
hk = RNN(ik, hk−1). There is multiple possibility to define
the transition function. We used Gated Recurrent Unit
introduced in (Cho et al. [2014]) usually leading to better
performances on small datasets.

4.3 Deep Learning in a semi-supervised framework

We proposed a semi-supervised network to train our
communication trigger function σ, in the sense that,
conversely to standard supervised learning, we do not
require ground truth optimal solution v∗k on a set of training
trajectories to learn our approximated solution. Instead,
we train our model to minimise the following cost:

L =

N∑

k=0

γk (|xk − x̂k|+ λ vk) . (35)

where vk = σ(y̆k, ˘̂yk) and xk and x̂k are respectively defined
in (1) and (3). This loss (35) is an approximation of the cost
function (10) since N ̸= +∞. Note also that only the first
component of Ξ is considered in the formulation of this loss
function, since it is the one only necessary from a practical
point of view (the second component being directly related
to xk−x̂k). If N is high enough, so that γN is small, then the
loss (35) will nearly be equal to the cost function (10). And
according to Theorem 3, there exists γ∗ ∈ (0, 1) such that
for any γ ∈ (γ∗, 1), the optimal infinite-length sequence vk
makes the observer state (3) converge to a ball around the
state of the system (1) with radius depending on λ and γ.
Therefore, optimising the parameter of σ(·) to minimise L
will lead the neural network to approximate the provably
existing optimal solution.

The resulting proposed algorithm to learn the communi-
cation policy associated to the considered event-triggered
observer problem is summarised in Algorithm 1.

At first, a training database is generated by simulating
the system from different initial conditions. This database
must be big enough to cover the set of values of xk and x̂k
where the trained network will then operate. In a second
step, a trajectory of the observer is generated thanks to the
outputs of the neural network. Of course, at the beginning
of the training, i.e. when ε is low, the neural network will
poorly perform. Finally, losses (35) is computed for each
trajectories, and the parameters of the neural network are
optimised to minimise the mean of losses (35).

4.4 Learning a binary number

One of the key challenges for designing the structure
of σ is to constrain the output of the neural network,
canonically lying in R, to binary numbers. During test
time (that is, when the neural network is trained), a
straightforward method consists in comparison of the out-
put with a threshold. Yet, this implementation introduces
discontinuity which is not compatible with the gradient
descent algorithm used to optimise the problem. Thus,

Algorithm 1: Communication policy learning algo-
rithm
inputs: number of training epochs Ne, number Nτ of
training trajectories and associated time duration N .
Generate a training data set Sτ of Nτ trajectories
τ = {(xk, yk)}k∈N≤N

from multiple random samples of

initial condition x0.
Initialise the parameters of the network σ(·).
for ε = 1 to Ne do

Initialise the hidden vector h0 to 0.
for each trajectory τ in Sτ do

for k = 1 to N do

Compute (vk, hk) = σ
([
y̆k, ˘̂yk

]
, hk−1

)
.

Update the variable ȳ according to (4).
Update the variable ¯̂y according to (5).
Compute x̂k+1.
Evaluate the loss Lτ using (35).

end
end
Update the parameters of the network σ(·) by
minimising 1

Nτ

∑
τ∈Sτ Lτ using backward

propagation.
end

during training, we proposed another approach. We relaxed
the binary constraint by using a sigmoid function to
bound the output of σ to [0, 1]. The interest we have in
this implementation is that the sigmoid function remains
differentiable. However, to enforce the model to outputs
nearly binary numbers, we progressively increase the slope
of the sigmoid during training (the setup is illustrated in
figure 2)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1
ε = 10

ε = 20

ε = 50

Fig. 2. Illustrations of a sigmoid function for different values
of ε.

As we can notice, the higher ε the closer the sigmoid to
a step function. Therefore, the training will benefit of a
smooth function at the beginning of the training phase to
ease learning, and the output will progressively become
closer and closer to binary numbers when the training
progress.

This is this method based on the introduction of a
simgoid function that has been considered in our numerical
implementations.

4.5 Structure of the Neural Network

The structure of the neural network is presented in Figure 3.
We first project the inputs y̆k, ˘̂yk to a higher dimensional
space via a one-layer multilayer perceptron (MLP). The
resulting vector is then used as input to a GRU to update

the latent memory hk. Finally, a second MLP decode the
latent memory into the binary communication trigger vk.
The model is then used in an auto-regressive manner to
estimates future values of vk.

Linear ReLU Linear GRU

Linear ReLU Linear Sigm

2 p

[
y̆k, ˘̂yk

]

32 32

hk−1

32

hk

32

32 32 1 1

vk

Fig. 3. Structure of the considered Neural Network

5. SIMULATION EXAMPLES

We demonstrate the performances of our method on two
numerical simulations : a discrete time oscillator with
the observer presented in figure 1, and another observer
structure on which theoretical results presented in section 3
ca not be used directly. However, we show that even in that
case, our model gives good estimation performances with
a reduced amount of transmitted data. For this second
example, a comparison is made between the proposed
observer obtained through Deep Learning and the observer
designed in (Petri et al. [2021]).

5.1 First example: an oscillator system

Consider an oscillator with LTI dynamics described as in (1)
with

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 , B =




1
0
0
0


 , C =

(
1 0 0 0

)
. (36)

An observer described by (3) is designed with

L = [−0.18, 0.0107, 0.099742, 0.982]⊤. (37)

The neural network presented in Figure 3 has been trained
on a training database containing Nτ = 10 000 trajectories
starting from different initial conditions sampled following
a Normal distribution with mean equal to 0 and standard
deviation equal to 20 independently for each state compo-
nent. The chosen optimiser is the Adam algorithm with a
learning rate of 10−3. The control input uk, assumed to be
known, is generated as a random signal following a normal
distribution N (0, 20). The hyperparameter λ balancing
between accuracy of the estimation and number of commu-
nications is set to λ = 3. The discount factor γ is equal to
γ = 0.995. During the training, the trajectories length N is
equal to N = 400. One can notice that γN = 0.13. Define
Rv = 1

N

∑N
k=0 vk representing the triggering rate of the

observer. Rv equals to 1 corresponds to a communication
triggered at every time step.

We evaluate our neural communication policy on a testing
set of 10 000 new trajecories unseen during training starting
from different initial states x0 with components sampled
following the normal distribution N (0, 10) and considering
sequences of independent control input values uk randomly
generated following the normal distribution N (0, 1). The
mean values of the obtained loss L and of the triggering
rate Rv computed over all the trajectories of this test data
set are exposed in Table 1. A zoom for k ranging from 0 to

200 of one trajectory of this database from the initial state
x0 = [5.3492, 1.9880, 6.5921, 6.5689]⊤ and x̂0 = [0, 0, 0, 0]⊤

with the control input sequence plotted in Figure 4, is
presented in Figure 5.

Fig. 4. Control input sequence corresponding to one
trajectory of the test data set and used for illustration

At the top of Figure 5, the trajectories of the second
component of the state of the system xk and of the state
of the observer x̂k are plotted. At the centre, the norm of
the estimation error is plotted. At the bottom of the figure,
the communication policy vk is presented.

Fig. 5. Illustration of a trajectory without any noise.

The observer driven by our communication policy converged
well to the state of the system, and no communication are
triggered once the estimation error x̃k is close enough to
0. To assess robustness wrt. noise of the obtained event-
triggered observer with learned communication policy,
further tests have been performed by considering another
test data set of 10 000 trajectories generated by considering
additive state noise and measurement noise to system (1),
i.e. a dynamic system modeled by

{
xk+1 = Axk +B uk + wx

k ,

yk = C xk + wy
k ,

(38a)

(38b)

where wx
k and wy

k follow respectively the normal distribution
N (0, Σx

k) and N (0, Σy
k), with Σx

k = 0.05diag(xk) and Σy
k =

0.1diag(yk) where diag(·) generate a diagonal matrix from
the components of a vector. One can notice that the noise-
to-signal ratio is around 5% for the state, and 10% for the
measurement. Figure 6 presents the results obtained with
the observer for one trajectory of this test data-set ”with
noise” with the same initial state x0 and x̂0.

In presence of noise, asymptotic bounded convergence
of the estimation error can not be guaranteed anymore.
Nevertheless, one can notice that when the estimation error
becomes too large, the neural network will consider that it
is worth to trigger. Of course the observer does not know
directly the estimation error, but from the knowledge on
y̆k and ˘̂yk and the GRU layer, it can estimate it.

Fig. 6. Illustration of a trajectory with noises.

Table 1. Performances of the event-triggered
observer with learned communication policy for

the first example

N = 200

Σx
k Σy

k
Mean of L Mean of Rv

0 diag(xk) 0 diag(yk) 121 0.07

0.1 diag(xk) 0.2 diag(yk) 395 0.13

5.2 Second example: a passive sensor

In this subsection, a comparison is made between the event-
trigger observer obtained through deep learning and the
one described in (Petri et al. [2021]). In that article, authors
are considering a different structure than the one presented
in Figure 1. An illustration of this structure is provided in
Figure 7.

System Observer

Smart Sensor

C.N.
y ȳk ȳk x̂k

yk

vk

ȳk
uk

Fig. 7. Illustration of the event-triggered observer consid-
ered in (Petri et al. [2021]). C.N. stands for Communi-
cation Network.

The smart sensor will decide when to trigger a commu-
nication only based on the measured output yk and the
transmitted one ȳk. Thus it has no information on the state
estimate computed by the observer.

In this section, our neural network is trained by using the
proposed Algorithm 1, but for the structure illustrated
in Figure 7. One can notice that in this case, the neural
network will not have enough information to reconstruct
the estimation error, and thus ξk, since it will not be able
to reconstruct x̂k. The obtained vk will not be a feedback
function of ξk, thus Theorem 3 can not be applied to provide
guarantees on the existence of an optimal communication
policy leading to bounded convergence of the estimation
error. Nevertheless, we observed that good performances are
obtained in practice when applying the proposed approach
to this case.

To be consistent with (Petri et al. [2021]), continuous-time
dynamics are first considered for the description of the
system, defined as

{
ẋ(t) = Ax(t) +B u(t) + wx(t),

y(t) = C x(t) + wy(t),

(39a)

(39b)

and the dynamics of the observer:{
˙̂x(t) = A x̂(t) +B u(t) + L (ȳ(t)− ŷ(t)) ,

ŷ(t) = C x̂(t),

(40a)

(40b)

with ȳ(t) defined as in (4), and A, B, C, L defined as in
Petri et al. [2021].

Numerical simulations are done by considering Euler
discretisation method, with sampling period Ts = 10−1 s.
In the following, the term Petri et al.’s observer will refer
to the event-triggered observer developed in (Petri et al.
[2021]), whereas the term neural network observer will refer
to the event-triggered observer developed based on the
learning approach proposed in Algorithm 1.

The Petri et al.’s observer is simulated with the same hyper
parameters as in (Petri et al. [2021]), from the initial state
x0 = [1, 3]⊤ and estimate x̂0 = [0, 0]⊤, and with the control
input presented in Figure 8.

Fig. 8. Illustration of the control input u(t).

The discrete-time realisations of the noise signals wx(t)
and wy(t) are generated randomly following a normal
distribution N (0, 0.1) for each of their components. Note
that these noise characteristics result in noise-to-signal
ratios of 10% for the first component of the initial state x0
and 3% for its second component.

The trajectory of the norm of the estimation error, from
Petri et al.’s observer, is plotted at the top of Figure 9.
The triggering signal vk for this trajectory are illustrated
at the bottom of Figure 9.

Fig. 9. Illustration of a trajectory obtained with the Petri
et al.’s observer in a noisy environment.

The convergence of the estimation error to a neighbourhood
of 0 can be observed while not having the communication
policy vk equal to 1 at each time step.

Since the control input u(t) presented in Figure 8 is piece-
wise constant, we claim that the neural network can be
trained on a dataset of trajectories generated by considering
different constant inputs. The neural network observer has
been trained on a dataset of 20 000 trajectories. These
trajectories are generated from 1 000 different initial states
x0 with components randomly sampled following N (0, 1)
and with 20 different values of a constant signal for u(t)
randomly generated according to a uniform distribution
between [−250, 250]. We chose λ = 0.5, N = 400, and
γ = 0.995. We selected the same optimiser as in Section 5.1.

The trained neural network observer has been tested on
the same trajectory as for the Petri et al.’s observer. A
zoom for k ranging from 0 to 100 of the trajectory is given
in Figure 10.

Fig. 10. Illustration of a trajectory obtained with the neural
network observer.

As for the Petri et al.’s observer case, the converge of the
estimation error to a neighbourhood of 0 can be noted.
However, fewer triggering instants can be observed when
using the neural network observer.

In order to quantify and compare the performances between
the two observers, the loss L defined in (35) and the
triggering rate Rv are calculated for this trajectory. For
the Petri et al.’s observer case, we obtained L = 168 and
Rv = 0.83 whereas for the neural network observer we
obtained L = 87.7 and Rv = 0.41. As can be noticed, the
neural network observer leads to better performances than
the Petri et al.’s one. Indeed, with the neural network,
the evaluated loss L is half as large as with the Petri et
al.’s observer. A similar result is obtained regarding the
triggering ratio Rv. Note that these results are consistent,
since the parameters of the neural network have been
optimised to minimise the loss L while it is not the case
for the observer from (Petri et al. [2021]). However, in
our context and in contrast with (Petri et al. [2021]) no
stability guarantee is obtained.

6. CONCLUSION

In this paper, the design of a communication policy for
an event-triggered observer for linear systems has been
formulated as an optimisation problem. A proof of the
existence of an optimal solution to this problem has
been provided. It has also been shown that this optimal
communication policy results in a bounded convergence
of the estimation error provided by the event-triggered
observer. Afterwards, a method based on Deep Learning
has been proposed to approximate this solution and learn
a communication policy based on neural networks. Two
simulation examples have been finally proposed to illustrate
the good performance obtained by the proposed approach.

REFERENCES

Baumann, D., Zhu, J.J., Martius, G., and Trimpe, S.
(2018). Deep reinforcement learning for event-triggered
control. In 2018 IEEE Conference on Decision and
Control (CDC), 943–950. IEEE.

Bellman, R. (1954). The theory of dynamic programming.
Bulletin of the American Mathematical Society, 60(6),
503–515.

Cho, K., van Merrienboer, B., Bahdanau, D., and Ben-
gio, Y. (2014). On the properties of neural ma-
chine translation: Encoder-decoder approaches. URL
https://arxiv.org/abs/1409.1259.

Etienne, L. and Di Gennaro, S. (2016). Event–triggered
observation of nonlinear lipschitz systems via impulsive
observers. IFAC-PapersOnLine, 49(18), 666–671.

Garcia, E., Cao, Y., and Casbeer, D.W. (2014). Decen-
tralized event-triggered consensus with general linear
dynamics. Automatica, 50(10), 2633–2640.

Ge, X., Han, Q.L., Zhang, X.M., and Ding, D. (2021). Dy-
namic event-triggered control and estimation: A survey.
International Journal of Automation and Computing,
18(6), 857–886.

Kalman, R.E. (1960). On the general theory of control
systems. In Proceedings First International Conference
on Automatic Control, Moscow, USSR, 481–492.

Keerthi, S. and Gilbert, E. (1985). An existence theorem for
discrete-time infinite-horizon optimal control problems.
IEEE Transactions on Automatic Control, 30(9), 907–
909.

Li, L., Lemmon, M., and Wang, X. (2010). Event-triggered
state estimation in vector linear processes. In Proceedings
ACC, 2138–2143. IEEE.

Liu, J., Yu, Y., Wang, Q., and Sun, C. (2017). Fixed-time
event-triggered consensus control for multi-agent systems
with nonlinear uncertainties. Neurocomput., 260.

Liu, J., Zhang, Y., Yu, Y., and Sun, C. (2019). Fixed-
time event-triggered consensus for nonlinear multiagent
systems without continuous communications. IEEE Tran.
on Sys., Man, and Cyber.: Sys., 49(11), 2221–2229.

Nešić, D., Teel, A.R., and Sontag, E.D. (1999). Formulas
relating KL stability estimates of discrete-time and
sampled-data nonlinear systems. Sys. & Con. Let.

Petri, E., Postoyan, R., Astolfi, D., Nešić, D., and Heemels,
W.M.H. (2021). Event-triggered observer design for
linear systems. In 60th IEEE CDC, 546–551. IEEE.

Postoyan, R., Buşoniu, L., Nešić, D., and Daafouz, J. (2016).
Stability analysis of discrete-time infinite-horizon optimal
control with discounted cost. IEEE TAC.

Scheres, K.J., Chong, M., Postoyan, R., and Heemels,
W.M.H. (2021). Event-triggered state estimation with
multiple noisy sensor nodes. In 2021 60th IEEE CDC.

Schlüter, H., Solowjow, F., and Trimpe, S. (2020). Event-
triggered learning for linear quadratic control. IEEE
Transactions on Automatic Control, 66(10), 4485–4498.

Seyboth, G.S., Dimarogonas, D.V., and Johansson, K.H.
(2013). Event-based broadcasting for multi-agent average
consensus. Automatica, 49(1), 245–252.

Solowjow, F., Baumann, D., Garcke, J., and Trimpe, S.
(2018). Event-triggered learning for resource-efficient
networked control. In 2018 ACC, 6506–6512. IEEE.

Solowjow, F. and Trimpe, S. (2020). Event-triggered
learning. Automatica, 117, 109009.

Tabuada, P. (2007). Event-triggered real-time scheduling
of stabilizing control tasks. IEEE TAC.

Trimpe, S. (2014). Stability analysis of distributed event-
based state estimation. In 53rd IEEE CDC, 2013–2019.

Wang, Y.W., Lei, Y., Bian, T., and Guan, Z.H. (2019).
Distributed control of nonlinear multiagent systems with
unknown and nonidentical control directions via event-
triggered communication. IEEE Trans. on Cyber., 50(5).

Xie, D., Xu, S., Chu, Y., and Zou, Y. (2015). Event-
triggered average consensus for multi-agent systems with
nonlinear dynamics and switching topology. Journal of
the Franklin Institute, 352(3), 1080–1098.

