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FUNCTIONAL INEQUALITIES AND APPLICATIONS TO DOUBLY NONLINEAR DIFFUSION EQUATIONS

We study weighted inequalities of Hardy and Hardy-Poincaré type and find necessary and sufficient conditions on the weights so that the considered inequalities hold. Examples with the optimal constants are shown. Such inequalities are then used to quantify the convergence rate of solutions to doubly nonlinear fast diffusion equation towards the Barenblatt profile.

INTRODUCTION

We investigate functional inequalities of Hardy and Poincaré type. Our main objective is to provide new constructive methods of derivation of such inequalities with explicit constants that are optimal in some cases. Our study starts with finding necessary and sufficient conditions on the weights so that the following Poincaré inequality on the real line is valid for any compactly supported f ∈ W 1,∞ ( )

(P) | f -( f ) w 1 | q w 1 (s) ds ≤ C P | f ′ | q w 2 (s) ds ,
where 1 < q < ∞, ( f ) w 1 is a weighted average with respect to w 1 , and C P = C P (q, w 1 , w 2 ) > 0, see Theorem 1.

Having Poincaré inequality on the real line, we prove some compatibility conditions to be necessary and sufficient for Hardy-Poincaré inequality on N , N > 2, of a form (HP)

N |ϕ -ϕ| q w 1 (x) d x ≤ C H P N |∇ϕ| q w 2 (x) d x, where 1 < q < N , to hold for all compactly supported ϕ ∈ W 1,∞ ( N ), where ϕ = 1 H 1 N ϕw 1 (x) d x, and C H P = C H P (q, w 1 , w 2 ) > 0, see Theorem 2. Our next result is Theorem 3 providing a constructive PDE-based method of obtaining admissible weights to the following Hardy inequality (H)

N |ϕ| q w 1 (x) d x ≤ C H N |∇ϕ| q w 2 (x) d x,
where 1 < q < ∞, for every compactly supported ϕ ∈ W 1,∞ ( N ) and C H = C H (q, w 1 , w 2 ) > 0.
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The name Hardy-Poincaré inequalities has been introduced in [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF]. In that paper the authors consider a family of inequalities which interpolates between the classical Hardy and Poincaré inequalities, see [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF]Proposition 5]. Since then, the name Hardy-Poincaré has been popularized and several authors used it, see for instance [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Agueh | Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime[END_REF][START_REF] Dolbeault | Fast diffusion equations: matching large time asymptotics by relative entropy methods[END_REF][START_REF] Dolbeault | Improved interpolation inequalities, relative entropy and fast diffusion equations[END_REF][START_REF] Bonforte | Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method[END_REF][START_REF] Skrzypczak | Hardy-Poincaré type inequalities derived from p-harmonic problems[END_REF]. In the present paper, we preferred to distinguish between two different situations: when the left-hand side weight is integrable (Hardy-Poincaré inequality (HP)) and when it is not true (Hardy inequality (H)).

The investigation of the inequalities mentioned above is motivated by the study of nonlinear diffusion equations where they play a critical role in understanding the asymptotic behaviour of solutions to Cauchy problems. The constants in the inequalities dictate the convergence rates of a solution towards a self-similar one. We apply such an inequality to investigate the long-time asymptotics of solutions to the Cauchy problem [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF] u t = div |∇u m | p-2 ∇u m , u(0, x) = u 0 (x) .

We point out that the inequalities (HP) and (P) retrieve the Hardy-Poincaré and Hardy inequalities applied in [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Bonforte | Special fast diffusion with slow asymptotics: Entropy method and flow on a riemannian manifold[END_REF] in order to obtain precise rates of convergence of solutions to (1) for p = 2 and m < 1. Inequalities (P), (HP), and (H) are far better understood for q = 2 or in bounded domains, cf. [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF][START_REF] Barthe | Modified logarithmic Sobolev inequalities on[END_REF][START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF][START_REF] Ghoussoub | Functional inequalities : new perspectives and new applications[END_REF]. We are interested in providing them for general q and under possibly general assumptions on the weights. Despite our ultimate goal is to provide a handy tool for analysis of an evolution equation, let us mention that such inequalities play an important role in other branches of analysis. Hardy-type inequalities are used in functional analysis, probability theory, interpolation theory, and PDEs [START_REF] Baras | The heat equation with a singular potential[END_REF][START_REF] Barthe | Modified logarithmic Sobolev inequalities on[END_REF][START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Chlebicka | Existence to nonlinear parabolic problems with unbounded weights[END_REF][START_REF] Chua | On weighted Sobolev interpolation inequalities[END_REF][START_REF] García Azorero | Hardy inequalities and some critical elliptic and parabolic problems[END_REF][START_REF] Gutiérrez | Sobolev interpolation inequalities with weights[END_REF][START_REF] Huang | First order Hardy inequalities revisited[END_REF][START_REF] Kałamajska | On a variant of the Gagliardo-Nirenberg inequality deduced from the Hardy inequality[END_REF][START_REF] Mitidieri | Absence of positive solutions for quasilinear elliptic problems in R N[END_REF][START_REF] Vázquez | The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential[END_REF]. We refer to [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF][START_REF] Barthe | Modified logarithmic Sobolev inequalities on[END_REF][START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF][START_REF] Miclo | Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite?[END_REF] for information on the relation between (H), (HP) and Log-Sobolev inequalities. The latter are of great interest in geometry in finite and infinite dimension, probability theory, and statistical mechanics.

In order to present our first result let us define the median of the measure w 1 (s) ds being a point η ∈ such that η -∞ w 1 (s) ds = w 1 L 1 ( ) /2. For any m ∈ we define

B + m := sup t≥m ∞ t w 1 (s) ds t m w 1 1-q 2 (s) ds q-1 , B - m := sup t≤m t -∞ w 1 (s) ds m t w 1 1-q 2 (s) ds q-1 . (2)
The following theorem characterizes the measures which satisfy inequality (P).

Theorem 1 (Poincaré inequality on

). Let 1 < q < ∞, 0 ≤ w 1 , w 2 , w 1 L 1 ( ) < ∞,
and let η be a median of the measure w 1 (s) ds. Then inequality (P) holds if and only if B + η , B - η < ∞. Moreover, the optimal constant C P satisfies

(2 q-1 q -1) q 2 q-1 max B + η , B - η ≤ C P ≤ (2q) q (q -1) q-1 max B + η , B - η
In the case q = 2, the result was proven in [6, Théorème 6.2.2] and [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF]. See also [START_REF] Miclo | Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite?[END_REF] for a discussion on the bounds on the optimal constant if q = 2. The method of the proof is inspired by the above mentioned papers.

As an application of Theorem 1 we prove our next result -sufficient and necessary conditions for inequality (HP) to hold. In order to state our result we define for any m > 0 and for any function 0

≤ h ∈ L 1 ([0, ∞)) the quantity H 2 (m) := max sup t>m ∞ t r N -1 h(r) d r t m (r N -1+q h(r)) -1 q-1 d r q-1 , sup t∈(0,m) t 0 r N -1 h(r) d r m t (r N -1+q h(r)) -1 q-1 d r q-1 . ( 3 
)
With a slight abuse of notation, for a nonnegative, radial N -dimensional measure h(r)r N -1 d r we define a median to be η ∈ [0, ∞) such that

η 0 h(r)r N -1 d r = h L 1 ( N ) /2.
Our result reads as follows.

Theorem 2 (General Hardy-Poincaré inequality

). Let 1 < q ≤ 2 if N = 2 and 1 < q < N if N ≥ 3. Assume h : [0, ∞) → [0, ∞) is such that (4) H 1 := h L 1 ( N ) < ∞ ,
and let η be a median of the measure h(r)r N -1 d r, w 1 (x) = h(|x|), and w 2 (x) = |x| q h(|x|). Then inequality(HP) holds if and only if H 2 (η) < ∞. Moreover, the optimal constant C H P satisfies

(5) (2 q-1 q -1) q 2 q-1 H 2 (η) ≤ C H P ≤ (2q) q (q -1) q-1 H 2 (η).
Let us concentrate on inequalities of Hardy type (H). It is known that such inequalities can be proven with weights depending on solutions to elliptic PDE, see [START_REF] Barbatis | A unified approach to improved L p Hardy inequalities with best constants[END_REF][START_REF] Ambrosio | Hardy inequalities related to Grushin type operators[END_REF][START_REF] Ambrosio | Hardy-type inequalities related to degenerate elliptic differential operators[END_REF][START_REF] Dipierro | Hardy inequalities on Riemannian manifolds and applications[END_REF][START_REF] Ghoussoub | Bessel pairs and optimal Hardy and Hardy-Rellich inequalities[END_REF][START_REF] Skrzypczak | Hardy-type inequalities derived from p-harmonic problems[END_REF][START_REF] Skrzypczak | Hardy-Poincaré type inequalities derived from p-harmonic problems[END_REF]. The principal idea is to re-interpret certain versions of Caccioppoli estimate for a solution as Hardy inequalities for test functions. In our result weights w 1 , w 2 in (H) are determined by the means of the gradient and the θ -Laplacian of a sub-or super-θ -harmonic function. Let us define the operator [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses[END_REF] ∆ θ g = div |∇g| θ -2 ∇g for θ > 1.

Note that for θ = 2, we have ∆ θ g = ∆g.

Theorem 3 (General Hardy inequality). Suppose

1 < q, θ < ∞, g ∈ W 1,1 l oc ( N ) is positive and such that ∆ θ g ∈ L 1
l oc ( N ) has constant sign. Then for every compactly supported ϕ ∈ W 1,∞ ( N ) inequality (H) holds with w 1 (x) = |∆ θ g|, w 2 (x) = |∇g| q(θ -1) |∆ θ g| 1-q , and C H = q q . The above theorem has surprisingly strong consequences as for how easy is its proof. See [27, Theorem 2.5] and [61, Theorem 3.1] for our inspiration. The precision of the reasoning is illustrated by in Section 3.2 with a family of inequalities, where the constant is proven to be optimal.

As an application of Theorem 2 we study the asymptotic behaviour of solutions to doubly nonlinear equation [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF]. Equations as [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF] have been investigated since the 70's due to their intrinsic mathematical difficulties and the wide range of applications, for instance in glaciology and non-Newtonian fluids [START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF][START_REF] Hutter | Mathematical foundation of ice sheet and ice shelf dynamics. A physicist's view[END_REF][START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow[END_REF]. For more details on cornerstones of the field we refer to [START_REF] Kalashnikov | Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations[END_REF][START_REF] Vázquez | The mathematical theories of diffusion: Nonlinear and fractional diffusion[END_REF] and also the monographs [START_REF] Vázquez | The porous medium equation, Mathematical theory[END_REF][START_REF] Vázquez | Smoothing and estimates for nonlinear diffusion equations, Equations of porous medium type[END_REF][START_REF] Wu | Nonlinear diffusion equations[END_REF]. Special cases of equation ( 1) are the heat equation (p = 2, m = 1), the porous medium equation (p = 2, m > 1), and the fast diffusion equation (p = 2, m < 1). In the case m = 1, (1) involves the already classical p-Laplace operator ∆ p u = div |∇u| p-2 ∇u . What is more, then evolution equation (1) requires different methods for 1 < p < 2 and 2 < p being called singular and degenerate, respectively. Studies on solutions to equations like (1) attract deep attention of various groups developing their theory from different points of view [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF][START_REF] Agueh | Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime[END_REF][START_REF] Bögelein | Doubly nonlinear equations of porous medium type[END_REF][START_REF] Düzgün | Harnack and pointwise estimates for degenerate or singular parabolic equations[END_REF][START_REF] Fornaro | Regularity results for a class of doubly nonlinear very singular parabolic equations[END_REF][START_REF] Fornaro | Harnack type inequalities for some doubly nonlinear singular parabolic equations[END_REF][START_REF] Ivanov | Existence and uniqueness of a regular solution of the first initialboundary value problem for a class of doubly nonlinear parabolic equations[END_REF][START_REF] Li | Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources[END_REF][START_REF] Schätzler | The obstacle problem for singular doubly nonlinear equations of porous medium type[END_REF][START_REF] Vespri | An extensive study of the regularity of solutions to doubly singular equations[END_REF]. The issue of convergence of solutions to a self-similar profile to nonlinear diffusion equations has been studied e.g. in [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Carrillo | Poincaré inequalities for linearizations of very fast diffusion equations[END_REF][START_REF] Denzler | Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology[END_REF][START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF][START_REF] Vázquez | Smoothing and estimates for nonlinear diffusion equations, Equations of porous medium type[END_REF] and in the doubly nonlinear evolution equation in [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF][START_REF] Agueh | Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime[END_REF].

We are interested in [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF] with nonnegative initial datum with u 0 ∈ L 1 ( N ). Our result is proven for p > 1, m > 0, and

(7) N -p p < m(p -1) < N -p + 1 N ,
which fits in the fast diffusion range where the mass of the solution is conserved along time.

Under such regime infinite speed of propagation holds, i.e., if u 0 ≥ 0 then u(t) > 0 for all times t > 0. Within [START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF] the asymptotic behaviour of a solution is controlled by a self-similar one called the Barenblatt solution

(8) B D (t, x) = R(t) -N B D (x/R(t)) , where (9) R(t) := (1 + ϑ t) 1 ϑ and B D (x) = D + 1 -m(p -1) mp |x| p p-1 p-1 m(p-1)-1 . with ϑ = p -N [1 -m(p -1)] > 0.
The parameter D depends on the mass of B D . In particular, it is known that solutions to (1), within the range (7) converge to B D in the L 1 ( N )-topology as t → ∞. Here, we provide an effective alternative way for one important step of the proof of [4, Theorem 1.1] and supply it with an estimate on a rate of convergence. Theorem 4. Let N ≥ 3, m > 0, p > 1 as in [START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF] and let nonnegative u 0 ∈ L 1 ( N ) be such that

B D 0 ( y) ≤ u 0 ( y) ≤ B D 1 ( y) for some D 0 , D 1 > 0. Let D ⋆ > 0 be such that d u 0 d x = d B D ⋆ (0, x) d x.
Then there exist nonnegative constants C and λ, and a time t 0 such that, for any solution to (1) with initial datum u 0 , the following holds

(10) u(t) -B D ⋆ (t) L 1 ( d ) ≤ C t -λ/2 , ∀t ≥ t 0 .
In [START_REF] Agueh | Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime[END_REF] the authors apply the entropy method, where a Hardy-Poincaré inequality (HP) is used to compare the linear entropy with a linearised version version of it. In order to prove such an inequality they invoke the Persson's Theorem as it was done in [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF], which one may avoid entirely. Our main contribution is to prove the needed Hardy-Poincaré inequality by the constructive method of Theorem 2.

Our last result is motivated by study of the asymptotic behaviour of the fast diffusion range of the evolution p-Laplace equation, i.e. equation ( 1) with m = 1 and 1 < p < 2. Only few results are available in this range, see [START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF][START_REF] Bonforte | The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour[END_REF]. Therefore, in a forthcoming paper, we will give a more detailed analysis for a natural class of initial data. In this work we provide the relevant Hardy-Poincaré inequality for this range of parameters. For the proof see Section 3.3.

Corollary 1.1. Let 1 < p < 2, N > 2, N > p (2-p)(p-1) . Then for all compactly supported ϕ ∈ W 1,∞ ( N ) it holds that (11) N |ϕ| 2 |x| - p p-1 1 + |x| p p-1 - p-1 2-p d x ≤ C H N |∇ϕ| 2 |x| -2-p p-1 1 + |x| p p-1 - p-1 2-p d x
with a positive finite constant C H . If we additionally assume that N ≤ 7 OR p ∈ (p -, p + ) for

p -= 3 2 -1 2 N -7 N +1 and p + = 3 2 + 1 2 N -7 N +1 , then the constant C H is optimal and reads C H = 4 N - p (2-p)(p-1) -2 . The range N < p (2-p)(p-1)
is not considered in the above result since the left-hand-side weight becomes integrable, so different techniques are needed in order to obtain an inequality, see Theorem 2. From the point of view of asymptotics, in this last range the difference of two Barenblatt profiles is integrable, while in the range considered in the above corollary is not.

The case N = p (2-p)(p-1) happens only if N ≥ 6 and for p = 3 2 -1 2N ± N 2 -6N +1

2N

. These two last exponents play the same role played by m ⋆ = (N -4)/(N -2) in the better understood case of the fast diffusion equation (eq. ( 1) with p = 2, 0 < m < 1), where particularly sophisticated techniques were needed to deal with this strange exponent, see [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Bonforte | Special fast diffusion with slow asymptotics: Entropy method and flow on a riemannian manifold[END_REF].

Organization of the paper. Section 2 concerns proofs of inequalities (P), (HP), and (H). In Section 3.1 we show examples of (HP) and in Section 3.2 of (H); here Corollary 1.1 is proven. The proof of Theorem 4 is presented in Section 4.

FUNCTIONAL INEQUALITIES

2.1. Poincaré inequality on . Proof of Theorem 1. We will employ the classical result of Muckenhoupt.

Lemma 2.1 (Muckenhoupt's inequality, Theorem 1, [58]). Let 1 < q < ∞, 0 ≤ w 1 , w 2 such that w 1 ∈ L 1 l oc ([0, ∞)). There exists 0 < C M < ∞ for which ∞ 0 | f -f (0)| q w 1 (r) d r ≤ C M ∞ 0 | f ′ | q w 2 (r) d r is true for every compactly supported f ∈ W 1,∞ ([0, ∞)) if and only if H M := sup ρ>0 ∞ ρ w 1 (r) d r ρ 0 (w 2 (r)) -1 q-1 d r q-1 < ∞
Moreover, then the optimal constant C M satisfies H M ≤ C M ≤ q q (q -1) 1-q H M .

We are in a position to prove Poincaré inequality (P) on the real line.

Proof of Theorem 1. We assume first that B + η and B - η are both finite. For any m we have that

∞ -∞ | f -( f ) w 1 | q w 1 (s) ds ≤ 2 q ∞ -∞ | f -f (m)| q w 1 (s) ds = 2 q m -∞ | f -f (m)| q w 1 (s) ds + 2 q ∞ m | f -f (m)| q w 1 (s) ds =: 2 q (L 1 (m) + L 2 (m)).
Let us define

J 1 (m) := m -∞ | f ′ | q w 2 (s) ds and J 2 (m) := ∞ m | f ′ | q w 2 (s) ds ,
and let us call A - m (A + m resp.) the optimal constant of the inequality

L 1 (m) ≤ A - m J 1 (m) (of inequality L 2 (m) ≤ A + m J 2 (m) resp.).
In particular, if we consider m = η, we obtain that

B - η ≤ A - η ≤ q(q ′ ) q-1 B - η and B + η ≤ A + η ≤ q(q ′ ) q-1 B + η
as a consequence of a change of variables and Lemma 2.1. By summing up the previous inequalities, we find that

∞ -∞ | f -( f ) w 1 | q w 1 (s) ds ≤ 2 q (L 1 (m) + L 2 (m)) ≤ 2 q max{A + η A - η }(J 1 (m) + J 2 (m)) ≤ 2 q q(q ′ ) q-1 max B + η , B - η | f ′ | q w 2 (s) ds ,
which proves inequality (P) with the wanted upper bound on the constant C P .

Assume now that inequality (P) holds with a finite constant C P > 0. Let us first restrict our attention to the case when B + η , B - η < ∞ (so that, by the optimality of

A + η and A - η , ∞ > A + η ≥ B + η and ∞ > A - η ≥ B - η )
and will to prove the lower bound on the constant C P . Without any loss of generality we can assume that w 1 L 1 ( ) = 1. Let us recall that A + η is the optimal constant for inequality L 2 (η) ≤ A + η J 2 (η). By optimality, for any ǫ > 0 there exists a function f ǫ and such that (12)

∞ η s η f ǫ (t)d t q w 1 (s) ds ≥ (A + η -ǫ) ∞ η | f ǫ (s)| q w 2 (s)ds .
Note that, without loss of generality, we can assume that f ǫ ≥ 0. Let us define

F ǫ (x) = 0 if x ≤ η and F ǫ (x) = x η f ǫ (t)d t if x ≥ η.
Therefore, by the property of the median, we have w 1 ({F ǫ > 0}) ≤ 1/2. Then, by Hölder inequality, we obtain

F ǫ (t)w 1 (t) d t ≤ |F ǫ (t)| q w 1 (t)d t 1 q w 1 ({F ǫ > 0}) q-1 q ≤ 2 -q-1 q |F ǫ (t)| q w 1 (t) d t 1 q
.

Then, by using the above inequality with the triangle inequality and inequality [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF], we find

|F ǫ (t) -(F ǫ ) w 1 | q w 1 (t)d t ≥ |F ǫ (t)| q w 1 (t)d t 1 q -(F ǫ ) w 1 q ≥ (2 q-1 q -1) q 2 q-1 |F ǫ (t)| q w 1 (t)d t ≥ (2 q-1 q -1) q 2 q-1 (A + η -ǫ) ∞ η | f ǫ (s)| q w 2 (s) ds ≥ (2 q-1 q -1) q 2 q-1 (B + η -ǫ) ∞ η | f ǫ (s)| q w 2 (s) ds ≥ (2 q-1 q -1) q 2 q-1 (B + η -ǫ) C P |F ǫ (t) -(F ǫ ) w 1 | q w 1 (t)d t ,
where we used that A + η is the optimal constant and inequality (P). This proves that

C P ≥ (2 q-1 q -1) q 2 q-1 (B + η -ǫ)
for any ǫ > 0. The same construction can be used for the case of B - η . It remains to prove that if inequality (P) holds for a finite C P > 0 then B + η , B - η < ∞. To justify this one may argue by contradiction using the same lines as above.

When we apply Theorem 1 for w

1 (r) = r N -1 h(r)1 [0,∞) (r) and w 2 (r) = r N -1+q h(r)1 [0,∞) (r),
and denote ( f ) = ( f ) w 1 , we get the following consequence.

Corollary 2.1. Suppose 1 < q < ∞ and 0 ≤ h ∈ L 1 l oc ([0, ∞)
) is such that and there exists m > 0 for which H 2 (m) given by (3) is finite. There exists 0 < C < ∞ such that

(13) ∞ 0 | f -( f )| q r N -1 h(r) d r ≤ C ∞ 0 | f ′ | q r N -1+q h(r) d r holds for every compactly supported f ∈ W 1,∞ ([0, ∞)). Moreover, C ≤ 2 q q(q ′ ) q-1 H 2 (m).

2.2.

Hardy-Poincaré inequality on N . We prove the inequality with radial weights as an application of the Poincaré inequality (P). For this we introduce the standard change of variables from Cartesian to spherical coordinates, that is

r = |x| and ϑ = x/|x|.
In these coordinates, the gradient can be written as (∂ r, 1 r ∇ ϑ ) where ∂ r = x r • ∇ is the partial derivative with respect to the radial variable r and ∇ ϑ is the derivative with respect to the angular variables. Then ( 14)

|∂ r f (r, ϑ)| 2 + 1 r 2 |∇ ϑ f (r, ϑ)| 2 = |∇ f (x)| 2
. By S N -1 ⊂ N we denote the unit sphere and parametrize it with the variable ϑ. Moreover, for every compactly supported function f ∈ W 1,∞ ( N ) we denote the directional average as [START_REF] Bonforte | Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method[END_REF] f (ϑ

) := |S N -1 | H 1 ∞ 0 f (r, ϑ)r N -1 h(r) d r.
Recall that the global average with respect to h is given by ( 16)

f = 1 |S N -1 | S N -1 f (ϑ)dϑ = 1 H 1 N f (x)h(|x|) d x.
We recall the Poincaré inequality on the sphere.

Lemma 2.2 (Spherical Poincaré inequality)

. Let 1 ≤ q < N if N ≥ 3, and 1 ≤ q ≤ 2 when N = 2. Then there exists C sph > 0 such that (17)

S N -1 | f (ϑ) -f | q dϑ ≤ C sph S N -1 |∇ ϑ f (ϑ)| q dϑ
for every f ∈ W 1,q (S N -1 ).

In the case N ≥ 3, inequality ( 17) is a direct consequence of [46, Theorem 2.10] formulated for a smooth and compact Riemannian manifold. In the case q = 2 and N = 2, it follows from a decomposition in spherical harmonics which then coincides with the Fourier basis, see [START_REF] Andrews | Special functions, volume 71 of Encyclopedia of Mathematics and its Applications[END_REF].

To our best knowledge its optimal value of the constant from ( 17) is known only in the case of q = 2, when

C sph = 1 N -1 , see [23, Chapter 4, Proposition 1].
The following result would be instrumental in the proof of Theorem 2.

Proposition 2.1. Suppose assumptions of Theorem 2 are satisfied. If for every compactly supported function f ∈ W 1,∞ ( N ) the following inequality holds

(18) ∞ 0 S N -1 | f (r, ϑ) -f (ϑ)| q r N -1 h(r) dϑ d r ≤ C 1 ∞ 0 S N -1 |∂ r f (r, ϑ)| q r N -1+q h(r)dϑ d r,
then there exist C H P > 0, such that for the same f one has (HP) with w 1 (x) = h(|x|), w 2 (x) = |x| q h(|x|), and a positive constant C H P ≤ 2 q-1 max{C 1 ,

H q 1 C sph |S N -1 | -q }.
Proof. By ( 16) and Jensen's inequality it holds

N | f (x) -f | q h(|x|) d x = ∞ 0 S N -1 | f (r, ϑ) -f | q r N -1 h(r) dϑ d r ≤ 2 q-1 ∞ 0 S N -1 | f (r, ϑ) -f (ϑ)| q r N -1 h(r) dϑ d r + 2 q-1 ∞ 0 S N -1 | f (ϑ) -f | q r N -1 h(r) dϑ d r =: I 1 + I 2 .
Since the first term on the right-hand side above can be estimated due to [START_REF] Bonforte | The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour[END_REF] and then by properties of the gradient ( 14), we get

I 1 ≤ 2 q-1 C 1 ∞ 0 S N -1 |∂ r f (r, ϑ)| q r N -1+q h(r) dϑ d r ≤ 2 q-1 C 1 N |∇ f (x)| q |x| q h(|x|) d x .
As for the second one we use (4) to obtain

I 2 = 2 q-1 H 1 |S N -1 | ∞ 0 | f (ϑ) -f | q dϑ
and we apply the spherical Poincaré inequality (Lemma 2.2) to get

I 2 = 2 q-1 H 1 |S N -1 | S N -1 | f (ϑ) -f | q dϑ ≤ 2 q-1 H 1 |S N -1 | C sph S N -1 |∇ ϑ f (ϑ)| q dϑ =: J . As r N -1 h(r)|S N -1 |/H 1 d
r is a probability measure by Jensen's inequality we have that

J = 2 q-1 H 1 |S N -1 | C sph S N -1 ∇ ϑ ∞ 0 f (r, ϑ)r N -1 h(r) d r q dϑ = 2 q-1 H 1 |S N -1 | q+1 C sph S N -1 ∞ 0 ∇ ϑ f (r, ϑ)r N -1 h(r) |S N -1 | H 1 d r q dϑ ≤ 2 q-1 H 1 |S N -1 | q C sph S N -1 ∞ 0 |∇ ϑ f (r, ϑ)| q r N -1 h(r) d r dϑ =: K.
Due to [START_REF] Bögelein | Doubly nonlinear equations of porous medium type[END_REF] we have r -q |∇ ϑ f (r, ϑ)| q ≤ |∇ f (x)| q and we infer that

K ≤ 2 q-1 H 1 |S N -1 | q C sph N |∇ f (x)| q |x| q h(|x|) d x.
By summing up the previous computations we have the claim.

We are in the position to prove the Hardy-Poincaré inequality.

Proof of Theorem 2. By Corollary 2.1 with

( f ) = |S N -1 | H 1 ∞ 0 f (r) r N -1 h(r) d r,
and H 1 from (4), we have the following inequality

∞ 0 | f -( f )| q r N -1 h(r) d r ≤ 2 q C M ∞ 0 | f ′ | q r N -1+q h(r) d r
for all compactly supported f ∈ W 1,∞ ([0, ∞)). Hence, also the following radial inequality follows

∞ 0 | f (r, ϑ) -f (ϑ)| q r N -1 h(r) d r ≤ C 1 ∞ 0 |∂ r f (r, ϑ)| q r N -1+q h(r) d r for a.e. ϑ ∈ S N -1
with C 1 = 2 q C M . The above inequality implies [START_REF] Bonforte | The Cauchy problem for the fast p-Laplacian evolution equation. Characterization of the global Harnack principle and fine asymptotic behaviour[END_REF], which by Proposition 2.1 completes the proof of (HP) with w 1 (x) = h(|x|) and w 2 (x) = |x| q h(|x|). Bounds on the constant result from the estimates on c P provided in Theorem 1.

Hardy inequality on N . Proof of Theorem 3.

Proof of Theorem 3. Let us observe that integration by parts and the Cauchy-Schwartz inequality imply

N |ϕ| q |∆ θ g| d x ≤ q N |ϕ| q-1 |∇ϕ||∇g| θ -1 d x =: I.
By the Hölder inequality, we have

I = q N |ϕ| q-1 |∆ θ g| q-1 q |∇ϕ||∇g| θ -1 |∆ θ g| q-1 q d x ≤ q N |ϕ| q |∆ θ g|d x (q-1)/q N |∇ϕ| q |∇g| q(θ -1) |∆ θ g| q-1 d x 1/q .
Summing up the above remarks, we get

N |ϕ| q |∆ θ g| d x 1/q ≤ q N |∇ϕ| q |∇g| q(θ -1)
|∆ θ g| q-1 d x 

. Example 3.1. Let 1 < q ≤ 2 if N = 2 and 1 < q < N if N ≥ 3. Assume α < 0 < β, N + γ > 0, N + γ + αβ < 0.
Then there exists a finite constant C = C(N , α, β, γ, q) > 0, such that for every compactly supported ϕ ∈ W 1,∞ ( N ) the following inequality holds true

(19) N |ϕ -ϕ| q |x| γ (1 + |x| β ) α d x ≤ C N |∇ϕ| q |x| γ+q (1 + |x| β ) α d x,
where ϕ is an average of ϕ with respect to |x| γ (1 + |x| β ) α d x.

Proof. Note that for ( 20)

h(|x|) = |x| γ (1 + |x| β ) α .
it holds that H 1 < ∞ since N + γ > 0 and N + γ + αβ < 0. We will show that H 2 (m) < ∞ for any m > 0. We notice that

H 2 (m) = max{A[m], B[m]},
where

A[m] := sup t>m A 1 (t)A 2 (t) = sup t>m ∞ t r N -1+γ (1 + r β ) α d r t m r N -1+γ+q 1 + r β α -1 q-1 d r q-1 B[m] := sup t∈(0,m) t 0 r N -1+γ (1 + r β ) α d r m t r N -1+γ+q 1 + r β α -1 q-1 d r q-1 . Since A 1 (t) ≤ c(N , α, β, γ, q)t N +γ+αβ and A 2 (t) ≤ c(N , α, β, γ, q)(m -(N +γ+αβ) + m -(N +γ) ), we have A[m] < ∞.
On the other hand

B[m] ≤ sup t<m |t N +γ (1 + m β ) -α q-1 t -N +γ q-1 q-1 ≤ c(α, β, γ, q, m)
being finite under the assumed regime. In turn 

H 2 = max{A[m], B[m]} < ∞
N +γ 2 |α|+1 |N +γ+αβ| 1 N +γ ≤ η ≤ 2 |α|+1 |N +γ+αβ| .
For this it is enough to observe that

H 1 ≥ ∞ 1 r N -1+γ (1 + r β ) α d r ≥ 2 α ∞ 1 r N -1+γ+αβ d r = 2 α |N + γ + αβ| , H 1 2 = ∞ η r N -1+γ (1 + r β ) α d r ≤ ∞ η r N -1+γ+αβ d r = η N +γ+αβ |N + γ + αβ| ,
and

H 1 2 = η 0 r N -1+γ (1 + r β ) α d r ≤ η 0 r N -1+γ d r = η N +γ |N + γ| .
Remark 3.2. We are particularly interested in the special case of Example 3.1 with the choice

γ = 0, β = p p-1
, and α = -1 2-p , for 1 < p < 2, which find application in asymptotics of fast diffusion equation, see Section 4.

Hardy inequalities.

As a consequence of Theorem 3 we get the following family of Hardytype inequalities on N . We also refer to [START_REF] Huang | First order Hardy inequalities revisited[END_REF][START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF] where the optimal constant of some of the inequalities in the following family were already computed.

Example 3.2. Let q > 1, α, β, γ ∈ , α < 0 < β, γ + N > 0, |αβ + γ + 2| ≥ |γ + 2|, sgn(αβ + γ + 2) = sgn(γ + 2), and αβ + γ + N > 0. ( 21 
)
Then for all compactly supported ϕ ∈ W 1,∞ ( N ) it holds that

(22) N |ϕ| q |x| γ (1 + |x| β ) α d x ≤ C H N |∇ϕ| q |x| γ+q (1 + |x| β ) α d x
with a positive, finite constant C H . If we additionally assume that [START_REF] Chavel | Eigenvalues in Riemannian geometry[END_REF] αβ + 2(γ + 1) + N ≤ 0, then the constant C H is optimal and reads

C H = q αβ + γ + N q .
Proof. We will apply Theorem 3 with θ = 2. For g(x)

= |x| γ+2 (1 + |x| β ) α , it holds |∆g(x)| = |x| γ (1 + |x| β ) α-2 |x| β (αβ + γ + 2)(αβ + γ + N ) + (γ + 2)(γ + N ) (1 + |x| β ) -|x| β αβ α -1 , |∇g(x)| q |∆g(x)| 1-q = |x| γ+q (1 + |x| β ) α-2+q |x| β (αβ + γ + 2) + γ + 2 q • • |x| β (αβ + γ + 2)(αβ + γ + N ) + (γ + 2)(γ + N ) (1 + |x| β ) -|x| β αβ α -1 1-q . Note that |∆ θ g| ∈ L 1 l oc ( N ) since γ + N > 0. Furthermore, then c 1 h(|x|) ≤ |∆g(x)| for c 1 = inf |x|≥0 |x| β (αβ+γ+2)(αβ+γ+N ) +(γ+2)(γ+N ) (|x| β +1)-|x| β αβ α-1 (|x| β +1) 2 = inf s≥0 s 2 (η + 2)(η + N ) + s (η + 2)(η + N ) + (γ + 2)(γ + N ) -αβ(α -1) + (γ + 2) N + γ (s + 1) 2 =: inf s≥0 1 (s),
where η = αβ + γ. Notice that under [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF] we have (η + 2)(η + N ) < 0, (γ + 2)(γ + N ) < 0 and αβ(α -1) > 0. So the numerator of 1 (s) is separated from 0 and c 1 is well defined. Under additional assumption αβ + 2(γ + 1)

+ N ≤ 0 we have c 1 = 1 (∞) = (-αβ -γ + -2) (αβ + γ + N ).
Indeed, let us consider ξ(s) = log( 1 (s))

and denote the numerator of 1 (s) by

P(s) =s 2 (-η -2)(η + N ) + s (-η -2)(η + N ) + (-γ -2)(γ + N ) + αβ(α -1) + + (-γ -2) N + γ := as 2 + bs + c ξ ′ (s) = 2as+b P(s) -2 s+1 = s(2a-b)+(b-2c) P(s)(s+1)
.

We observe that

2a -b =(-η -2)(η + N ) -(-γ -2)(γ + N ) -αβ(α -1) ≤(-η -2)(η + N ) -(-γ -2)(γ + N ) ≤ 0,
where last inequality is equivalent to αβ + 2(γ + 1) + N ≤ 0 Therefore ξ ′ is decreasing, so ξ and further 1 attain minimum at 0 or at ∞. But

c 1 = min{ 1 (0), 1 (∞)} = min{|γ + 2| |γ + N |, |η + 2| |η + N |} = (-η -2) (η + N ).
On the other hand |∇g(x

)| q |∆g(x)| 1-q ≤ c 2 h(|x|)|x| q for c 2 = sup |x|≥0 |∇g(x)| q |∆g(x)| 1-q h(|x|)|x| q = sup |x|≥0 |∇g(x)| h(|x|)||x| q 1 (|x|) 1-q Consider f (s) = s(-η-2)+(-γ-2) 1+s
and

(log f ) ′ (s) = -η-2 s(-η-2)+(-γ-2) -1 s+1 = (-η-2)-(-γ-2) (s+1)(s(-η-2) 
+(-γ-2)) ≥ 0 Therefore f (s) is increasing and under our assumption it holds inf s≥0 1 (s) = 1 (∞)

c 2 = sup s≥0 f (s) q 1 (s) 1-q = f (∞) q 1 (∞) 1-q = |αβ + γ + 2| |αβ + γ + N | 1-q
and by Theorem 3 we have C H ≤ q q c 2 c 1 . To motivate optimality of C H in the special case we compare it with the optimal constant in the classical Hardy inequality. Recall that we are in the regime when c 1 = 1 (∞) and, consequently, C H = q q αβ + γ + N -q . Let us consider the family of rescaled functions ϕ s (x) = ϕ(sx) ∈ C ∞ c ( N ) with s > 0. We multiply both sides of (11) by t αβ+γ and rearrange them to get

N |ϕ s (x)| q |t x| γ (t β + |t x| β ) α d x ≤ C H N |∇ϕ s (x)| q |t x| γ+q (t β + |t x| β ) α d x . ( 24 
)
After the change of variables y = x t we obtain

N |ϕ( y)| q | y| γ (t β + | y| β ) α d y ≤ C H N |∇ϕ( y)| q | y| γ+q (t β + | y| β ) α d y .
Using the Lebesgue Monotone Convergence Theorem, we let t ց 0 and get

N |ϕ( y)| q | y| αβ d y ≤ C H N |∇ϕ( y)| q | y| αβ+γ+q d y , ( 25 
)
with classical Hardy inequality with power weights where the optimal constant is q q αβ + γ + N -q . Therefore, C H cannot be improved.

By the same arguments as in the proof of Example 3.2 one can show the following consequence of Theorem 3.

Example 3.3. Let q > 1, α ∈ , β > 0, αβ + N > 0. Then for all compactly supported ϕ ∈ W 1,∞ ( N ) it holds that (26)

N |ϕ| q (1 + |x| β ) α d x ≤ C H N |∇ϕ| q |x| q (1 + |x| β ) α d x
with a positive, finite constant C H . Note that the above example for q = 2 = β relates to the main result of [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF] used there and in [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] in the study of the asymptotics to fast diffusion equation. Indeed, within such a choice of parameters the left-hand side weight in [START_REF] Ambrosio | Hardy inequalities related to Grushin type operators[END_REF] is the same as in the inequality (1) of [START_REF] Blanchet | Hardy-Poincaré inequalities and applications to nonlinear diffusions[END_REF], but the right-hand weight of [11, (1)] reads (1 + |x| 2 ) α+1 .

Proof of Corollary 1.1.

Proof. We verify assumptions of Example 3.2 applied with q = 2, α = -

p-1 2-p , β = p p-1 > 0, and γ = - p p-1 . We see that αβ + γ + 2 = 2 - p (2-p)(p-1) < 0, γ + 2 = 2 - p p-1 < 0. Since α < 0, also |αβ + γ + 2| ≥ |γ + 2|. Moreover, αβ + γ + N = N - p (2-p)(p-1)
> 0, which in particular implies that p > N /(N -1) equivalent to γ + N > 0. Then by Example 3.2 we know that C H ∈ (0, ∞). The optimality of C H follows from the fact that if N ≤ 7 or p ∈ (p -, p + ), condition ( 23) is satisfied.

LONG-TERM ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO DNLE

Before we present the proof of Theorem 4, let us recall important properties of solutions to [START_REF] Agueh | Asymptotic behavior for doubly degenerate parabolic equations[END_REF]. For an initial datum u 0 ∈ L 1 ( N ), existence and uniqueness to (1) is settled, see [START_REF] Li | Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources[END_REF][START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF]. Moreover, in the range or parameters under consideration, we have that u(t) ∈ C 1,α ( N ) for some α ∈ (0, 1), see [START_REF] Vespri | An extensive study of the regularity of solutions to doubly singular equations[END_REF][START_REF] Düzgün | Harnack and pointwise estimates for degenerate or singular parabolic equations[END_REF][START_REF] Fornaro | Regularity results for a class of doubly nonlinear very singular parabolic equations[END_REF][START_REF] Dibenedetto | Degenerate parabolic equations[END_REF] and mass is conserved, i.e., N u(t, x) d x = N u 0 (x) d x for t > 0, For further information about basic properties of solutions to (1) we refer to the monographs [START_REF] Dibenedetto | Harnack's Inequality for Degenerate and Singular Parabolic Equations[END_REF], [64, Part III] and references therein.

Rates of convergence like [START_REF] Barthe | Modified logarithmic Sobolev inequalities on[END_REF] with the use of different norms for equation (1) has been a problem attracting a lot of attention. In the case p = 2 and m > 1, optimal rates of convergence were obtained independently by Carrillo and Toscani [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF], and if m > 1 -1/N by Del Pino and Dolbeault [START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF] and by Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. When p = 2 and 1 -1/N < m < 1, see also [START_REF] Bonforte | Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method[END_REF][START_REF] Bonforte | Fine properties of solutions to the cauchy problem for a fast diffusion equation with Caffarelli-Kohn-Nirenberg weights[END_REF][START_REF] Carrillo | Fine asymptotics for fast diffusion equations[END_REF] for rates of convergence in the stronger norm of uniform relative error. In the case of p = 2 and 1 -N /(N + 2) < m < 1 improved convergence rate were obtained by Dolbeault and Toscani using the best matching Barenblatt profile, see [START_REF] Dolbeault | Fast diffusion equations: matching large time asymptotics by relative entropy methods[END_REF][START_REF] Dolbeault | Improved interpolation inequalities, relative entropy and fast diffusion equations[END_REF]. For p = 2 and 0 < m < 1 -1/N rates of convergence (optimal on a subrange) were computed, independently, by Carrillo and Vazquez in [START_REF] Carrillo | Fine asymptotics for fast diffusion equations[END_REF], McCann and Slepcev in [START_REF] Mccann | Second-order asymptotics for the fast-diffusion equation[END_REF], Kim and McCann in [START_REF] Kim | Potential theory and optimal convergence rates in fast nonlinear diffusion[END_REF] and, for the whole range m < 1 (negative values of m are admitted) by Blanchet, Bonforte, Dolbeault, Grillo and Vázquez in [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF]. The aforementioned results are often based on the study of a linearised problem performed in [START_REF] Denzler | Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology[END_REF], see also the monograph [START_REF] Denzler | Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach[END_REF].

In the case m = 1 and p = 2 less is known. In the range 2N /(N + 1) + 1/(N + 1) ≤ p < N , (non-optimal) rates of convergence were obtain by Del Pino and Dolbeault in [START_REF] Pino | Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian[END_REF]. Similarly, in the case of the doubly nonlinear equation (non-optimal) rates of convergence were obtain by Del Pino and Dolbeault in [START_REF] Pino | Asymptotic behavior of nonlinear diffusions[END_REF], by Agueh [START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF] and by Agueh, Blanchet and Carrillo in [START_REF] Agueh | Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime[END_REF].

Here we only sketch the proof of Theorem 4 and emphasize where Theorem 2 is applied. For details we refer to [START_REF] Agueh | Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime[END_REF].

Proof of Theorem 4. We restrict our analysis to the case p = 2 which is fully covered by [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF].

By the scaling properties of the equation ( 1), we can assume that D ⋆ = 1 and let us define B = B 1 . Let us define the self-similar change of variables [START_REF] Ambrosio | Hardy-type inequalities related to degenerate elliptic differential operators[END_REF] v(τ, y) := R(t) N u(t, x) , where τ := log (R(t)) , y := x/R(t) .

The main advantage of the change of variables is that the Barenblatt profile B 1 (t, x) is transformed into B which is stationary in time. The equation satisfied by v is now

(28) ∂ v ∂ τ = div m p-1 v (1-m)(1-p) |∇v| p-2 ∇v + v y .
The relative entropy with respect to the Barenblatt profile B is defined by 28) is called Fisher information and is formally given by is established for some µ, τ 0 > 0, then inequality (10) can be obtained by combining [START_REF] Pino | Asymptotic behavior of nonlinear diffusions[END_REF] with the Csiszár-Kullback inequality

(29) [v|B] := m σ(σ -1) N v σ ( y) -B σ ( y) -σ B σ-1 (v( y) -B( y 
[v|B] := - d [v(τ)|B] dτ = m p N v(τ) ∇v(τ) v(τ) 2-σ - ∇B B 2-σ • v(τ) (σ-2)(p-1) ∇v |∇v| 2-p -B (σ-2)(p-1) ∇B |∇B| 2-p d y , (30) 
v(τ) -B 2 L 1 ( N ) ≤ C [v(τ)|B] ,
for which we refer to [START_REF] Carrillo | Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities[END_REF][START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF]. Finally, to obtain the algebraic rate in the t variable, one should take into account the self-similar change of variables [START_REF] Ambrosio | Hardy-type inequalities related to degenerate elliptic differential operators[END_REF] which also gives the relation λ = µ/ϑ. In order to prove [START_REF] Pino | Asymptotic behavior of nonlinear diffusions[END_REF], it suffices to have

(32) µ [v(τ)|B] ≤ [v(τ)|B] .
for τ large enough. Indeed, [START_REF] Pino | Asymptotic behavior of nonlinear diffusions[END_REF] follows by combining a Gronwall-type argument with inequality ( 32) and [START_REF] Pino | Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian[END_REF]. In the range of parameters under consideration, inequality [START_REF] Denzler | Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach[END_REF] does not hold for any function f ∈ C ∞ c ( N ), due to scaling arguments. This is very different from the case, 1 > m(p -1) > 1-(p -1)/N , where [START_REF] Denzler | Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach[END_REF] is equivalent to a class of Gagliardo-Nirenberg-Sobolev inequalities, see [START_REF] Agueh | Rates of decay to equilibria for p-Laplacian type equations[END_REF][START_REF] Bonforte | Stability in Gagliardo-Nirenberg-Sobolev inequalities: flows, regularity and the entropy method[END_REF][START_REF] Dolbeault | Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results[END_REF][START_REF] Pino | Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions[END_REF]. However, when v(τ) is close enough to B, then [START_REF] Denzler | Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach[END_REF] holds. In order to prove so, let us introduce the following weights: Combining inequalities [START_REF] Dibenedetto | Harnack's Inequality for Degenerate and Singular Parabolic Equations[END_REF], [START_REF] Dibenedetto | Degenerate parabolic equations[END_REF], [START_REF] Denzler | Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology[END_REF] and provided τ 0 is large enough, we find [START_REF] Denzler | Higher-order time asymptotics of fast diffusion in Euclidean space: a dynamical systems approach[END_REF] with

w 1 (x) = 1 m 1 + (1 -σ) (p - 
µ = D 1 m(p-1)-1 1 C (i)
p,mκ 2 /mκ 1 with i = 1 when p > 2 and i = 2 when 1 < p < 2. Choosing τ 0 large enough so that C (i) p,mκ 2 ≥ C (i) p,m /2, we conclude that the rate of convergence λ can be taken as

λ = D 1 m(p-1)-1 1 C (i) p,m 2 m κ 2 (p -N [1 -m(p -1)])
.

The proof is concluded.

  )) d y for any 0 ≤ v ∈ L 1 ( N ) where σ = m + (p -2)/(p -1). Notice that, by the convexity of the function u → m u σ /σ(σ -1), the relative entropy is nonnegative functional [v|B] ≥ 0. The derivative of [v(τ), B] along the flow (

  where a• b is the standard scalar product between a, b∈ N . Since (ab)•(|a| p-2 a-|b| p-2 b) ≥ 0 for p > 1 and any a, b ∈ N , we infer that [v(τ)|B] ≥ 0.The convergence of v(τ) to B as τ → ∞ follows from the decaying in time of the entropy functional. Once the inequality[START_REF] Pino | Asymptotic behavior of nonlinear diffusions[END_REF] [v(τ)|B] ≤ e -µ τ [v(0)|B] ∀τ ≥ τ 0

  ǫ ∈ (0, 1) w 2,ǫ (x) = 1 + (1σ) (p -1)

4 , 4 ,

 44 the linearised relative entropy as E[ϕ] := N |ϕ -ϕ| 2 w 1 (x) d x and the linearised Fisher information that for p > 2 takes a formI[ϕ] := N |∇ϕ| 2 w 2 (x) d x .When 1 < p < 2, the role of the linearised Fisher information is played by the quantity I ǫ [ϕ] defined as I[ϕ] with the weight w 2,ǫ instead of w 2 . The inequalities (33)C (1) p,m E[ϕ] ≤ I[ϕ] and C (2) p,m E[ϕ] ≤ I ǫ [ϕ]hold within the range of parameters[START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF] and for any function ϕ ∈ C 1,α ( N ) and α ∈ (0, 1). The inequalities in[START_REF] Denzler | Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology[END_REF] follow from Example 3.1 with γ = 0, β = p/(p -1) and α = (2-σ)/(σ -1) and the fact thatc 1 w 1 (|x|) ≤ (1 + |x| β ) α , |x| 2 (1 + |x| β ) α ≤ c 2 w 2 (|x|) and |x| 2 (1 + |x| β ) α ≤ c 2,ǫ w 2,ǫ (|x|), for some finite c 1 , c 2 , c 2,ǫ > 0 depending on m, p. By [Proposition 4.2], if p > 2 there exist τ 0 , κ 1 ,κ 2 > 0 such that, for all τ > τ 0 (34) I[v(τ) -B] ≤ κ 1 [v(τ)|B] + κ 2 E[v(τ) -B] .For 1 < p < 2, the same inequality holds but with I ǫ [v(τ) -B] instead of I[v(τ) -B] in the left-hand-side. The constant κ 2 can be taken arbitrary small provided that τ 0 is large enough. By [Proposition 4.1], it holds for any τ > τ)|B] ≤ E[v(τ) -B] .

  As a consequence of Theorem 2, we get the following version of weighted Hardy-Poincaré inequality on N
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