N

N
N

HAL

open science

Hopf-algebraic structures on mixed graphs

Loic Foissy

» To cite this version:

‘ Loic Foissy. Hopf-algebraic structures on mixed graphs. 2023. hal-03945102v4

HAL Id: hal-03945102
https://hal.science/hal-03945102v4

Preprint submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03945102v4
https://hal.archives-ouvertes.fr

Hopf-algebraic structures on mixed graphs

Loic Foissy

Univ. Littoral Cote d’Opale, UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville F-62100 Calais, France.
Email: foissy@univ-littoral.fr

Abstract

We introduce two coproducts on mixed graphs (that is to say graphs with both oriented
and unoriented edges), the first one by separation of the vertices into two parts, and the
second one given by contraction and extractions of subgraphs. We show that, with the
disjoint union product, this gives a double bialgebra, that is to say that the first coproduct
makes it a Hopf algebra in the category of right comodules over the second coproduct.

This structure implies the existence of a unique polynomial invariant on mixed graphs
compatible with the product and both coproducts: we prove that it is the (strong) chromatic
polynomial of Beck, Bogart and Pham. Using the action of the monoid of characters, we
relate it to the weak chromatic polynomial, as well to Ehrhart polynomials and to a poly-
nomial invariants related to linear extensions. As applications, we give an algebraic proof of
the link between the values of the strong chromatic polynomial at negative values and acyclic
orientations (a result due to Beck, Blado, Crawford, Jean-Louis and Young) and obtain a
combinatorial description of the antipode of the Hopf algebra of mixed graphs.
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Introduction

Mixed graphs are graphs with both unoriented (which we will simply called edges) and oriented
edges (which we will call arcs). They are used for example to study scheduling problems with
disjunctive (represented by unoriented edges) and precedence (represented by oriented edges)
constraints |26, 26, [19]. In this context, a notion of admissible coloring, similar to the notion
used for classical graphs, gives a solution of the scheduling problem represented by the mixed
graph. These admissible colorings can be counted according to the number of colors, which gives
a chromatic polynomial 5 4]. The aim of this text is the study of this chromatic polynomial for
mixed graphs in the context of double bialgebras, as this has been done for graphs in [12] and
for posets and finite topologies in [11]. A double bialgebra is a family (A, m, A, ) such that:

e (A,m,J) is a bialgebra.

e (A,m,A) is a bialgebra in the category of right comodules over (A, m,d), with the coaction
given by ¢ itself.

In particular, § and A satisfies the following compatibility:
(ARId)od=(Id®Id®m) o (Id®c®Id) o (6 ®J) o A,

where ¢ : AQA — A®A is the usual flip. The counit ea of A satisfies the following compatibility
with d: for any a € A,

(ea®Id) o d(x) = ea(z)la.

A simple example of such an object is K[ X, with its usual algebra structures and its multiplica-
tive coproducts defined by

AX)=X®1+1®X, 5(X)=X®X.

Double bialgebras play an important role in the study of rough paths and regularity structures,
used in the study of stochastics PDEs, with examples based on families of rooted trees with
decorations [0, [7]. Other examples of double bialgebras can be found on various families of
graphs [23], posets or finite topologies [17, I8}, 10], graphs [23, 8, 12], hypergraphs [9], 15]... We
proved in [11} 12] the following results: if (A, m,A,d) is a double bialgebra, under a condition
of connectedness of (A, m,A),



e There exists a unique double bialgebra morphism Py : (A, m,A,d) — (K[X],m, A, ),
which can be explicitly described with iterations of the coproduct A of A and with the
counit € of its coproduct 4.

e Let us denote by Char(A) the set of characters of A. It inherits a convolution product x,
dual to §. We denote by Endp(A, K[X]) the set of bialgebra morphisms from (A, m,A)
to (K[X],m,A). Then [13| Proposition 2.5|, the following defines an action of the monoid
(Char(A), ) on Endp(A, K[X]):

- { Endp(A,K[X]) x Char(A) — Endp(A,K[X])
' (@A) — e A= (o®A) o0

Moreover, the two following maps are bijections, inverse to each other:

0 Char(4) — Endp(A4,K[X]) o1 Endp(A,K[X]) — Char(A)
: A Pyem ) ' ¢ > €00,

where here €5 is the counit of (K[X],m, ), which sends any P € K[X] onto P(1).

(1)

e When (A,m,A) is a graded and connected bialgebra, then under a technical condition
on 0, the set of homogeneous bialgebra morphisms from (A, m,A) to (K[X],m,A) is in
bijection with the dual of the homogeneous component A of A of degree 1.

e If (A, m,A) is a Hopf algebra, then its antipode is given by
S=('®Id) o,

where e§_1 is the inverse of the counit €5 of § for the convolution product * associated to
A. Moreover, for any a € A,

e (a) = Po(a)(<1).

We apply here these results on mixed graphs. In the second section, we define a structure of
double bialgebras on mixed graphs. We work in the species framework and use the formalism built
in [14] of contraction-extraction coproduct, which is shortly described in the first section. We first
give in Proposition to the species of mixed graphs G a bialgebra structure in the category
of species (what is commonly called a twisted bialgebra structure), and then a contraction-
extraction coproduct in Proposition Consequently, applying the bosonic Fock functor [1],
we obtain a double bialgebra of mixed graphs F[G], and more generally, for any commutative
and cocommutative bialgebra V| a double bialgebra Fy/[G] of mixed graphs whose vertices
are decorated by elements of V. Using Loday and Ronco’s rigidity theorem, we prove that
(Fv[G], A) is a cofree coalgebra (Corollary [2.9).

We study certain sub-objects and quotients of G in the third section. Obviously, simple
(i.e., unoriented) graphs and oriented graphs define twisted double subbialgebras of G, denoted
respectively by G and G, (Proposition 2.1). Applying the bosonic Fock functor to G, we obtain
again the double bialgebra of graphs of [12, [14]. We also consider the subspecies of acyclic mixed
graphs Ggco, which turns out to be stable under the product and the first coproduct A, but
not on the second one. However, quotienting by non acyclic mixed graphs, Gg. can be seen
as a twisted double bialgebra, quotient of G (Proposition 2.5). It contains a twisted double
subbialgebra of oriented acyclic mixed graphs Gge,, which has itself for quotient the twisted
double bialgebra of topologies of [11] (Proposition 2.6).

The fourth part is devoted to polynomial invariants of mixed graphs, that is to say bial-
gebra morphisms from the bialgebra of mixed graphs (F|[G],m,A) to (K[X],m,A). We first
describe the unique polynomial invariant compatible with the second coalgebraic structure of
mixed graphs: it turns out to be the strong chromatic polynomial P, of [B], see Proposition
In other words, for any mixed graph G, for any n > 1, Pe,o (G)(n) is the number of n-valid
colorings of G, that is to say maps ¢ from the set of vertices V(G) of G to {1,...,n} such that,
for any pair of vertices z,y of G,



e If z and y are related by an edge of G, then c(x) # c(y).
e If z and y are related by an arc of G, then c(z) < c¢(y).

A notion of weak valid coloring is also defined in [5]. A weak n-valid coloring is a map ¢ from
the set of vertices V(G) of G to {1,...,n} such that, for any pair of vertices z,y of G,

e If x and y are related by an edge of G, then ¢(x) # c(y).
e If x and y are related by an arc of G, then c¢(c) < ¢(y).

The polynomial counting the number of weak n-valid colorings of G is denoted by Py, (G).
Using the the action of the monoid of characters described earlier and the character of F[G]
defined by

Aw (G) =

1 if G is an oriented graph,
0 otherwise,

we obtain that P, = Fenrg ©~ Aw, which implies that P, is a bialgebra morphism from
(FIG],m,A) to (K[X],m,A), see Corollary Finally, using the correspondence between ho-
mogeneous polynomial invariants and elements of F[G];, we construct a homogeneous bialgebra
morphism Py from (F|G],m,A) to (K[X],m,A), related to the number of linear extensions
(Corollary and to a character \g. After the determination of invertible characters of F[G]
for the convolution product * dual to §, we prove that both characters Ag and Ay are invertible,
which allows to express Purg in terms of P, or Py, with the help of certain characters vy,
and iy (Proposition [£.11)). This allows to give a formula for the leading monomial of P, (G)
and Peprg (G) in Corollary .12 with coefficients (in the case of Py (G)) related to Murua’s
coefficients [24].

In the fifth section, we give an algebraic proof of the result [5], which gives a combinatorial
interpretation of Pepro(G)(—1) in terms of acyclic orientations. We firstly introduce a surjec-
tive double bialgebra morphism © from F[G] to the double bialgebra of acyclic oriented mixed
graphs F|Gaco| in Theorem [5.2] The unicity of the double bialgebra morphism to K[X] imme-
diately implies for example that the strong chromatic polynomial of a graph G is the sum of the
strong chromatic polynomial of all its acyclic orientations (Corollary . Introducing two one-
parameter families of characters of F[G] in Proposition , we introduce two new polynomial
invariants, which turn out to be Ehrhart polynomials and satisfy a duality principle on acyclic
mixed graphs (Corollary . Mixing this duality principle with the morphism O, we obtain a
new proof that for any mixed graph, Pu,,(G)(—1) is the number of acyclic orientations of G,
up to a sign (Corollary [5.9). This allows to give a formula for the antipode of (F[G],m,A)
involving the number of acyclic orientations of G, see Corollary [5.10]

The last section is devoted to combinatorial interpretations of special characters of mixed
graphs. We give an algebraic proof of a result of [5] in an algebraic way (Proposition and
Corollary about values of the weak chromatic polynomial on negative integers (for totally
mixed graphs only), and we give a combinatorial interpretation of vy (G) when G is a simple
graph or an oriented graph (Proposition , where vy is the inverse of Ay for the convolution
product *.

The paper ends with an appendix giving formulas for the number of N-decorated mixed,
oriented or simple graphs with a fixed number of vertices. These numbers are the the dimensions
of the homogeneous components of F/[G], when V is finite-dimensional.

Thanks. The author thanks the two anonymous referees for their useful comments, which
help to improve the redaction of this text.
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Notations 0.1. 1. We denote by K a commutative field of characteristic zero. Any vector
space in this field will be taken over K.
2. For any n € N, we denote by [n] the set {1,...,n}. In particular, [0] = &.

3. If (C,A) is a (coassociative but not necessarily counitary) coalgebra, we denote by A
the n-th iterated coproduct of C: AM = A and if n > 2,

A = (A ® 1d®(”*1>) o A1) 0 0B+,

4. If (B,m,A) is a bialgebra of unit 15 and of counit £p, let us denote by B, = Ker(ep) its
augmentation ideal. We define a coproduct on B4 by

Vx e By, Alz) =A(z) —z®1p — 1p®u=.

Then (B4, A) is a coassociative (not necessarily counitary) coalgebra.

1 Species, twisted bialgebras and contractions

1.1 Species and twisted bialgebras

Recall that a species [20, 1] is a functor from the category of finite sets with bijections, to the
category of vector spaces. We shall use the following notations: if P is a species,

e For any finite set X, the vector space associated to X by P is denoted by P[X]. We will
shorty write P[n] instead of P [[n]] for any n € N.

e For any bijection o : X — Y between two finite sets, the linear map associated to ¢ by
P is denoted by P|o] : P[X]| — P[Y].

With these notations, if 0 : X — Y and 7 : Y — Z are two bijections between finite sets,
then P[0 0] = P[r] o P[], and for any finite set X, P[ldx] = Idp[x]-

If P and Q are two species, a morphism f : P — Q is a natural transformation from P
to Q. In other terms, for any finite X, fx : P[X] — Q[X] is a linear map such that for any
bijection ¢ : X — Y between two finite sets, the following diagram commutes:

plx] L ppy
fxi lfy
Q[X] —— Q[X]

Q[o]

The Cauchy tensor product of species is denoted by ®: if P and Q are two species, for any
finite set X,

PRQ[X]= @D PI]eQlZ]

X=YuZz

If 0 : X — X' is a bijection between two finite sets, then

P®Q[oc]l= @ Ployl®Qlo]

X=YuZz

5



With this tensor product, the category of species is symmetric monoidal, with the flip defined
from P® Q to Q® P by

PX]®@Q[Y] — Q[Y]®P[X]

Cﬂﬂfﬂ1=0T@wPW@QW]={ r®yY — YO

A twisted algebra (resp. coalgebra, bialgebra) is an algebra (resp. coalgebra, bialgebra) in
this symmetric monoidal category. Let us now precise what this means. A twisted algebra P
comes with maps mxy : P[X]®@P[Y] — P[X 0 Y] for any finite sets X and Y, such that:

e (m is a species morphism). For any bijections ¢ : X — X’ and 7 : ¥ — Y’ where
(X, X') and (Y,Y’) are pairs of disjoint sets, the following diagram commutes:

mx.y

P[X]|®P[Y]

P[X LY]
P[a]®P[T]l lp[m_m']

where
Xuy — X' uYvY!

ouT: reX — o(x),
yeY — 7(y).

e (Associativity of m). For any disjoint finite sets X, Y, Z, the following diagram commutes:

mx y®ldp[z]
.

P X|®P|Y]|®P|Z] P X uY|®P[Z]
1dp[x]®my,zl J/mXuY,Z

P X|®P[Y u Z] P XuYuZ]

mxyuz

e There exists an element 1p € P[] such that for any finite set X, for any = € P[X],
mQ,X(lP ®x) = mx7g(1‘ X lp) =x.

e (Commutativity of m). We shall say that P is commutative if, for any finite disjoint sets
X,Y,in P[X Y],

Ve P[X], Vy € P[Y], mxy(x®y) =myx(y®zx).

A twisted coalgebra P comes with maps Axy : P[X uY]| — P[X|®P[Y] for any disjoint
finite sets X and Y, such that:

e (A is a species morphism). For any bijections 0 : X — X’ and 7 : Y — Y’ where
(X,Y) and (X',Y") are pairs of disjoint finite sets, the following diagram commutes:

P[X LY]— " . P[X]®P[Y]

P[O’I_IT]\L \LP[U]@P[T]

P[X' LY — P[X'| ®P[Y"]
X'y’

e (Coassociativity of A). For any disjoint finite sets X, Y, Z, the following diagram commutes:

Axoy,z

P[X uY uZ] P[X uY]®P[Z]
AXuY,Z\L \LAX,Y®ICIP[Z]

PIX]®P[Y 1 7] = P[X] ©P[Y] @ P[]



e (Counit). There exists a linear map ea : P[] — K such that for any finite set X, the
following diagram commutes:

Ag x Ax g

P[Z]®P[X] PX] PX]® P[]
Mm[l ]MA
P[X

e We shall say that P is cocommutative if for any disjoint finite sets X, Y,
Ay x = cpix]p[y] © Axy-

A twisted bialgebra is both a twisted coalgebra and a twisted bialgebra, such that the counit and
the coproduct are algebra morphisms. In other words, if X is a finite set and X = TuJ = I'uJ’,
the following diagram commutes:

P[I'| @ P[J'] Ly P[I' L J = P[I L J]
AI’mI,I/mJ®AJ’mI,J’mJ\L
P[I' " I]®P[I' n J]@P[J A I]@P[J A J] Ar

Wdp[1r~n®cpi’nal, P n11®dps7 A 1]

P[I' " I|®@P[J A I|QP[I' n J|QP[J A J]

P[I1®P[J]

Ml AL g A TN A g gl AT
or equivalently

Argompy = (mparynr @muagrns) o (Idprran ® cprrag,prr~n @ldpprag)
O (ALl AT @ADL gAT)-

The compatibility between the coproduct and the unit is written as Ap(lp) = 1p ® 1p and the
compatibility between the counit and the product is equivalent to

Vz,y e P[J], eal(zy) = ea(z)ea(y).

Let V' be a vector space. The V-colored Fock functor Fy, defined in [14] Definition 3.2],
sends any species P to

Fy[P] = é colnv(V®" @ P[n])
n=0
o V& @ Pln]

- 7g)\/ect(m...UN®P[U](p) — Ug(1) -+ Vo(n) ®P | 0 € &y, pe Pn], v1,...,0,€ V)

0
= P V¥ ®s, P[n].
n=0

If f:P — Q is a species morphism, then

' Fv[P] — AI[Q]
‘FV(f){Ulvn(@p — Ul...Un®f(p)'

Note that Fy is a functor of symmetric monoidal categories, that is to say it sends the Cauchy
tensor product of two species to the tensor products of the associated vector spaces, and that it
is compatible with the flip. Consequently, it sends a twisted algebra, coalgebra or bialgebra to
an algebra, coalgebra or bialgebra.

Remark 1.1. When V' = K, we obtain the bosonic Fock functor of [1]:

= = Pn]
F[P] = gCOInV(P[”]) N n@o Vect(P[o](p) —p |0 € &n, pe P[n])




1.2 Contraction-extraction coproducts

Let us now recall the contraction-extraction coproduct of [I4]. We shall need the following
notations:

Notations 1.1. The species Com is defined by Com|[X | = K for any finite set X and Com|c]| =
Idk for any bijection ¢ between two finite sets.

Notations 1.2. 1. Let X be a finite set. We denote by £[X] the set of equivalences on X.

2. For any bijection o : X —> Y between two finite sets, for any ~e £[X], we define an
equivalence ~, on Y by

Vy,y €Y, Y~y = oy ~o ().

This defines a bijection from £[X] to £[Y]. Moreover, ¢ induces a bijection between X/ ~
and Y/ ~,, sending C € X/ ~ to o(C) €Y/ ~,.

3. The set £[X] is partially ordered by the refinement order:
V ~, ~e &[X], ~<~NM = (Vrye X, o~ y= 1 ~y),
that is to say, ~<~' if the classes of ~ are unions of classes of ~'.

4. If ~'e £[X], there is a natural bijection from E[X/ ~'] to {~€ E[X], ~<~'}. From now,
we identify E[X/ ~'] and {~€ E[X], ~<~'}, as well as (X/ ~')/~ and X/ ~ through these
bijections.

Let (P,m,A) be a twisted bialgebra. A contraction-extraction coproduct on P is a family &
of maps such that for any finite set X, for any ~e £[X], i~ : P[X]| — P[X/ ~]| ® P| X], with
the following conditions:

e (Compatibility with the species structure [14, Definition 2.2, second item]). For any bi-
jection 0 : X —> Y between two finite sets, for any ~e £[X], the following diagram

commutes:

P[X] -2~ P[X/ ~] ® P[X]

P[o] iP[a/ ~|®P[0]

P[Y]—— P[Y/ ~,] ®P[Y]

~o

e (Coassociativity of § [14, Definition 2.2, third item]). If X is a finite set and ~<~'e E[X],
the following diagram commutes:

P[X] - P[X/~@P[X]

6~i \L6~®Id
|

PIX/ ~]®@P[X] {157 PIX/ ~|®P[X/ ~]®P[X]

Moreover, if ~, ~'e £[X], such that we do not have ~<~', then (Id® /) 0 6. = 0.

e (Counit [I14] Definition 2.2, fourth item]). There exists a twisted algebra morphism es :
P — Com such that for any finite set X, for any ~€ £[X],

Id®esx) 0 b {IdP[X] if ~ is the equality of X,
65X OO0~ =

0 otherwise,

and

D1 (esxjn ®Id) 06 = Idpy)-
~e€[X]



e (Compatibility with the algebraic structure [I14, Proposition 2.4|). For any finite set X, for
any ~€ £[X], putting ~x=~ nX? and ~y=~ NY?2,

(MX /Y /oy @Mxy) 0 (Id®c®Id) 0 (dny ®Iny) if ~=~x L ~y,
doomxy = ’
’ 0 otherwise,
Moreover, 6~g(1p) = 1p ® 1p, where ~ is the unique equivalence on (.

e (Compatibility with the coalgebraic structure [14, Proposition 2.4]). For any finite set
X uY, for any ~€ E[X LY], putting ~y=~ nX? and ~y=~ NY?2,

(Ax/myy/my @Id) 00 =mi3240 (0ny @Oy ) 0 Axy if ~=~x L~y .
Moreover, for any z € P[],

(ea®Id) 0.y (7) = ea(z)lp.

The following result is proved in [I4] Proposition 3.7]:

Proposition 1.1. Let (V,-,dy) be a counitary, not necessarily unitary bialgebra, and let (P, m, A)
be a twisted bialgebra with a contraction-extraction coproduct 6. Then Fy|P] is a double bialge-
bra, with the product and the two coproducts defined as follows:

m(vr ... v @pAw; ... w, ®q) =Plomn](mp®q)) ®v1 ... 00wy ... wy,

Afor- o ®p) = ), (H v ®Ploy] (pg”)) ® (H 0 @ Plopa/] (pg2>)> ,

Ic[n] \iel ¢l

S men = ¥ ( I va>®pa®vaf..wx®pz,

~€e&[n] \C class of ~ieC

where oy 0 [m| U [n] — [m + n] is the bijection sending the elements of [m]| to themselves
and any element k € [n] to k+m, or : I —> [|I|] is the unique increasing bijection (where I is
any subset of [n]), and, with Sweedler’s notations

Arppi(p) = pV @0, 6~(p) = P ® DL, and dy(v) =o' ®@".

2 The species of mixed graphs

2.1 Mixed graphs
Definition 2.1. 1. A mixed graph is a triple G = (V(G), E(G), A(G)) where:

(a) V(G) is a finite set, called the set of vertices of G,
(b) E(G) is a subset of {{x,y} € V(G), x # y}, called the set of edges of G,
(c) A(G) is a subset of {(z,y) € V(G)?, x # y}, called the set of arcs of G,

such that, for any x,y € V(Q), with x # y,

{z,y} € B(G) = (2,y) ¢ A(G) and (y,z) ¢ A(G),
(z,y) € A(G) = {z,y} ¢ E(G).

2. For any finite set X, we denote by G[X] the set of mized graphs G such that V(G) = X.
The vector space generated by G| X | is denoted by G[X]|. This defines a species G of mized
graphs.



3. A mized graph is an oriented graph if E(G) = &: this defines a subset of 9[X]| denoted
by G, X] for any finite set X, and a subspecies of G denoted by G,.

4. A mized graph G is a simple graph if A(G) = J: this defines a subset of 9[X]| denoted by
Y[ X] for any finite set X, and a subspecies of G denoted by G.

Ezxample 2.1. There are five elements in ¢[2], which we graphically represent on the right:

(2. 2. 9). O @
([2], {{1.2}}. @), O—2
(12]. @, {(1,2)}), O—2)
(121, 2, {2, D)), O—®
(121, 2, {(1,2), (2. 1)}, O®

Moreover,
g40[2] = {G17G37G47G5}7 gg[2] = {Gl,GQ}.

Remark 2.1. In a mixed graph G, for any pair of vertices {z,y} of G, there are five possibilities
to define edges or arcs between x and y. Hence, if X is of cardinality n, then

9[X]| = 5"

Similarly,

n(n—1) n(n—1)
G [X]| = 4", G [X]) =27

These gives respectively sequences A109345, A053763| and |A006125 of the OEIS [25].

Notations 2.1. Let G be a mixed graph and z,y € V(G). We shall write z % y if (z,y) € A(G)
and z € y if {z,y} € E(Q).

Definition 2.2. Let G be a mized graph.

1. An oriented path in G is a finite sequence P = (xy,...,xy,) of vertices of G such that for
any i € {0,...,n — 1}, 2; 5 x;11. The vertices xo and x,, are respectively the beginning
and the end of P.

2. A mized path in G is a finite sequence P = (xg, ..., x,) of vertices of G such that for any
i€ {0,...,n—1}, z; G w1 or x; £ xi1. The vertices xo and x, are the extremities of

P.

3. A path in G is a finite sequence P = (xo,...,x,) of vertices of G such that for any
i€{0,...,n—1}, a; G xip1 or g1 S x or 2 £ x441. The vertices xo and x,, are the
extremities of P. The mized graph G is connected if for any vertices x,y € V(G), there
exists a path with extremities x and y.

Ezample 2.2. Let us consider the mixed graphs of Example 2.1l The connected ones are Ga, Gs,
G4 and Gs.
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https://oeis.org/A006125

2.2 The twisted bialgebra of mixed graphs

We now define a product and a coproduct on the species G. Let X, Y be two finite sets, G € 4| X|
and H € 4[Y]. The mixed graph GH € 4[X w1 Y], disjoint union of G and H, is defined by

V(GH) =V(G)uV(H), E(GH)=EQG) uEH), AGH)=A(G) L AH).

This product is bilinearly extended to G. it is clearly associative, commutative and has a unit,
which is the empty graph 1 € ¥[F]. With this product, G is a commutative twisted algebra.
Note that Gs and G, are subalgebras of G.

Definition 2.3. Let G be a mized graph and let I < V(G).
1. The mized graph G|; is defined by
V(G‘I) = Ia

E(G) = {{z,y} € E(G) | z,y € I},
A(G)p) = {(z,y) € A(G) | 2,y € I}.

2. We shall say that I is an ideal of G if

Vr,ye V(Q), (rel andzSy) = (yel).

Proposition 2.4. We define a coproduct A on the species G[X] in the following way: for any
finite sets X and Y, for any mized graph G € 9[X LY,

Gx @Gy 4 Y 1s an ideal of G,

A G) =
xy (@) {O otherwise.

Together with the product defined earlier, this coproduct makes G a twisted bialgebra.

Proof. Let us first prove the coassociativity of A. Let X, Y and Z be disjoint finite sets and
Ge¥9|X uY uZ|. Then

Gix ®Gly ®G|z
(Axy ®Id) o Ax vy z(G) = if Z is an ideal of G and Y is an ideal of G|x,y,
0 otherwise.
Gix @Gy ®G|z
(Id®Ayz) o Axyuz(G) = if Y u Z is an ideal of G and Z is an ideal of G|y .z,

0 otherwise.
Moreover,

Z is an ideal of G and Y is an ideal of G|x_y
= (Vo) e V(G o Sy = (2.) ¢ (Y x X) U (Z x X)u(Z xY))

<= Y u Zisanideal of G and Z is an ideal of Gy z,

so (Axy ®Id)oAx vz = Id®Ay,z) o Axy_z. As for any graph G, J and V(G) are ideals
of G,

Aye),z(G) =G®1, Agve)(G) =1®G.
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So A is counitary, and the counit is given by

R (empty graph) — 1.

Let G e ¥9[X], H e 9[Y] and X', Y’ be sets such that X uY = X' 0 Y’. In GH, there is
no arc between any element of X and any element of Y, nor between any element of Y and any
element of X. Hence, the ideals of GH are of the form I 1 J, where [ is an ideal of G and J is
an ideal of H. Therefore,

GxnxHy~x' @ G x~y Hyny
Axry/(GH) = if Y n X is an ideal of G and Y’ n'Y is an ideal of H,

0 otherwise

= Axnx' xny (G)Ay~xry~y (H).
Moreover, Ag (1) =1 ®1. So A is a morphism of twisted algebras. O

Ezample 2.3. With the notations of Example [2.1]

Apoyg | Bpapey | Apnay | Agn
G| Gel (De@®@ | @e1)| 186

G| o1 |(De(2)|(2)e(1)] 186,

Gz | G3®1 @@@ 0 1®G3

Gy G4®1 0 @@@ 1®Gy
0

G5 G5®1 0 1®G5

2.3 Contraction-extraction on mixed graphs
Definition 2.5. Let G € 4| X] and ~€ E[X].
1. We define a mized graph G |~€ 9[X] by
V(G |~) = V(G),

E(G[~) = {{z,y} e E(G) | x ~y},
AG |~) = {(z,y) € A(G) | = ~y}.

In other words, G |~ is obtained from G by deleting all the edges or arcs whose extremities
are not equivalent; or equivalently, G |~ is the disjoint union of the restrictions of G to the
equivalence classes of ~.

2. We define a mized graph G/ ~e 9| X/ ~] by
V(G/~) = X/ ~,

E(G/ ~) = {{cl(z), ()} | {z,y} € E(G), (z,y) ¢ A(G), (y,7) ¢ A(G), cl(z) # cl(y)},
A(G/ ~) = {(c(@), el (v)) | (z,y) € A(G), cli(z) # cl(y)}-

In other words, G/ ~ is obtained from G by identifying the vertices according to ~, then
deleting the loops created in the process and the redundant edges, giving priority to the
oriented ones.

3. We shall say that ~€ E°[G] if for any equivalence class C' of ~, G\|¢ is connected.
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Proposition 2.6. We define a contraction-extraction coproduct § on G as follows: for any finite
set X, for any ~€ E[X], for any G € 9[X],

5.(C) = {G/~®G I~ if ~e £°G],

0 otherwise.

Proof. The compatibility of § with the species structure is clear. Let us prove the coassociativity
of 0. Let X be a finite set, ~, ~'e £[X] and G € ¥[X].

If ~<~/, let us prove that ~e E°[G/ ~'| and ~'e £°G] if, and only if, ~'€ £°[G |~] and
~e E°G].

—>. Let C’ be a class of ~'. As ~'e £°G], it is a connected subgraph of G. Moreover,
as ~<~', all its elements are in the same class of ~, so G = (G| ~)‘C/: as a consequence,
(G| ~)|cr is connected, so ~'€ £°[G |~]. Let C be a class of ~, and x,y € C. As ~e E[G/ ~],
it is connected in G/ ~': there exists a path in G/ ~' from clu/(x) to clo(y). Moreover, as
~'e €G], each clu/(z) is a connected subgraph of G, so there is a path from z to y in G:
~e E°G].

<. Let C be a class of ~. As ~e £°[G], any of its class is a connected subgraph of G, so
by contraction is a connected subgraph of G/ ~': ~e £°[G/ ~']. Let C’' be a class of ~'. As
~'e E°[G |~], it is a connected subgraph of G |~, so also of G: ~€ E°[G/ ~'].

As a conclusion,

(G ~)] ~®(G] ~') |~ @G |~ if ~e EG/ ~'] and ~'e €G],

0 otherwise

(0. ®Id) o b (G) = {

G/ ~®(G |~)) ~ (G |~) [~ if ~'e &G |~] and ~€e EG],
] 0 otherwise

= (A ®5.) 0 5-(G).

If we do not have ~<~', then at least one class C of ~ intersects two classes of ~, so in-
tersects two connected components of |~": we obtain that ~¢ E°[G |~']. So (G |~') = 0 and
finally (Id®d~) 0 d/(G) = 0.

Let us now study the counit. We define a species morphism ¢5 : G — Com as follows: if
G e 9[X],
1if B(G) = A(G) = &,

0 otherwise.

e[ X](G) = {

Let G € 9[X] and ~€ £[X]. If ~ is the equality of X, then ~e £°|G], G/ ~= G and G |~ as no
edge, so (Id ® ¢5[ X])(G) = G. Otherwise, either G ¢ E°[G] or at least one class of ~ contains
an edge or an arc, so €5| X|(G |~) = 0. In both cases, (Id ® 5| X])(G) = 0.

Let ~e E°[G], such that E(G/ ~) = E(G |~) = . If two vertices of G are related by an
edge of an arc, there are necessarily equivalent, so any connected component of GG is included in
a single class of ~. As the classes of ~ are connected, ~ is the relation ~. whose classes are the
connected components of G. Moreover, G/ ~. has no edge nor arc, and G |~.= G. Therefore,

D (el X/~]@1d) 0 6.(G) = Y, (e[X/ ~]®1d)05-(G)

~EE[X] ~e€<[G]
= (e[ X/ ~]®@1d) 0 0..(G)
=G|~
=G.

13



Let us prove the compatibility of ¢ with the algebraic structure. Obviously, 6., (1) = 1®1.
Let X and Y be two finite sets, ~e E[X 0 Y], G € ¥[X] and H € 9[Y]. If ~#~x L ~y, at
least one class C' of ~ intersects both X and Y, so is not connected in GH = mxy(G ® H).
Therefore, ~¢ E°{GH] and

doomxy(G®H) =0.

Let us assume that ~=~x u ~y. Then ~e EC[GH] if, and only if, ~x€ £°[G] and ~ye E°[H],
as the connected components of GH are the connected components of G and of H. If so,
(GH)/ ~=(G/ ~x)(H/ ~y) and (GH) |~= (G |~x)(H |~y). Therefore,

(GH)/ ~®(GH) |~ if ~e E[GH],

0 otherwise

doomxy(G®H) = {

_ )G/ ~x)(H) ~y) @ (G |~x)(H [~y) if ~xe EG] and ~ye ETH],
0 otherwise
= (mx/~X7y/~Y ®mX7y) o (Id ®C®Id) o (6~X ®5~Y)(G® H)
Let us finally prove the compatibility of 6 with the coalgebraic structure. Obviously,
(ea®Id)od (1) =1=ea(1)l.

Let X and Y be two finite sets, ~x€ £[X], ~ye £[Y] and G € Y[ X]|. We put ~=~x 1 ~y.

J(G/ )X/~ x D (G) ~) |y /oy
(Ax /ey v /oy ®ld) 06.(G) = if ~e £°[G] and Y/ ~y is an ideal of G/ ~,

0 otherwise,
J(G|X)/ ~x ®(Gy)/ ~v

m1,3.24 0 (0ny @y ) 0 Axy(G) = if Y is an ideal of G, ~x€ (G| x| and ~y€ EGy],

0 otherwise,

Let us prove that ~e £°[G]| and Y/ ~y is an ideal of G/ ~ if, and only if, Y is an ideal of G,
~x€E SC[G|X] and ~ye€ 5C[G‘y].

=. Let ye Y and z € X UY such that z % y. Then either cl_(y) = cl<(2) or cl-(y) R
clo(z). As Y/ ~y is an ideal of G/ ~, in both cases z € Y. As ~=~x L1 ~y, its classes are the
classes of ~x and ~y, and are connected by hypothesis. So ~xe £°(G|x] and ~ye E°[Gy].

—. As ~=~x U ~vy, its classes are the classes of ~x and ~y, which are connected
by hypothesis. Hence, ~e £°[G]. Let cl.(y) € Y/ ~y and cl.(2) € [X u Y]/ ~, such that
clo(y) RS clo(z). There exist 3,2/ € X uY such that y ~ ¢/, 2 ~ 2/ and o/ S 2. As
~=~x U ~y,y €Y. As Y is an ideal of G, necessarily 2/ € Y. As ~=~x 1 ~y, 2 € Y and
finally cl.(2') € Y/ ~y.

Moreover,

(G/ ~)x/~x = (Gix)/ ~X, (G/ ~)y)my = (Gly)/] ~v,
which finally proves the compatibility between § and A. O

As a consequence, by Proposition [I.] for any vector space V, we obtain a graded bialgebra
Fv[G]. This is the vector space of mixed graphs whose vertices are decorated by elements of V,
any graph being linear in any of its decorations: these objects will be called V-linearly decorated
graphs. For example, if vy, v, w1, wa € V and A1, Ao, p1, 2 € K, in Fy[G], if v = Ajup + Aaveo
and w = pwi + pows,

@:@ = A1/ @:@ + Aofig @:@
+ Ao @:@ + Aopi2 @:@
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If B is a basis of V, a basis of Fy/[G] is the set of mixed graphs whose vertices are decorated by
elements of B. The product is the disjoint union. For any V-linearly decorated graph G,

A(G) = Z Gvon @G|r-
I ideal of G

Example 24. If v,w eV,

AW =@®el+ieW®+e® + @ e
AO—w)=—we1+1e()—w +@e W+ W e()
AO—w) =—wer+1e(@)—u +©ew.
AW =@ et+1e(@ (.

The counit ea sends any mixed graph G # 1 to 0. If (V,-, A) is a not necessarily unitary,
commutative and cocommutative bialgebra, then Fy/[G] inherits a second coproduct ¢: if G is
a V-linearly decorated graph,

5(G)= Y, G/~&G|~,
~€e€°[G]

where the vertices of G/ ~ ®G |~ are decorated in the following way: denoting by dg(z) the
decoration of the vertex x € V(G), any vertex cl.(z) of G/ ~ is decorated by the products of
elements dg(y)', where y € cl.(z), whereas the vertex x € V(G |~) = V(G) is decorated by
dg ()", and everything being extended by multilinearity of each decoration. The counit e; is
given on any mixed graph G by

[] evodala)if AG) = EG) = &,
es(G) = < zeV(G)
0 otherwise.

This construction is functorial in V.

Ezample 2.5. If v,w € V| with Sweedler’s notation dy (u) = v’ @ u”,

{OOMOOLIOID]
((D—@) = (" )—(@") & () (") + ® (v )— ("),

50— )) = (o —=(w") ® (") (") + ® (v)—=(w"),
O -DD s DD+ 69 0 D@

Example 2.6. We shall often work with V' = K, with its usual bialgebraic structure defined by
0k (1) = 1®1. We shall then identify any V-decorated mixed graph whose any vertex is decorated
by 1 with the underlying mixed graph. The double bialgebra Fy/[G] is identified with F|G] and
has for basis the set of (isomorphism classes of) mixed graphs. The coproduct simplifies. In
order to improve the readability, we shall write ®<—® if there are two arcs of opposite directions
between two vertices. Examples of coproducts A and ¢ are given in Tables and 2.3]

Remark 2.2. If V is finite-dimensional, then, considering the number of vertices, Fy/[G] is a
graded bialgebra, whose homogeneous components are finite-dimensional. The dimension of the
homogeneous component of degree n of Fy/[G] is given by the number of isomorphism classes
of mixed graphs whose vertices are decorated by elements of [N]|, where N = dim(V), see the
Appendix for more details on these numbers.
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Table 1: Examples of coproducts A
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..+.®g +H®H.+H®H.7
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. '+'®L\+2H®H’
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. -+°®ﬂ+3H®H
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Table 2: Examples of coproducts
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Proposition 2.7. Let V be a (non necessarily unitary) commutative and cocommutative bialge-
bra. For any linearly V-decorated mized graph G, we denote by dg : V(G) —> V the decoration
map of G and by G the underlying mized graph. Then the following map is a double bialgebra
morphism:
FvlG] — F[G]

Oy : _

G — H ey odg(z) |G.
zeV(Q)

Proof. The counit ey : V — K is a bialgebra map. By functoriality (in V'), ©y is a double
bialgebra morphism. O

2.4 Cofreeness of the coalgebra F|G]|
Let us define a second product on F[G].

Proposition 2.8. Let G and H be two mized graphs. The mized graph G — H is defined by

V(G ~ H) = V(G) L V(H),
E(G —~ H) = E(G) u E(H),
A(G ~ H) = AG) L A(H) L (V(G) x V(H)).

This product is bilinearly extended to F[G]. Then (F[G], ~, A) is a unital infinitesimal bialgebra
in the sense of [22, Definition 2.1].

Proof. As we already know that A is coassociative and unitary, it remains to prove that:
1. — is agsociative and unitary.
2. For any z,y € FIG], Az ~y) = (2®1) = Ay) + Alz) ~ (1Qy) —z Q.

1. Let G, H, K be three mixed graphs. Then

V(G ~ H) =~ K) = V(G ~ (H~K)) = V(G) uV(H) uV(K),

E(G ~ H) ~K) = BE(G ~ (H ~ K)) = E(G) u E(H) u E(K),

A((G ~ H) ~ K) = AG ~ (H ~ K)) = A(G) u A(H) L A(K) U (V(G) x V(H))
L (V(G) x V(K)) U (V(H) b V(EK)),

s0 (G~ H) = K)=G —~ (H ~ K). Therefore, ~ is associative. The unit is the empty mixed
graph 1.

2. Let G, H be two mixed graph. As there is an arc from any vertex of G to any vertex of H
in G —~ H, the ideals of G —~ H are:

e [ L V(H) where I is an ideal of G. For such an ideal,
(G = H) oy =G —~ H, (G = H)\ya~mn\auv) = G
e Ideals J of H. For such an ideal,
(G~ H) ;= Hy, (G = H)yg~m\ =G~ Hyms-
Note that the ideal V(H) appears twice in this list, for I = ¢ and J = V(H). Therefore,

A(GNH)Z Z G|V(G)\I®G\INH+ Z GdH|V(H)\J®H|J_G®H
I ideal of G J ideal of G
—AG) ~ (1@ H) +(G®1) ~ A(H) — G® H. 0
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From [22, Theorem 2.6]:

Corollary 2.9. The coalgebra (F[G],A) is isomorphic to the coalgebra T'(Prim(F|G])) with
the deconcatenation coproduct.

Remark 2.3. The same proof can be adapted to any Fy[G].

3 Sub-objects and quotients of mixed graphs

3.1 Simple and oriented graphs

Proposition 3.1. G and G, are twisted subbialgebras of (G, m,A) and are stable under the
contraction-extraction coproduct §.

Proof. If G and H are simple graphs, then GH is a simple graph. If G is a simple graph, then
all its subgraphs are also simple graphs. Moreover, if ~e £[|G], then G/ ~ and G |~ are also
simple graphs. The proof is similar for oriented graphs. O

Corollary 3.2. For any vector space V, Fy|Gs]| is a subbialgebra of Fy |G| and Fy[Go] is
a subbialgebra of Fy[G]. For any (non necessarily unitary) commutative and cocommutative
bialgebra V, Fy|Gs| is a double subbialgebra of Fy |G| and Fv|Go] is a double subbialgebra of
Fv[G].

In particular, Fx[Gs] = F[Gs] is the double bialgebra of graphs of [16l, 12] and Fx[G,] =
F[Gy] is the double bialgebra of [§].

3.2 Acyclic mixed graphs and finite topologies

Let us recall the following definition:
Definition 3.3. Let X be a finite set.
1. A topology on X is a subset O of the set of subsets of X such that:

e § and X belong to O.
[ IfOl, OQEO, then 01 ﬁOQEO and 01 UOQEO.

2. The set of topologies on X is denoted by Jopo[X] and the space generated by Jopo[X] is
denoted by Topo|X]. This defines a species Topo.

3. A topology O is Ty is for any x,y € X, with x # y, there exists O € O such that (v € O
andy¢ O) or (x¢ O andye O).

Ezample 3.1. Let G € 9[X] be a mixed graph. We denote by O the set of ideals of G.

Let us prove this reformulation of Alexandroff’s theorem [2]:

Lemma 3.4. Let X be a finite set and O be a topology on X. There exists an oriented graph G
such that Og = O.

Proof. Let O € Jopo[X]. We define a relation < on X as follows: for any z,y € X, x <y if any
O € O containing x also contains y. We then define an oriented graph G by V(G) = X and

E(G) = {(z,y)e X? |z #yand z < y}.
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Let us prove that Og = O. Let O € O, x € O and y € X such that % y. Then = < y: by
definition of <, y € O. So O € Og.Therefore, O € Og. Let O € Og. As O is an ideal of G,

O={yeX|dze0, z <y}

=Jlyexlz=<y
zeO

Ji N o

zeX \O’eO, ze0’

As O is a topology, O € O, so O = Og. O
Proposition 3.5. The species Topo is equipped with a twisted bialgebra structure as follows:
e For any finite sets X,Y, for any (Ox,Oy) € Jopo[X] x Jopo[Y],

mX’y(OX X Oy) = {I L J, Ie Ox, J e Oy}

e For any finite sets X,Y, for any O € Jopo[X LY/,

O‘X®O|y ZfYEO,

0 otherwise,

Axy(O) = {

where
O|X:{Xﬁ0|060}, O|y:{YﬁO|OEO}
Moreover, the following map s a surjective morphism of twisted bialgebras:

T G — Topo
| Ge¥9[X] — Oge Jopo[X].

Proof. The map T is clearly a species morphism. By Lemma[3.4] it is surjective. Let G, G’, H, H'
be graphs such that Og = Og and O = Ogr. Then

OGH = OGOH = OG/OH/ = OG’H’-

Therefore, the product of G is compatible with the products of G and Topo.

For any graph G € ¢[X] and for any Y < X, (Og)y = Ocy- This implies that v is
compatible with the coproducts of G and Topo. As T is surjective and G is a twisted bialgebra,
Topo is also a twisted bialgebra. O

This map Y is not compatible with the contraction-extraction coproduct: for example, if
p— , p—
G = @\/@ ¢ = @\ /@-

then Og, = Og, = {{1,2,3},{2,3},{2}, F}. Let us denote by ~ the equivalence with classes
{1,2} and {3}. Then

5-(6) = (12 =B e (D—@)®) 5.(G) = 0.

In order to obtain a second coproduct, we have to restrict ourselves to acyclic mixed graphs:
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Proposition 3.6. Let G be a mized graph. We shall say that G is acyclic if it does not contain
any oriented path xo S ... 5 x, with vo = x, and n > 2. Acyclic mized graphs and acyclic
oriented graphs form two twisted subbialgebras of (G, m,A).

Proof. Obviously, if G and H are acyclic mixed graphs, then GH is acyclic; if G is acyclic and
I € V(G), then G| 7 is also acyclic. Therefore, G, is a twisted subbialgebra of G and G, is a
twisted subbialgebra of G,. O

Remark 3.1. Gg. is not stable under §. For example, let us consider the following acyclic oriented

3)
N

Let us denote by ~ the equivalence with classes {1, 2} and {3}. Then

1@ = (L2 2@ e O—@0)

Proposition 3.7. A contraction-extraction coproduct on Gge is defined as follows: for any
acyclic graph G € 9,.[X], for any ~€ E[X],

G’:

G/ ~ QG |~ if ~e &9 G],

sy [0/~ 1~ if 6]
0 otherwise.

where E9°|G] the set of equivalences on V(G) such that the classes of G are connected and

G/ ~ is acyclic. Moreover, the following map is a surjective morphisms of twisted bialgebras,

compatible with the contraction-extraction coproducts:

G — G
: GifGi lic,
@0 G eg[X] if zs‘ acyclic (2)
0 otherwise.

Proof. Let I be the subspecies of G of non acyclic mixed graphs. If G is a non acyclic mixed
graph, then for any mixed graph H, GH is not acyclic: I is an ideal. If I is an ideal of G, if it
contains a vertex on a cycle of G, then it contains all the vertices of the cycle: therefore, G| or
Gy is not acyclic, which proves that I is a coideal for A. Let ~e E°[G]. Let us consider a
cycle C of G. If all the vertices of C' are equivalent for ~, then G |~ contains a cycle, so is not
acyclic. Otherwise, G/ ~ contains a cycle: I is a coideal for J. Identifying the species G/I and
G via wg, Gy inherits a contraction-extraction coproduct d, which is precisely the one defined
in this proposition. O

Similarly, restricting wg to Gy, its image Gy, inherits a contraction-extraction coproduct §,
as a sub-quotient of G. The image of acyclic graphs by T is given by Tp-topologies:

Definition 3.8. Let X be a finite set and O a topology on X. We shall say that O is Ty if for
any x # y € X, there exists O € O such that (x € O and y ¢ O) or (x ¢ O and y € O). This
defines a subset Jopor, | X| of Fopo|X] subspecies Topor, of Topo.

Lemma 3.9. Let X be a finite set and G € 9| X|. The topology Og is Ty if, and only if, G is
acyclic. xg S ... 5 x,, with xg = x, and n > 2.
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Proof. Let us assume that G has a cycle g % ... % 2, with 29 = x, and n > 2. Then any
ideal of G containing one of the z;’s contains all the z;’s, so Og is not Ty. Let us assume that
(G is acyclic. Let z # y € X. We consider

O, ={zeX|FkeN, Jz1,...,0.€ X, 20515 5 ... S, 5 2},

Oy ={2e X |3dkeN, Elyl,...,ykeX,ygylg...gykgz}.

Both O, and O, are ideals of G, so belong to O. Moreover, for k = 0, x € O, and y € O,. If
z € Oy and y € O, then there exists k,l € N and x1,...,2%,y1,...,y € X such that

which contradicts the acyclicity of G. So y ¢ O or x ¢ Oy: Og is Tp. O

Lemma 3.10. Let G be an oriented graph. Then Og is connected if and only if G is connected.

Proof. Let us assume that Og is not connected. Let O1,02 € Og, both nonempty, such that
V(G) = 01 uOy. If 2 S y, with z € O1, then as O7 is an ideal, y € O;. Consequently, there is
no arc from a vertex of O; to a vertex of Oy. Symmetrically, there is no arc from a vertex of Oy
to a vertex of O;1. So G is not connected. Let us assume that G is not connected. We can write
V(G) = O1 u Og, such that there is no arc from a vertex of O; to a vertex of Oz, nor from a
vertex of Os to a vertex of O1. Consequently, O1, 02 € Og, so O¢ is not connected. O

Proposition 3.11. There exists a unique product, a unique coproduct and a unique contraction-
extraction coproduct on Topog, making the map Y\q,., : Gaco — Topog, a morphism of
twisted bialgebras, compatible with the contraction-extraction coproduct.

Proof. By Lemma 3.9, T(Gqco) = Topog,, which gives the unicity of the contraction-extraction
coproduct on Topoy, compatible with T. The product and the coproduct on Topor, are obvi-
ously the restriction of the product and of the coproduct on finite topologies.

Let X be a finite set, G, G' € Gueo[X] such that T(G) = T(G'), and let ~e E[X]. Obviously,
T(G |~) = Y(G' |~). Moreover,

Og/ = {7(0) | 0 € Og} = {7-(0) | O € O} = O,

where 7. : X — X/ ~ is the canonical surjection. So Y(G/ ~) = Y(G'/ ~). Let us now prove
that £9%[G] = £%[G]. If ~e £9%°[@], then G/ ~ is acyclic, so Y(G/ ~) is Tp, by Lemma [3.9]
so Y(G'/ ~) = Y(G/ ~) is Ty and G’/ ~ is acyclic. Moreover, by Lemma [3.10} the connected
components of T(G |~) = T(G’ |~) are the connected components of the oriented graph G |~,
that is to say the classes of ~ as ~e £4“[G]. Consequently, if C is a class of ~, (Og)|c is
connected: ~€ £9%[G"]. By symmetry, we obtain £9%[G] = £4*[G'].

As a consequence, for any ~€ £[X],

TGN TGN'f,\,gc,acG
(T@T)06.(G) = | LG/ )@T(G |~ if ~e 5G],
0 otherwise
TG~ ®T(G ) i ~e £,
0 otherwise
= (T®TY)od(G".
Consequently, Topoy, inherits a contraction-extraction coproduct as a quotient of Gaeo- ]
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Remark 3.2. Let X be a finite set and O be a topology on X. For any z,y € X, we shall say
that z ~p y if any O € O containing x or y contains both x and y. This defines an equivalence
~o on X. Moreover, X/ ~@ inherits from O a topology, which turns out to be Ty. In other
words, we obtain that Topo[X] and (—B Topoy, [X/ ~] are isomorphic, which gives a species
~e€[X

isomorphism between Topo and TopoTO[o ]Com, where here o is the composition of species. The
double twisted bialgebra structure which we obtain in this way is described in [16]. Applying
Aguiar and Mahajan’s bosonic Fock functor [I], we obtain the double algebra of finite topologies
of [11].

3.3 Totally acyclic graphs

Definition 3.12. Let G be a mized graph. We shall say that it is totally acyclic if does not
contain any mized path (xg,...,x,), with rog = x, and n = 2. Totally acyclic graphs form a
subspecies Giae of G.

Note that totally acyclic mixed graphs are simply called acyclic in [5].
Proposition 3.13. Gy, is a twisted subbialgebra of G.

Proof. If G and H are totally acyclic graphs, then GH is totally acyclic. So Gyqc is a twisted
subalgebra of G. Let G be a totally acyclic mixed graph and I € V(G). As G does not
contain any mixed cycle, so does G|;: G| is totally acyclic. As a conclusion, Gigc is a twisted
subcoalgebra of G. O

Consequently, for any vector space V, Fy[Giac| is a subbialgebra of (Fy[G],m,A). The
subspecies Gyq. 18 not stable under §. For example, considering the mixed graph

G = (z)—=(v),

4

which is totally acyclic, the equivalence relation ~ whose classes are {x,y}, {z} and {t} belongs
to £¢|G] (in fact, even to £9%|G]), and

G ~e @)
A

4.1 Three polynomial invariants

is clearly not totally acyclic.

4 Applications

Let (V, -, dy) be a non necessarily unitary, commutative bialgebra. From [I3] Theorem 3.9], there
exists a unique morphism ¢; of double bialgebras from (Fy[G],m,A,d) onto (K[X],m,A,d)
where the two coproducts of K[X] are defined by

AX)=X®1+1®X, 5(X)=X®X.

Let us determine ¢1, firstly when V' = K. Let G € 4| X], nonempty. Then, still by [I3], Theorem
3.9],

¢ (G) = Z E?(kq) 5 A(k—l)(G)Hk(X)’
k=0
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where Hj, is the k-th Hilbert polynomial:

Hy(X) = X(X—l)..k;!(X—k:H)_

Definition 4.1. Let G be a mized graph.
1. A walid coloring of G is a map ¢ : V(G) — N=¢ such that

x5y = c(x) <cy),

Vaz,yEV(G), {xﬁy :}C(Qj‘) ;éc(y).

2. A walid coloring ¢ of G is packed if ¢(V(G)) = [max(c)]. The set of valid packed colorings
of G is denoted by VPC(G).

Proposition 4.2. The unique morphism of double bialgebras from F[G] to K[X] is given on
any mized graph G by
Pchrs (G) = Z Hmax(c)‘
e VPC(G)

Consequently, if N € N, Pepyo(G)(N) is the number of valid colorings ¢ such that max(c) < N:
we recover the (strong) chromatic polynomial Py, (G) of [5)].

Proof. For any k > 1, for any mixed graph G, we denote by Li(G) the set of surjections
c: V(G) — [k] such that

Ve,y e V(G), 5y = c(x) < c(y).
By definition of the coproduct A, for any mixed graph G with n > 1 vertices,

AED@ = 3, Gy ®- ® Gy,
ceLy(G)

and consequently, for any V-linearly decorated mixed graph G,
S o AE-1(@) = |{ce VPC(G), | max(c) = K},
which finally implies that

Pch'rs (G) = Z Hmax(c)-
ceVPC(G)

Observe that any valid coloring of G with max(c¢) < N can be uniquely decomposed as ¢ = ¢/ oc”,
where ¢ : V(G) — [n] is a valid packed coloring for a certain n < N, and ¢” : [n] — [N] is a
strictly increasing map. Therefore,

N
|{valid coloring of G of maximum < N}| = Z ( )
max(c)
ceVPC(G)

= Z Hmax(c) (N)

ceVPC(G)
= Penrs (G)(N). O

Remark 4.1. If V is a non necessarily unitary, commutative bialgebra, the unique double bialgebra
morphism from (Fy[G],m,A,d) to (K[X],m,A,d) is Peprg 0 Oy (which is indeed a double
bialgebra morphism by composition). It sends any V-linearly decorated mixed graph G to

Pehrg 0Oy (G) = H ev 0 dg(x) | Penrg (G),
zeV(G)

where dg is the decoration map of G and G the underlying mixed graph.
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Let us now recover the weak chromatic polynomial of [5].
Definition 4.3. Let G be o mized graph.

1. A weak walid coloring of G is a map ¢ : V(G) —> N.g such that

Ve, y e V(G), z 5y = c(z) <cly),
£

r &y = c(x) # c(y).

2. A weak valid coloring ¢ of G is packed if ¢«(V(G)) = [max(c)]. The set of weak valid packed
colorings of G is denoted by WVPC(G).

We are going to use the action <~ of the monoid of characters on the set of morphisms and
the map 6 given in ().

Notations 4.1. Let Ay : F|G] — K defined on any mixed graph G by

0 otherwise.

A (G) = {1 if B(G) = &,

This is obviously a character.

Corollary 4.4. We consider Pepr,, = 0(Aw) = Poprg ©~~ Aw. Then Py, = Peppg e
Aw : (FIG], m,A) — (K[X],m,A) is a Hopf algebra morphism. If N € N, Pepyy, (G)(N)
is the number of weak valid colorings ¢ such that max(c) < N: we recover the weak chromatic
polynomial of [J].

Proof. As in the proof of Proposition [£.2] we obtain that for any mixed graph G,

Pchrw (G) = Z Hmax(c)-
c€WVPC(G)

Observe that any weak valid coloring of G with max(c) < N can be uniquely decomposed as
¢ = od, where ¢ : V(G) — [n] is a weak valid packed coloring for a certain n < N, and

" : [n] — [N] is a strictly increasing map. Therefore,
c€WVPC(Q) max(c)

= Z Hmax(c) (N)

c€EWVPC(G)
= Pery, (G)(N). O

|{weak valid coloring of G of maximum < N}|

Remark 4.2. Let G € 9[X]. We denote by &, [G] the set of equivalences ~e £°[G] such that
Vz,y € V(G), rSy=—zx+2y.
Then, for any mixed graph G,

Py (G) = D7 Mw(G |~)Penrs (G ~) = Penrs (G/ ~).
~€e€°[G] ~e& Gl

Example 4.1. For n = 3, let G\, be the following mixed graph:

V(Gy) = [n], E(Gy) = {{1,n}}, A(Gr) = {(ii+1) |ie[n—1]}
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In other terms,

%H g
@

Weak valid colorings of G,, are non-decreasing maps ¢ : —> N., such that ¢(1) # c(n).
Therefore,

XX+1)...(X+n—-1)
n!

- X.

Pchrw (Gn) =
Valid colorings of G,, are strictly increasing maps ¢ : [n] — N-¢. Therefore,

X(X—1)...(X —n+1)

Pchrs(Gn) = nl

With the help of [13, Propositions 3.10 and 5.2|, we now define a homogeneous morphism
Py : FIG] — K[X] with the help of the element 1 € F[G]] defined by

where ® is the unique (up to an isomorphism) mixed graph with only one vertex. Then, if G
is a mixed graph,

ILi(G)] it k = [V(G)],

0 otherwise.

p 0 A(G) = {

We denote by ¢(G) the cardinality of L, (G), that is to say the number of bijections ¢ : V(G) —
[n] such that

Va,y e V(G), x5y = c(z) < c(y),
and finally:

Corollary 4.5. For any mized graph G, we put

Py(G) = Xo(G)X V(@I

Then Xg is a character of F|G] and Py : (F|G],m,A) — (K[X],m, A) is a bialgebra morphism.

For any graph G, Py(G)(1) = Ao(G). From [I3] Corollary 3.11|, Py = Peppg ¢~ Ag. There-
fore:

Corollary 4.6. For any mized graph G with n vertices,

UG)X™ = > UG |~)Pupys (G/ ~).

~€e€°|G]

4.2 Invertible characters

Let us fix a non unitary, commutative and cocommutative bialgebra (V,-,dy). The product of
the dual algebra is denoted by =y; its unit is the counit ey. Let us now study the monoid of
characters of (Fy[G], m,d), whose product is denoted by *, and in particular let us look for the
group of its invertible elements. We shall use the following lemma:
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Lemma 4.7. Let (B,m,d) be a graded bialgebra. In particular, its homogeneous component of
degree 0 is a subbialgebra. Let A be a character of B. Then X is an invertible character of B if,
and only if, its restriction Ao to By is invertible in the algebra Bj. In the particular case where
By is generated by a family (x;)ier of group-like elements, X is an invertible character if, and
only if, AN(z;) # 0 for any i€ I.

Proof. We shall denote by 7 the canonical projection on By for any k € N. We put
pL=(7T0®Id)O5, pRZ(’JT®7T0)O(5.

As g : B —> By is a bialgebra map, (B, pr,pr) is a Bg-bicomodule. For any x € B, with
n = 1, we put
&'(z) = d(z) — p(@) — pr(2).

By homogeneity of 9,

5() = 3 s @ i) 0 6(2) = pi 2 (7 ® 700) 0 () +pr(a).

>

-
Il
o

(@

5’(96)

=>. Let us denote by x the inverse of A in the monoid of characters of B. We put po = pp,-
For any x € By,

Ao () = (A®p) odp(z) = (A®pu) o d(x) = X * u(x) = e(x).

Similarly, po * Ao(x) = €(z), so Ag is invertible in B.

<. Let us define u, : B, — K for any n, such that if x € By,

(A ® )] M) 0d(z) = e(x).
i=0

We proceed by induction on n. If n = 0, we us take po the inverse of A\g in Bj. Let us assume
n =1 and po,..., un—1 defined. We first define v : B,, — K by

Vx € B, v(z) = ()\® Z Mz) ) + pr(7)).

n—1

This is well-defined, as 0'(z) + p(z) € BQ P B;.. We then put p, = (1o ®v) o pr : B, — K.

1=0
As pr = (mp ®1d) o §, by homogeneity of 0, pr(By) € By ® B, and p, is well-defined. For any
x € By,

</\®Zun> = (A®pn) o pr(z) + €(z) — V()

= (A®uov)o(Id®pL) o pr(a) + e(x) — v(z)
= (A®pov)o (o ®Id)opr(z) + e(z) —v(z)
(Ao * po) ov) o pr(z) + €(z) — v(x)

= (o ov) o pr(x) + e(x) — p(w)

v(z) + e(x) — p(x)

e(x).
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o0
Counsidering p = 2 Wi € B*, by construction A * u = e. Similarly, we can define y/ € B* such
i=0
that p/ * A = €. Then, as the convolution product = is associative, p’ = p and X is invertible in
B*. Let us now prove that u is a character. We work in the algebra (B® B)*, whose convolution

product is also denoted by *. For any z,y € B, with Sweedler’s notation §(z) = Z D@2 for

any z € B,

(mom)x (Nom)(z@y) =Y. > u (xmy(l)) A (xu)ym)
= > ul(@y) A (2y)®)

= e(zy)
= e(z)e(y)
= eppB(T ®Y).

Similarly, (A om) % (uom) = epgpn, so, as A is a character,
pom=MNom)* = A@N*" = p@pu

So p is indeed a character of B.

Let us now consider the particular case where By is generated by a family (z;);er of group-like
elements.
=. If A is an invertible character, denoting its inverse by v, for any i € I,

A y(zz) = 6(1'1) =1= A(l‘z)y(‘rl)a

s0 A(z;) # 0.

<. Let us assume that \ is a character of B such that \(x;) # 0 for any i € I. In order
to prove that A is an invertible character, it is enough to prove that Ao is invertible in Bj. By
hypothesis, By has a basis (y;);jes of noncommutative monomials in (z;);e;. By multiplicativity,
for any j € J, y; is group-like and A(y;) # 0. We then define py € Bj by

1

VjedJ, n(y;) = o)

Then for any j € J,
Ao po(Y;) = po * Ao(y;) = Ao(y;)uo(y;) =1 = e(y;),
s0 Ap is invertible in Bj. O

In order to use this lemma, let us introduce a grading of (Fy[G], m, ).

Proposition 4.8. For any V-linearly decorated mized graph G, we denote by cc(G) the number
of connected components of G and we put

deg(G) = [V(G)| — ce(G).
This defines a grading of the bialgebra (Fy |G|, m,0).

Proof. Note that for any graph G, deg(G) = 0. Let G and H be two V-linearly decorated mixed
graphs. Then

[V(GH)| = |V(G)| + |[V(H)|, cc(GH) = cc(G) + cc(H),
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so deg(GH) = deg(G) + deg(H). Let G be a V-linearly decorated mixed graph and ~e £°[G].
We denote by cl(~) the number of equivalence classes of ~. As ~e £°[(],

V(G [~)] = V(G ce(G |~) = cl(~).

Moreover, the connected components of G/ ~ are the contractions of the connected components
of G, so

IV(G/ ~)] = cl(~), ce(G/ ~) = ce(G).

We obtain that deg(G/ ~) + deg(G |~) = |V(G)| — cl(~) + cl(~) — cc(G) = deg(G). So
(Fv[G],m,d) is graded. -

For any graph G, deg(G) = 0 if, and only if, E(G) = A(G) = . The subbialgebra
Fv[Glaeg=0 of elements of degree 0 is the symmetric algebra generated by elements @, with
v € V. The coproduct of such an element is given by the coproduct of V,

5((0) :@@@.

Proposition 4.9. Let A € Char(Fy[G]). We define a map Ay € V* by

Yo eV, M (v) = M(v).
Then X is invertible in (Char(Fy[G]), *) if, and only if, Ay is invertible in (V*, xy ).

Proof. =>. Let us assume that A is an invertible character. Denoting by u its inverse, py
provides an inverse of Ay in V*.

<. Let us assume that Ay is invertible in V*. By Lemma[.7] it is enough to prove that Ao
is invertible in the algebra Fy/|Go. By construction of the graduation, Fi/[G]o is the symmetric
algebra generated by V. Extending multiplicatively the inverse of Ay to Fy[G]o, we obtain an
inverse of \g. ]

In the particular case where V = K:

Corollary 4.10. Let X be a character of F[G]. It is invertible in the monoid (Char(F[G]), *)
if, and only if,
A(®)#0.

Proof. This is implied by Lemma with the family of group-like elements reduced to ® . O

In particular, Ay and Ay are invertible. Their inverses are denoted respectively by vy and
ps. We also put uw = ps*x Aw. Then, as Popry = Ponrg o Aw and By = Peprg o Ag, we
obtain

PchTSZPchTWW"‘VW7 Pch'rSZPO("MMSa Pchw'W:POMMW-
Proposition 4.11. For any mized graph G,

Py (G) = >0 X(G/ ~us(G [~)XY) = 3 vy (G |~) Paryy (G ~),
~€e€°[G] ~€e&°[G]

Ponry (G) = > Xo(G/ ~)uw (G |~) X,
~€e&°[G]

where cl(~) is the number of classes of ~.
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Corollary 4.12. If G is a connected mized graph, then j1s(G) is the coefficient of X in Pepyro(G)
whereas pyy (G) is the coefficient of X in Pepyy, (G). Moreover, \o(G) is the coefficient of XV(G)]
in both Pepyy(G) and Pepyy, (G).

Proof. As G is connected, the unique element ~ of £°[G] with cl(~) = 1 is ~, which has for
only class V(G). So the coefficient of X in P, ((G) is, as A\g and e coincide on Fy[G]geg—o0,
equal to

M(G/ ~p)ps(G |~L) = (Ao ® ps) 0 pr(G) = (e ® us) 0 pL(G) = ps(G).

Similarly, the unique equivalence ~e £°|G| such that cl(~) = |V(G)| is ~g, which has for classes
the connected components the singletons (or in other words, ~g is the equality of V/(G)). So
the coefficient of X!Vl in Pohrs (G) is, as pg and e coincide on Fy[Glgeg—0 equal to

M(G/ ~r)ps(G [~r) = (Mo ® ps) © pr(G) = (Ao ®¢€) 0 pr(G) = Ao(G).
The proof is similar for the weak chromatic polynomial. O

Remark 4.3. One can define an infinitesimal character ps as follows: for any mixed graph G,

, us(G) if G is connected,
ps(G) = .
0 otherwise.

This infinitesimal character is equal to In(es) and is studied in [I3] Proposition 4.1]. It is closely
(_1)k+1

related to the eulerian idempotent. Consequently, as the coefficient of X in Hy(X) is i

if kK > 1, we obtain that for any connected mixed graph G,

(1)max(c)+l (_1)k+l

ps(G) = )

ee]
= Y [{ce VPC(G) | max(c) = k}|
ceVPC(G) k=1

max(c)

When G is a rooted tree, we recover Murua’s coefficients [3, [24], which appear in the analysis of
the continuous Baker—Campbell-Hausdorff problem.

Ezrample 4.2. In order to improve the readability, we shall write ®<—>¢ if there are two arcs of
opposite directions between two vertices. Examples of chromatic polynomials are given in Table
4.2l

Ezample 4.3. Let us consider again the graph G, of Example We obtain

(n—1)! n—1 1
=t 2 = —1=-2 W=
s (Gn) pw (Gr) py - Mo(Ghn) o

Here is an example of application. Recall that wy : G —> Gyg, defined in (2, is the
projection vanishing on non acyclic graphs.

Proposition 4.13. 1. Peprg 0wy = Peprg-

2. Let G be an acyclic mized graph. Then P, (G) is of degree |V (G)| and its leading term
is U(G).

Proof. 1. Note that P.p, 0w and Py, are bialgebra morphisms from F|G] to K[X]. Moreover,
eéopchrs OWp = €5 CWo = €5 :féoPchrs-

By unicity, Peprg © @o = Peprg-
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G ] Penrg (G) Pepry (G) [ Xo(G) | ps(G) | pw (G) | v (G) |
— X(X —1) X(X —1) 1 ~1 ~1 0
. X(X —1) X(X +1) 1 1 1 .

2 2 2 2 2 _
<o 0 X 1 0 1 —1
L X(X —1)? X(X —1)? 1 1 1 0
L X(X —1)2 XX+1D)(Xx-1) | 1 1 1 .
2 2 2 2 2
’L‘ X(X —1)2 X(X+1D(X-1) | 1 1 1 .
2 2 2 2 2
L 0 X(X —1) 1 0 ~1 0
f_» XX -1)(X-2) | X(X+1)(X+2) | 1 1 1 .
6 6 6 3 3
L XX -1D)(X-1) | XX +1)(X+1)| 1 1 1 .
6 6 3 6 6
X(X +1) 1 1
' 0 : Ll by
X(X +1) 1 1
[ 0 : Ll by
_/;» 0 X 1 0 1 1
A X(X-1)(X-2) | X(X-1)(X-2) | 1 2 2 0
A X(X -1)(X -2) X2(X —1) 1 . . .
2 2 2
A X(X-D(X-2) | X(X-1)(X+1) | 1 2 1 )
3 3 3 3 3
A X(X-D(X-2) | X(X-1)(X+4) | 1 1 2 )
6 6 6 3 3
& 0 X 1 0 1 3
& X(X-D(X-2) | X(X+1)(X+2) | 1 1 1 ;
6 6 6 3 3

Table 3: Examples of chromatic polynomials
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2. Let G be an acyclic graph. As Py, = Py e g,

Paws(@) = D7 ps(G [~)UG/ ~) X9,
~€e&.[G]

which implies that deg(Peprs (G)) < |V(G)|. If ~ is the equality of V(G), then G |~ is a graph
with no edge, so ugs(G |~) = 1. We obtain that

P (G) = UG XV 4 terms of degree < |V(G)).

As G has no cycle, /(G) # 0, so deg(P.p, s (G)) = |V(G)]. O

5 From mixed graphs to acyclic oriented graphs

5.1 A double bialgebra epimorphism

Definition 5.1. Let G a mized graph. An orientation of G is an oriented graph H with V(G) =
V(H) and A(H) = A(G)uFE’, where E' is a set of arcs in bijection with E(G), through a bijection
respecting the extremities. Such an orientation of G is acyclic if H is an acyclic oriented graph.
We denote by Ou.(G) the set of acyclic orientations of G.

Theorem 5.2. Let G be a mized graph. We put

oG = > ¢,

G'€04c(G)

with the usual convention that this sum is 0 if Ou(G) is empty. Then © is a double twisted
bialgebra morphism from G to Ggeo.

Proof. Firstly, © is indeed a species morphism from G to Gge. Let G and H be two mixed
graphs, G’ and H' be orientations of G and H. Then G'H’ is an acyclic orientation of GH
if, and only if, G’ and H’ are acyclic orientations of G and H. This implies directly that
©(GH) = O(G)O(H). Therefore, O is a twisted algebra morphism.

Let G € G[I L J] be a mixed graph. If J is not an ideal of G, then Ay ;(G) = 0. Moreover,
for any orientation G’ of G, J is not an ideal of G’, so A j(G') = 0. Hence, in this case,

(@@@) @) A[,J(G) = ALJ o @(G) =0.

We now assume that J is an ideal of G. Then

O®0) oA (G) = > GG,
(G',G")EOac(G1) X Oac(G) 1)
Ar;00(G) = 2 Hr®H,.
HeOuc(G),
J ideal of H
We put
A = 04c(G1) x Oac(G)y), B = {H € Ou.(G) | J ideal of H},

and we consider the map

B — A
w{ H — (HH’H‘J)

This is obviously well-defined. We now consider the map ¢’ : A — B, sending any pair (G', G")
to an orientation ¢¥(G’,G") = H of G defined in this way: for any edge {z,y} of G,
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e If z,y € I, then orient this edge as in G.
e If 2,y € J, then orient this edge as in G”.
e If x €] and y € J, then orient this edge from z to y.

e If x € J and y € I, then orient this edge from y to x.

As there is no arc in H from J to I, J is an ideal of H. Moreover, as G’ and G” are acyclic, H
is acyclic: 1) is well-defined. We immediately obtain that 1)’ o1 = Idg and v o ¢’ = Id 4, so ¥
and 1/ are bijections. Therefore,

O®O)oA(G)= Y G'®G =) Hy®H;=A1;00(G).
(G',G")eA HeB

So O : (G,m,A) — (Gueo,m, A) is a twisted bialgebra morphism.
Let G € G[I u J] be a mixed graph and ~e £(G). If H is an orientation of G, as the paths
in G and H are the same, ~¢ £.(G) if, and only if, ~¢ E.(H). Hence, if ~¢ E.(G),
. 0O(G)=(O®O)oi.(G) =0.

Let us now assume that ~€ £.(G). Then

5.00(G) = >  H/~®H|~,
HeOuc(G),
H/ ~ acyclic
(O®0O)0d.(G) = > GG

(G",G")EOGc(G/~)xOac(G|~)
We put
C = 0ue(G/ ~) x Oge(G |~), D ={H € O,.(G) | H/ ~ acyclic}.

If H e D, then H/ ~ is an acyclic orientation of G/ ~ by definition of D and H |~ is an acyclic
orientation of G |~ by restriction. This defines a map

¢ — D
¢'{H s ()~ H ).

Let us now consider (G', G") € C. We define an orientation of G in the following way: if {z,y}
is an edge of G,

o If © ~ y, then {z,y} is an edge of G |~: orient it as in G”.

e Otherwise, {Z, 7y} is an edge or an arc of G/ ~: orient {x,y} as {Z,y} in G': as G’ is acyclic,
this is unambiguous.

Note that H/ ~= G’ and H |~= G" by construction. Moreover, this is an acyclic orientation of
G:ifwy — ... > xp > 21 isacyclein H, as G’ is acyclic, necessarily #1 ~ ... ~ x}, so this is a
cycle in G": as G” is acyclic, this is not possible. Moreover, H/ ~= G’ is acyclic, so this defines
amap ¢ : D — C such that ¢ o ¢’ = Idp.

Let H e C. We put H = ¢' o ¢(H). Let (z,y) be an arc of H. If x ~ y, then (x,y) is an
arc of H |~, so is an arc of H'. Otherwise, (Z,7) is an arc of H/ ~= H'/ ~. If (y,x) is an arc
of H', then T —» § — T is a cycle in H'/ ~, so H/ ~ is not acyclic: this is a contradiction. So
(x,y) is an arc of H'. Therefore, H and H' have the same arcs, so are equal. We proved that
¢’ o ¢ =1de, so ¢ is a bijection. We obtain

5.00(G) = Y H/~®H|~= > GG =(0®6)0i.(G).
HeD (G",G"MeC

So © is compatible with §. It is obviously compatible with the unit and both counits ea and
€5. ]
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Corollary 5.3. For any mized graph G,

Pchrs (G) = Z Pchrs (H)
HeOu:(G)

Proof. By functoriality, F[©] : F[G] — F[Gaceo] is a double bialgebra morphism. By com-
position, P, o F[O] : F[G] — K[X] is a double bialgebra morphism. By unicity of such a
morphism,

chrs o ]:[6] Ch?“g O

5.2 Erhahrt polynomials for mixed graphs
Proposition 5.4. Let g € K. The two following maps are characters of F[G]:

FIG] — K

ehr(‘]) {qV(G) if A(G) _ @7 ehr(q) : { -F[G] —s K

str - G G — q|V(G)|’

0 otherwise,

(@)

str

with the convention ¢° = 1 even if ¢ = 0. Let Ehr,”. and by Ehr(® pe Hopf algebra morphisms

from (F[G],m,A) to (K[X],m,A) given by
(a)

str

Ehr'? = ¢ (ehrggz) = Peprg o ehr

str

Ehr®@ = ¢ (ehr(q)> = Peprg o ehr(@.

where 6 is defined in (1))

€50 Ehr? = ehrl® €5 0 Ehr(® = ehr(®),

str str?

Then, for any n e N, for any mized graph G,

Ebr'®(G)(n) = ¢V O{f: V(G) — [n] | Yo,y e V(G), & Sy
EhrlD(G)(n) = ¢V O f : V(G) — [n] | Yo,y e V(G), Sy

Moreover, Ehr? o wo = Ehr'?) (recall that wq is defined in (@)

str str

From now, we shall write simply ehrg,, ehr, Ehry, and Ehr for ehrgtz, ehr() Ehrgtz and
Ehr(!.

Proof. The maps ehr(® and ehrg‘g are obviously characters of F[G]. Let G be a mixed graph.

For k > 1, we denote by Si(G) the set of surjective maps f : V(G) — [k] such that for any
z,y € V(G),

v Sy = f(z) < fy).
Then

ehrggZ(G\f—l(l)) ehfth(Gu—l(k))Hk(X)
)

I
M8
[

Ehr( 9)

str

(@)

~
Il
_
&H
m
n
o
=~
Q

I
TP
@
‘”M

=4 G)‘E 2 ehr{})( Gir-11)) -- ehrth(G\f—l(k))Hk(X)
k=1 feSk(G)

— q‘ (G)\Ehrstr(g)’
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Similarly, Ehr(® (G) = ¢V(@IEhr(G). We now study Ehry, and Ehr. Let G be a mixed graph.

Ehr(G i Z X),

1 feSk(G)

which gives the announced result. For k& > 1, we denote by S;.(G) the set of surjective maps
f:V(G) — [k] such that for any z,y € V(G),

v Sy = f(z) < f(y)

By definition of ehrg,.,

© o
Ehrstr 2 2 ehrgq, (G\ i ) .ehrg, (G\f 2 Hk ) ’
i1 fesi(@) k=1 feS) (G)

which implies the announced result.

Let us prove that Ehr'? o wo = Ehr'?. For this, it is enough to prove that €50 Ehrgzz.

str str- @ cwo =

€5 © Ehrl? . that is to say ehrl® o wo = ehr,”. Let G be a graph. If G is not acyclic, then

str str str-
ehrggz o wp(G) = 0. Moreover, necessarily A(G) # &, so ehrgtg = 0. Otherwise, wo(G) = G and
ehrgtz owp(G) = ehrggz(G) O

Remark 5.1. By [13], Corollary 3.12],
Ehrgy = Peprg < ehrg,, Ehr = P,j,s «~ ehr.

Remark 5.2. Classically, Ehrhart polynomials are attached to integral polytopes: given an inte-
gral polytope P, its Ehrhart polynomial Ehrp, evaluated in t € N, gives the number on integral
points of the dilated polytope tP. The duality principle states that the number of integral
points in the interior of tP is (—1)3™)Ehrp(—t). Given a mixed graph G, after an arbitrary
indexation of its vertices by [n], we associate to it an integral polytope

Po ={(z1,...,2n) € [0,1]" | Vi, j € [n], i & j = 2; < a5}

Then Ehrp, = Ehrg.

Notations 5.1. Let G be a mixed graph. We denote by S(G) the set of vertices y € V(G) such
that there exists no e € A(G) such that y is the final vertex of e (set of sources of G) and by
W (G) the set of vertices x € V(G) such that there exists no e € A(G) such that x is the initial
vertex of e (set of wells of G).

Proposition 5.5. Let q,q' € K. For any mized graph G, denoting by = the convolution product
associated to A,

ehr® & ehr@)(G) = ¢ VOO (g 4 ¢)SE),

str

ohr(® ehrg(ir) (G) = ¢VEWE (g 4 WG,
In particular, if S(G) # & and W(G) # &,
ehrgt_rq) + ehrl®D(G) = ehr(® « ehrE,t_TQ)(G) =0=-¢ea(G).
Proof. Indeed,

ehrg‘g x ehr(@)(GQ) = Z gyl
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where the sum is over all partitions V(G) = I u I3 such that if z % y in V(G), then (z,y) €
(I; x I3) U I3, that is to say such that I} < S(G). Hence,

ehrg%)n * ehr(q/)(G) = Z q|11\q/\V(G)\11|
5LcSS(G)
= q’\V(G)\S(G)\ Z q\11|q/\S(G)\Il\
LcS(G)
— q'\V(G)\S(G)\(q + q’)\S(G)\_

The proof is similar for ehrggl x ehr(?) (@), replacing sources by wells. O

Corollary 5.6. The inverse (for the convolution product =) of the restriction of ehr(® to FlGacl
(—a)

is the restriction of ehry, " .

Proof. Let G be an acyclic mixed graph. Obviously, if G = 1, then

ehr!, ¥ « chrl®(G)1 = ea(Q).

str

Otherwise, as G is acyclic, then S(G) # & and W(G) # . We can conclude with Proposition
2.9l ]
Let us now prove the duality principle for Ehrhart polynomials:

Corollary 5.7. Let G be an acyclic mized graph. Then
Ehry, (G)(—X) = (=1)V(“Ehr(G)(X).

Proof. We denote by Sg,, the antipode of (F[Ggc], m, A) and by S the antipode of (K[X], m, A).
In particular, for any P € K[X], S(P(X)) = P(—X). As Ehr : (F[Ggc),m, A) — (K[X],m, A)
is a Hopf algebra morphism,

Ehrg, (G)(—X) = S o Ehrg, (G) = Ehrg, 0 Sg,. (G).
Therefore, by Corollary

Ehrg,(G)(—1) = S o Ehrgr(G)(1)
= Ehrg, 0 Sg,.(G)(1)
= ehrg, o Sg,.(G)
= chr’; 1(G)

— ehr(7Y(@).
This implies that Ehrg,. o S is the Hopf algebra morphism Ppp,o < ehr(1:

Ehrgy. 0 S(G) = (Pchrs ® Ehr(_l)) 0 (G)
= (=) (Py,s ® ehr) 0 6(G)
= (-1)V@IEL(G)(X). O

Corollary 5.8. Let G be an acyclic oriented graph. Then

Bhror (G) = Pehrs (G), Ponrs (G)(=1) = (=1)V(DL,
Ehr(G) = Popry (G), Penry (G)(=1) = (=1)VDle5 (@),
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Proof. We work in F[G]. For all acyclic oriented graphs H,

1if A(H) = &,

ehry (H) = es(H) =
sur(H) o(H) {0 otherwise.

Hence, Ehrg, (G) = Popro(G): the restriction of Ehr to F[Gaco| 18 Peprg. Moreover,
Ehryr(G)(=1) = (1) VO Eh(G) (1) = (=) lehn(G) = (-DI"E.
For any oriented acyclic graph H, ehr(H) = 1 = Ay (H), 50 Ehr(G) = Py (G). Moreover,
Bhr(G)(—1) = (—1)V @ Bhryn(G)(1) = (<)Y Debrg(G) = (-)VDes(G). O

From Corollary we obtain another proof of the following result, obtained in a different
way in [0, Theorem 3]:

Corollary 5.9. Let G be a mized graph. Then
Pars (G)(=1) = (=1)V D 0,(G))-
Proof. Indeed,

Pors(@)(=1) = 31 Paws(H)(=) = > )V = ()0 @). O
HeOuc(G) HeOuc(G)

Remark 5.3. We recover the classical result on the chromatic polynomial when this corollary is
applied to graphs [27].

From [13| Corollary 2.3|:
Corollary 5.10. Denoting by S the antipode of (F[G],m,A), for any mized graph G,

S(G) = Y, (“D)N0u(G/ (G ]~).

~€e€°[G]

6 Applications to characters on mixed graphs

6.1 Weak chromatic polynomial

Proposition 6.1. Let G be a totally acyclic mized graph. Then

0if A(G) # &,

Pchrw(G)(_l) = {(_1)|V(G)||OaC(G)| otherwise.

Proof. If A(G) = &, then Peyy, (G) = Peprg(G), and the result comes from Corollary . Let us
assume that A(G) # . We proceed by induction on |E(G)|. If E(G) = ¢, then by definition,
P.pr, (G) = Ehr(G). By the duality principle for Ehrhart polynomials (Corollary ,

Penry (G)(=1) = (=)W D Ehry,, (G)(1) = 0,

as A(G) # &. Let us assume the result for all acyclic graph H such that |E(G)| > |E(H)]
and A(H) # (. Let e be an edge of G. We denote respectively by G/e and by G\e the mixed
graph obtained from G by contraction of the edge e respectively by deleting the edge e. From
[5, Proposition 6],

Penry (G)(=1) = Penryy (G\e)(=1) = Penry, (G/€)(=1).

Moreover, G\e and G/e are mixed graph with at least one arc and strictly less edges than G.
Moreover, as G is totally acyclic, G/e and G\e are acyclic: we deduce that Py, (G\e)(—1) =
Pehry, (G/e)(—1) = 0. Hence, Py, (G)(—1) = 0. O

37



Remark 6.1. If G is not totally acyclic, no interpretation of Py, (G)(—1), and even of its sign,
is known. For example, if G, is the graph of Example then Py, (Gn)(—1) = 1 for any
n = 2.

We recover the interpretation of [4] of the values of the weak chromatic polynomial at negative
values:

Corollary 6.2. Let G be a totally acyclic mized graph and k € N. Then (—1)IV( @I P, (G)(—k)
is the number of pairs (H, f) such that:

e H is an acyclic orientation of G.

o fis a k-coloring of G compatible with H, that is,

{x Sy = fx) < ),

Va,y € V(G), xSy = f(z) < f(y).

Proof. By compatibility of P, with the coproduct A,

Pepry (G) (k) = > Pty (Glp-101)) (=1) .. Petry, (Gp-11y) (=1).
[V(G)—[k],

e Sy=f(x)<f(y)

By the Proposition , if G|y-1(;) has an arc, then Pepyy, (G|f71(1)) (—1) = 0. Therefore,
Pory (G)(—k) = > Perryy (Gly-1(1)) (=1) -+ Peyy (Glp-20sy) (=1)
fV(G)—IK],
2 Gy=f(2)<f(y)

k

-1 -1
= Z (—)F T W+ F R H [ (G\f—l(i)) |
fV(G)—lkl, i=1
zSy=f(2)</ ()

k
= (- 2 [ [10ac (Gls-19) I
FV(G)—IK], i=1

2 Sy—s f(2) < ()

We consider
Ak = {(f, Hl, . ,Hk) | f : V(G) — [k], H,; e Oac (G‘ffl(i))},
B ={(H, f) | H € Ou(G), f:V(G) — [k] compatible with H}.

The map ¢ : By —> Ay which send (H, f) to (f, Hjg-1(1y,---, Hjp-13)) is well-defined. TIf
o(H, f) = ¢(H', f'), then f = f'. Moreover, if {z,y} € E(G):

o If f(z) = f(y) =i, then {z,y} is oriented in the same way in H|s-1(;) and in H|/f*1(i)’ as
these oriented graphs are equal. So {z,y} is oriented in the same way in H and in H’.

o If f(z) < f(y), as f is compatible with H and in H', then (x,y) € E(H) and (x,y) € E(H').
e If f(x) > f(y), as f is compatible with H and in H’, then (y,z) € E(H) and (y,x) € E(H').

Therefore, H = H': ¢ is injective. Let (f, Hy,..., Hy) € Agp. We define an orientation of G as
follows: if {z,y} € E(G),

e if f(x) = f(y) =i, we keep the orientation of this edge in H;.

o If f(z) < f(y), we orient this edge in (z,y) in H.
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e If f(z) > f(y), we orient this edge in (y,z) in H.

By construction, for any i € [k], H\ ;15 = H;. Moreover, f is compatible with H, by construc-
tion. Consequently, f is constant on any cycle of H. As the oriented graphs H; are acyclic, H
is acyclic. We obtain that (H, f) € By and ¢(H, f) = (f, Hy,. .., Hy). Finally,

Penry (G)(=k) = (=1)V N 4] = (=) V(D By, -

6.2 The character vy,

Recall that vy is the inverse of Ay (defined in (3)) for the convolution * associated to 4, and
that the notations cc(G) and deg(G) are introduced in Proposition

Proposition 6.3. 1. For any simple graph G with at least one edge, vy (G) = 0.
2. For any oriented graph G, vy (G) = (—1)IV(G)=ee(G) = (_1)des(),

Proof. 1. We denote by A}, the restriction of Ay to F[G;]. For any simple graph G, Aw (G) =
€5(G), 80 Ay = €57, [G.]- As F[Gs] is a double subbialgebra of F|G],

i) = (1716 = (657 V)17 (Gl = €17(G.)-

2. Let A be a character of F[G,], such that A\( ® ) # 0. Then X is invertible for the
convolution product * associated to d: its inverse is denoted by u. Denoting by S the antipode
of (F[Go|,m,A), let us prove that A o S is invertible for  and that its inverse is p * (€5 0 5).
Firstly, \o S( ® ) = —A( ® ) #0, so Ao S is invertible. Moreover,

ANoS)*xpux(es0S)=(AQ@uoes)o(SRIA®S) o (d®Id)od
=(AQuoes)o(Id®Id® S)o(d®Id)odo S
=(A®uoes)o(0®Id)o(Id®S)cdoS
=A*xpu®e)o(Id®S)odo S
=eQ®eo(Id®S)odo S
265052
= €5.

We used for the second equality that (S®1Id)od = oS (see [13, Proposition 2.1]) and, for the
last equality, that S? = Id, as F[G] is commutative. So p* (e50.5) = (Ao S)* L.

In the particular case were A = €5, then y = €5 and we obtain that (e50.9)* ! =€50S.

Let G be an oriented graph. By definition of the weak Ehrhart polynomial and by the duality
principle for Ehrhart polynomial (Corollary ,

A (G) =1
= Ehrw (G)(1)
= (- Ehr(G)(-1)
= (-GS 6 Ehr(G)(1)
= (-)VEh(S(G)) (1)
= (-1)IV@les 0 5(G).

We now consider the three characters of F[G,] defined on any oriented graph G by
\@) = 0 5(G), n(G) = (~)VIIN@), v(G) = (~1)*A(G).
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We already proved that A x A = ¢s5. For any graph G,
prrl@) = Y (~)VEIAGNNG MAG )
~€e€°|G]

= 2, FDING/ MG V)

~e&°[G]

= D MG/ ~AG )

~eE°[G]
= A *x A\(G)
= &(G).
Therefore, v = u*~!. As u = Ay, we obtain that v = vy and, for any oriented graph G,
i (G) = (~1) DNG) = (~1)V OOy (G) = (~1)VON-e<(@), =
No interpretation of vy (G) is known in general. For example:

Proposition 6.4. Let G, be the mized graph of Example with the convention Go = *—*.
For anyn > 2, v (Gp) = (=1)""t(n —1).
Proof. For any n = 2,

viv * Aw (Gn) = v (G/ ~)Aw (G |~) = e5(Gy) = 0.
~€e€°[Gn]

By definition of Ay, for any ~e &°[G,], Aw (G |~) = 0 if, and only if, 1 ~ n. Therefore,
the contributing terms corresponds to the equivalences whose classes are intervals of [n], at the
exception of the one with only one class. For such an equivalence ~, the quotient G/ ~ is
isomorphic to G.y. We obtain that if n > 3,

Z >, ww(Gr) =0

1+ Aip=n,
1] 4eeeylfe =1
A direct computation shows that Ay (G2) = —1. Summing, we obtain in the ring of formal series

Q[[X]] that
} : 2 : TR X g X
k=2 v (G) X" = E viv (Gr) (1 - X) N B

1+ Aip=n, k=2
(S =k
Substituti X to X btai
ubpstitutin (6] we obtaln
511X ’

es} oo
D (Gr) X" = i+ X Z D (n —1)X™ O
n=2 n=2

7 Appendix: number of mixed graphs up to isomorphism

Proposition 7.1. Let N € N, nonzero. For any n € N, we denote respectively by G,,(N,n),
Go(N,n) and Gs(N,n) the number of isomorphism classes of mized, oriented, simple graphs with
n vertices decorated by elements of [N]|. Then, for t € {m,o, s},

Z ek Al) + Z Ck(kc; ) Z Cok

plsk<isn 1<k<n ( B, >1<kgn/2
¢ —
VA

NC1+...+Cn

Gt(N,n) = Z

C1yeee5Cn =0,
lei+...4+nep=n

1er . néneq!. .. ey
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with

Proof. We put

Fm = {(070)7 (07 _))7 (_)70)’ (_)7_>)7 (_7 _)}7
F, = {(070)7 (07_))7 (_)70)a (_)v_>)}v
Fs = {(070)7(_7_)}'

These sets give the possibilities of edges or arcs between two vertices of a graph of the considered
graphs. For any ¢t € {m,o,s}, F} is given an involution ¢, given by the usual flip. Note that
A; is the cardinal of F; and that B; is the number of elements of F} invariant under ¢. Then,
a graph G of type t, whose set of vertices is [n], together with a map from V(G) to [N], can
be seen as a pair (dy,dg), where dy : [n] — [N] is a map and dg = Pa([n]) — F; is a
map which makes explicit the edge and arc situation between two vertices ¢, j, with ¢ < j. The
symmetric group &,, acts on these pairs (dy, dg), in the following sense: for any o € &,,, putting
o-(dy,dg) = (o -dy,o-dg),

e o-dy =dyoo .

e For any i, j € [n], with i < j,

dp({o™1(0),07 ()} if 071 (1) < o7(j),
1
(

o-dp({i,j}) = {LodE({O'_l(i)ao'_ DY) if o) > oL(j).

The number of isomorphism classes G¢(N,n) we are looking for is the number of orbits of this
action. Using Burnside’s formula,

1.
Gi(N,n) = mFlX(J),
where Fix(o) is the number of pairs (dy,dg) invariant under the action of o.

Let 0 € &,,. Then o - (dy,dg) = (dy,dg) if, and only if:

e For any 7,j in the same o-orbit, dy (i) = dy(j). The number of o-orbits is denoted by
n(o).

e For any orbit of the action of o on pairs {7, j}, with ¢ < j, such that there exists k € N with
o®(i) = j and o®(j) = i, dg is constant on this orbit and its values is invariant under ¢.
Such an orbit will be called an orbit of type B. The number of orbits of type B is denoted

by np(o).

e For any orbit of the action of o on pairs {i,j}, with ¢ < j, such that for any k& € N,
(o*(i),0%(4)) # (j,1), dE is constant on this orbit. Such an orbit will be called an orbit of
type A. The number of orbits of type A is denoted by n4 (o).

Consequently,
Fix(o) = N Anal@) grs(o),

Let us decompose o into cycles with disjoint supports. For any ¢ € [IN], the number of
cycles of length ¢ in this decomposition is denoted by ¢;. Then 1lc¢; + ... + nc, = n. Then
n(o)=c+...+cp.
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Let {i,j} be a pair such that i, belong to two different cycles of 0. As o*(i) belongs to
the cycle containing i for any k € N, (i) # j. So the orbit of {45} if of type A. Moreover,
denoting by k and [ the lengths of the cycle containing ¢ and j, this orbit is of cardinality &k v [.

Hence, these two cycles give = k A k orbits of type A. Summing over all possible choices

L kv
of disjoint cycles of o, we obtain

2 crer(k AL + 2 wkz

2
1<k<l<n 1<k<n

orbits of type A.

Let {i,j} be a pair such that i, j belong to the same cycle of o. The length of this cycle is

(-1
denoted by I: for a given cycle, this gives ( )

pairs. Moreover, for any k € N,

SR () R (Y = (i ok (i) =1 or ok (i) = j
{o"(i), 0" (5)} {’j}(:){gk(j) j { N

Moreover, 0% (i) = 4 if and only if, k is a multiple of I. If 0*(i) = j and o*(j) = i, then o%*(i) = i,
so 2k is a multiple of [. We obtain two cases:
e If [ is odd, then If 6*(i) = j and ¢*(j) =4, I | 2k and, as [ is odd, [ | k. In other words,
{o"(0), 0" ()} = {i,j} == 1| k.

As a consequence, all the orbits contained in this cycle are of type A, and of cardinality .

This gives orbits of type A.
e If [ is odd, we obtain an orbit of type B: if the cycle is (i1,...,1ip), this orbit is

{{ilvipﬂ}v K {ipa i2p}}-

l
It contains p = 5 elements. All the other orbits included in this cycle have cardinality [,

soweobtainl l(l_l)—£ :l—2
l 2 2 2

orbits of type A.

Summing over all possible choices of cycles, we obtain ¢z + ¢4 + ... + orbits of type B and

1<k<n, 1<k<n,
k odd k even
Finally,
np(o) = > co,
1<k<n/2
_ cr(cp — 1) kE—1 k—2
na(o) = 2 crep(k A L) + 2 #k—i- 2 € + Z g
I<k<l<n 1<k<n 1<k<n, 1<k<n,
k odd k even
(k‘Ck - 1)Ck 1
= Z crep(k A L) + Z — 5 T3 Z Cok,
1<k<l<n 1<k<n 1<k<n/2
which finally gives the announced formula, as there are 1¢1...n%¢q!...c,! permutations whose

decomposition in cycles with disjoint supports is given by ¢; cycles of length ¢ for any i € [n]. O
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Ezample 7.1. For a given n, G¢(N,n) is a polynomial in N, A; and B,.

G¢(N,1) = N,
A¢N + B)N
Gt(Na 2) = ( : —5 t) )
AZN? + 3B;N + 2)A;N
Gt(N,3)=(t +36t +2) Ay ’
(V. 4) = (APN® + 6A?B;N? + 8A;N + 6B) AN
24
Tables give first values of G¢(IN,n).
N[ 1] 2 \ 3 \ 4 5 6
1 1 2 3 4 5 6
2 13 27 46 70 99
3 30 200 635 1460 2800 4780
4 785 11320 55605 173265 419550 865335
5 86130 2673260 20113890 84385520 256856275 638050530
6 | 43053850 | 2733053500 | 31051529575 | 174249075200 | 664212533500 | 1982349763225

The second row is entry A147875| of the OEIS [25].

Table 4: Number of mixed graphs

DN 1 2 3 4 5 6
1 1 2 3 4 5 6
2 10 21 36 55 78
3 16 104 328 752 1440 2456
4 218 3044 14814 45960 111010 228588
5 9608 | 291968 | 2183400 | 9133760 | 27755016 | 68869824
6 || 1540944 | 96928992 | 1098209328 | 6154473664 | 23441457680 | 69924880288

The second row is entry A014105| of the OEIS, the first and second columuns are entries A000273
and A000595/

Table 5: Number of oriented graphs

N[ 1 [ 2] 3 | 4 5 6
1 1 3 4 5 6
2 [ 2] 6 [ 12 20 30 42
3 [[ 4 ]2 [ 56 | 120 [ 220 364
4 [[11 ] 90 | 357 | 996 [ 2255 | 4446
5 || 34 | 544 [ 3258 | 12208 | 34754 | 82608
6 || 156 | 5096 | 47324 | 241520 [ 871580 | 2510424

The second, third and fourth rows are respectively entries A002378|, A002492 and A199394 of
the OEIS. The first and second columns are entries A000088 and [A000666.

Table 6: Number of simple graphs
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References

1]

2]

3]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Marcelo Aguiar and Swapneel Mahajan, Monoidal functors, species and Hopf algebras, CRM
Monograph Series, vol. 29, American Mathematical Society, Providence, RI, 2010, With
forewords by Kenneth Brown and Stephen Chase and André Joyal.

Pavel Alexandroff, Diskrete Riume., Rec. Math. Moscou, n. Ser. 2 (1937), 501-519 (Ger-

man).

Octavio Arizmendi and Adrian Celestino, Monotone cumulant-moment formula and
Schroder trees, SIGMA, Symmetry Integrability Geom. Methods Appl. 18 (2022), paper
073, 22 (English).

Matthias Beck, Daniel Blado, Joseph Crawford, Taina Jean-Louis, and Michael Young,
On weak chromatic polynomials of mized graphs, Graphs Comb. 31 (2015), no. 1, 91-98
(English).

Matthias Beck, Tristram Bogart, and Tu Pham, Enumeration of Golomb rulers and acyclic
orientations of mized graphs, Electron. J. Comb. 19 (2012), no. 3, research paper p42, 13
(English).

Y. Bruned, I. Chevyrev, P. K. Friz, and R. Preifs, A rough path perspective on renormaliza-
tion, J. Funct. Anal. 277 (2019), no. 11, 60 (English), Id/No 108283.

Yvain Bruned, Martin Hairer, and Lorenzo Zambotti, Algebraic renormalisation of reqularity
structures, Invent. Math. 215 (2019), no. 3, 1039-1156.

Damien Calaque, Kurusch Ebrahimi-Fard, and Dominique Manchon, Two interacting Hopf
algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series,
Adv. in Appl. Math. 47 (2011), no. 2, 282-308.

Kurusch Ebrahimi-Fard and Gunnar Flgystad, Fight times four bialgebras of hypergraphs,
cointeractions, and chromatic polynomials, International Mathematics Research Notices

2024 (2024), no. 10, 890-929.

Frédéric Fauvet, Loic Foissy, and Dominique Manchon, The Hopf algebra of finite topologies
and mould composition, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 3, 911-945.

Loic Foissy, Commutative and non-commutative bialgebras of quasi-posets and applications
to Ehrhart polynomials, Adv. Pure Appl. Math. 10 (2019), no. 1, 27-63.

, Chromatic polynomials and bialgebras of graphs, Int. Electron. J. Algebra 30 (2021),
116-167.

Loic Foissy, Bialgebras in cointeraction, the antipode and the eulerian idempotent, arXiv
2201.11974, 2023.

, Contractions and extractions on twisted bialgebras and coloured fock functors, arXiv
2301.09447, 2023.

___, Hopf algebraic structures on hypergraphs and multi-complexes, arXiv 2304.00810,
2023.

, Twisted bialgebras, cofreeness and cointeraction, arXiv 1905.10199, 2023.

Loic Foissy and Claudia Malvenuto, The Hopf algebra of finite topologies and T-partitions,
J. Algebra 438 (2015), 130-169.

44



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

Loic Foissy, Claudia Malvenuto, and Frédéric Patras, Infinitesimal and By -algebras, finite
spaces, and quasi-symmetric functions, J. Pure Appl. Algebra 220 (2016), no. 6, 2434-2458.

Pierre Hansen, Julio Kuplinsky, and Dominique de Werra, Mized graph colorings, Math.
Methods Oper. Res. 45 (1997), no. 1, 145-160 (English).

André Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), no. 1,
1-82.

, Foncteurs analytiques et espéces de structures, Combinatoire énumérative (Mon-
treal, Que., 1985/Quebec, Que., 1985), Lecture Notes in Math., vol. 1234, Springer, Berlin,
1986, pp. 126-159.

Jean-Louis Loday and Maria Ronco, On the structure of cofree Hopf algebras, J. Reine
Angew. Math. 592 (2006), 123-155.

Dominique Manchon, On bialgebras and Hopf algebras or oriented graphs, Confluentes Math.
4 (2012), no. 1, 1240003, 10.

Ander Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found.
Comput. Math. 6 (2006), no. 4, 387-426 (English).

Neil J. A. Sloane, The on-line encyclopedia of integer sequences, https://oeis.org/.

Yuri N. Sotskov, Vjacheslav S. Tanaev, and Frank Werner, Scheduling problems and mized
graphs colorings, Optimization 51 (2002), no. 3, 597-624.

Richard P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171-178.

45


https://oeis.org/

	Species, twisted bialgebras and contractions
	Species and twisted bialgebras
	Contraction-extraction coproducts

	The species of mixed graphs
	Mixed graphs
	The twisted bialgebra of mixed graphs
	Contraction-extraction on mixed graphs
	Cofreeness of the coalgebra F[G]

	Sub-objects and quotients of mixed graphs
	Simple and oriented graphs
	Acyclic mixed graphs and finite topologies
	Totally acyclic graphs

	Applications
	Three polynomial invariants
	Invertible characters

	From mixed graphs to acyclic oriented graphs
	A double bialgebra epimorphism
	Erhahrt polynomials for mixed graphs

	Applications to characters on mixed graphs
	Weak chromatic polynomial
	The character W

	Appendix: number of mixed graphs up to isomorphism

