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Abstract

We introduce two coproducts on mixed graphs (that is to say graphs with both edges and
arcs), the first one by separation of the vertices into two parts, and the second one given by
contraction and extractions of subgraphs. We show that, with the disjoint union product,
this gives a double bialgebra, that is to say that the first coproduct makes it a Hopf algebra
in the category of righ comodules over the second coproduct.

This structures implies the existence of a unique polynomial invariants on mixed graphs
compatible with the product and both coproducts: we prove that it is the (strong) chromatic
polynomial of Beck, Bogart and Pham. Using the action of the monoid of characters, we
relate it to the weak chromatic polynomial, as well to Ehrhart polynomials and to a poly-
nomial invariants related to linear extensions. As applications, we give an algebraic proof of
the link between the values of the strong chromatic polynomial at negative values and acyclic
orientations (a result due to Beck, Blado, Crawford, Jean-Louis and Young) and obtain a
combinatorial description of the antipode of the Hopf algebra of mixed graphs.
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Introduction

Mixed graphs are graphs with both unoriented and oriented edges. They are used for example
to study scheduling problems with disjunctive (represented by unoriented edges) and precedence
(represented by oriented edges) constraints |15 [I5], [12]. In this context, a notion of admissible
colouring, similar to the notion used for classical graphs, give a solution of the scheduling problem
represented by the mixed graph. These admissible colourings can be counted according to the
number of colours, which gives a chromatic polynomial [4], [3]. The aim of this text is the study
of this chromatic polynomial for mixed graphs in the context of double bialgebras, as this has be
done for graphs in [8] and for posets and finite topologies in [6]. A double bialgebra is a family
(A, m, A, d) such that:

e (A,m,J) is a bialgebra.

e (A,m,A) is a bialgebra in the category of right comodules over (A, m, d), with the coaction
given by ¢ itself.

A simple example of such an object is K[X], with its usual algebra structures and its coproducts
defined by

AX)=X®1+1QX, 5(X) =X ®X.

We proved in [6] 8] the following results: if (A, m, A, ) is a double bialgebra, under a condition
of connectedness of (A4, m,A),

e There exists a unique double bialgebra morphism ¢ : (A,m,A,d) — (K[X],m,A,d),
which can be explicitly described with iterations of the coproduct A of A and with the
counit €5 of its coproduct 9.

e Let us denote by Char(A) the set of characters of A. It inherits a convolution product *,
dual to §. We denote by Endg(A,K[X]) the set of bialgebra morphisms from (A,m,A)
to (K[X],m,A). Then the following defines an action of the monoid (Char(A),*) on
Endp(A,K[X]):

VA € Char(A), V¢ € Endp(A,K[X]), e A= (p®N) 0.
Moreover, the two following maps are bijection, inverse one from the other:

{EndB(A,K[X]) — Char(A) {Char(A) —> Endp(A4,K[X])
¢ — €09, A= do e A

where here € is the counit of (K[X], m, ), which send any P € K[X] onto P(1).

e When (A,m,A) is a graded and connected bialgebra, then under a technical condition
on J, the set of homogeneous bialgebra morphisms from (A, m,A) to (K[X],m,A) is in
bijection with the dual of the homogeneous component A; of A of degree 1.

e If (A,m,A) is a Hopf algebra, then its antipode is given by
S=(1®Id)od,

where e:’;_l is the inverse of the counit €5 of § for the convolution product * associated to
A. Moreover, for any a € A,

e ' (a) = ¢o(a)(—1).



We apply here these results on mixed graphs. In the first section, we define a structure of
double bialgebras on mixed graphs. We work in the frame of species and use the formalism
built in [II] of contraction-extraction coproduct. We first give in Proposition the species
of mixed graphs G a bialgebra structure in the category of species (what is commonly called
a twisted bialgebra structure), and then a contraction-extraction coproduct in Proposition
Consequently, applying the bosonic Fock functor of [I], we obtain a double bialgebra of mixed
graphs F[G], and more generally, for any commutative and cocommutative bialgebra V| a double
bialgebra Fi/[G] of mixed graphs which vertices are decorated by elements of V. Using Loday
and Ronco’s rigidity theorem, we prove that (Fy[G], A) is a cofree coalgebra (Corollary [1.9).

We study certain subobjects and quotients of G in the second section. Obviously, simple
(i.e., unoriented) graphs and oriented graphs define twisted double subbialgebras of G, denoted
respectively by Gs and G, (Proposition 2.1). Applying the bosonic Fock functor to G, we
obtain again the double bialgebra of graphs of 8 [IT]. We also consider the subspecies of acyclic
mixed graphs Ggeo, which turns out to be stable under the product and the first coproduct A,
but not on the second one. However, quotienting by non acyclic mixed graphs, G,. can be seen
as a twisted double bialgebra, quotient of G (Proposition 2.5). It contains a twisted double
subbialgebra of oriented acyclic mixed graphs G, which has itself for quotient the twisted
double bialgebra of topologies of [6] (Proposition 2.6).

The third part is devoted to polynomial invariants of mixed graphs, that is to say bialge-
bra morphisms from the bialgebra of mixed graphs (F[G],m,A) to (K[X],m,A). We first
describe the unique polynomial invariant compatible with the second coalgebraic structure of
mixed graphs: it turns out to be the strong chromatic polynomial P, of [4], see Proposition
In other words, for any mixed graph G, for any n > 1, Pey,s (G)(n) is the number of n-valid
colourations of G, that is to say maps ¢ from the set of vertices V(G) of G to {1,...,n} such
that, for any pair of vertices z,y of G,

e If z and y are related by an edge of G, then c(x) # c(y).
e If x and y are related by an arc of G, then c¢(c) < ¢(y).

A notion of weak valid colouration is also defined in [4]. A weak n-valid colouration is a map ¢
from the set of vertices V(G) of G to {1,...,n} such that, for any pair of vertices z,y of G,

e If z and y are related by an edge of G, then c(x) # c(y).
e If x and y are related by an arc of G, then ¢(c) < ¢(y).

The polynomial counting the number of weak n-valid colourations of G is denoted by Pep,,, (G).
Using the the action of the monoid of characters described earlier and the character of F[G]
defined by
1 if G is an oriented graph,
Aw (G) = { ¢

0 otherwise,

we obtain that ¢cnry, = Genrg < Aw, which implies that P, is a bialgebra morphism from
(F[G],m,A) to (K[X],m,A), see Corollary [3.4] Finally, using the correspondence between ho-
mogeneous polynomial invariants and elements of F[G];, we construct a homogenous bialgebra
morphism ¢y from (F[G],m,A) to (K[X],m,A), related to the number of linear extensions
(Corollary and to a character A\g. When V is a commutative and cocommutative bialgebra,
similar results are given for Fy/[G], where K[ X] is replaced by a double bialgebra of quasishuffles,
see Theorem [3.7] and Corollary After the determination of invertible characters of F[G] for
the convolution product * dual to d, we prove that both characters A\g and Ay are invertible,
which allows to express FPep, in terms of P, or ¢, with the help of certain characters vy,
and puy (Proposition [3.13)). This allows to give a formula for the leading monomial of Py, (G)

and P, (G) in Corollary



In section fourth, we give an algebraic proof of the result [4], which gives a combinatorial
interpretation of P, (G)(—1) in terms of acyclic orientations. We firstly introduce a surjec-
tive double bialgebra morphism © from F|[G] to the double bialgebra of acyclic oriented mixed
graphs F[Ggeo] in Theorem The unicity of the double bialgebra morphism to K[X] imme-
diately implies for example that the strong chromatic polynomial of a graph G is the sum of the
strong chromatic polynomial of all its acyclic orientations (Corollary . Introducing two one-
parameter families of characters of F[G] in Proposition we introduce two new polynomial
invariants, which turn out to be Ehrhart polynomials and satisfy a duality principle (Corollary
on acyclic mixed graphs. Mixing this duality principle with the morphism ©, we obtain a
new proof that for any mixed graph, Pe,,,(G)(—1) is the number of acyclic orientations of G,
up to a sign (Corollary [1.9). This allows to give a formula for the antipode of (F[G],m,A)
involving the number of acyclic orientations of G, see Corollary

The last section is devoted to combinatorial interpretations of special characters of mixed
graphs. We give an algebraic proof of a result of [4] in an algebraic way (Proposition and
Corollary about values of the weak chromatic polynomial on negative integers (for totally
mixed graphs only), and we give a combinatorial interpretation of vy (G) when G is a simple
graph or an oriented graph (Proposition , where vy is the inverse of Ay, for the convolution
product *.

Acknowledgements. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 0.1. 1. We denote by K a commutative field of characteristic zero. Any vector
space in this field will be taken over K.

2. For any n € N, we denote by [n] the set {1,...,n}. In particular, [0] = &.

3. If (C,A) is a (coassociative but not necessarily counitary) coalgebra, we denote by A
the n-th iterated coproduct of C: AM) = A and if n > 2,

A = (A ® 1d®<“*1>) o A1 0, 0O+,

4. If (B,m,A) is a bialgebra of unit 15 and of counit £p, let us denote by B, = Ker(ep) its
augmentation ideal. We define a coproduct on B, by

Vo e By, Alz) = Alz) —2®1p— 1@ .

Then (B4, A) is a coassociative (not necessarily counitary) coalgebra.

5. Let P be a species. For any finite set X, the vector space associated to X by P is denoted
by P[X]. For any bijection o : X — Y between two finite sets, the linear map associated
to o by P is denoted by P[o] : P[X] — P[Y]. The Cauchy tensor product of species is
denoted by ®: if P and Q are two species, for any finite set X,

PRQ[X]= D P[¥]®Q[Z]
X=YuZ
If 0 : X — Y is a bijection between two finite sets, then
PRQ[o]= @ Ployl®Qloz]
X=YuZ

A twisted algebra (resp. coalgebra, bialgebra) is an algebra (resp. coalgebra, bialgebra) in
the symmetric monoidal category of species with the Cauchy tensor product. We refer to
[7, 1T] for details and notations on algebras, coalgebras and bialgebras in the category of
species.



6. Let V' be a vector space. The V-coloured Fock functor Fy, defined in |11} Definition 3.2],
sends any species P to

n=0
_ é Ve @ P[n]
ao Vect(vi ... vy @ P[0](p) — V(1) - - - Vo(n) ®P | 0 € &y, peP[n], v1,...,up€V)

When V = K, we obtain the bosonic Fock functor of [I]:

o) B o P[n]
@ colnv(P[n]) = g Vect(P[o](p) —p | o € Gn, p e P[n])’

1 The species of mixed graphs
1.1 Mixed graphs
Definition 1.1. 1. A mixed graph is a triple G = (V(G), E(G), A(G)) where:

(a) V(G) is a finite set, called the set of vertices of G,
(b) E(G) is a subset of {{z,y} < V(G), x # y}, called the set of edges of G,
(c) A(G) is a subset of {(z,y) € X2, x # y}, called the set of arcs of G,

such that, for any x,y € V(Q), with x # y,

{z,y} € E(G) = (z,y) ¢ A(G) and (y,z) ¢ A(G),
(z,y) € A(G) = {z,y} ¢ E(G).

2. For any finite set X, we denote by 9[X] the set of mized graphs G such that V(G) = X.
This defines a set species of mixed graphs. The vector space generated by [ X] is denoted
by G[X]. This defines a species G.

3. A mized graph is an oriented graph if E(G) = J: this defines a subspecies of 4 denoted
by 4,, and a subspecies of G denoted by G,.

4. A mized graph G is a simple graph if A(G) = &: this defines a set subspecies of 4 denoted
by ¥, and a subspecies of G denoted by Gs.

Ezample 1.1. Let X = {z,y} be a set with two elements. There are five elements in ¢[X |, which
we graphically represent on the right:

— (X, 2. 9), @ O
G = (X, {{z,9}}, D), (©O—)
Gs = (X, 2, {(:1)}), (@—)
Gs = (X, &, {(1,2)}), (@—®
Gs = (X.&. {(2.), (s, 2)}), OO0

Moreover,

go[X] = {G13G3,G4aG5}7 Eqs[)(] = {Gl’GQ}'



Remark 1.1. In a mixed graph G, for any pair of vertices {x,y} of G, there are five possibilities
to define edges or arcs between x and y. Hence, if X is of cardinality n, then

n(n—1)
2

@[X]] =5

Similarly,

n(n—1) n(n—1)
2

Dol X]| =472, %, [X]| = 2

These gives respectively sequences A109345, A053763 and A006125 of the OEIS [14].
Notations 1.1. Let G be a mixed graph and z,y € V(G). We shall write z % y if (z,y) € A(G)
and r £ y if {z,y} € B(Q).

Definition 1.2. Let G be a mized graph.

1. An oriented path in G is a finite sequence P = (xg,...,x,) of vertices of G such that for
any i € {0,...,n — 1}, 2; S x;11. The vertices xg and x, are respectively the beginning
and the end of P.

2. A mized path in G is a finite sequence P = (xg,...,xy,) of vertices of G such that for any
ie€{0,...,n—1}, z; G i1 or x; € xip1. The vertices xg and x,, are the extremities of
P.

3. A path in G is a finite sequence P = (xg,...,x,) of vertices of G such that for any
ie€{0,...,n—1}, a; G mip1 or i1 > xy or x; £ xip1. The vertices o and x,, are the
extremities of P. The mized graph G is connected if for any vertices x,y € V(G), there
exists a path of extremities x and y.

Example 1.2. Let us consider the mixed graphs of Example[I.1] The connected ones are G, Gs,
G4 and G5.

1.2 The twisted bialgebra of mixed graphs

We now define a product and a coproduct on the species G. Let X,Y be two finite sets, G € 4[| X]
and H € 4[Y]. The mixed graph GH € 4[X 1 Y] is defined by

V(GH) =V(G)LV(H), E(GH)=E@G)uEH), AGH)=A(G)u A(H).

In other words, GH is the disjoint union of G and H. This product is bilinearly extended to G.
it is clearly associative, commutative and has a unit, which is the empty graph 1 € ¢[¢]. With
this product, G is a commutative twisted algebra. Note that G¢ and G, are subalgebras of G.

Definition 1.3. Let G be a mized graph and let I < V(G).

1. The mized graph G\ is defined by

V(G|[) = Ia

E(GH) = {{x,y} € E(G)> T,y € I}7

A(GH) - {(xay) € A(G)7 T,y € I}
2. We shall say that I is an ideal of G if

Vo,y e V(G), (el andz S y) = (yel).



Proposition 1.4. We define a coproduct A on the species G[X] in the following way: for any
finite sets X and Y, for any mized graph G € 9[X LY,
Gix ® Gy f Y is an ideal of G,

A G) =
xx(G) {O otherwise.

Together with the product defined earlier, this coproduct makes G a twisted bialgebra.

Proof. Let us first prove the coassociativity of A. Let X, Y and Z be finite sets and G €
Y[X uY u Z]. Then

Gx®Gy G|z
(Axy®Id) o Ax vz(G) = if Z is an ideal of G and Y is an ideal of G|xy,
0 otherwise.
Gix®Gly ®G|z
(Id®Ayz) o Axyuz(G) = if Y u Z is an ideal of G and Z is an ideal of G}y,

0 otherwise.
Moreover,
Z is an ideal of G and Y is an ideal of G|y _y
c:(W&weWGﬂxgyz:mw¢OWX3u@xXﬁﬂwa>
<Y u Zisanideal of G and Z is an ideal of G|y _z,

so (Axy ®Id)oAx vz = (Id®Ay,z) o Axy.z. As for any graph G, & and V(G) are ideals
of G,

AV(G),@(G) =G ® ]., A@,V(G) (G) =1® G.
So A is counitary, and the counit ea : G[] — K sends the empty graph 1 to 1.
Let G e 9[X], He ¥4[Y] and X", Y’ be sets such that X uY = X' uY’. In GH, there is
no arc between any element of X and any element of Y, nor between any element of Y and any

element of X. Hence, the ideals of GH are of the form I 1 J, where [ is an ideal of G and J is
an ideal of H. Therefore,

Gixnx'Hy~x ® Gixny Hyny:
Ax y/(GH) = if Y/ n X is an ideal of G and Y/ nY is an ideal of H,

0 otherwise
= Axnx' xny (G)Ay~xryay (H).
Moreover, Ag (1) = 1®1. So A is a morphism of twisted algebras. O

Ezxample 1.3. With the notations of Example (or Example below):

Apg | By | Aphis) | Ao few

Gi| Giel |[(0)eW) | (Ve (x)| 186

Gy| Gl | ()W) | (1)) | 106,

Gs| Gz®1 @@@ 0 1®Gs

Gi| Ga®1 0 (V@ (x)| 186,
0

G5 G5®1 0 1®G5




We can now consider the twisted bialgebra G’ = G o Com, as defined in [I1], Proposition
2.1]:

e For any finite set X, G'[X] is the vector space generated by the set ¢’[ X| of mixed graphs
G such that V(G) is a partition of X.

e For any finite sets X and Y and for any (G, H) € 9'[X| x¥4'[Y], mx y(GH) is the disjoint
union of G and H.

e For any finite sets X and Y and for any G € ¥'[X],

G|x ® Gy if Y is the union of vertices of X forming an ideal of G,

A G) =
X (G) {0 otherwise.
We define similarly G, = G o Com and G/, = G o Com, and the set species ¥4, and .

Ezample 1.4. If X = {z,y}, there are six elements in ¢’'[X], which we graphically represent on
the right:

- (X,2,9), ®» ©®
Gy = (X, {{z.1}}. D). @O—®
Gs = (X, @, {(2,)}), @—©
Gi = (X, @, {(y,2)}), @—O
Gs = (X, 2, (0,y), (y,2)}), @),

~ ({{z. 1)}, 2. D), @)

The coproduct of Gg is given by the following:

Ao | Dby | D) | Ao fey
Gg| Geg®1 0 0 1® G

The cardinality of ¢'[X] can be computed with the help of Stirling numbers of the second kind

{Z}, which count the number of partitions of a set with n elements in k parts:
n 1 k—7j kY .
e} -5 50 ()
j=0

- S

k=1

If | X| =n,

Similarly,

Il
=

x) = 3 fiha, ]

{Z} 5 k(k;l) .

=
I
—



This gives the following array:

xX] 7X]] ZIX]] ZIX]]
1 1 1 1

2 6 5 3

3 141 77 15

4 16411 4509 127

5 9925076 1091197 1895

6 30665089531 1089742589 53071

7 477479400037941 4420743343165 2953575
8 | 37266262553005215136 | 72181026063598461 | 337064047

The sequence of cardinalities of ¢/[X] is entry A335390 of the OEIS [14].

1.3 Contraction-extraction on mixed graphs

We here shall the formalism of contraction-extraction coproducts of [II]. Recall that for any
finite set X, £[X] is the set of equivalence relations on X. If 0 is a contraction-extraction
coproduct on a species P, then for any finite set X and any ~e £[X], then §. sends P[X] onto

P[X/~]®P[X].
Definition 1.5. Let G € 9[X] and ~€ E[X].
1. We define a mized graph G |~€ 9[X] by
V(G |~) =V(G),

E(G|~) ={{z,y} e E(G) | x ~y},
A(G |~) = {(z,y) € A(G) | = ~ y}.

In other words, G |~ is obtained from G by deleting all the edges or arcs which extremities
are not equivalent; or equivalently, G |~ is the disjoint union of the restrictions of G to the
equivalence classes of ~.

2. We define a mized graph G/ ~e 9[X/ ~] b

=
Q

\
|

X/~
E(G/ ) {{el (@), cle (W)} | {z,y} € E(G), (z,y) ¢ A(G), (y,2) ¢ A(G), cl.(z) # cl.(y)},
A(G/ ~) = {(clw(2), el (9)) | (z,9) € A(G), cl(z) # cl.(y)}.

In other words, G/ ~ is obtained from G by identifying the vertices according to ~, then
deleting the loops created in the process and the redundant edges, giving priority to the
ortented ones.

3. We shall say that ~e E°[G] if for any equivalence class C' of ~, G|¢ is connected.

Proposition 1.6. We define a contraction-extraction coproduct § on G by the following: for any
finite set X, for any ~e E[X], for any G € Y[ X],

5~(G) _ {(;’/~6<>C;’|N Zf ~€ SC[G]a

0 otherwise.

It is compatible with the product and the coproduct in the sense of [11, Proposition 2.5/



Proof. The compatibility of § with the species structure [11) Definition 2.2, second item)] is clear.
Let us prove the coassociativity of ¢ [II, Definition 2.2, third item]. Let X be a finite set,
~,~'e £[X] and G € Y[ X].

If ~<~/, let us prove that ~e £[G/ ~'] and ~'e £°[G] if, and only if, ~'€ £°[G |~] and
~e EG].

=. Let C’ be a class of ~'. As ~'e £°[G], it is a connected subgraph of G. Moreover,
as ~<~', all its elements are in the same class of ~, so Gior = (G| ~)|C/: as a consequence,
(G| ~)|cr is connected, so ~'e £°[G |~]. Let C be a class of ~, and x,y € C. As ~e E[G/ ~],
it is connected in G/ ~': there exists a path in G/ ~' from cl./(z) to cl./(y). Moreover, as
~'e E°[G], each cl.(z) is a connected subgraph of G, so there is a path from z to y in G:
~e E°G].

<. Let C be a class of ~. As ~e £°[G], any of its class is a connected subgraph of G, so
by contraction is a connected subgraph of G/ ~': ~e £°[G/ ~']. Let C’ be a class of ~'. As
~'e E°[G |~], it is a connected subgraph of G |~, so also of G: ~€ E°[G/ ~].

As a conclusion,

(G ~)] ~R(G) ~) |~ ®G |~ if ~ E[G/ ~'] and ~'e E°[G],

0 otherwise

(0~ ®Id) oo (G) = {

0 otherwise

_ {G/ ~®(G |~)/ ~ ®(G |~) |~ if ~e £G |~] and ~e £,

— (A ®5.) 0 5-(G).

If we do not have ~<~', then at least one class C of ~ intersects two classes of ~’, so in-
tersects two connected components of |~": we obtain that ~¢ £°[G |~']. So (G |~') = 0 and
finally (Id ® 0~) 0 /(G) = 0.

Let us now study the counity [I1), Definition 2.2, fourth item]|. We define a species morphism
¢s : G — Com by the following: if G € ¥[X],

SIXI(C) = {1 if B(G) = A(G) = &

0 otherwise.
Let G € 9[X] and ~€ E[X]. If ~ is the equality of X, then ~e £°[G], G/ ~= G and G |~ as no
edge, so (Id ® ¢5[X])(G) = G. Otherwise, either G ¢ E°[G] or at least one class of ~ contains
an edge or an arc, so €5[X](G |~) = 0. In both cases, (Id ® ¢5[X])(G) = 0.

Let ~e £°G], such that E(G/ ~) = E(G |~) = . If two vertices of G are related by an
edge of an arc, there are necessarily equivalent, so any connected component of G is included in
a single class of ~. As the classes of ~ are connected, ~ is the relation ~. which classes are the
connected components of G. Moreover, G/ ~. has no edge nor arc, and G |~.= G. Therefore,

D (e[ X/~ @Id) 06 (G) = > (e[ X/ ~]®1d) 0 6.(G)

~e€[X] ~e&°[G]

(e5[ X/ ~]®@1d) 0 0. (G)
~ G |~

=G.

Let us prove the compatibility of § with the product [I1, Proposition 2.4]. Let X and Y be
two finite sets, ~e E[X uY], Ge ¥[X] and H € 4[Y]. If ~#~x u ~y, at least one class C of
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~ intersects both X and Y, so is not connected in GH = mx y (G ® H). Therefore, ~¢ E|{GH |
and

doomxy(G®H)=0.
Let us assume that ~=~x 1 ~y. Then ~e EC[GH] if, and only if, ~x€ £[G] and ~ye E°[H],
as the connected components of GH are the connected components of G and of H. If so,

(GH)/ ~= (G/ ~x)(H/ ~y) and (GH) |~= (G |~x)(H |~y). Therefore,
(GH)/ ~®(GH) |~ if ~e E|GH],

0 otherwise

(5~OmX7y(G®H) = {

0 otherwise

_ {<G/ ~X)H/ ~y) ® (G |~x)(H |~y) if ~xe £G] and ~ye EH],

= (mX/~X7y/NY @m)gy) o (Id@c@ld) o (5~X ®5~Y)(G®H)

Let us finally prove the compatibility of 6 with the coproduct A [11, Proposition 2.5|. Let X
and Y be two finite sets, ~x€ E[X], ~ye £[Y] and G € [ X]. We put ~=~x L ~y.

(G ~)ix/~x © (G ~)iy/ny
(Ax/ey y/~oy ®ld) 06(G) = if ~¢ £¢[G] and Y/ ~y is an ideal of G/ ~,

0 otherwise,

(Gix)/ ~x &(Gy)/ ~y
m1,3240 0~y ®0~y) 0 Axy(G) = if Y is an ideal of G, ~x€ E°(G|x] and ~ye E[Gy],

0 otherwise,

Let us prove that ~e £°[G] and Y/ ~y is an ideal of G/ ~ if, and only if, Y is an ideal of G,
~x€ SC[G‘X] and ~ye€ EC[G|Y]

=. Let ye Y and z € X UY such that # % y. Then either cl.(y) = cl.(2) or cl.(y)
clo(2). As Y/ ~y is an ideal of G/ ~, in both cases z € Y. As ~=~x U ~y, its classes are the
classes of ~x and ~y, and are connected by hypothesis. So ~x€ £°[G|x] and ~ye E[Gy].

—. As ~=~x U ~vy, its classes are the classes of ~x and ~y, which are connected
by hypothesis. Hence, ~e E°[G]. Let cl.(y) € Y/ ~y and cl.(z) € [X u Y]/ ~, such that
clo(y) RS cl.(z). There exist 3,2’ € X Y such that y ~ 3/, z ~ 2/ and ¢/ S 2. As
~=~x U ~y,y €Y. As Y is an ideal of G, necessarily 2’ € Y. As ~=~x LU ~y, 2’ € Y and
finally cl (2) e Y/ ~y.

Moreover,

G/~
N

(G/ ~)ix/~x = (G1x)/ ~x, (G ~)iyj~y = (Gy)/ ~v,s
which finally proves the compatibility between § and A. O

As a consequence, for any vector space V, we obtain a graded bialgebra Fy[G]. This is
the vector space of mixed graphs which vertices are decorated by elements of V', any graph
being linear in any of its decorations: these objects will be called V-linearly decorated graphs.
For example, if v1,ve, w1, we € V and Ay, Ao, u1, pe € K, in Fy[G], if v = Ajv; + Agvy and
w = 1w + Hawa,

@:@ = )\1M1@:@ + )\ZHI@:@
+ )\INQ@:@ + AQW@:@.

If B is a basis of V, a basis of Fy/[G] is the set of mixed graphs which vertices are decorated by
elements of B. The product is the disjoint union. For any V-linearly decorated graph G,

AG) = D Gueu®Gr.
I ideal of G

11



For example, if v,we V,

AW =@®@el+1e(@®+ e + @ e()
AO—wW) =—weir1e()—w+®e W+ @ e()
AO—w) =O—we1+1e(®)—u +@e .

A W) =@ et+ 1@ (.

The counit e sends any mixed graph G # 1 to 0. If (V,-,A) is a nonunitary, commutative
and cocommutative bialgebra, then Fy/[G] inherits a second coproduct ¢: if G is a V-linearly
decorated graph,

0(G) = ), G/~&G|~,
~e&°[G]
where the vertices of G/ ~ ®G |~ are decorated in the following way: denoting by dg(x) the
decoration of the vertex x € V(G), any vertex cl.(x) of G/ ~ is decorated by the products of
elements dg(y)’, where y € cl.(x), whereas the vertex x € V(G |~) = V(G) is decorated by
dg ()", and everything being extended by multilinearity of each decoration. The counit e; is
given on any mixed graph G by

[] evodal(a)if AG) = EG) = @,
65(G) = 1 zeV(G)
0 otherwise.

This construction is functorial in V.

Ezxample 1.5. If v,w eV,

(D@) =) e ()W),
(@) = (o )—(") & (") (") + @ ® (v)— ("),

()= @) = () —=(u) ® (") (") + @ ® (v")— (")
(O=0NO=OLOGMP O]

Remark 1.2. We shall often work with V' = K, with its usual bialgebraic structure defined by
Ik (1) = 1®1. We shall then identify any V-decorated mixed graph which any vertex is decorated
by 1 with the underlying mixed graph. The double bialgebra Fy/[G] is identified with F[G] and
has for basis the set of mixed graphs.

Proposition 1.7. Let V' be a (non necessarily unitary) commutative and cocommutative bialge-
bra. For any linearly V -decorated mized graph G, we denote by dg : V(G) — V the decoration
map of G and by G the underlying mized graph. Then the following map is a double bialgebra
morphism:
FvlG] — F[G]
Oy : —
G — H ey odg(z) |G.
eV (Q)

Proof. The counit ey : V — K is a bialgebra map. By functoriality, ©y is a double bialgebra
morphism. O

12



1.4 Cofreeness of the coalgebra F[G]

Let us define a second product on F[G].

Proposition 1.8. Let G and H be two mized graphs. The mixed graph G —~ H is defined by

V(G —~H) =V(G)uV(H),
E(G —~ H) = E(G) u E(H),
A(G —~ H) = AG) L A(H) L (V(G) x V(H)).

This product is bilinearly extended to F|G]. Then (F[G], —~, A) is a unital infinitesimal bialgebra
in the sense of [13, Definition 2.1].

Proof. As we already know that A is coassociative and unitary, it remains to prove that:
1. — is associative and unitary.
2. For any z,y € F[G], Az ~y) = (2®1) = Ay) + A(z) = (1Qy) —zQy.

1. Let G, H, K be three mixed graphs. Then

so (G~ H) ~K)=G —~ (H —~ K). Therefore, —~ is associative. The unit is the empty mixed
graph 1.

2. Let G, H be two mixed graph. As there is an arc from any vertex of G to any vertex of H
in G —~ H, the ideals of G —~ H are:

e [ 1 V(H) where I is an ideal of G. For such an ideal,
(G~ H)jrovny = G~ H, (G~ H)(G~mp\aovm) = G-

e Ideals J of H. For such an ideal,
(G~ H);=Hy, (G =~ H)y~ayg =G~ Hymy-
Note that the ideal V' (H) appears twice in this list, for I = ¢ and J = V(H). Therefore,

AG~H)= > Gueu®Gr~H+ ) G~Hyuy®@H;-GOH
I ideal of G J ideal of G
—AG) ~(1®H)+(G®1) ~A(H) - G H. O

From [13, Theorem 2.6]:

Corollary 1.9. The coalgebra (F[G], A) is isomorphic to the coalgebra T'(Prim(F[G]) with the
deconcatenation coproduct.

The same proof can be adapted to any Fy[G].
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2 Subobjects and quotients of mixed graphs

2.1 Simple and oriented graphs

Proposition 2.1. G and G, are twisted subbialgebras of (G, m,A) and are stable under the
contraction-extraction coproduct 9.

Proof. If G and H are simple graphs, then GH is a simple graph. If G is a simple graph, then
all its subgraphs are also simple graphs. Moreover, if ~e £[G], then G/ ~ and G |~ are also
simple graphs. The proof is similar for oriented graphs. O

Corollary 2.2. For any vector space V, Fy|Gs]| is a subbialgebra of Fy|[G] and Fy[Go] is
a subbialgebra of Fy[G]. For any (non necessarily unitary) commutative and cocommutative
bialgebra V, Fy[Gs]| is a double subbialgebra of Fy[G] and Fyv[Go] is a double subbialgebra of
Fv[G].

In particular, Fx[Gs] = F[Gs] is the double bialgebra of graphs of [7, 8] and Fx[G,] =
F|[Go] is the double bialgebra of [5].
2.2 Acyclic mixed graphs and finite topologies

Let G € 4[X] be a mixed graph. We denote by O[G] the set of ideals of G. if I, J € O[G], then
InJand IuJ belong to O[G]: O[G] is a topology on the finite set X. We obtain:

Proposition 2.3. For any finite set X, let us denote by Jopo|X] the set of topologies on X
and by Topo[X] the space generated by Jopo[X]. This defines a species. it is equipped with a
twisted bialgebra structure by the following:

e For any finite sets X,Y, for any (Ox,Oy) € Jopo[X] x Jopo[Y],

mX’y(OX X Oy) = {I L J, Ie Ox, J € Oy}
e For any finite sets X,Y, for any O € Jopo[X L Y],

O|X®O|y 'LfYE O,

0 otherwise.

Axy(0) = {

Moreover, the following map is a sujective morphism of twisted bialgebras:

G — Topo
T‘{ Ged[X] — O[C] < Topo[X].

Proof. Let O be a finite topology on a finite set X. We define a quasi-order on X (that is, a
transitive and reflexive relation on X) by the following: for any z,y € G, x < y if any O € O
containing x also contains y. By Alexandroft’s theorem [2], O is the set of ideals of the quasi-
order <. Let us consider the arrow graph G of <: V(G) = X and for any x # y in X, there is an
arc between z and y if, and only if x < y. Then O = O[G], so T is surjective. Let G,G’, H, H’
be graphs such that O[G] = O[G'] and O[H] = O[H']. Then

O[GH] = O[G]O[H] = O[G'|O[H'] = O[|G'H'].
Therefore, the product of G is compatible with the products of G and Topo.

For any graph G' € 9[X] and for any Y = X, O[G|y] = O[G]|y. This implies that v is
compatible with the coproducts of G and Topo. As T is surjective and G is a twisted bialgebra,
Topo is also a twisted bialgebra. O
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This map Y is not compatible with the contraction-extraction coproduct: for example, if

0= QoD =@ o)
N \y

then O[G1] = O[G2]. Let us denote by ~ the equivalence with classes {1,2} and {3}. Then

5-(6) = (L2 5B e (D—@®) 5.(G) = 0.

In order to obtain a second coproduct, we restrict ourselves to acyclic mixed graphs:

Definition 2.4. Let G be a mized graph. We shall say that G is acyclic if does not contain any
oriented path xo S ... 5 x, with xo = x, and n = 2. Acyclic mized graphs form a subspecies
G of G, and acyclic oriented graphs form a subspecies Gaeo of Go.

Obviously, if G and H are acyclic mixed graphs, then GH is acyclic; if G is acyclic and
I < V(G), then G|y is also acyclic. Therefore, G is a twisted subbialgebra of G and G, is
a twisted subbialgebra of G,. But G is not stable under §. For example, let us consider the
following acylic oriented graph:

G =

(2),

Let us denote by ~ the equivalence with classes {1,2} and {3}. Then

1@ = (L)@ O—B0

Proposition 2.5. A contraction-extraction coproduct on Gg. is defined by the following: for any
acyclic graph G € 9,.[X], for any ~e £[X],
G/ ~Q®G |~ if ~e&EY|G
()~ [61~8C 1~ if ~eelal
0 otherwise.
where E9[G] the set of equivalences on V (G) such that the classes of G are connected and G/ ~

1s acyclic. Moreover, the following map is a surjective morphims of twisted bialgebras, compatible
with the contraction-extraction coproducts:

G — G
{G if G is acyclic,

“0) Geg[X] ‘
0 otherwise.

Proof. Let I be the subspecies of G of non acyclic mixed graphs. If G is a non acyclic mixed
graph, then for any mixed graph H, GH is not acyclic: I is an ideal. If I is an ideal of G, if it
contains a vertex on a cycle of G, then it contains all the vertices of the cycle: therefore, G| or
Gy ()1 18 not acyclic, which proves that I is an ideal for A. Let ~e £°[G]. Let us consider a
cycle C of G. If all the vertices of C' are equivalent for ~, then G |~ contains a cycle, so is not
acyclic. Otherwise, G/ ~ contains a cycle: I is a coideal for §. Identifying the species G/I and
G via wq, Gg. inherits a contraction-extraction coproduct d, which is precisely the one defined
in this proposition. O
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Similarly, restricting wg to Gy, its image Gy, inherits a contraction-extraction coproduct 6,
as a subquotient of G.

If G is an acyclic oriented graph, we define a relation on V(G) by = < y if there exists an
oriented path from x to y. As G is acyclic, we obtain a partial order on V(G). This defines a
morphism from Gg., to the species Pos of posets. Considering a finite poset as a finite topology
trough Alexandroff’s theorem, this map is the restriction of T. If P is a poset, considering its
Hasse graph G, we obtain an acyclic oriented graph such that T(G) = P. Hence, T is surjective.

Proposition 2.6. There exists a unique product, a unique coproduct and a unique contraction-
extraction coproduct on Pos making the map Y\q,., : Gaco —> Pos a morphism of twisted
bialgebras, compatible with the contraction-extraction coproduct.

Proof. The unicity comes from the surjectivity of Y. The product and the coproduct are the
restriction of the product and of the coproduct on finite topologies.

Let G be an oriented graph and ~e £[V(G)]. The partial order on G/ ~ is the transitive
closure of the relation defined by
TRy if £ S y.

Equivalently, it is the transitive closure of the relation defined by
TRy if x <¢g y.

Therefore, if <g=<¢, for any equivalence ~e E[V(G)], T(G/ ~) = Y(G'/ ~). Obviously,
(G |~) = T(E |~).

Let G, G’ € 4, X] such that <g=<¢: let us prove that £4%[G] = £9%[G']. Let ~e £4%¢|G].
We consider a class C' of ~. Then Y(G/ ~) is an order, as G/ ~ is acyclic, so Y(G/ ~') is also

an order: G/ ~' is acyclic. let 2,y € G. As C' is connected, there exists a (non oriented) path

from x to y in C, which we denote by z = o £ ... € 2, = y. For any 4, x; and z;, are

comparable for <¢, so are comparable for < : there exists in G’ an oriented path from z; to
x;41. If all the vertices on this oriented path are not equivalent to z;, then G’/ ~ is not acyclic,
so G/ ~= G’/ ~ is not acyclic, which contradicts ~e £%[G]. Therefore, there exists a path
in G"C from x; to x;11 for any i, so there exists a path in Gic from = to y: we proved that

~€ £9%¢[G']. By symmetry, we obtain £%[G] = £9%°[G'].
Let G, G’ be two acyclic graphs such that T(G) = Y(G’), and let ~e E[V(G)]. Then

T(G/ ~)QYT(G |~) if ~e E9%G],

0 otherwise

(T®Y)o0d.(G) = {

_ YT(G'/~)QY(G" |~) if ~e 9% [G],
] 0 otherwise

=(T®TY)od(G).
Consequently, Pos inherits a contraction-extraction coproduct as a quotient of Ggco- ]
If < is a quasi-order on a finite set X, we can define an equivalence on X by
z~yifr<yandy<zx.

Then X/ ~ is partially ordered, with



In other words, for any finite set X,

Topo[X] = P Pos[X/~],
~e€[X]

that is to say Pos o Com = Topo. The double twisted bialgebra structure which we obtain in
this way is described in [7]. Applying Aguiar and Mahajan’s bosonic Fock functor [I], we obtain
the double algebra of finite topologies of [6].

2.3 Totally acyclic graphs

Definition 2.7. Let G be a mized graph. We shall say that it is totally acyclic if does not contain
any mized path (zg,...,x,), with xg = x, and n = 2. Totally acyclic graphs form a subspecies
Giae of G.

Note that totally acyclic mixed graphs are simply called acyclic in [4].
Proposition 2.8. Gy, is a twisted subbialgebra of G.

Proof. If G and H are totally acyclic graphs, then GH is totally acyclic. So Gygc is a twisted
subalgebra of G. Let G be a totally acyclic mixed graph and I < V(G). As G does not
contain any mixed cycle, so does G|1: G|y is totally acyclic. As a conclusion, Gige is a twisted
subcoalgebra of G. O

Consequently, for any vector space V, Fy[Gyqac] is a subbialgebra of (Fy[G],m,A). The
subspecies Gyqc 18 not stable under §. For example, considering the mixed graph

G = (z)—=(v),

4

which is totally acyclic, the equivalence relation ~ which classes are {z,y}, {z} and {t} belongs
to £°[G] (in fact, even to £“%‘[G]), and G/ ~ is not totally acyclic.

3 Applications

3.1 Three polynomial invariants

Let (V,-,dy) be a non necessarily unitary, commutative bialgebra. From [9, Theorem 3.9], there
exists a unique morphism ¢; of double bialgebras from (Fy[G],m,A,d) onto (K[X],m,A,d)
where the two coproducts of K[X] are defined by

AX)=X®1+1QX, 5(X)=X®X.

Let us determine ¢y, firstly when V' = K. Let G € 4[X], nonempty. Then, still by |9 Theorem
3.9],

o6}
01(G) = 3, " o AFTI(G) Hi(X),
k=0
where Hj, is the k-th Hilbert polynomial:
XX-1)...(X=-k+1)

Hy(X) = = .
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Notations 3.1. For any k > 1, for any mixed graph G, we denote by Li(G) the set of surjections
¢: V(G) — [k] such that

Vz,y e V(G), x5y = c(z) < c(y).
By definition of the coproduct A, for any mixed graph G with n > 1 vertices,

A(k_l)(G) = Z G|671(1) ®...Q G|c*1(k)'
CELk(G)

This leads to the following definition:
Definition 3.1. Let G be a mized graph.
1. A walid coloration of G is a map ¢ : V(G) — Nxg such that
Ve,y e V(G), r Sy = c(x) <c(y),
r €y = c(x) # c(y).
2. A walid coloration ¢ of G is packed if ¢(V(G)) = [max(c)]. The set of valid packed col-
orations of G is denoted by VPC(G).

Thanks to this definition, we obtain, For any V-linearly decorated mixed graph G,
EED o AE-1(@) = [{ce VPC(G), | max(c) = k}.
And finally:

Proposition 3.2. The unique morphism of double bialgebras from F[G] to K[X] is given on
any mized graph G by

Pchr‘s (G) = Hmax(c)'
ceVPC(G)

Consequently, if N € N, Pepyro(G)(N) is the number of valid colorations ¢ such that max(c) < N:
we recover the (strong) chromatic polynomial Py, (G) of [4].

Remark 3.1. If V is a non necessarily unitary, commutative bialgebra, the unique double bialgebra
morphism from (Fy[G],m,A,d) to (K[X],m,A,d) is Py 0 Oy (which is indeed a double

bialgebra morphism by composition). It sends any V-linearly decorated mixed graph G to

Pas0Ov(G) = | [] evoda(@) |Penrs(G),
eV (Q)

where dg is the decoration map of G and G the underlying mixed graph.
Let us now recover the weak chromatic polynomial of [4].

Definition 3.3. Let G be a mized graph.

1. A weak valid coloration of G is a map ¢ : V(G) —> Nxq such that

Ve,y e V(G), x5y — c(z) < c(y),
r %y = c(x) # c(y).

2. A weak valid coloration ¢ of G is packed if ¢(V(G)) = [max(c)]. The set of weak valid
packed colorations of G is denoted by WVPC(G).
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We are going to use the action <~ of the monoid of characters on the set of morphisms [9,
Proposition 2.5]. Let Ay : F[G] — K defined on any mixed graph G by

AW“D_{1ﬁEmQ=@,

0 otherwise.

This is obviously a character. We consider 0(Aw) = Peprg < Aw = Pepyy,,, With the notations
of [9, Corollary 3.12|. This is a bialgebra morphism from (F[G],m,A) to (K[X],m,A). For
any mixed graph G,

Pchrw (G) = Z Hmax(c) .
ceWVPC(G)

Consequently, if N € N, Py, (G)(N) is the number of weak valid colorations ¢ such that
max(c) < N: we recover the weak chromatic polynomial of [4]. Therefore:

Corollary 3.4. P, : (F[G],m,A) — (K[X],m,A) is a Hopf algebra morphism.

Remark 3.2. Let G € 4[X]. We denote by &f,[G] the set of equivalences ~e £[G] such that
Vo,y e V(G), TS y=az2y.

Then, for any mixed graph G,

Py (G) = D0 Aw(G |~)Perg (G ~) = 2 mmw>
~e€c[G] ~eE !

Example 3.1. For n > 3. Let GG, be the following mixed graph:
V(Gn) = [n], E(Gn) = {{1,n}}, A(Gn) ={(i,i+ 1) [i€[n—1]}

NYG) S—

|
®

Weak valid colorations of G,, are nondecreasing maps c : —> N.o, such that ¢(1) # c(n).
Therefore,

In other terms,

X(X+1)...(X+n—-1)

- X.
n!

PchrW (Gn) =
Valid colorations of G, are strictly increasing maps ¢ : [n] — N~g. Therefore,

X(X=1)... (X —n+1)
n! '

Pchrs (Gn) =

With the help of [0, Propositions 3.10 and 5.2|, we now define a homogeneous morphism
oo : F[G] — K[X] with the help of the element u € F[G]} defined by

n(®)=1.

Then, if G is a mixed graph,

koAmlkG%:{waaﬂﬁk=n«G»

0 otherwise.

We denote by ¢(G) the cardinality of L, (G), that is to say the number of bijections ¢ : V(G) —
[n] such that

Va,y e V(G), x5y = c(z) <c(y),
and finally:
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Corollary 3.5. For any mized graph G, we put

UG)

@Ik $0(G) = Xo(G) XV,

Ao(G) =

Then Ao is a character of F[G] and ¢ : (F[G],m,A) — (K[X],m,A) is a bialgebra morphism.
For any graph G, ¢o(G)(1) = Ao(G). From [9, Corollary 3.11], ¢g = ¢pg <~~~ Ag. Therefore:

Corollary 3.6. For any mized graph G with n vertices,

UGX™ = > UG |~)Penrs(G/ ~).

~€e€°|G]

3.2 Morphisms to quasishuffle algebras

We assume in this paragraph that (V,-,dy) is a nonunitary, commutative and cocommutative
bialgebra. By [I1, Proposition 3.9], Fy/[G] is a bialgebra over V', with the coaction p described
as follows: if G is a V-decorated mixed graph with n vertices, we arbitrarily index these vertices
and we denote by G(v1,...,v,) the mixed graph with for any i, the i-th vertex of G decorated
by v;. Then

p(Gvr, ... vn)) = Gy, ..., v)) @] ... vl

Notations 3.2. The map 7y : T(V) — K[X] is defined by

X(X—1)...(X—n+1)
n! '

Yoi,...,up €V, my (V1 ... vp) = ey (v1) ... ey (vy)
It is a double bialgebra morphism.
By [10, Theorem 2.7
Theorem 3.7. The unique morphism of double bialgebras over V' from Fy [G] to (T (V'), =, A, 4, p)

18

Fv[G] — T(V)

s : Gvi,...,vp) —> Z H v |... H v;

ceVPC(G) \c(i)=1 c(i)=max(l)

Moreover, my o ®g = FPeyyrg 0 Oy

Proof. The description of ®g comes directly from [I0, Theorem 2.7]. By composition, my o ®g
is a double algebra morphism from Fy [G] to K[X], so is equal to Pep,g © Oy . O

By [10, Proposition 2.10 and Corollary 2.12|, we can consider the morphisms
Py = g e (A5 00Oy), Pp = Og (Mg 0 Oy).
We obtain:

Corollary 3.8. The maps ®w,Po : (Fy[G],m,A,p) — (T'(V),w, A, p) are morphisms of
bialgebras over V. For any V -decorated mized graph G(vi,...,v,),

@W(G(vl,...,vn)): 2 H vi |... H Vi |,

ceWVPC(G) c(i)=1 c(i)=max(l)

= Gu<ﬂ

Do (G(v1, - Z H ! H v |... H v; |,
f@)=1 )
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where the sum is over all surjective maps f: V(G) — [max(f)] such that
Vi,j e V(G), i 5§ = f(i) < f()).
Moreover,
v o @y = Py, © Oy, my 0 Dy = ¢ o Oy .

Proof. The description of ®y and @y comes directly from [I0, Proposition 2.10]. Moreover, by
[10, Proposition 2.11], as Oy is a double bialgebra morphism,

Ty o Py = 7y 0o (Pg «~ (Aw 0 Oy))
= (my 0 @g) «~ (A 0 Oy)
= (Pehrg ©Ov) o~ (Aw 0 Oy)
= (Penrg «~ Aw) 0 Oy

= Lchry © Oy.

The proof is similar for ®. O

3.3 Invertible characters

Let us fix a non unitary, commutative and cocommutative bialgebra (V,-,dy). The product of
the dual algebra is denoted by y/; its unit is the counit €y,. Let us now study the monoid of
characters of (Fy[G],m,d), which product is denoted by *, and in particular let us look for its
invertible. We shall use the following lemma:

Lemma 3.9. Let (B,m,d) be a graded bialgebra. In particular, its homogeneous component of
degree 0 is a subbialgebra. Let A be a character of B. Then X is an invertible character of B if,
and only if, its restriction By to By is invertible in the algebra Bj. In the particular case where
By is generated by a family (z;)ier if group-like elements, X is an invertible character if, and only
if, M(z;) # 0 for anyie I.

Proof. We shall denote by 75 the canonical projection on By for any k € N. We put
,OL=(7T0®Id)O(5, pR:(']T@']TO)O(s.

As g : B —> By is a bialgebra map, (B, pr,pr) is a Bg-bicomodule. For any = € B,, with
n = 1, we put
d'(z) = d(x) — p(@) — pr(2).

By homogeneity of 4,

n n—1
o(z) = Z(m ® Tn—i) 0 6(x) = pr(x) + Z (m; ® Tp—s) 0 8(z) +pr(x).
=1

=0

(=

J

~—

()

==. Let us denote by x the inverse of A in the monoid of characters of B. We put po = pp, .
For any x € By,

Ao pop(z) = (A®@p)odp(z) = (AQ@pu) od(x) = X+ u(x) = e(x).

Similarly, p0 * Ao(x) = €(z), so Ao is invertible in B.

<. Let us define u, : B, — K for any n, such that if x € B,

()\ ® Z Mz‘) o0d(x) = e(x).
i=0
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We proceed by induction on n. If n = 0, we us take o the inverse of \g in Bf. Let us assume
n =1 and uo,..., tn—1 defined. We first define v : B, — K by

Vr € By, v(z) = <A® Z Mz) ) + pr(7)).

n—1
This is well-defined, as §'(z) + p(z) € B® P B;.. We then put p, = (o ®v) o p, : B, — K.
i=0
As pr, = (mp ®1Id) o §, by homogeneity of 0, pr(By) € By ® B, and pu, is well-defined. For any
r e By,

<A® > un> = (A® pn) o pr(z) + €(z) — v(2)

=(A®uov)o(Id®pr) e pr(z) + e(z) —v(z)
= (A®uov)o(dbo®Id)opL(z) + €(z) — v(z)
(Ao * po) ov) o pr(x) + €(z) — v(z)

= (e0ov)opr(x) + €(x) — p(z)

v(z) + () p(x)

e(x).

0
Considering p = Z i; € B, by construction A * y = €. Similarly, we can define /' € B* such
=0
that p/ * A\ = e. Then, as the convolution product = is associative, y/ = p and X is invertible in
B*. Let us now prove that u is a character. We work in the algebra (B ®B) which convolution

product is also denoted by *. For any x,y € B, with Sweedler’s notation d(z Z W @23 for

any z € B,

(mom)xAom)(z®y) = ZZM (1) (1))
= ZM zy) DA ((zy)®)
zy

= ¢(zy)
e(z)e(y)
= epeB(r®Y).

Similarly, (Aom) = (uwom) = epgn, So, as A is a character,
pom=MNom)* =A@\ ! =1Qpu.

So u is indeed a character of B.

Let us now consider the particular case where By is generated by a family (x;)er of group-like
elements.
=. If X\ is an invertible character, denoting its inverse by pu, for any 7 € I,

A p(zy) = e(x) = 1 = Mag) (),

so A(z;) # 0.
<. Let us assume that X is a character of B such that A(x;) # 0 for any ¢ € I. In order
to prove that A is an invertible character, it is enough to prove that \g is invertible in B. By
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hypothesis, By has a basis (y;);es of monomials in (z;);er. By multiplicativity, for any j € J, y;
is group-like and A(y;) # 0. We then define pg € B by

. 1
VjedJ n(y;) = o)
j

Then for any j € J,
Ao * po(ys) = po * Ao(ys) = Ao(yj)roly;) = 1 = €(y;),
so Ag is invertible in Bg. O
In order to use this lemma, let us introduce a gradation of (Fy[G],m, ).

Proposition 3.10. For any V -linearly decorated mized graph G, we denote by cc(G) the number
of connected components of G and put

deg(G) = |V(GQ)| — cc(Q).
This defines a gradation of the bialgebra (Fy |G|, m,?).

Proof. Note that for any graph G, deg(G) = 0. Let G and H be two V-linearly decorated mixed
graphs. Then

[V(GH)| = |V(G)|+ |[V(H)|, cc(GH) = cc(G) + cc(H),

so deg(GH) = deg(G) + deg(H). Let G be a V-linearly decorated mixed graph and ~e £¢[G].
We denote by k the number of equivalence classes of k. As ~e £°[G],

V(G M) = V(G cc(G |~) = k.

Moreover, the connected components of G/ ~ are the contractions of the connected components
of G, so

\V(G/ ~)| =k, cc(G/ ~) = cc(Q).

We obtain that deg(G/ ~) + deg(G |~) = |V(G)| — k + k — cc(G) = deg(G). So (Fv[G],m,0)
is graded. O

For any graph G, deg(G) = 0 if, and only if, F(G) = A(G) = . The subbialgebra
Fv[Glaeg—o of elements of degree 0 is the symmetric algebra generated by elements @, with
v € V. The coproduct of such an element is given by the coproduct of V',

(@) =(v)e ().
Proposition 3.11. Let A € Char(Fy[G]). We define a map Ay € V* by
YueV, M () = A(V)).
Then X is invertible in (Char(Fy[G]), *) if, and only if, Ay is invertible in (V*, xy ).

Proof. =. Let us assume that A is an invertible character. Denoting by u its inverse, py
provides an inverse of Ay in V*.

<. Let us assume that Ay is invertible in V*. By Lemma [3.9] it is enough to prove that Ay
is invertible in the algebra Fy/[G]o. By construction of the graduation, Fy/[G]o is the symmetric
algebra generated by V. Extending multiplicatively the inverse of Ay to Fy/[G]o, we obtain an
inverse of Ag. O
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In the particular case where V = K:
Corollary 3.12. Let A be a character of F[G]. It is invertibleChar(F[G]), ) if, and only if,
A®) #0.

Proof. This is implied by Lemma , with the family of group-like elements reduced to ®. O

In particular, Ay and Ay are invertible. Their inverses are denoted respectively by vy and
ps. We also put pw = ps * Aw. Then, as Peyyy, = Poprg « Aw and ¢g = FPeprg <~ Ao, We
obtain

Pchrs = Pchrw o Vw, Pchrs = Qg <~ s, Pchrw = Qg «~ pyy.
and, similarly,
Peprg = Pw vy, Peprg = ®o e~ s, Dy = Dg o pyy.

Proposition 3.13. For any mized graph G,

Pars(G) = X7 Mo(G/ ~us(G <)X = % vy (G |~) Py (G ~),
~e€|G] ~e€°|G]

Py (G) = Y, 20(G/ ~)uw (G |~) X0,
~e€¢[G]

where cl(~) is the number of classes of ~.

Corollary 3.14. If G is a connected mized graph, then ps(G) is the coefficient of X in Pepro(G)
whereas py (G) is the coefficient of X in Pepyyy, (G). Moreover, \o(G) is the coefficient of X1V ()
in both Pepyy(G) and Pepyy, (G).

Proof. As G is connected, the unique element ~ of £[G] with cl(~) = 1is ~1. So the coefficient
of X in Peyg (G) is, as Ag and € coincide on Fy[G]geg—0, equal to

M(G/ ~p)us(G |~1) = (Mo ® ps) 0 pr(G) = (e®@ ps) o pr(G) = ps(G).

Similarly, the unique equivalence ~e £[G] such that cl(~) = |V(G)| is ~r. So the coefficient
of XVl in Poprg(G) is, as ps and € coincide on Fy[Glgeg—o0 equal to

M(G/ ~Rr)s(G |~Rr) = (Mo ® ps) 0 pr(G) = (Ao ®€) 0 pr(G) = Ao(G).

The proof is similar for the weak chromatic polynomial. O
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Example 3.2.

G Penrg (G) Pepryy (G) M(G) | ps(G) | pw (G) | vw (G)

*—o X(X-1) X(X-1) 1 —-1 —1 0

. »o X(X -1 X(X +1) 1 1 1 B
2 2 2 2 2

—>o 0 X 0 0 1 —1

o—o o X(X —1)? X(X —1)? 1 1 1 0

o o o X(X —1)? X(X +1)(X —1) 1 1 1 0
2 2 2 2 2

o ° o X(X —1)? X(X +1)(X —1) 1 1 1 0
2 2 2 2 2

—ro o 0 X(X-1) 0 0 —1 0

o re ro | XX-DX-2) | XX+D)X+2) | 1 1 1 .
6 6 6 3 3

o o o | XX -D(X-1) | X@X+1)(X+1)| 1 1 1 .
6 6 3 6 6

o—>o >0 0 X(X2+ ) 0 0 % 1
X(X +1 1

oc—20<«+—0 0 (2+) 0 0 3 1

oo 0 X 0 0 1 1

Example 3.3. Let us consider again the graph G,, of Example We obtain
(= _(n—=1)! o on—1 _

As an example of application:

Proposition 3.15.

L. Pchrs cwo = Pchrs'

2. Let G be an acyclic mized graph. Then P, (G) is of degree |V (G)| and its leading term

is L(G).

Proof. 1. Note that P, 0wy and Pep,, are bialgebra morphisms from F[G] to K[X]. Moreover,
€50 Peprg 0o = €5 0wn = €5 = €50 Peprg.-
By unicity, Peprg © @o = Penrg-
2. Let G be an acyclic graph. As Pepg = ¢g <~ g,

Penrs(G) = 3, ps(G [~)UG/ ~) X,
~€e&.[G]

which implies that deg(Peprg(G)) < |[V(G)|. If ~ is the equality of V(G), then G |~ is a graph
with no edge, so pus(G |~) = 1. We obtain that

Prors (G) = £(G) XV 4 terms of degree < |V(G)].
As G has no cycle, £(G) # 0, so deg(Penrs(G)) = [V(G)|. O
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4 From mixed graphs to acyclic oriented graphs

4.1 A double bialgebra epimorphism

Definition 4.1. Let G a mized graph. An orientation of G is an oriented graph H with V(G) =
V(H) and A(H) = A(G)uE', where E' is a set of arcs in bijection with E(G), through a bijection
respecting the extremities. Such an orientation of G is acyclic if H is an acyclic oriented graph.
We denote by Ouc(G) the set of acyclic orientations of G.

Theorem 4.2. Let G be a mized graph. We put

oG = > &,

G'€04e(G)

with the usual convention that this sum is 0 if Oq.(G) is empty. Then © is a double twisted
bialgebra morphism from G to Ggco.

Proof. Firstly, © is indeed a species morphism from G to G,e. Let G and H be two mixed
graphs, G’ and H' be orientations of G and H. Then G'H’ is an acyclic orientation of GH
if, and only if, G’ and H’ are acyclic orientations of G and H. This implies directly that
O(GH) = O(G)O(H). So © is a twisted algebra morphism.

Let G € G[I u J] be a mixed graph. If J is not an ideal of G, then Ay ;(G) = 0. Moreover,
for any orientation G’ of G, I is not an ideal of G’, so Ay j(G’) = 0. Hence, in this case,

(O®O)oAr j(G) =Ar;00(G) =0.
We now assume that J is an ideal of G. Then

(O©®0) oA (G) = > ¢'e®c,
(G’,G”)anc(Gﬂ)XOGC(G\J)

Arjo®G) = > H;®H;

HeOuc(G),
J ideal of H

We put
A = O04c(G1) x OuclG)), B = {H € Ou(G) | J ideal of H},

and we consider the map

B — A
w{ H — (Hll’HIJ)

This is obviously well-defined. We now consider the map ¢’ : A — B, sending any pair (G', G")
to an orientation ¥ (G’,G") = H of G defined in this way: for any edge {x,y} of G,

e If z,y € I, then orient this edge as in G'.
e If 2,y € J, then orient this edge as in G”.
o If x € I and y € J, then orient this edge from z to y.

e If x € J and y € I, then orient this edge from y to .
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As there is no arc in H from J to I, J is an ideal of H. Moreover, as G’ and G” are acyclic, H
is acyclic: 1)’ is well-defined. We immediately obtain that 1)’ o9 = Idg and 1) o)/ = Idy, so ¥
and 1)/ are bijections. Therefore,

O®0)oA,(G)= > G®GC =) Hi®H;=A[,00(G).
(G',G"))eA HeB

So O : (G,m,A) — (Ggeo,m, A) is a twisted bialgebra morphism.

Let G € G[I u J] be a mixed graph and ~e £(G). If H is an orientation of G, as the paths
in G and H are the same, ~e £.(G) if, and only if, ~e E.(H). Hence, if ~¢ £.(G),

5.00(G) = (O®0O)0s.(G) = 0.

Let us now assume that ~e £.(G). Then

6.00(G) = Z H/ ~Q®H |~,
HeOuc(G),
H/ ~ acyclic
(O®0)0d.(G) = > GG

(G",G"EO 4 (G)~) x Oge(G|~)
We put

C = 04e(G) ~) x Oge(G |~),
D ={H € O4(G) | H/ ~ acyclic}.

If H e D, then H/ ~ is an acyclic orientation of G/ ~ by definition of D and H |~ is an acyclic
orientation of G |~ by restriction. This defines a map

) C — D
MH e (H/~H ).

Let us now consider (G',G") € C. We define an orientation of G in the following way: if {z,y}
is an edge of G,

o If x ~ y, then {z,y} is an edge of G |~: orient it as in G”.

e Otherwise, {Z,7} is an edge or an arc of G/ ~: orient {x,y} as {Z,y} in G: as G’ is acyclic,
this is unambiguous.

Note that H/ ~= G’ and H |~= G” by construction. Moreover, this is an acyclic orientation of
G:ifwy — ... > xp — 21 is a cycle in H, as G’ is acyclic, necessarily x1 ~ ... ~ @y, so this is a
cycle in G”: as G” is acyclic, this is not possible. Moreover, H/ ~= G’ is acyclic, so this defines
amap ¢ : D — C such that ¢ o ¢’ = Idp.

Let H e C. We put H = ¢/ o ¢(H). Let (z,y) be an arc of H. If x ~ y, then (z,y) is an
arc of H |~, so is an arc of H'. Otherwise, (Z,7) is an arc of H/ ~= H'/ ~. If (y,z) is an arc
of H', then T — § — T is a cycle in H'/ ~, so H/ ~ is not acyclic: this is a contradiction. So
(x,y) is an arc of H'. Therefore, H and H' have the same arcs, so are equal. We proved that
¢’ o =1Id¢, so ¢ is a bijection. We obtain:

5.00(G) = Y H/~®H |~= ) GG =(0®6)0i.(G).
HeD (G",G"eC

So © is compatible with §. It is obviously compatible with the unit and both counits. O
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Consequently, F[O] : F[G] — F[Gqco| is a double bialgebra morphism. By composition,
P.prg 0 F[O] : FIG] — K[X] is a double bialgebra morphism. By unicity of such a morphism,

Pchrs o ]:[G] = Pchrs'
Corollary 4.3. For any mized graph G,

Pchrs (G) = 2 Pchrs (H)
HeOuc(G)

4.2 Erhahrt polynomials for mixed graphs

Proposition 4.4. Let g € K. The two following maps are characters of F[G]:

FI[G] — K Fla] K
ehrgtl : a {qv Zf A( ) g; ehr(q) : { a qlV(G)l’

0 otherwise,

with the convention ¢° = 1 even if ¢ = 0. We denote by Ehr'? and by Ehr(@ the unique Hopf

str

algebra morphisms from (F[G],m,A) to (K[X],m,A) such that

€5 0 Ehr'? = ehr? €5 0 Ehr(® = ehr(®),

str str?

Then, for any n € N, for any mized graph G,

Ebrl?) (G)(n) = ¢V Dl : V(G) — [n] | Va,y € V(G), = S
Ehr@ (@) (n) = ¢V DI f : V(G) — [n] | Yo,y e V(G), z S

(@)

str-

Moreover, Ehr( 9)

st © o = Ehr

From now, we shall write simply ehrg,, ehr, Ehry, and Ehr for ehrgtz, ehr(®) Ehrgm)q and
Ehr(!).

Proof. The maps ehr(? and ehr'?)

str

are obviously characters of F[G]. For any mixed graph G,

Ehr'?)

str

te)

||
iDMs

Zehrstr Glp1q1)) - el (G -1 ) Hi(X)
k=1 f

Wlebr()(Glporry) g Wlehr (G ) Hic(X)

e
I
—

I
18
L7

e ¢]
1
= VA Zehrgtz(GV—l(l)) ehrgtz(G\f—l(k))Hk(X)
k=1 f
= Q‘V(G)lEhrstr(G>7
where the second sum is over the surjective maps f : V(G) — [k] such that for any z,y € V(G),
x5y = f(z) < fy).

Similarly, Ehr?(G) = ¢/V(@)IEhr(G). We now study Ehr,, and Ehr.

0
Ehrstr(G) = Z Z hrstr G|f 1(1) ) ehrstr(G‘fq(k))Hk(X),
k=1 f
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where the second sum is over the surjective maps f : V(G) — [k] such that for any z,y € V(G),

Sy — f(z) < fy).

By definition of ehrg,

where the second sum is over the surjective maps f : V(G) — [k] such that for any z,y € V(G),

x5y = f(z) < f(y),

which implies the announced result. Similarly,

0 0
Ehrstr 2 Zehrstr G|f 1(1)) ehrStT(G\f Z Z
k=1 k=1 f

where the second sum is over the surjective maps f : V(G) — [k] such that for any z,y € V(G),
v Sy = f(z) < f(y)
This implies the announced result.

Let us prove that Ehrl? o wy = Ehr'? . For this, it is enough to prove that €5 o Ehr'?

str str str O W0 =
€5 © Ehrgl, that is to say ehrgtz owy = ehrg.. Let G be a graph. If G is not acyclic, then
ehrgtz o wp(G) = 0. Moreover, necessarily A(G) # &, so ehri‘i,), = 0. Otherwise, wy(G) = G and
ehrgt?n owp(G) = ehrg%)ﬂ(G). O

Remark 4.1. By [9, Corollary 3.12],
Ehrg, = Poprg <~ ehrg,, Ehr = Pypg <~ ehr.

Notations 4.1. Let G be a mixed graph. We denote by S(G) the set of vertices y € V(G) such
that there exists no e € A(G) such that y is the final vertex of e (set of sources of G) and by
W (G) the set of vertices z € V(G) such that there exists no e € A(G) such that z is the initial
vertex of e (set of wells of G).

Proposition 4.5. Let q,q' € K. For any mized graph G, denoting by = the convolution product
associated to A,

ehrl® 4 ehr(@) (@) = ¢IVOSO (g 4 YISO

str

ehr(@ « ehrggT) (G) = q/IV(G)\W(G)|(q + q/)\W(G)\.
Proof. Indeed,

ehr!? Z x ehr@)(@ Zq'hl Mzl

S

where the sum is over all partitions V(G) = I u I3 such that if z % y in V(G), then (z,y) €
(I1 x Iy) U I2. Hence,

ehrg‘gz*ehr( )(G)z Z g!MlgV (@]
11§S(G)
= ¢IVEO\S(@) Z ghlg/1S(@N\n|
ILcS(G)

= q’lV(G)\S(G)I(q + q/)IS(G)I‘
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Moreover,

ehr(@ « ehr(q/)(G) = Z gl

str

where the sum is over all partitions V(G) = I; U I such that if x % y in V(G), then (z,y) €
(I1 x Iy) U I?. Hence,

ehrg‘g x ehr(@) (@) = Z g1l g1V (GG
LEW(G)
= ¢IV(EOW(@G) Z gl g/ WG\
11§W(G)
= ¢IVEOW (g 4 HWE, O

Corollary 4.6. The inverse (for the convolution product =) of the restriction of ehr'? o F[Gacl
(—9)

is the restriction of ehrg, " .

Proof. Let G be an acyclic mixed graph. Let us prove that

ehrl 7 « ehrl® (@) = ea(G).

str

This is obvious if G = 1. Otherwise, as G is acyclic, then S(G) # & and W(G) # &. Hence,
ehr(;? « ehr@(G) = V(SO (g — q)IS = 0 = 25 (G). O
Let us now prove the duality principle for Ehrhart polynomials:

Corollary 4.7. Let G be an acyclic mized graph. Then
Ehr, (G)(—X) = (-1)V@IE(G)(X).

Proof. We denote by Sg the antipode of (F[Gqc], m, A) and by S the antipode of (K[X], m, A):
for any P € K[X], S(P(X)) = P(—X). As Ehr : (F[Gqgc],m,A) — (K[X],m,A) is a Hopf
algebra morphism,

Ehrg, (G)(—X) = S 0 Ehrg, (G) = Ehrg, 0 Sg(G).
Therefore, by the duality principle,

Ehrstr(G)(_l) =S5o Ehrstr(G)(l)
= Ehrg, 0 Sg(G)(1)
= ehrg, 0 Sg(G)
= e}, '(G)

— ehr=V(G).
This implies that Ehrg, o S is the Hopf algebra morphism P, < ehr(—1:

Ehry, 0 S(G) = (Peprs @ ehr™V) 0 6(G)
= ()P, ®ehr) 0 6(G)
= (-)V@IEN(G)(X). O
Corollary 4.8. Let G be an acyclic oriented graph. Then

Ehrsir (G) = Pors (G), Penrs (G) (1) = (=),
Ehr(G) = Peary, (G), Py (G)(—1)

Il
~—~

|
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~

<

=
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~
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>
—
)
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Proof. We work in Fx[G] = F[G]. For any oriented acyclic graph H,

1if A(H) = &,

0 otherwise.

ehrg, (H) = e5(H) = {

Hence, Ehrg,(G) = Peprg (G): the restriction of Ehr to F[Gacol is Penrg. Moreover,
Ehr (G)(~1) = (~D)V@E(G)(1) = (~1)V @leba(G) = (~1)V(E,
For any oriented acyclic graph H, ehr(H) = 1 = Ay (H), so Ehr(G) = Pepyy,, (G). Moreover,
Bhr(G)(—1) = (—)V O Bl (G)(1) = (~1)V Olehry, (G) = (-1)Vleg(@). O

From Corollary [£.3] we obtain another proof of the following result, proved in a different way
in [4, Theorem 3|:

Corollary 4.9. Let G be a mized graph. Then
Pers (G)(=1) = (=) D1404(G).

Remark 4.2. We recover the classical result on the chromatic polynomial when this corollary is
applied to graphs [16].

From [9, Corollary 2.3]:

Corollary 4.10. Denoting by S the antipode of (F[|G],m,A), for any mized graph G,

S(@) = > (—1)0u(G/ ~)G |~ .
~€e&°|G]

5 Applications to characters on mixed graphs

5.1 Weak chromatic polynomial

Proposition 5.1. Let G be a totally acyclic mized graph. Then

0 if A(G) # &,

Penry (G)(=1) = {(—1)|V(G)|‘OGC(G)\ otherwise.

Proof. If A(G) = &, then Pepyy, (G) = Peprg(G), and the result comes from Corollary 4.9 Let us
assume that A(G) # J. We proceed by induction on |E(G)|. If E(G) = &, then by definition,
P.pry (G) = Ehr(G). By the duality principle for Ehrhart polynomials (Corollary ,

Penry (G)(=1) = (=)D Ehry,, (G)(1) = 0,

as A(G) # &. Let us assume the result for all acyclic graph H such that |E(G)| > |E(H)|
and A(H) # . Let e be an edge of G. We denote respectively by G/e and by G\e the mixed
graph obtained from G by contraction of the edge e respectively by deleting the edge e. From
[4, Proposition 6],

Penry (G)(=1) = Penryy (G\e)(=1) = Penry, (G/€)(=1).

Moreover, G'\e and G/e are mixed graph with at least one arc and strictly less edges than G.
Moreover, as G is totally acyclic, G/e and G\e are acyclic: we deduce that P, (G\e)(—1) =
Pehry, (G/e)(—=1) = 0. Hence, Pepyyy, (G)(—1) = 0. O
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Remark 5.1. If G is not totally acyclic, no interpretation of Py, (G)(—1), and even of its sign,
is known. For example, if G, is the graph of Example then P, (Gn)(—1) = 1 for any
n = 2.

We recover the interpretation of [3] of the values of the weak chromatic polynomial at negative
values:

Corollary 5.2. Let G be a totally acyclic mized graph and k € N. Then (—1)IV( @I P, (G)(—k)
is the number of pairs (H, f) such that:

e H is an acyclic orientation of G.
e f is a k-coloration of G compatible with H, that is, for any x,y € V(G),

5y — f(z) < f(y),
r 5y = f(z) < f(y)

Proof. By compatibility of P, with the coproduct A,

Pty (G)(—K) = > Perry (Gp=11)) (=1) ... Patryy (Glp-108)) (—1).
FV(G)— K],
o Sy=f(2)<f(y)

By the preceding proposition, if G|f-1(;) has an arc, then Pepyy, (G|f71(1)) (—1) = 0. Therefore,
Py (G)(—k) = > Pty (Glp-11)) (=1) .. Penryy (Glp—108)) (—1)

FV(G)—TH],
zSy=f(2)</()

k
-1 -1
— Z (=) Ot £ R H $0uc (G1y-111)
FV(G)— k], i=1
e Sy= f(z)<f(y)

k
= (- > 8O0ac (Gp-133)) -
=1

fV(G)_)[k:]v g
o Sy—f(z)<f(y)

We consider
Ak = {(f7 -H17 .. 7Hk) ‘ f : V(G) - [k]J HZ € Oac (G|f71(7,))})
B ={(H,f)| He Ou4(Q), f:V(G) —> [k] compatible with H}.

The map ¢ : By — Ay which send (H, f) to (f, Hjg-1(1),, Hf-1()) is well-defined. If
o(H, f) = ¢(H', '), then f = f’. Moreover, if {z,y} € E(G):

o If f(z) = f(y) =4, then {x,y} is oriented in the same way in H|y-1(; and in H‘/f_1( )» as

i
these oriented graphs are equal. So {z,y} is oriented in the same way in H and in H'.

o If f(x) < f(y), as f is compatible with H and in H’, then (z,y) € E(H) and (z,y) € E(H').
o If f(x) > f(y), as f is compatible with H and in H’, then (y,z) € E(H) and (y,x) € E(H').

Therefore, H = H': ¢ is injective. Let (f, Hy,..., Hy) € Ar. We define an orientation of G' by
the following: if {z,y} € E(G),

e if f(x) = f(y) =i, we keep the orientation of this edge in H;.

o If f(z) < f(y), we orient this edge in (z,y) in H.
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o If f(z) > f(y), we orient this edge in (y,z) in H.

By construction, for any i € [k], H\p-1; = H;. Moreover, f is compatible with H, by construc-
tion. Consequently, f is constant on any cycle of H. As the oriented graphs H; are acyclic, H
is acyclic. We obtain that (H, f) € By and ¢(H, f) = (f, H1,..., Hy). Finally,

Pepry (G)(=k) = (=1)V N 43] = ()Y D By . -

5.2 The character vy,
Recall that vy is the inverse of Ay for the convolution * associated to 9.
Proposition 5.3. 1. For any simple graph G with at least one edge, vy (G) = 0.

2. For any oriented graph G, vy (G) = (—=D)IV(O+ee(@) where cc(Q) is the number of con-
nected components of G.

Proof. 1. We denote by Ay, the restriction of Ay to F[Gs]. For any simple graph G, A\w (G) =
€5(G), 50 Ay = €55, [G.]- As F[Gs] is a double subbialgebra of F[G],

M) " = (es171G.)" " = (66" DiF1cy) = €s171G.)-

2. Let X be a character of F[G,], such that \(®) # 0. Then X is invertible for the
convolution product * associated to ¢: its inverse is denoted by p. Denoting by S the antipode
of (F[Go],m,A), let us prove that A o S is invertible for » and that its inverse is p * (€5 0 S).
Firstly, \o S(®) = —\(®) # 0, so Ao S is invertible. Moreover,

AoS)*ux(esoS)=(A@uoes

=(AQ@uoes

( 0 (S®IA®S) o (F®Id) o6
(
(
(

(
o(Id®Id® S)o(6®Id)odo S
=(A®puoes)o(0®Id)o(Id®S)odoS
Axp®es)o(Id®S)odoS
=e¢®eo0(Id®S)odo S

=65052

= €5.

O

~— ~— ~— —

We used for the second equality that (S ®1Id)od = d o S (see [9, Proposition 2.1] and for the
last equality that S? = Id, as F[G] is commutative. So p * (e50.5) = (Ao S)*~L.

In the particular case were A\ = €5, then y = €5 and we obtain that (e50.9)* ! = €50 5.

Let G be an oriented graph. By definition of the weak Ehrhart polynomial and by the duality
principle for Ehrhart polynomial (Corollary ,
A (G) =1

= Ehry (G)(1)

= (-1)V@Eh(G)(-1)
= (-1 )lV S o Ehr(G)(1)
(— ) 'Ehr(S(G))(l)
(—1)V@les 0 5(G).

We now consider the three characters of F[G,]| defined on any oriented graph G by
AG) = 05(G), (@) = (~n"IN@G), v(G) = (~1)“ING).
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We already proved that A x A = ¢5. For any graph G,

prv(@) = Y (~)VEIRACPING NG |~)
~e&c|G]

= Y (CDFONG ~MAG )

~€e€¢[G]

= D MG/ ~AG|~)
~e&°|G]

= A*x A\(G)

= ¢5(@G).

Therefore, v = p*~1. As = Ay, we obtain that v = vy and, for any oriented graph G,
VV[/(G) _ (_1)cc(G))\<G) _ (_1)cc(G)+|V(G)|/\W(G) _ (_1)cc(G)+|V(G)|. ]
No interpretation of vy (G) is known in general. For example:

Proposition 5.4. Let G, be the mized graph of E:mmple with the convention Gy = & —>@®
For anyn =2, vw(Gp) = (=1)"1(n—1).

Proof. For any n > 2,

v = A\w (Gp) = v (G ~)Aw (G |~) = es(Gp) = 0.
~€e&¢[Gn]

By definition of Ay, for any ~e £°G,], Aw(G |~) = 0 if, and only if, 1 ~ n. Therefore,
the contributing terms corresponds to the equivalences which classes are intervals of [n], at the
exception of the one with only one class. For such an equivalence ~, G/ ~ is isomorphic to
Ge(~). We obtain that if n > 3,

i > ww(Gr) =0.

k=241+...+ik=n,
1>l

A direct computation shows that Ay (G2) = —1. Summing, we obtain in the ring of formal series

QIIX]] that

= i1+ % < X *
2 awlGYXETT = ), v (Gy) () -

11+...+ip=n, k=2
01 yeenyip =1

Substituting 1 to X, we obtain

+ X

0 X2 o0
];2 v (Gp) XF = A XE ;2(—1)'”1@ —-1)Xx* O
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