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Abstract
Learning robust models that generalize well under
changes in the data distribution is critical for real-
world applications. To this end, there has been a
growing surge of interest to learn simultaneously
from multiple training domains — while enforc-
ing different types of invariance across those do-
mains. Yet, all existing approaches fail to show
systematic benefits under controlled evaluation
protocols. In this paper, we introduce a new
regularization — named Fishr — that enforces
domain invariance in the space of the gradients
of the loss: specifically, the domain-level vari-
ances of gradients are matched across training
domains. Our approach is based on the close rela-
tions between the gradient covariance, the Fisher
Information and the Hessian of the loss: in par-
ticular, we show that Fishr eventually aligns the
domain-level loss landscapes locally around the
final weights. Extensive experiments demonstrate
the effectiveness of Fishr for out-of-distribution
generalization. Notably, Fishr improves the state
of the art on the DomainBed benchmark and
performs consistently better than Empirical Risk
Minimization. Our code is available at https:
//github.com/alexrame/fishr.

1. Introduction
The success of deep neural networks in supervised learning
(Krizhevsky et al., 2012) relies on the crucial assumption
that the train and test data distributions are identical. In par-
ticular, the tendency of networks to rely on simple features
(Valle-Perez et al., 2019; Geirhos et al., 2020) is generally
a desirable behavior reflecting Occam’s razor. However,
in case of distribution shift, this simplicity bias deterio-
rates performance when more complex features are needed
(Tenenbaum, 2018; Shah et al., 2020). For example, in the
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Figure 1: Fishr principle. Fishr considers the individual
(per-sample) gradients of the loss in the network weights θ.
Specifically, Fishr matches the domain-level gradient vari-
ances of the distributions across the two training domains:
A ({gi

A}
nA
i=1 in orange) and B ({gi

B}
nB
i=1 in blue). We will

show how this regularization during the learning of θ im-
proves the out-of-distribution generalization properties by
aligning the domain-level loss landscapes at convergence.

recent fight against Covid-19, most of the deep learning
methods developed to detect coronavirus from chest scans
were shown useless for clinical use (DeGrave et al., 2021;
Roberts et al., 2021): indeed, networks exploited simple
bias in the training datasets such as patients’ age or body
position rather than ‘truly’ analyzing medical pathologies.

To better generalize under distribution shifts, most works
(Blanchard et al., 2011; Muandet et al., 2013) assume that
the training data is divided into different training domains
in which there is a constant underlying causal mechanism
(Peters et al., 2016). To remove the domain-dependent expla-
nations, different invariance criteria across those training
domains have been proposed. Ganin et al. (2016); Sun et al.
(2016); Sun & Saenko (2016) enforce similar feature distri-
butions, others (Arjovsky et al., 2019; Krueger et al., 2021)
force the classifier to be simultaneously optimal across all
domains. Yet, despite the popularity of this research topic,
none of these methods perform significantly better than the
classical Empirical Risk Minimization (ERM) when applied
with controlled model selection and restricted hyperparame-
ter search (Gulrajani & Lopez-Paz, 2021; Ye et al., 2021).

https://github.com/alexrame/fishr
https://github.com/alexrame/fishr
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These failures motivate the need for new ideas.

To foster the emergence of a shared mechanism with consis-
tent generalization properties, our intuition is that learning
should progress consistently and similarly across domains.
Besides, the learning procedure of deep neural networks
is dictated by the distribution of the gradients with respect
to the network weights (Yin et al., 2018; Sankararaman
et al., 2020) — usually backpropagated in the network dur-
ing gradient descent. Additionally, individual gradients are
expressive representations of the input (Fort et al., 2019;
Charpiat et al., 2019). Thus, we seek distributional invari-
ance across domains in the gradient space: domain-level
gradients should be similar, not only in average direc-
tion, but most importantly in statistics such as variance and
disagreements.

In this paper, we propose the Fishr regularization for out-
of-distribution generalization in classification for computer
vision — summarized in Fig. 1. We match the domain-
level gradient variances, i.e., the second moment of the
gradient distributions. In contrast, previous gradient-based
works such as Fish (Shi et al., 2021) only match the domain-
level gradients means, i.e., the first moment.

Our strategy is also motivated by the close relations between
the gradient variance, the Fisher Information (Fisher, 1922)
and the Hessian. This explains the name of our work, Fishr,
using gradients as in Fish and related to the Fisher Matrix.
Notably, we will study how Fishr forces the model to have
similar domain-level Hessians and promotes consistent
explanations — by generalizing the inconsistency formalism
introduced in Parascandolo et al. (2021).

To reduce the computational cost, we justify an approxima-
tion that tackles the gradients only in the classifier, easily
implemented with BackPACK (Dangel et al., 2020).

We summarize our contributions as follows:

• We introduce Fishr, a scalable regularization that brings
closer the domain-level gradient variances.

• We theoretically justify that Fishr matches domain-
level risks and Hessians, and consequently, reduces
inconsistencies across domains.

Empirically, we first validate that Fishr tackles distribution
shifts on the synthetic Colored MNIST (Arjovsky et al.,
2019). Then, we show that Fishr performs best on the Do-
mainBed benchmark (Gulrajani & Lopez-Paz, 2021) when
compared with state-of-the-art counterparts. Critically, Fishr
is the only method to perform systematically better than
ERM on all real datasets — PACS, VLCS, OfficeHome,
TerraIncognita and DomainNet.

2. Context and Related Work
We first describe our task and provide the notations used
along our paper. Then we remind some important related
works to understand how our Fishr stands in a rich literature.

Problem definition and notations. We study out-of-
distribution (OOD) generalization for classification. Our
model is a deep neural network (DNN) fθ (parametrized by
θ) made of a deep features extractor Φϕ on which we plug a
dense linear classifier wω : fθ = wω ◦ Φϕ and θ = (ϕ, ω).
In training, we have access to different domains E : for
each domain e ∈ E , the dataset De =

{(
xi
e,y

i
e

)}ne

i=1
con-

tains ne i.i.d. (input, labels) samples drawn from a domain-
dependent probability distribution. Combined together, the
datasets {De}e∈E are of size n =

∑
e∈E ne. Our goal is to

learn weights θ so that fθ predicts well on a new test domain,
unseen in training. As described in Koh et al. (2020) and Ye
et al. (2021), most common distribution shifts are diversity
shifts — where the training and test distributions comprise
data from related but distinct domains, for instance pictures
and drawings of the same objects — or correlation shifts —
where the distribution of the covariates at test time differs
from the one during training. To generalize well despite
these distribution shifts, fθ should ideally capture an invari-
ant mechanism across training domains. Following standard
notations, ∥M∥2F denotes the Frobenius norm of matrix M ;
∥v∥22 denotes the euclidean norm of vector v; 1 is a column
vector with all elements equal to 1.

The standard Empirical Risk Minimization
(ERM) (Vapnik, 1999) framework simply min-
imizes the average empirical risk over all
training domains, i.e., 1

|E|
∑

e∈E Re(θ) where
Re(θ) = 1

ne

∑ne

i=1 ℓ
(
fθ

(
xi
e

)
,yi

e

)
and ℓ is the nega-

tive log-likelihood loss. Many approaches try to exploit
some external source of knowledge (Xie et al., 2021), in
particular the domain information. As a side note, these
partitions may be inferred if not provided (Creager et al.,
2021). Some works explore data augmentations to mix
samples from different domains (Wang et al., 2020; Wu
et al., 2020), some re-weight the training samples to favor
underrepresented groups (Sagawa et al., 2020a;b; Zhang
et al., 2021) and others include domain-dependent weights
(Ding & Fu, 2017; Mancini et al., 2018). Yet, most recent
works promote invariance via a regularization criterion and
only differ by the choice of the statistics to be matched
across training domains. They can be categorized into three
groups: these methods enforce agreement either (1) in
features (2) in predictors or (3) in gradients.

First, some approaches aim at extracting domain-invariant
features and were extensively studied for unsupervised do-
main adaptation. The features are usually aligned with ad-
versarial methods (Ganin et al., 2016; Gong et al., 2016; Li
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et al., 2018b;c) or with kernel methods (Muandet et al.,
2013; Long et al., 2014). Yet, the simple covariance
matching in CORAL (Sun et al., 2016; Sun & Saenko,
2016) performs best on various tasks for OOD general-
ization (Gulrajani & Lopez-Paz, 2021). With Zij

e the j-
th dimension of the features extracted by Φϕ for the i-
th example xi

e of domain e ∈ E = {A,B}, CORAL
minimizes ∥Cov(ZA)− Cov(ZB)∥2F where Cov(Ze) =

1
ne−1 (Z

⊤
e Ze− 1

ne

(
1⊤Ze

)⊤ (
1⊤Ze

)
) is the feature covari-

ance matrix. CORAL is more powerful than mere feature

matching
∥∥∥ 1
nA

1⊤ZA − 1
nB

1⊤ZB

∥∥∥2
2

as in Deep Domain
Confusion (DDC) (Tzeng et al., 2014). Yet, Johansson et al.
(2019) and Zhao et al. (2019) show that these approaches
are insufficient to guarantee good generalization.

Motivated by arguments from causality (Pearl, 2009) and
the idea that statistical dependencies are epiphenomena of
an underlying structure, Invariant Risk Minimization (IRM)
(Arjovsky et al., 2019) explains that the predictor should
be invariant (Peters et al., 2016; Rojas-Carulla et al., 2018),
i.e., simultaneously optimal across all domains. Yet, recent
works point out pitfalls of IRM (Guo et al., 2021; Kamath
et al., 2021; Ahuja et al., 2019), that does not provably
work with non-linear data (Rosenfeld et al., 2021) and could
not improve over ERM when hyperparameter selection is
restricted (Koh et al., 2020; Gulrajani & Lopez-Paz, 2021).
Among many suggested improvements (Chang et al., 2020;
Idnani & Kao, 2020; Teney et al., 2020; Ahmed et al., 2021),
Risk Extrapolation (V-REx) (Krueger et al., 2021) argues
that training risks from different domains should be similar
and thus penalizes |RA −RB |2 when E = {A,B}.

A third and most recent line of work promotes agreements
between gradients with respect to network weights. Gra-
dient agreements help batches from different tasks to co-
operate, and have been previously employed for multitasks
(Du et al., 2018; Yu et al., 2020), continual (Lopez-Paz &
Ranzato, 2017), meta (Finn et al., 2017; Zhang et al., 2020)
and reinforcement (Zhang et al., 2019) learning. In OOD
generalization, Koyama & Yamaguchi (2020); Parascandolo
et al. (2021); Shi et al. (2021) try to find minimas in the
loss landscape that are shared across domains. Specifically,
these works tackle the domain-level expected gradients:

ge = E(xe,ye)∼De
∇θℓ (fθ(xe),ye) . (1)

When E = {A,B}, IGA (Koyama & Yamaguchi, 2020)
minimizes ||gA − gB ||22; Fish (Shi et al., 2021) increases
gA · gB; AND-mask (Parascandolo et al., 2021) and oth-
ers (Mansilla et al., 2021; Shahtalebi et al., 2021) update
weights only when gA and gB point to the same direction.

Along with the increased computation cost, the main limita-
tion of previous gradient-based methods is the per-domain
batch averaging of gradients: this removes more granular

statistics, in particular the information from pairwise inter-
actions between gradients from samples in a same domain.
In opposition, our new regularization for OOD general-
ization keeps extra information from individual gradients
and matches across domains the domain-level gradient vari-
ances. In a nutshell, Fishr is similar to the covariance-based
CORAL (Sun et al., 2016; Sun & Saenko, 2016) but in the
gradient space rather than in the feature space.

3. Fishr
3.1. Gradient variance matching

The individual gradient gi
e = ∇θℓ

(
fθ(x

i
e),y

i
e

)
is the first-

order derivative for the i-th data example
(
xi
e,y

i
e

)
from

domain e ∈ E with respect to the weights θ. Previous meth-
ods have matched the gradient means ge = 1

ne

∑ne

i=1 g
i
e

for each domain e ∈ E . These gradient means capture
the average learning direction but can not capture gradi-
ent disagreements (Sankararaman et al., 2020; Yin et al.,
2018). With Ge = [gi

e]
ne
i=1 of size ne× |θ|, we compute the

domain-level gradient variance vectors of size |θ|:

ve = Var(Ge) =
1

ne − 1

ne∑
i=1

(
gi
e − ge

)2
, (2)

where the square indicates an element-wise product. To
reduce the distribution shifts in the network fθ across
domains, we bring the domain-level gradient variances
{ve}e∈E closer. Hence, our Fishr regularization is:

LFishr(θ) =
1

|E|
∑
e∈E
∥ve − v∥22 , (3)

the square of the Euclidean distance between the gradient
variance from the different domains e ∈ E and the mean
gradient variance v = 1

|E|
∑

e∈E ve. Balanced with a hyper-
parameter coefficient λ > 0, this Fishr penalty complements
the original ERM objective, i.e., the empirical training risks:

L(θ) = 1

|E|
∑
e∈E
Re(θ) + λLFishr(θ). (4)

Remark 3.1. Gradients gi
e can be computed on all network

weights θ. Yet, to reduce the memory and training costs,
they will often be computed only on a subset of θ, e.g., only
on classification weights ω. This approximation is discussed
in Section 4.2.2 and Appendix D.3.2.

3.2. Theoretical analysis

We theoretically motivate our Fishr regularization by lever-
aging the domain inconsistency score introduced in AND-
mask (Parascandolo et al., 2021). We first derive a general-
ized upper bound for this score. Then, we show that Fishr
minimizes this upper bound by matching simultaneously
domain-level risks and Hessians.



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

3.2.1. INCONSISTENCY FORMALISM

Figure 2: Loss landscapes around inconsistent weights
θ∗ at convergence. N0.2

A,θ∗ contains weights θ for which
RA(θ) is low (≤ 0.2) but RB(θ) is high (≥ 0.9). This
inconsistency is due to conflicting domain-level loss land-
scapes, specifically gaps between domain-level risks and
curvatures at θ∗. This is visible in the disagreements across
the variances of gradients {gi

A}
nA
i=1 and {gi

B}
nB
i=1.

Parascandolo et al. (2021) argues that “patchwork solutions
sewing together different strategies” for different domains
may not generalize well: good weights should be optimal
on all domains and “hard to vary” (Deutsch, 2011). They
formalize this insight with an inconsistency score:

Iϵ (θ∗) = max
(A,B)∈E2

max
θ∈Nϵ

A,θ∗
|RB(θ)−RA(θ

∗)| , (5)

where θ ∈ N ϵ
A,θ∗ if there exists a path in the weights space

between θ and θ∗ where the risk RA remains in an ϵ > 0
interval around RA(θ

∗). I increases with conflicting ge-
ometries in the loss landscapes around θ∗ as in Fig. 2: i.e.,
when another ‘close’ solution θ is equivalent to the current
solution θ∗ in a domain A but yields different risks in B.

For e ∈ E , the second-order Taylor expansion ofRe around
θ∗ = 0 (with a change of variable) gives:

Re(θ) = Re(θ
∗) + θ⊤∇θRe (θ

∗) +
1

2
θ⊤Heθ+O(∥θ∥22),

where the Hessian He = ∇2
θRe(θ

∗) approximates the lo-
cal curvature of the loss landscape. Moreover, we assume
simultaneous convergence, i.e., θ∗ is a local minima across
all domains: ∇θRe(θ

∗) = 0. Thus, locally around θ∗:

max
θ∈Nϵ

A,θ∗
|RB(θ)−RA(θ

∗)|

≈ max
|RA(θ)−RA(θ∗)|≤ϵ

|RB(θ)−RA(θ
∗)|

≈ max
1
2 |θ⊤HAθ|≤ϵ

∣∣∣∣RB(θ
∗) +

1

2
θ⊤HBθ −RA(θ

∗)

∣∣∣∣
⪅ |RB(θ

∗)−RA(θ
∗)|+ max

1
2 |θ⊤HAθ|≤ϵ

1

2

∣∣θ⊤HBθ
∣∣ ,

(6)

where we deduced the last line from the triangle inequality.
Appendix A.1 formally demonstrates following equality.

Proposition 1. Under the quadratic bowl Assumption A.1
with positive definite Hessians, for small ϵ (see Eq. 11):

Iϵ (θ∗) = max
(A,B)∈E2

(RB(θ
∗)−RA(θ

∗)

+ max
1
2 θ

⊤HAθ≤ϵ

1

2
θ⊤HBθ).

(7)

The Hessian being positive definite is a standard hypothesis,
notably used in Parascandolo et al. (2021), that is empir-
ically reasonable (Sagun et al., 2018): “in only very few
steps . . . large negative eigenvalues disappear” (Ghorbani
et al., 2019).

The first term in the RHS of Proposition 1 is the difference
between domain-level risks, whose square is the criterion
minimized in V-REx (Krueger et al., 2021). We will prove
and show that Fishr forces this term to be small in Section
3.2.2. In contrast, Parascandolo et al. (2021) made the strong
assumption: RA(θ

∗) = RB(θ
∗) = 0.

While Parascandolo et al. (2021) ignored this first term,
we follow their diagonal approximation of the Hessians
to analyze the second term. In that case, He =
diag (λe

1, · · · , λe
h) with ∀i ∈ {1, . . . , h} , λe

i > 0. Then:

max
1
2 θ

⊤HAθ≤ϵ

1

2
θ⊤HBθ = max

∥θ̃∥2
2≤ϵ

∑
i

θ̃2i λ
B
i /λ

A
i

= ϵ×max
i

λB
i /λ

A
i .

(8)

This is large when exists i such that λA
i is small but λB

i is
large: indeed, a small weight perturbation in the direction of
the associated eigenvector would change the loss slightly in
the domain A but drastically in domain B. Thus, this second
term decreases when HA and HB have similar eigenval-
ues. This result holds when Hessians are co-diagonalizable.
In conclusion, this explains why forcing HA = HB re-
duces inconsistencies in the loss landscape and thus im-
proves generalization. AND-mask matches Hessians by
zeroing out gradients with inconsistent directions across
domains; however, this masking strategy introduces dead
zones (Shahtalebi et al., 2021) in weights where the model
could get stuck, ignores gradient magnitudes and empiri-
cally performs poorly with real datasets from DomainBed.
As shown in Section 3.2.3, Fishr proposes a new method to
align domain-level Hessians leveraging the close relations
between the gradient variance, the Fisher Information and
the Hessian.
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3.2.2. FISHR MATCHES THE DOMAIN-LEVEL RISKS

Gradients take into account the label Y , which appears as an
argument for the loss ℓ. Hence, gradient-based approaches
are ‘label-aware’ by design. In contrast, feature-based meth-
ods were shown to fail in case of label shifts, because they
do not consider Y (Johansson et al., 2019; Zhao et al., 2019).

The fact that the label and the loss appear in the formula of
the gradients has another important consequence: matching
gradient distributions also matches training risks, as mo-
tivated in V-REx (Krueger et al., 2021). We confirm this
insight in Table 2: matching gradient variances with Fishr
induces |RA −RB |2 → 0 when E = {A,B}.

Intuitively, gradient amplitudes are directly weighted by the
loss values: multiplying the loss by a constant will also
multiply the gradients by the same constant. Thus roughly,
if the domain-level empirical training risks are different,
then the domain-level gradient norms should also differ.

Theoretically, we prove in Appendix A.2 that Fishr regular-
ization component with reference to the classification bias is
exactly the difference between domain-level mean squared
errors. We recover the objective from V-REx (Krueger et al.,
2021), with a different loss (squared error instead of negative
log likelihood). More generally, we show in this Appendix
that Fishr in the classifier wω acts as a feature-adaptive ver-
sion of V-REx: the components in Fishr adaptively force
the risks to be similar across domains.

3.2.3. FISHR MATCHES THE DOMAIN-LEVEL HESSIANS

The Hessian matrix H =
∑n

i=1∇2
θℓ

(
fθ(x

i),yi
)

is of key
importance in deep learning. Yet, H cannot be computed ef-
ficiently in general. Recent methods (Izmailov et al., 2018;
Parascandolo et al., 2021; Foret et al., 2021) tackled the
Hessian indirectly by modifying the learning procedure. In
contrast, we use the fact that the diagonal of H is approxi-
mated by the gradient variance Var(G); this is confirmed
in Table 1. This result is derived below from 3 individual
and standard approximation steps.

Table 1: Cosine similarity between Hessian diagonals
and gradient variances cos (Diag (He) ,Var(Ge)), for an
ERM at convergence on Colored MNIST with the two train-
ing domains e ∈ {90%, 80%}.

e = 90% e = 80%

On classifier weights w 0.9999980 0.9999905
On all network weights θ 0.9971040 0.9962264

The Hessian and the Fisher Informa-
tion Matrix (FIM). The FIM F =∑n

i=1 Eŷ∼Pθ(·|xi)

[
∇θ log pθ(ŷ|xi)∇θ log pθ(ŷ|xi)⊤

]
(Fisher, 1922; C.R., 1945) approximates the Hessian H

with theoretically probably bounded errors under mild
assumptions (Schraudolph, 2002).

The ‘true’ FIM and the ‘empirical’ FIM. Yet, F
remains costly as it demands one backpropagation per
class. That’s why most empirical works (e.g., in com-
pression (Frantar et al., 2021; Liu et al., 2021) and op-
timization (Dangel et al., 2021)) approximate the ‘true’
FIM F with the ‘empirical’ FIM F̃ = G⊤

e Ge =∑n
i=1∇θ log pθ(y

i|xi)∇θ log pθ(y
i|xi)⊤ (Martens, 2014)

where pθ(·|x) is the density predicted by fθ on input x.
While F uses the model distribution Pθ(·|X), F̃ uses the
data distribution P (Y |X). Despite this key difference, F̃
and F were shown to share the same structure and to be
similar up to a scalar factor (Thomas et al., 2020). They
also have analogous properties: Tr(F̃ ) ≈ Tr(F ). This was
discussed in Li et al. (2020) and further highlighted even at
early stages of training (before overfitting) in the Fig. 1 and
the Appendix S3 of Singh & Alistarh (2020).

The ‘empirical’ FIM and the gradient covariance.
Critically, F̃ is nothing else than the unnormalized un-
centered covariance matrix when ℓ is the negative log-
likelihood. Thus, the gradient covariance matrix C =
1

n−1

(
G⊤G− 1

n

(
1⊤G

)⊤ (
1⊤G

))
of size |θ| × |θ| and

F̃ are equivalent (up to the multiplicative constant n) at any
first-order stationary point: C ∝∼ F̃ . Overall, this suggests
that C and H are closely related (Jastrzebski et al., 2018);.

Consequences for Fishr. Critically, Fishr considers the
gradient variance Var(G), i.e., the diagonal components
of C. In our multi-domain framework, we define the
domain-level matrices with the subscript e. Table 2 em-
pirically confirms that matching {Diag(Ce)}e∈E — i.e.,
{Var(Ge)}e∈E — with Fishr forces the domain-level Hes-
sians {Diag(He)}e∈E to be aligned at convergence (on the
diagonal for computational reasons). Tackling the second
moment of the first-order derivatives enables to regularize
the second-order derivatives. Moreover, Appendix C.2.4
shows that matching the diagonals of {Ce}e∈E or {F̃e}e∈E
— i.e., centering or not the variances — perform similarly.

Remark 3.2. Limitation of our approximation. We ac-
knowledge that approximating the ‘true’ FIM F by the ‘em-
pirical’ FIM F̃ is not fully justified theoretically (Martens,
2014; Kunstner et al., 2019). Indeed, this approximation is
valid only under strong assumptions, in particular χ2 con-
vergence of predictions Pθ(·|X) towards labels P (Y |X) —
as detailed in Proposition 1 from Thomas et al. (2020). In
this paper, we trade off theoretical guarantees for efficiency.

Remark 3.3. Diagonal approximation. The empirical simi-
larities between C and H motivate using gradient variance
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rather than gradient covariance, which scales down the
number of targeted components from |θ|2 to |θ|. Indeed,
diagonally approximating the Hessian is common: e.g., for
OOD generalization (Parascandolo et al., 2021), optimiza-
tion (LeCun et al., 2012; Kingma & Ba, 2014), continual
learning (Kirkpatrick et al., 2017) and pruning (LeCun et al.,
1990; Theis et al., 2018). This is based on the empirical evi-
dence (Becker & Le Cun, 1988) that Hessians are diagonally
dominant at the end of training. Our diagonal approxima-
tion is also motivated by the critical importance of Tr(C)
(Jastrzebski et al., 2021; Faghri et al., 2020) to analyze the
generalization properties of DNNs. We confirm empirically
in Appendix C.2.3 that considering the off-diagonal parts of
C performs no better that just matching the diagonals.

Table 2: Invariance analysis at convergence on Colored
MNIST across the two training domains E = {90%, 80%}.
Compared to ERM, Fishr matches the gradient variance
(Diag(C90%) ≈ Diag(C80%)) in all network weights
θ. Most importantly, this enforces invariance in domain-
level risks (R90% ≈ R80%) and in domain-level Hes-
sians (Diag(H90%) ≈ Diag(H80%)). The gradient vari-
ance, computable efficiently with a unique backpropagation,
serves as a proxy for the Hessian. Details and more experi-
ments in Section 4.1 (notably Fig. 3) and in Appendix C.2.1.

ERM Fishr

∥Var(G90%)−Var(G80%)∥
2
F 1.6 4.1× 10−5

|R90% −R80%|2 1.0× 10−2 3.8× 10−6

∥Diag (H90% −H80%)∥
2
F 2.9× 10−1 2.7× 10−4

Conclusion. Fishr efficiently matches (1) domain-level
empirical risks and (2) domain-level Hessians across the
training domains, using gradient variances as a proxy. This
will align domain-level loss landscapes, reduce domain in-
consistencies and increase domain generalization. In par-
ticular, the domain-level Hessian matching illustrates that
Fishr is more than just a generalization of gradient-mean
approaches such as Fish (Shi et al., 2021).

Finally, we refer the readers to Appendix A.3 where we
leverage the Neural Tangent Kernel (NTK) (Jacot et al.,
2018) theory to further motivate the gradient variance match-
ing during the optimization process — and not only at con-
vergence. In brief, as F and the NTK matrices share the
same non-zero eigenvalues, similar {Ce}e∈E during train-
ing reduce the simplicity bias by preventing the learning of
different domain-dependent shortcuts at different training
speeds: this favors a shared mechanism that predicts the
same thing for the same reasons across domains.

4. Experiments
We prove Fishr effectiveness on Colored MNIST (Arjovsky
et al., 2019) and then on the DomainBed benchmark (Gul-
rajani & Lopez-Paz, 2021). To facilitate reproducibil-
ity, the code is available at https://github.com/
alexrame/fishr. Moreover, we show in Appendix B
that Fishr is effective in the linear setting.

4.1. Proof of concept on Colored MNIST

The task in Colored MNIST (Arjovsky et al., 2019) is to
predict whether the digit is below or above 5. Moreover, the
labels are flipped with 25% probability (except in Appendix
C.2.2). Critically, the digits’ colors spuriously correlate
with the labels: the correlation strength varies across the
two training domains E = {90%, 80%}. To test whether
the model has learned to ignore the color, this correlation
is reversed at test time. In brief, a biased model that only
considers the color would have 10% test accuracy whereas
an oracle model that perfectly predicts the shape would have
75%. As previously done in V-REx (Krueger et al., 2021),
we strictly follow the IRM implementation and just replace
the IRM penalty by our Fishr penalty. This means that
we use the exact same MLP and hyperparameters, notably
the same two-stage scheduling selected in IRM for the
regularization strength λ, that is low until epoch 190 and
then jumps to a large value, which was optimized via a grid-
search for IRM. More experimental details are provided in
Appendix C.1.

Table 3 reports the accuracy averaged over 10 runs with stan-
dard deviation. Fishrθ (i.e., applying Fishr on all weights
θ) obtains the best trade-off between train and test accu-
racies; notably in test, it reaches 71.2%, or 70.2% when
digits are grayscale. Moreover, computing the gradients
only in the classifier wω performs almost as well (69.5% in
test for Fishrω) while reducing drastically the computational
cost. Finally, Fishrϕ only in the features extractor ϕ works
best in test, though it has lower train accuracy. This last
experiment shows that we can reduce domain shifts without

Table 3: Colored MNIST results. All methods use hyper-
parameters optimized for IRM.

Method Train acc. Test acc. Gray test acc.

ERM 86.4 ± 0.2 14.0 ± 0.7 71.0 ± 0.7
IRM 71.0 ± 0.5 65.6 ± 1.8 66.1 ± 0.2

V-REx 71.7 ± 1.5 67.2 ± 1.5 68.6 ± 2.2

Fishrθ 69.6 ± 0.9 71.2 ± 1.1 70.2 ± 0.7
Fishrω 71.0 ± 0.9 69.5 ± 1.0 70.2 ± 1.1
Fishrϕ 65.6 ± 1.3 73.8 ± 1.0 70.0 ± 0.9

https://github.com/alexrame/fishr
https://github.com/alexrame/fishr
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Figure 3: Colored MNIST dynamics. At epoch 190, λ
strongly steps up: then, the Fishrθ regularization matches
the domain-level gradient variances (red) across domains
E = {90%, 80%}, and consequently, the training empirical
risks (dotted pink) and Hessians (purple). This reduces train
accuracy (orange) but increases test accuracy (blue) as the
network learns to predict the digit’s shape. As shown in
Fig. 7, training dynamics are different for ERM.

explicitly forcing the predictors to be simultaneously opti-
mal. These results highlight the effectiveness of gradient
variance matching — even with standard hyperparameters
— at different layers of the network.

The main advantage of this synthetic dataset is the possi-
bility of empirically validating some theoretical insights.
For example, the training dynamics in Fig. 3 show that
the domain-level empirical risks get closer once the Fishrθ
gradient variance matching loss is activated after step 190
(|R90% −R80%| → 0), even though predicting accurately
on the domain 90% is easier than on the domain 80%. This
confirms insights from Section 3.2.2. Similarly, we observe
that Fishr matches Hessians across the two training domains.
This is confirmed by further experiments in Appendix C.2,
and validates insights from Section 3.2.3. Overall, Fishr reg-
ularization reduces train accuracy, but sharply increases test
accuracy. Yet, the main drawback of Colored MNIST is its
insufficiency to ensure generalization for real-world datasets.
Overall, it should be considered as a proof-of-concept.

4.2. DomainBed benchmark

4.2.1. DATASETS AND PROCEDURE

We conduct extensive experiments on the DomainBed
benchmark (Gulrajani & Lopez-Paz, 2021). In addition to
the synthetic Colored MNIST (Arjovsky et al., 2019) and
Rotated MNIST (Ghifary et al., 2015), the multi-domain
image classification datasets are the real VLCS (Fang et al.,
2013), PACS (Li et al., 2017), OfficeHome (Venkateswara
et al., 2017), TerraIncognita (Beery et al., 2018) and Do-
mainNet (Peng et al., 2019). To limit access to test domain,
the framework enforces that all methods are trained with
only 20 different configurations of hyperparameters and

Algorithm 1 Training procedure for Fishr on DomainBed.

Input: DNN fθ, observations De =
{(

xi
e,y

i
e

)}ne

i=1
for

domains e ∈ E , regularization weight λ, warmup iteration
iwarmup, exponential moving average γ and batch size bs
Initialize: moving averages: ∀e ∈ E ,vmean

e ← 0
for iter from 1 to #iters do
{# Step 1: standard ERM procedure}
for e ∈ E do

Randomly select batch: {(xi
e,y

i
e)}i∈B of size bs

Compute predictions: ∀i ∈ B, ŷi
e ← fθ(x

i
e)

Compute empirical risks: Re(θ) ←∑
i∈B ℓ

(
ŷi
e,y

i
e

)
end for
L(θ) = 1

|E|
∑

e∈E Re(θ)

{# Step 2: gradient variances in classifier}
for e ∈ E do

Compute individual gradients in wω with Back-
PACK: ∀i ∈ B, gi

e ← ∇ωℓ
(
ŷi
e,y

i
e

)
Compute domain gradient variances ve (Eq. 2)
Update vmean

e = ve ← γvmean
e + (1− γ)viter

e

end for
if iter ≥ iwarmup then
L(θ) += λLFishr(θ) (Eq. 3)

end if
{# Step 3: gradient descent in the whole network}
Backpropagate gradients ∇θL(θ) in the network fθ
with standard PyTorch

end for

for the same number of steps. Results are averaged over
three trials. This experimental setup is further described in
Appendix D.1. By imposing the datasets, the training proce-
dure and controlling the hyperparameter search, DomainBed
is arguably the fairer open-source benchmark to rigorously
compare the different strategies for OOD generalization.

4.2.2. IMPLEMENTATION DETAILS

We systematically apply Fishr only in the classifier wω in
DomainBed. Indeed, keeping individual gradients in mem-
ory for ϕ from a ResNet-50 was impossible for computa-
tional reasons. Fishrθ and Fishrω performed similarly in pre-
vious Section 4.1. This is partly because the gradients in ω
still depend on Φϕ. Additionally, as highlighted in Appendix
D.3.2, this relaxation may improve results for real-world
datasets. Indeed, while Colored MNIST is a correlation shift
challenge, the other datasets mostly demonstrate diversity
shifts where “each domain represents a certain spectrum
of diversity in data” (Ye et al., 2021). Then, as the pixels
distribution are quite different across domains, low-level
layers may need to adapt to these domain-dependent pecu-
liarities. Moreover, if we used all weights θ = (ϕ, ω) to
compute gradient variances, the invariance in wω may be
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Table 4: DomainBed benchmark. We format first, second and worse than ERM results.

Algorithm
Accuracy (↑) Ranking (↓)

CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg Arith.
mean

Geom.
mean Median

ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7 9.1 8.1 8
IRM 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9 14.7 12.4 16
GroupDRO 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9 8.6 7.5 8
Mixup 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0 5.3 3.9 4
MLDG 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7 9.1 8.2 9
CORAL 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2 4.6 3.4 3
MMD 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9 7.0 4.9 6
DANN 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7 11.9 9.6 15
CDANN 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2 9.6 7.4 10
MTL 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5 8.4 7.8 7
SagNet 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7 8.0 7.2 6
ARM 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1 9.9 7.5 12
V-REx 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2 7.7 5.5 5
RSC 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2 9.9 9.4 9
AND-mask 58.6 ± 0.4 97.5 ± 0.0 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 49.8 ± 0.4 37.9 ± 0.6 67.5 13.4 13.1 12
SAND-mask 62.3 ± 1.0 97.4 ± 0.1 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 50.2 ± 0.1 32.2 ± 0.6 67.2 14.3 13.5 15
Fish 61.8 ± 0.8 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 66.0 ± 2.9 50.8 ± 0.4 43.4 ± 0.3 69.1 8.4 6.6 7

Fishr 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8 3.9 2.8 2

overshadowed by Φϕ due to |ω| ≪ |ϕ|. Finally, it’s worth
noting that this last-layer approximation is consistent with
the IRM condition (Arjovsky et al., 2019) and is common
for unsupervised domain adaptation (Ganin et al., 2016).

Fishr relies on three hyperparameters. First, the λ coef-
ficient controls the regularization strength: with λ = 0 we
recover ERM while a high λ may cause underfitting. We
show that Fishr is robust to the choice of the sampling dis-
tribution for hyperparameter λ in Appendix D.3.3. Second
the warmup iteration defines the step at which we activate
the regularization. This warmup strategy is taken from pre-
vious works such as IRM (Arjovsky et al., 2019), V-REx
(Krueger et al., 2021) or Spectral Decoupling (Pezeshki
et al., 2021). Before that step, the DNN is trained with
ERM to learn predictive features. After that step, the Fishr
regularization encourages the DNN to have invariant gradi-
ent variances. Lastly, the domain-level gradient variances
are more accurate when estimated over more data points.
Rather than increasing the batch size, we follow Le Roux
et al. (2011) and leverage an exponential moving average
for computing stable gradient variances. Therefore our third
hyperparameter is the coefficient γ controlling the update
speed: at step t, we match v̄t

e = γv̄t−1
e + (1− γ)vt

e rather
than of vt

e from Eq. 2. The closer γ is to 1, the smoother the
variance is along training. v̄t−1

e from previous step t− 1 is
‘detached’ from the computational graph. Similar strategies
have already been used for OOD generalization (Nam et al.,
2020; Blanchard et al., 2021). The memory overhead is
(|E| × |ω|). We study by ablation the importance of this
warmup strategy and this γ in Appendices D.3.1 and D.3.2.

Fishr is simple to implement (see the Algorithm 1) using the

BackPACK (Dangel et al., 2020) package. While PyTorch
(Paszke et al., 2019) can compute efficiently batch gradi-
ents, BackPACK optimizes the computation of individual
gradients, sample per sample, at almost no time overhead.
Thus, Fishr is also at low computational costs. For example,
on PACS (7 classes and |ω| = 14, 343) with a ResNet-50
and batch size 32, Fishr induces an overhead in memory of
+0.2% and in training time of +2.7% (with a Tesla V100)
compared to ERM; on the larger-scale DomainNet (345
classes and |ω| = 706, 905), the overhead is +7.0% in mem-
ory and +6.5% in training time. As a side note, keeping the
full covariance of size |ω|2 ≈ 5×108 on DomainNet would
not have been possible. In contrast, Fish (Shi et al., 2021)
leverages a meta-learning algorithm that is impractical as
|E| times longer to train than ERM.

4.2.3. RESULTS

Table 4 summarizes the results on DomainBed using the
‘Test-domain’ model selection: the validation set (to select
the best hyperparameters) follows the same distribution as
the test domain. Appendix D.2 reports results with the
‘Training-domain’ model selection while results are detailed
per dataset in Appendix D.4.

ERM was carefully tuned in DomainBed and thus remains
a strong baseline. Moreover, all previous methods are far
from the best score on at least one dataset. Invariant pre-
dictors (IRM, V-REx) and gradient masking (AND-mask)
approaches perform poorly on real datasets. Additionally,
CORAL not only performs worse than ERM on TerraIncog-
nita, but most importantly fails to detect correlation shifts on
Colored MNIST: this is because feature-based approaches



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

do not take into account the label, as previously stated in
Section 3.2.2.

Contrarily, Fishr is the only method to efficiently tackle
correlation and diversity shifts, as defined in (Ye et al.,
2021). Indeed, not only Fishr outperforms ERM on Colored
MNIST (68.8% vs. 57.8%), but Fishr also systematically
performs better than ERM on all real datasets: the differ-
ences are over standard errors on VLCS (78.2% vs. 77.6%),
OfficeHome (68.2% vs. 66.4%) and on the larger-scale Do-
mainNet (41.8% vs. 41.3%). Appendix D.3.2 shows that
Fishr performs even better when combined with gradient-
mean matching. In summary, Fishr consistently beats
ERM (despite the restricted hyperparameter search): this is
the main point to validate the effectiveness of our method.

Additionally, Fishr performs best after averaging: Firshr
reaches 70.8% vs. 69.2% for the second best CORAL. When
ignoring the Colored MNIST task, averaging over the 6
other datasets leads to a similar ranking: 1.Fishr(avg=71.1),
2.CORAL(71.0), 3.Mixup(70.8) and 4.ERM(70.5). This
arguably partial metric is confirmed by the more robust
ranking information; Fishr’s median ranking of second re-
flects that Fishr is consistently among the best methods.
Overall, Fishr is the state-of-the-art approach, not only in
average accuracy, but most importantly in average ranking.

5. Conclusion
In this paper, we addressed the task of out-of-distribution
generalization for classification in computer vision. We
derive a new and simple regularization — Fishr — that
matches the gradient variances across domains as a proxy for
matching domain-level risks and Hessians. We prove that
this reduces inconsistencies across domains. Fishr reaches
state-of-the-art performances on DomainBed when samples
from the test domain are available for model selection. Our
experiments — reproducible with our open-source imple-
mentation — suggest that Fishr would consistently improve
a deep classifier for real-world usages when dealing with
data from multiple domains. We hope to pave the way
towards new gradient-based regularization to improve the
generalization abilities of deep neural networks.

ACKNOWLEDGMENTS

This work was granted access to the HPC resources of
IDRIS under the allocation A0100612449 made by GENCI.
We acknowledge the financial support by the ANR agency
in the chair VISA-DEEP (ANR-20-CHIA-0022-01).

References
Ahmed, F., Bengio, Y., van Seijen, H., and Courville, A. Sys-

tematic generalisation with group invariant predictions.
In ICLR, 2021. 3

Ahuja, K., Caballero, E., Zhang, D., Bengio, Y., Mitliagkas,
I., and Rish, I. Invariance principle meets information bot-
tleneck for out-of-distribution generalization. In NeurIPS,
2019. 3, 18

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D.
Invariant risk minimization. arXiv preprint, 2019. 1, 2, 3,
6, 7, 8, 16, 19, 20, 23

Becker, S. and Le Cun, Y. Improving the convergence of
back-propagation learning with second order methods. In
Connectionist models summer school, 1988. 6

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In ECCV, 2018. 7, 20

Blanchard, G., Lee, G., and Scott, C. Generalizing from
several related classification tasks to a new unlabeled
sample. In NeurIPS, 2011. 1

Blanchard, G., Deshmukh, A. A., Dogan, U., Lee, G., and
Scott, C. Domain generalization by marginal transfer
learning. JMLR, 2021. 8, 19, 21

Cha, J., Chun, S., Lee, K., Cho, H.-C., Park, S., Lee, Y., and
Park, S. SWAD: Domain generalization by seeking flat
minima. In NeurIPS, 2021. 20

Chang, S., Zhang, Y., Yu, M., and Jaakkola, T. Invariant
rationalization. In ICML, 2020. 3

Charpiat, G., Girard, N., Felardos, L., and Tarabalka, Y.
Input similarity from the neural network perspective. In
NeurIPS, 2019. 2

C.R., R. Information and accuracy attainable in the estima-
tion of statistical parameters. In Bulletin of the Calcutta
Mathematical Society, 1945. 5

Creager, E., Jacobsen, J.-H., and Zemel, R. Environment
inference for invariant learning. In ICML, 2021. 2

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Ali-
panahi, B., Beutel, A., Chen, C., Deaton, J., Eisenstein,
J., Hoffman, M. D., et al. Underspecification presents
challenges for credibility in modern machine learning.
JMLR, 2020. 21

Dangel, F., Kunstner, F., and Hennig, P. BackPACK: Pack-
ing more into backprop. In ICLR, 2020. 2, 8, 17

Dangel, F., Tatzel, L., and Hennig, P. Vivit: Curvature
access through the generalized gauss-newton’s low-rank
structure. arXiv preprint, 2021. 5



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

DeGrave, A. J., Janizek, J. D., and Lee, S.-I. Ai for radio-
graphic covid-19 detection selects shortcuts over signal.
Nature Machine Intelligence, 2021. 1

Deutsch, D. The beginning of infinity: Explanations that
transform the world. Penguin UK, 2011. 4

Ding, Z. and Fu, Y. Deep domain generalization with struc-
tured low-rank constraint. In TIP, 2017. 2

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp
minima can generalize for deep nets. In ICML, 2017. 17

Du, Y., Czarnecki, W. M., Jayakumar, S. M., Farajtabar,
M., Pascanu, R., and Lakshminarayanan, B. Adapting
auxiliary losses using gradient similarity. arXiv preprint,
2018. 3

Faghri, F., Duvenaud, D., Fleet, D. J., and Ba, J. A study of
gradient variance in deep learning. arXiv preprint, 2020.
6

Fang, C., Xu, Y., and Rockmore, D. N. Unbiased metric
learning: On the utilization of multiple datasets and web
images for softening bias. In ICCV, 2013. 7, 20

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017. 3

Fisher, R. A. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society
of London., 1922. 2, 5

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
Sharpness-aware minimization for efficiently improving
generalization. In ICLR, 2021. 5

Fort, S., Nowak, P. K., Jastrzebski, S., and Narayanan, S.
Stiffness: A new perspective on generalization in neural
networks. arXiv preprint, 2019. 2

Frantar, E., Kurtic, E., and Alistarh, D. Efficient matrix-
free approximations of second-order information, with
applications to pruning and optimization. arXiv preprint,
2021. 5

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. JMLR,
2016. 1, 2, 8, 19

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2020. 1

Ghifary, M., Kleijn, W. B., Zhang, M., and Balduzzi, D.
Domain generalization for object recognition with multi-
task autoencoders. In ICCV, 2015. 7, 16, 20

Ghorbani, B., Krishnan, S., and Xiao, Y. An investiga-
tion into neural net optimization via hessian eigenvalue
density. In ICML, 2019. 4

Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., and
Schölkopf, B. Domain adaptation with conditional trans-
ferable components. In ICML, 2016. 2

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. In ICLR, 2021. 1, 2, 3, 6, 7, 19

Guo, R., Zhang, P., Liu, H., and Kiciman, E. Out-of-
distribution prediction with invariant risk minimization:
The limitation and an effective fix. arXiv preprint, 2021.
3

Gur-Ari, G., Roberts, D. A., and Dyer, E. Gradient descent
happens in a tiny subspace. arXiv preprint, 2018. 16

Heskes, T. On “natural” learning and pruning in multilay-
ered perceptrons. Neural Computation, 2000. 18

Huang, Z., Wang, H., Xing, E. P., and Huang, D. Self-
challenging improves cross-domain generalization. In
ECCV, 2020. 20

Idnani, D. and Kao, J. C. Learning robust representations
with score invariant learning. In ICML UDL Workshop,
2020. 3

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and
Wilson, A. Averaging weights leads to wider optima and
better generalization. In UAI, 2018. 5

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
NeurIPS, 2018. 6, 15

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Storkey, A., and Bengio, Y. Three factors influencing
minima in SGD. In ICANN, 2018. 5, 14

Jastrzebski, S., Arpit, D., Astrand, O., Kerg, G. B., Wang,
H., Xiong, C., Socher, R., Cho, K., and Geras, K. J.
Catastrophic fisher explosion: Early phase fisher matrix
impacts generalization. In ICML, 2021. 6

Johansson, F. D., Sontag, D., and Ranganath, R. Support
and invertibility in domain-invariant representations. In
AISTATS, 2019. 3, 5

Kamath, P., Tangella, A., Sutherland, D., and Srebro, N.
Does invariant risk minimization capture invariance? In
AISTATS, 2021. 3

Karakida, R., Akaho, S., and Amari, S.-i. Pathological
spectra of the fisher information metric and its variants in
deep neural networks. arXiv preprint, 2019. 16



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint, 2014. 6, 17, 19

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. In PNAS, 2017. 6

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-wild
distribution shifts. arXiv preprint, 2020. 2, 3

Kopitkov, D. and Indelman, V. Neural spectrum alignment:
Empirical study. arXiv preprint, 2019. 16

Koyama, M. and Yamaguchi, S. Out-of-distribution general-
ization with maximal invariant predictor. arXiv preprint,
2020. 3, 19, 20, 22

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NeurIPS, 2012. 1

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Priol, R. L., and Courville, A. Out-of-
distribution generalization via risk extrapolation (rex). In
ICML, 2021. 1, 3, 4, 5, 6, 8, 15, 20, 21

Kunstner, F., Hennig, P., and Balles, L. Limitations of
the empirical fisher approximation for natural gradient
descent. In NeurIPS, 2019. 5

Le Roux, N., Bengio, Y., and Fitzgibbon, A. Improving
first and second-order methods by modeling uncertainty.
Optimization for Machine Learning, 2011. 8, 21, 24

LeCun, Y., Denker, J., Solla, S., Howard, R., and Jackel, L.
Optimal brain damage. In NeurIPS, 1990. 6

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten
digit database, 2010. 16, 20

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. Effi-
cient backprop. In Neural Networks. 2012. 6

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,
broader and artier domain generalization. In ICCV, 2017.
7, 20

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. Learning
to generalize: Meta-learning for domain generalization.
In AAAI, 2018a. 19

Li, H., Pan, S. J., Wang, S., and Kot, A. C. Domain gen-
eralization with adversarial feature learning. In CVPR,
2018b. 2, 19

Li, X., Gu, Q., Zhou, Y., Chen, T., and Banerjee, A. Hes-
sian based analysis of sgd for deep nets: Dynamics and
generalization. In SIAM, 2020. 5, 17

Li, Y., Gong, M., Tian, X., Liu, T., and Tao, D. Domain
generalization via conditional invariant representations.
In AAAI, 2018c. 3, 19

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J.-H., Wang,
X., Chen, Y., Yang, W., Liao, Q., and Zhang, W. Group
fisher pruning for practical network compression. In
ICML, 2021. 5

Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. S. Transfer
joint matching for unsupervised domain adaptation. In
CVPR, 2014. 3

Lopez-Paz, D. and Ranzato, M. A. Gradient episodic mem-
ory for continual learning. In NeurIPS, 2017. 3

Maddox, W. J., Tang, S., Moreno, P. G., Wilson, A. G., and
Damianou, A. On transfer learning via linearized neural
networks. In NeurIPS workshop, 2019. 16

Mancini, M., Bulo, S. R., Caputo, B., and Ricci, E. Best
sources forward: domain generalization through source-
specific nets. In ICIP, 2018. 2

Mansilla, L., Echeveste, R., Milone, D. H., and Ferrante,
E. Domain generalization via gradient surgery. In ICCV,
2021. 3

Martens, J. New insights and perspectives on the natural
gradient method. arXiv preprint, 2014. 5

Martens, J. and Grosse, R. Optimizing neural networks
with kronecker-factored approximate curvature. In ICML,
2015. 18

Muandet, K., Balduzzi, D., and Schölkopf, B. Domain
generalization via invariant feature representation. In
ICML, 2013. 1, 3

Nam, H., Lee, H., Park, J., Yoon, W., and Yoo, D. Reducing
domain gap by reducing style bias. In CVPR, 2021. 20

Nam, J., Cha, H., Ahn, S., Lee, J., and Shin, J. Learning
from failure: De-biasing classifier from biased classifier.
In NeurIPS, 2020. 8, 21

Parascandolo, G., Neitz, A., Orvieto, A., Gresele, L., and
Schölkopf, B. Learning explanations that are hard to vary.
In ICLR, 2021. 2, 3, 4, 5, 6, 20, 24

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

style, high-performance deep learning library. In NeurIPS,
2019. 8

Pearl, J. Causality. Cambridge university press, 2009. 3

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In ICCV, 2019. 7, 20
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These Appendices complement the main paper.

1. We first detail some theoretical points. Appendix A.1 demonstrates our Proposition 1. Appendix A.2 shows that Fishr
acts as a feature-adaptive V-REx. Appendix A.3 motivates Fishr with intuitions from the Neural Tangent Kernel theory.

2. Appendix B proves the effectiveness of our approach for a linear toy dataset.

3. Appendix C enriches the Colored MNIST experiment in the IRM setup. In detail, we first describe the experimental
setup in Appendix C.1. We then validate in Appendix C.2 some insights provided in the main paper; in particular,
Appendix C.2.3 motivates the diagonal approximation of the gradient covariance.

4. Appendix D enriches the DomainBed experiments. After a description of the benchmark protocols in Appendix D.1,
Appendix D.2 discusses the model selection strategy. Then Appendix D.3 provides additional experiments to analyze
key components of Fishr. Specifically, D.3.1 analyzes the exponential moving average; D.3.2 compares gradient mean
versus gradient variance matching and also motivates ignoring the gradients in the features extractor; D.3.3 discusses
the methodology to select hyperparameter distributions. Finally, Appendix D.4 provides the per-dataset results.

A. Additional Theoretical Analysis
A.1. Demonstration of Proposition 1 from Section 3.2.1

Assumption A.1. We make the quadratic bowl assumption around the local minima θ∗ on all domains : ∀e ∈ E ,

Re(θ) = Re(θ
∗) +

1

2
(θ − θ∗)⊤He(θ − θ∗), (9)

where He is positive definite of eigenvalues λe
1 ≥ · · · ≥ λe

h > 0.

Remark A.2. Assumption A.1 is milder on N ϵ
e,θ∗ for low ϵ. Indeed, when ϵ→ 0, then maxθ∈Nϵ

e,θ∗
∥θ − θ∗∥22 → 0 and the

quadratic approximation coincides with the second-order Taylor expansion around θ∗. Moreover, this approximation is
common in optimization (Schaul et al., 2013; Jastrzebski et al., 2018).

Proposition 2. (Reformulation of Proposition 1, illustrated in Fig. 4). Let ϵ > 0, weights θ∗. ∀(A,B) ∈ E2, with N ϵ
A,θ∗ the

largest path-connected region of weights space where the riskRA remains in an ϵ interval aroundRA(θ
∗), we note:

Iϵ(A,B) = max
θ∈Nϵ

A,θ∗
|RB(θ)−RA(θ

∗)| ,

R(A,B) = RB(θ
∗)−RA(θ

∗),

Hϵ(A,B) = max
1
2 (θ−θ∗)⊤HA(θ−θ∗)≤ϵ

1

2
(θ − θ∗)⊤HB(θ − θ∗).

(10)

If ∀(A,B) ∈ E2 such as R(A,B) < 0, we have:

ϵ ≤ −R(A,B)× λA
h

λB
1

, (11)

then under previous Assumption A.1,

max
(A,B)∈E2

Iϵ(A,B) = max
(A,B)∈E2

(R(A,B) +Hϵ(A,B)) (12)

Proof We first prove that, under quadratic Assumption A.1, ∀A ∈ E , N ϵ
A,θ∗ = {θ| |RA(θ)−RA(θ

∗)| ≤ ϵ}. Indeed, the
former is always included in the latter by definition. Reciprocally, be given θ in the latter, {λθ∗ + (1− λ)θ|λ ∈ [0, 1]}
linearly connects θ∗ to θ in parameter space with the riskRA remaining in an ϵ interval aroundRA(θ

∗) because ∀µ ∈ [0, 1]
we have |RA(µθ

∗ + (1− µ)θ)−RA(θ
∗)| = (1− µ)2|RA(θ)−RA(θ

∗)| ≤ (1− µ)2ϵ ≤ ϵ.

Therefore ∀(A,B) ∈ E2:

Iϵ(A,B) = max
|RA(θ)−RA(θ∗)|≤ϵ

|RB(θ)−RA(θ
∗)| = max

1
2 (θ−θ∗)⊤HA(θ−θ∗)≤ϵ

∣∣∣∣R(A,B) +
1

2
(θ − θ∗)⊤HB(θ − θ∗)

∣∣∣∣ (13)

As the Hessians are positive, Hϵ(A,B) > 0. We now need to split the analysis based on the sign of R(A,B).
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Figure 4: Inconsistency Iϵ(A,B) between do-
mains A and B, decomposed into R(A,B) de-
pending on domain-level risks and Hϵ(A,B) de-
pending on domain-level curvatures at θ∗.

Case R(A,B) ≥ 0 Both R(A,B) and Hϵ(A,B) are non-negative.
Removing the absolute value from the RHS of Eq. 13 gives:
Iϵ(A,B) = R(A,B) + Hϵ(A,B). Taking the maximum over
(A,B) ∈ E2 where R(A,B) ≥ 0 gives:

max
(A,B)∈E2|R(A,B)≥0

Iϵ(A,B)

= max
(A,B)∈E2|R(A,B)≥0

(R(A,B) +Hϵ(A,B)) .
(14)

Case R(A,B) < 0 Leveraging λB
1 the largest eigenvalue from HB

and λA
h the lowest eigenvalue from HA, we upper bound:

Hϵ(A,B) ≤ max
λA
h
2 ∥θ−θ∗∥2

2≤ϵ

λB
1

2
∥θ − θ∗∥22 = ϵ× λB

1

λA
h

. (15)

Then Eq. 11 gives Hϵ(A,B) < −R(A,B). Thus the number inside
the absolute value from the RHS of Eq. 13 is negative. This leads to:
Iϵ(A,B) = −R(A,B) − Hϵ(A,B) < −R(A,B) = R(B,A) <
Iϵ(B,A). Thus the max over E2 of function (A,B)→ Iϵ(A,B) can
not be achieved for (A,B) with R(A,B) < 0. We obtain:

max
(A,B)∈E2

Iϵ(A,B) = max
(A,B)∈E2|R(A,B)≥0

Iϵ(A,B) (16)

Similarly, R(A,B) + Hϵ(A,B) ≤ 0 < R(B,A) + Hϵ(B,A). Thus the max over E2 of function (A,B) →
(R(A,B) +Hϵ(A,B)) can not be achieved for (A,B) with R(A,B) < 0. We obtain:

max
(A,B)∈E2

(R(A,B) +Hϵ(A,B)) = max
(A,B)∈E2|R(A,B)≥0

(R(A,B) +Hϵ(A,B)) (17)

Conclusion Combining Eq. 14, Eq. 16 and Eq. 17, we conclude the proof.

A.2. Fishr as a feature-adaptive version of V-REx

We delve into the theoretical analysis of the Fishr regularization in the classifier wω, that leverages p features extracted
from ϕ. We note zie ∈ Rp the features for the i-th example from the domain e, ŷie ∈ [0, 1] the predictions after sigmoid and
yie ∈ {0, 1} the one-hot encoded target. The linear layer W is parametrized by weights {wk}pk=1 and bias b.

The gradient of the loss for this sample with respect to the bias b is∇bℓ(y
i
e, ŷ

i
e) = (ŷie − yie). Thus, the uncentered gradient

variance in b for domain e is: vb
e = 1

ne

∑ne

i=1(ŷ
i
e− yie)

2, which is exactly the mean squared error (MSE) between predictions
and targets in domain e. Thus, matching gradient variances in b will match risks across domains. This is the objective from
V-REx (Krueger et al., 2021), where the squared error has replaced the negative log likelihood.

We can also look at the gradients with respect to the weight wk: ∇wk
ℓ(yie, ŷ

i
e) = (ŷie − yie)z

i
e[k]. Thus, the uncentered

gradient variance in wk for domain e is: vwk
e = 1

ne

∑ne

i=1

(
(ŷie − yie)z

i
e[k]

)2
. This is the squared error, weighted for each

sample (zie, yie) by the square of the k-th feature zie[k]: matching gradient variances directly matches these weighted
squared errors, with k different weighting schemes, that depend on the features distribution. This describes Fishr as a
feature-adaptive version of V-REx (Krueger et al., 2021). An intuitive example is when features are binary (zie ∈ {0, 1});
in that case, Fishr matches domain-level risks on groups of samples having a shared feature.

More exactly in Fishr, we match centered gradient variances, equivalent to the uncentered variance gradient matching at
convergence under the assumption ge ≈ 0. Experiments in Table 5 and in Appendix C.2.4 confirm that centering or not the
variances perform similarly.

A.3. Neural Tangent Kernel perspective

In this Section we motivate the matching of gradient covariances with new arguments from the Neural Tangent Kernel
(NTK) (Jacot et al., 2018) theory. As a reminder, the NTK K ∈ Rn×n is the gramian matrix with entries K[i, j] =
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∇θfθ(x
i)⊤ · ∇θfθ(x

j) that measure the gradients similarity at two different input points xi and xj . This kernel dictates
the training dynamics of the DNN and remains fixed in the infinite width limit. Most importantly, as stated in Yang &
Salman (2019), “the simplicity bias of a wide neural network can be read off quickly from the spectrum of K: if the largest
eigenvalue [λmax] of K accounts for most of Tr(K), then a typical random network looks like a function from the top
eigenspace of K”: this holds for ReLu networks. In summary, gradient descent mostly happens in a tiny subspace (Gur-Ari
et al., 2018) whose directions are defined by the main eigenvectors from K. Moreover, the learning speed is dictated by
λmax, which can be used to estimate a condition for a learning rate η to converge: η < 2/λmax (Karakida et al., 2019).

In a multi-domain framework, having similar spectral decompositions across {Ke}e∈E during the optimization process
would improve OOD generalization for two reasons:

1. Having similar top eigenvectors across {Ke}e∈E would delete detrimental domain-dependent shortcuts and favor the
learning of a common mechanism. Indeed, truly informative features should remain consistent across domains.

2. Having similar top eigenvalues across {Ke}e∈E would improve the optimization schema for simultaneous training at
the same speed. Indeed, it would facilitate the finding of a learning rate for simultaneous convergence on all domains.
It’s worth noting that if we quickly overfit on a first domain using spurious explanations, invariances will then be hard
to learn due to the gradient starvation phenomena (Pezeshki et al., 2021).

Directly matching Ke would require assuming that each domain coincides and contains the same samples; for example, with
different pose angles (Ghifary et al., 2015). To avoid such a strong assumption, we leverage the fact that the ‘true’ Fisher
Information Matrix F and the NTK K share the same non-zero eigenvalues since F is dual to K (see Appendix C.1 in
Maddox et al. (2019), notably for classification tasks). Moreover, their eigenvectors are strongly related (see Appendix C in
Kopitkov & Indelman (2019)). Thus, having similar {Fe}e∈E encourages {Ke}e∈E to have similar spectral decomposition.
Based on the close relations between C and F (see Section 3.2.3), this further motivates the need to match gradient variances
during the SGD trajectory — and not only at convergence as in Section 3.2.

B. Experiments on a Linear Example
We experimentally prove that Fishr is effective in the linear setting. To do so, we consider the binary classification dataset
introduced in the Section 3.2 from Fish (Shi et al., 2021). Each example is composed of 4 static features (f1, f2, f3, f4).
While f1 is invariant across the two train domains and the test domain, the three other features are spurious: their correlations
with the label vary in each domain. The model is a linear logistic regression, with trainable weights W and bias b. As f2 and
f3 have higher correlations with the label than f1 in training, ERM relies mostly on f2 and f3. This is indicated in the first
line of Table 5 by the large values (3.3) for weights associated to f2 and f3; this induces low test accuracy (57%). On the
contrary, Fishr forces the linear model to rely mostly on the invariant feature f1, as indicated by the lower values (1.2) for
weights associated to f2 and f3; in accuracy, Fishr performs similarly in test and train (93%).

Method Matched statistics Train acc. Test acc. W b

ERM N/A 97 % 57 % [2.8,3.3,3.3,0.0] -2.7
Fish Gradient means 93 % 93 % [0.4,0.2,0.2,0.0] -0.4
Fishr Centered gradient variances 93 % 93 % [2.0,1.2,1.2,0.0] -0.6
Fishr Uncentered gradient variances 93 % 93 % [1.9,0.9,0.9,0.0] -0.6

Table 5: Performances comparison on the linear dataset from (Shi et al., 2021)

C. Colored MNIST in the IRM Setup
C.1. Description of the Colored MNIST experiment

Colored MNIST is a binary digit classification dataset introduced in IRM (Arjovsky et al., 2019). Compared to the traditional
MNIST (LeCun et al., 2010), it has 2 main differences. First, 0-4 and 5-9 digits are each collapsed into a single class, with a
25% chance of label flipping. Second, digits are either colored red or green, with a strong correlation between label and
color in training. However, this correlation is reversed at test time. Specifically, in training, the model has access to two
domains E = {90%, 80%}: in the first domain, green digits have a 90% chance of being in 5-9; in the second, this chance
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goes down to 80%. In test, green digits have a 10% chance of being in 5-9. Due to this modification in correlation, a model
should ideally ignore the color information and only rely on the digits’ shape: this would obtain a 75% test accuracy.

In the experimental setup from IRM, the network is a 3 layers MLP with ReLu activation, optimized with Adam (Kingma
& Ba, 2014). IRM selected the following hyperparameters by random search over 50 trials: hidden dimension of 390,
l2 regularizer weight of 0.00110794568, learning rate of 0.0004898536566546834, penalty anneal iters (or warmup iter)
of 190, penalty weight (λ) of 91257.18613115903, 501 epochs and batch size 25,000 (half of the dataset size). We
strictly keep the same hyperparameters values in our proof of concept in Section 4.1. The code is almost unchanged from
https://github.com/facebookresearch/InvariantRiskMinimization.

C.2. Empirical validation of some key insights

C.2.1. HESSIAN MATCHING

Based on empirical works (Li et al., 2020; Singh & Alistarh, 2020; Thomas et al., 2020), we argue in Section 3.2.3 that
gradient covariance C can be used as a proxy to regularize the Hessian H — even though the proper approximation bounds
are out of scope of this paper. This was empirically validated at convergence in Table 2 and during training in Fig. 3. We
leveraged the DiagHessian method from BackPACK to compute Hessian diagonals, in all network weights θ. Notably,
Hessians are impractical in a training objective as computing “Hessian is an order of magnitude more computationally
intensive” (see Fig. 9 in Dangel et al. (2020)). This Appendix further analyzes the Hessian trajectory during training.

Fig. 5 illustrates the dynamics for Fishrθ: following the scheduling previously described in Appendix C.1, λ jumping to
a high value at epoch 190 activates the regularization. After this epoch, the domain-level Hessians are not only close in
Frobenius distance, but also have similar norms and directions. On the contrary, when using only ERM in Fig. 6, the distance
between domain-level Hessians keeps increasing with the number of epochs. As a side note, flatter loss landscapes in ERM
— as reflected by the Hessian norms in orange — do not correlate with improved generalization (Dinh et al., 2017).

Figure 5: Hessian dynamics on Colored MNIST with Fishr: at epoch 190, λ steps up. Then domain-level Hessians are
matched across domains (purple). More precisely, they take similar directions — high cosine similarity (red) — and similar
norms (blue). The Hessians’ norms (orange) remain quite high thus the loss landscapes are rather sharp.

Figure 6: Hessian dynamics on Colored MNIST with ERM: λ = 0 along training. The Frobenius distance between
domain-level Hessians (purple) keeps increasing: so does the distance between their norms (blue). Their cosine similarity
(red) steadily decreases. The loss landscapes are flat at convergence (low Hessian norms in orange).

https://github.com/facebookresearch/InvariantRiskMinimization
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Figure 7: Colored MNIST dynamics with ERM.

This is also visible in Fig. 7, which is equivalent to Fig. 3,
but for ERM (without the Fishr regularization). The distance
between domain-level gradient variances (red) keeps increasing
across domains E = {90%, 80%}: so does the distance across
Hessians (purple). The distance across risks (pink) decreases,
but slower than with Fishr regularization. Overall, the net-
work still predicts the digit’s color while only slightly using the
digit’s shape. That’s why the test accuracy (blue) remains low.

C.2.2. COLORED MNIST WITHOUT LABEL FLIPPING

Table 6: Colored MNIST experiments without
label flipping.

Method Train acc. Test acc. Gray test acc.

ERM 99.0 ± 0.0 91.8 ± 0.2 95.0 ± 0.4
IRM 96.4 ± 0.2 82.2 ± 0.1 92.6 ± 0.2

V-REx 97.1 ± 0.2 95.3 ± 0.4 94.1 ± 0.4

Fishrθ 97.9 ± 0.2 93.6 ± 0.4 94.8 ± 0.4
Fishrω 97.0 ± 0.2 95.3 ± 0.4 94.1 ± 0.4
Fishrϕ 97.9 ± 0.1 93.5 ± 0.3 94.8 ± 0.4

To further validate that Fishr can tackle distribution shifts, we inves-
tigate Colored MNIST but without the 25% label flipping. In Table
6, the label is then fully predictable from the digit shape. Using hy-
perparameters defined previously in Appendix C.1, we recover that
IRM (82.2%) fails when the invariant feature is fully predictive (Ahuja
et al., 2019): indeed, it performs worse than ERM (91.8%). In contrast,
V-REx and Fishrω perform better (95.3%): in conclusion, Fishr works
even without label noise.

C.2.3. GRADIENT VARIANCE OR COVARIANCE ?

We have justified ignoring the off-diagonal parts of the covariance to reduce the memory overhead. For the sake of
completeness, the second line in Table 7 shows results with the full covariance matrix. This experiment is possible only when
considering gradient in the classifier wω for memory reasons. Overall, results are similar (or slightly worse) as when using
only the diagonal: the slight difference may be explained by the approaches’ different suitability to the hyperparameters
(that were optimized for IRM). In conclusion, this preliminary experiment suggests that targeting the diagonal components
is the most critical. We hope future works will further investigate this diagonal approximation or provide new methods to
reduce the computational costs, such as K-FAC approximations (Heskes, 2000; Martens & Grosse, 2015).

Table 7: Colored MNIST experiments with different statistics matched. All hyperparameters were optimized for IRM.

Method 25% label flipping No label flipping

Gradients in Name Matched statistics Train acc. Test acc. Gray test acc. Train acc. Test acc. Gray test acc.

ω
Centered variance (= Fishrω) Var(Ge) 71.0 ± 0.9 69.5 ± 1.0 70.2 ± 1.1 97.0 ± 0.2 95.3 ± 0.4 94.1 ± 0.4

Centered covariance Ce 70.7 ± 1.0 69.1 ± 1.1 69.9 ± 1.1 97.0 ± 0.2 95.3 ± 0.4 94.0 ± 0.4
Uncentered variance Diag( 1

ne
F̃e) 71.3 ± 0.9 69.5 ± 1.0 70.3 ± 1.0 97.0 ± 0.2 95.3 ± 0.4 94.1 ± 0.4

θ
Centered variance (= Fishrθ) Var(Ge) 69.6 ± 0.9 71.2 ± 1.1 70.2 ± 0.7 97.9 ± 0.1 93.5 ± 0.3 94.7 ± 0.4

Centered covariance Ce Not possible for computational (memory) reasons
Uncentered variance Diag( 1

ne
F̃e) 71.0 ± 0.8 70.0 ± 1.1 70.1 ± 0.9 97.9 ± 0.0 93.5 ± 0.3 94.8 ± 0.4

ϕ
Centered variance (= Fishrϕ) Var(Ge) 65.6 ± 1.3 73.8 ± 1.0 70.0 ± 0.9 97.9 ± 0.1 93.5 ± 0.3 94.8 ± 0.4

Centered covariance Ce Not possible for computational (memory) reasons
Uncentered variance Diag( 1

ne
F̃e) 71.5 ± 0.8 69.1 ± 1.1 70.0 ± 1.0 97.9 ± 0.1 93.5 ± 0.3 94.8 ± 0.4

C.2.4. CENTERED OR UNCENTERED VARIANCE ?

In Section 3.2.3, we argue that the gradient centered covariance C and the empirical Fisher Information Matrix (or uncentered
covariance) F̃ are highly related and equivalent when the DNN is at convergence and the gradient means are zero. So,
we could have tackled the diagonals of the domain-level {F̃e}e∈E across domains, i.e., without centering the variances.
Empirically, comparing the first and third lines in Table 7 shows that centering or not the variance are almost equivalent.
This holds true when applying Fishr on all weights θ (as lines fourth and six are also very similar). This was empirically
confirmed in DomainBed: for example, Fishr with either centered or uncentered variances reach 67.8. Still, it’s worth noting
that explicitly matching simultaneously the gradient centered variances along with the gradient means performs best in
Appendix D.3.2.
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D. DomainBed
D.1. Description of the DomainBed benchmark

We now further detail our experiments on the DomainBed benchmark. Scores from most baselines are taken from the
DomainBed (Gulrajani & Lopez-Paz, 2021) paper. Scores for AND-mask and SAND-mask are taken from the SAND-mask
paper (Shahtalebi et al., 2021). Scores for IGA (Koyama & Yamaguchi, 2020) are not yet available: yet, for the sake of
completeness, we analyze IGA in Appendix D.3.2. Missing scores will be included when available.

The same procedure was applied for all methods: for each domain, a random hyperparameter search of 20 trials over a
joint distribution, described in Table 8, is performed. We discuss the choice of these distributions in Appendix D.3.3. The
learning rate, the batch size (except for ARM), the weight decay and the dropout distributions are shared across all methods -
all trained with Adam (Kingma & Ba, 2014). Specific hyperparameter distributions for concurrent methods can be found
in the original work of Gulrajani & Lopez-Paz (2021). The data from each domain is split into 80% (used as training and
testing) and 20% (used as validation for hyperparameter selection) splits. This random process is repeated with 3 different
seeds: the reported numbers are the means and the standard errors over these 3 seeds.

Table 8: Hyperparameters, their default values and distributions for random search.

Condition Parameter Default value Random distribution

VLCS / PACS / learning rate 0.00005 10Uniform(−5,−3.5)

OfficeHome / batch size 32 2Uniform(3,5.5) if not DomainNet else 2Uniform(3,5)

TerraIncognita / weight decay 0 10Uniform(−6,−2)

DomainNet dropout 0 RandomChoice ([0, 0.1, 0.5])

Rotated MNIST / learning rate 0.001 10Uniform(−4.5,−3.5)

Colored MNIST batch size 64 2Uniform(3,9)

weight decay 0 0

All steps 5000 5000

Fishr
regularization strength λ 1000 10Uniform(1,4)

ema γ 0.95 Uniform(0.9, 0.99)
warmup iterations 1500 Uniform(0, 5000)

We clarify a subtle point (omitted in the Algorithm 1) concerning the hyperparameter γ that controls: v̄t
e = γv̄t−1

e +(1−γ)vt
e

at step t. We remind that v̄t−1
e from previous step t− 1 is ‘detached’ from the computational graph. Thus when L from Eq.

4 is differentiated during SGD, the gradients going through vt
e are multiplied by (1− γ). To compensate this and decorrelate

the impact of γ and of λ (that controls the regularization strength), we match 1
1−γ v̄

t
e. Finally, with this (1− γ) correction,

the gradients’ strength backpropagated in the network is independent of γ.

Here we list all concurrent approaches.

• ERM: Empirical Risk Minimization (Vapnik, 1999)

• IRM: Invariant Risk Minimization (Arjovsky et al., 2019)

• GroupDRO: Group Distributionally Robust Optimization (Sagawa et al., 2020a)

• Mixup: Interdomain Mixup (Yan et al., 2020)

• MLDG: Meta Learning Domain Generalization (Li et al., 2018a)

• CORAL: Deep CORAL (Sun & Saenko, 2016)

• MMD: Maximum Mean Discrepancy (Li et al., 2018b)

• DANN: Domain Adversarial Neural Network (Ganin et al., 2016)

• CDANN: Conditional Domain Adversarial Neural Network (Li et al., 2018c)

• MTL: Marginal Transfer Learning (Blanchard et al., 2021)
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• SagNet: Style Agnostic Networks (Nam et al., 2021)

• ARM: Adaptive Risk Minimization (Zhang et al., 2020)

• V-REx: Variance Risk Extrapolation (Krueger et al., 2021)

• RSC: Representation Self-Challenging (Huang et al., 2020)

• AND-mask: Learning Explanations that are Hard to Vary (Parascandolo et al., 2021)

• SAND-mask: An Enhanced Gradient Masking Strategy for the Discovery of Invariances in Domain Generalization
(Shahtalebi et al., 2021)

• IGA: Out-of-distribution generalization with maximal invariant predictor (Koyama & Yamaguchi, 2020)

• Fish: Gradient Matching for Domain Generalization (Shi et al., 2021)

We omitted the recent weight averaging approaches (Cha et al., 2021; Rame et al., 2022) whose contribution is complementary
to others, that uses a custom hyperparameter search and does not report scores with the ‘Test-domain’ model selection.

DomainBed includes seven multi-domain computer vision classification datasets:

1. Colored MNIST (Arjovsky et al., 2019) is a variant of the MNIST handwritten digit classification dataset (LeCun
et al., 2010). As described previously in Appendix C.1, domain d ∈ {90%, 80%, 10%} contains a disjoint set of digits
colored: the correlation strengths between color and label vary across domains. The dataset contains 70,000 examples
of dimension (2, 28, 28) and 2 classes. Most importantly, the network, the hyperparameters, the image shapes, etc. are
not the same as in the IRM setup from Section 4.1.

2. Rotated MNIST (Ghifary et al., 2015) is a variant of MNIST where domain d ∈ {0, 15, 30, 45, 60, 75} contains digits
rotated by d degrees, with 70,000 examples of dimension (1, 28, 28) and 10 classes.

3. VLCS (Fang et al., 2013) includes photographic domains d ∈ {Caltech101, LabelMe, SUN09, VOC2007}, with 10,729
examples of dimension (3, 224, 224) and 5 classes.

4. PACS (Li et al., 2017) includes domains d ∈ {art, cartoons, photos, sketches}, with 9,991 examples of dimension
(3, 224, 224) and 7 classes.

5. OfficeHome (Venkateswara et al., 2017) includes domains d ∈ {art, clipart, product, real}, with 15,588 examples of
dimension (3, 224, 224) and 65 classes.

6. TerraIncognita (Beery et al., 2018) contains photographs of wild animals taken by camera traps at locations d ∈ {L100,
L38, L43, L46}, with 24,788 examples of dimension (3, 224, 224) and 10 classes.

7. DomainNet (Peng et al., 2019) has six domains d ∈ {clipart, infograph, painting, quickdraw, real, sketch}, with
586,575 examples of size (3, 224, 224) and 345 classes.

The convolutional neural network architecture used for the MNIST experiments is the one introduced in DomainBed: note
that this is not the same MLP (described in Appendix C.1) as in our proof of concept in Section 4.1. All real datasets
leverage a ‘ResNet-50’ pretrained on ImageNet, with a dropout layer before the newly added dense layer and fine-tuned
with frozen batch normalization layers.

D.2. ‘Training-domain’ model selection

In the main paper, we focus on the ‘Test-domain’ model selection, where the validation set follows the same distribution
as the test domain. This is important to adapt the degree of model invariance according to the test domain. For Fishr, if
the domain-dependant correlations are useful in test, the selected λ would be small and Fishr would behave like ERM;
in contrast, if the domain-dependant correlations are detrimental in test, the selected λ would be large, and Fishr would
improve over ERM by enforcing invariance.
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Table 9: DomainBed with ‘Training-domain’ model selection. We format first, second and worse than ERM results.

Algorithm
Accuracy (↑) Ranking (↓)

CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg Arith.
mean

Geom.
mean Median

ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6 7.0 5.9 7
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4 10.7 8.5 14
GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8 11.3 8.4 14
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7 5.7 4.2 3
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7 8.0 7.0 8
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5 3.6 2.5 2
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3 12.3 11.8 10
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1 10.3 8.8 12
CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6 11.1 10.7 10
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2 10.9 10.2 10
SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2 4.0 3.0 3
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1 8.7 5.6 9
V-REx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6 8.3 7.7 8
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1 11.4 10.6 9
AND-mask 51.3 ± 0.2 97.6 ± 0.1 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6 65.5 13.6 12.7 15
SAND-mask 51.8 ± 0.2 97.4 ± 0.1 77.4 ± 0.2 84.6 ± 0.9 65.8 ± 0.4 42.9 ± 1.7 32.1 ± 0.6 64.6 13.4 12.7 13
Fish 51.6 ± 0.1 98.0 ± 0.0 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 67.1 5.6 3.8 3

Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1 5.6 4.8 5

In Table 9, we use the ‘Training-domain’ model selection: the validation set is formed by randomly collecting 20% of each
training domain. Fishr performs better than ERM on all real datasets (over standard errors for OfficeHome and DomainNet),
except for PACS where the two reach 85.5%. In average, Fishr (67.1%) finishes third and is above most methods such as
V-REx (65.6%). Fishr median ranking is fifth, with a mean ranking of 5.6. These additional results were not included in the
main paper due to space constraints and also because this ‘Training-domain’ model selection has three clear limitations.

First, learning causal mechanisms can be useless in this ‘Training-domain’ setup. Indeed, when the correlations are more
predictive in training than the causal features, the variant model may be selected over the invariant one. This explains the
poor results for all methods in ‘Training-domain’ Colored MNIST, where the color information is more predictive than the
shape information in training. The best model on this task is ARM (Zhang et al., 2020) that uses test time adaptation - thus
in a sense uses information from the test-domain - and whose contribution is mostly complementary to ours.

Second, the ‘Training-domain’ setup suffers from underspecification: “predictors with equivalently strong held-out perfor-
mance in the training domain [...] can behave very differently” in test (D’Amour et al., 2020). This underspecification favors
low regularization thus low values of λ. To select the model with the best generalization properties, future benchmarks may
consider the training calibration (Wald et al., 2021) rather than merely selecting the model with the best training accuracy.

Third, the ‘Test-domain’ model selection is more realistic for real applications. Indeed, one user would easily label some
samples to validate the efficiency of its algorithm. It’s not realistic to believe that the users would simply deploy their new
algorithm without at least checking that the performances are correct. We recall that the ‘Test-domain’ setup in DomainBed
benchmark is quite restricting, allowing only one evaluation per choice of hyperparameters, without early-stopping.

That’s why Teney et al. (2021) even states that “OOD performance cannot, by definition, be performed with a validation
set from the same distribution as the training data”. Both opinions being reasonable and arguable, we included ‘Training-
domain’ results for the sake of completeness, where Fishr remains stronger than ERM. Yet, our state-of-the-art results on the
‘Test-domain’ setup from Table 4 alone are sufficient to prove the usefulness of our approach for real-world applications.

D.3. Fishr component analysis on DomainBed

D.3.1. FOCUS ON THE EXPONENTIAL MOVING AVERAGE

Following Le Roux et al. (2011), we use an exponential moving average (ema) parameterized by γ for computing gradient
variances in DomainBed: the closer γ is to 1, the longer a batch will impact the variance from later steps. We now further
analyze the impact of this strategy, which is not specific to Fishr and was used previously in other works (Nam et al., 2020;
Blanchard et al., 2021; Zhang et al., 2021) for OOD generalization. Notably, this ema strategy could be applied to better
estimate domain-level empirical risks in V-REx (Krueger et al., 2021). For a fair comparison, we introduce a new approach
— V-REx with ema — that penalizes |R̄t

A − R̄t
B |2 at step t where R̄t

e = γR̄t−1
e + (1− γ)Rt

e when E = {A,B}.

Thus, we compare V-REx and Fishr, with γ = 0 (✗) or with γ ∼ Uniform(0.9, 0.99) (✓, as described in Table 8). On the
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Table 10: Importance of the exponential moving average (ema) on DomainBed’s Colored MNIST.

Model selection Algorithm ema +90% +80% 10% Avg

Test-domain

ERM N/A 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8

V-REx ✗ 72.8 ± 0.3 73.0 ± 0.3 55.2 ± 4.0 67.0
✓ 73.0 ± 0.2 73.0 ± 0.3 59.9 ± 2.6 68.6

Fishr ✗ 72.7 ± 0.3 72.8 ± 0.1 34.0 ± 4.5 59.8
✓ 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8

Training-domain

ERM N/A 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5

V-REx ✗ 72.4 ± 0.3 72.9 ± 0.4 10.2 ± 0.0 51.8
✓ 72.6 ± 0.5 73.3 ± 0.1 9.8 ± 0.1 51.9

Fishr ✗ 71.1 ± 0.6 73.6 ± 0.1 10.1 ± 0.2 51.6
✓ 72.3 ± 0.9 73.5 ± 0.2 10.1 ± 0.2 52.0

Table 11: Importance of the exponential moving average (ema) on DomainBed’s OfficeHome.

Model selection Algorithm ema A C P R Avg

Test-domain

ERM N/A 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4

V-REx ✗ 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
✓ 59.0 ± 0.7 52.8 ± 0.8 74.6 ± 0.4 75.5 ± 0.3 65.5

Fishr ✗ 63.6 ± 0.4 53.2 ± 0.5 75.4 ± 0.5 77.8 ± 0.3 67.5
✓ 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2

Training-domain

ERM N/A 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5

V-REx ✗ 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
✓ 59.2 ± 1.0 51.7 ± 0.5 75.2 ± 0.2 76.6 ± 0.3 65.7

Fishr ✗ 62.2 ± 1.0 53.5 ± 0.2 76.6 ± 0.2 77.8 ± 0.4 67.5
✓ 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8

synthetic Colored MNIST in Table 10, the ema is critical for Fishr — notably when training on E = {90%, 80%} and the
dataset 10% is in test (from ✗34.0% to ✓58.9% in ‘Test-domain’). V-REx also benefits from ema. On the ‘real’ dataset
OfficeHome in Table 11, the ema is less beneficial (from ✗67.5% to ✓68.2% in ‘Test-domain’ for Fishr). Notably, it worsens
V-REX. Overall, Fishr — with and without ema — outperforms V-REx on OfficeHome.

We speculate that ema mainly helps when the batch size is not sufficiently large to detect ‘slight’ correlation shifts in the
training datasets: e.g., when batch size∼ 2Uniform(3,9) and training datasets E = {90%, 80%} in Colored MNIST. We remind
that when the batch size was 25,000 in the Colored MNIST setup from IRM, Fishr reached 69.5% (without ema) in Table 3
from Section 4.1. On the contrary, when the shift is more prominent as in OfficeHome, the ema may be less necessary. Most
importantly, Fishr — with and without ema — improves over ERM on these datasets.

D.3.2. COMPONENT ANALYSIS BY COMPARING GRADIENT VARIANCE VERSUS GRADIENT MEAN MATCHING

As a reminder from the Section 2, IGA (Koyama & Yamaguchi, 2020) is an unpublished gradient-based approach that matches
gradient means across domains, i.e., minimizes ||gA−gB ||22 when E = {A,B} and where ge = 1

ne

∑ne

i=1∇θℓ (fθ(xe),ye).
Scores for IGA are not available publicly and thus were not included in Section 4.2.1. Moreover, IGA is very costly and
impractical: IGA is approximately (|E|+ 1) times longer to train than ERM. Yet, we ran the DomainBed implementation of
IGA on one ‘synthetic’ and one ‘real’ dataset. Table 12 shows that the IGA has little effect on Colored MNIST (58.0% vs.
57.8% for ERM in ‘Test-domain’). Moreover, on OfficeHome in Table 13, IGA hinders learning (56.9% vs. 66.4% for ERM
in ‘Test-domain’). In brief, the seminal “IGA [. . .] could completely fail when generalizing to unseen domains”, as stated in
Fish (Shi et al., 2021).

In the rest of this Section, we include IGA in Fishr codebase so that both methods leverage the same implementation choices:
this enables fairer comparisons between gradient mean matching and gradient variance matching. These experiments
provide further insights regarding Fishr main components: specifically, enforcing invariance (1) only in the classifier’s
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Table 12: Fishr (gradient variance) vs. IGA (gradient mean) on DomainBed’s Colored MNIST.

Model selection Algorithm Gradients in Warmup ema +90% +80% 10% Avg

Test-domain

ERM N/A N/A N/A 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8

IGA

θ = ω ⊕ ϕ ✗ ✗ 71.8 ± 0.5 73.0 ± 0.3 29.2 ± 0.5 58.0
ω ✗ ✗ 72.4 ± 0.1 73.3 ± 0.2 29.3 ± 0.6 58.3
ω ✓ ✗ 72.5 ± 0.2 73.3 ± 0.1 31.8 ± 0.7 59.2
ω ✓ ✓ 72.6 ± 0.3 72.9 ± 0.2 50.0 ± 1.2 65.2

Fishr ω
✗ ✗ 73.0 ± 0.3 73.2 ± 0.1 29.5 ± 1.1 58.6
✓ ✗ 72.7 ± 0.3 72.8 ± 0.1 34.0 ± 4.5 59.8
✓ ✓ 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8

Fishr + IGA ω ✓ ✓ 73.3 ± 0.0 72.6 ± 0.5 66.3 ± 2.9 70.7

Training-domain

ERM N/A N/A N/A 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5

IGA

θ = ω ⊕ ϕ ✗ ✗ 71.8 ± 0.3 73.2 ± 0.2 9.8 ± 0.0 51.6
ω ✗ ✗ 71.8 ± 0.1 73.2 ± 0.2 10.1 ± 0.0 51.7
ω ✓ ✗ 71.8 ± 0.2 73.1 ± 0.2 10.1 ± 0.0 51.7
ω ✓ ✓ 72.5 ± 0.4 73.3 ± 0.2 10.1 ± 0.1 52.0

Fishr ω
✗ ✗ 71.6 ± 0.1 73.2 ± 0.1 9.9 ± 0.0 51.6
✓ ✗ 71.1 ± 0.6 73.6 ± 0.1 10.1 ± 0.2 51.6
✓ ✓ 72.3 ± 0.9 73.5 ± 0.2 10.1 ± 0.2 52.0

Fishr + IGA ω ✓ ✓ 72.4 ± 0.4 73.1 ± 0.1 10.1 ± 0.1 51.8

Table 13: Fishr (gradient variance) vs. IGA (gradient mean) on DomainBed’s OfficeHome.

Model selection Algorithm Gradients in Warmup ema A C P R Avg

Test-domain

ERM N/A N/A N/A 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4

IGA

θ = ω ⊕ ϕ ✗ ✗ 50.1 ± 2.5 49.6 ± 1.6 59.5 ± 6.7 68.5 ± 1.2 56.9
ω ✗ ✗ 62.3 ± 0.3 53.9 ± 0.2 75.2 ± 0.4 77.4 ± 0.1 67.2
ω ✓ ✗ 61.9 ± 0.4 52.6 ± 0.6 76.0 ± 0.8 77.5 ± 0.3 67.0
ω ✓ ✓ 62.3 ± 1.0 53.4 ± 0.3 76.0 ± 0.7 77.0 ± 0.1 67.2

Fishr ω
✗ ✗ 61.8 ± 0.9 53.8 ± 0.4 76.6 ± 0.6 77.7 ± 0.2 67.5
✓ ✗ 63.6 ± 0.4 53.2 ± 0.5 75.4 ± 0.5 77.8 ± 0.3 67.5
✓ ✓ 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2

Fishr + IGA ω ✓ ✓ 63.6 ± 1.0 54.6 ± 0.5 76.6 ± 0.2 78.4 ± 0.4 68.3

Training-domain

ERM N/A N/A N/A 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5

IGA

θ = ω ⊕ ϕ ✗ ✗ 51.7 ± 1.3 49.3 ± 1.5 58.6 ± 7.1 69.0 ± 1.1 57.1
ω ✗ ✗ 61.9 ± 0.0 53.6 ± 0.9 75.7 ± 0.5 76.0 ± 0.1 66.8
ω ✓ ✗ 61.2 ± 0.1 52.2 ± 0.5 76.1 ± 0.2 77.2 ± 0.3 66.7
ω ✓ ✓ 61.7 ± 0.5 52.4 ± 0.7 75.9 ± 0.4 77.1 ± 0.2 66.8

Fishr ω
✗ ✗ 63.8 ± 0.6 52.5 ± 0.5 76.7 ± 0.6 77.1 ± 1.0 67.5
✓ ✗ 62.2 ± 1.0 53.5 ± 0.2 76.6 ± 0.2 77.8 ± 0.4 67.5
✓ ✓ 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8

Fishr + IGA ω ✓ ✓ 63.3 ± 1.0 54.1 ± 0.3 76.5 ± 0.4 78.2 ± 0.6 68.0

weights ω (2) after a warmup period and (3) with an exponential moving average.

First, Fishr only considers gradient variances in the classifier’s weights ω. Similarly, we try to apply IGA’s gra-
dient mean matching but only in wω rather than in fθ. This new method works significantly better (67.2% when
ge = 1

ne

∑ne

i=1∇ωℓ (fθ(xe),ye) vs. 56.9% when ge = 1
ne

∑ne

i=1∇θℓ (fθ(xe),ye) for ‘Test-domain’ OfficeHome in
Table 13) while reducing the computational overhead. This further motivates the invariance in the classifier rather than in
the low-level layers (which need to adapt to shifts in pixels for instance). We have done this analysis on IGA and not on
Fishr because keeping all individual gradients for a ResNet-50 in the GPU memory was not possible on our hardware.

Second, Fishr uses a double-stage scheduling inherited from IRM (Arjovsky et al., 2019): the DNN first learns predictive
features with standard ERM (λ = 0) until a given epoch, at which λ takes its true (high) value to then force domain
invariance. This warmup strategy slightly increases ‘Test-domain’ results on Colored MNIST (from 58.6% to 59.8% for
Fishr, from 58.3% to 59.2% for IGA) but does not seem critical: in particular, it reduces IGA ‘Test-domain’ scores on
OfficeHome.

Third, the estimation of gradient variances was improved with an exponential moving average (see Section 4.2.1 and
Appendix D.3.1). We now use this strategy with domain-level gradient means for IGA in ω: ḡt

e = γḡt−1
e + (1− γ)gt

e. This
improves IGA (from 67.0% to 67.2% in ‘Test-domain’ on OfficeHome): yet, these scores remain consistently worse than
Fishr’s (from 67.5% to 68.2%).
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In conclusion, this complements the experiments in Section 4.2.1 which showed that tackling gradient variance does better
than tackling gradient mean: indeed, Fishr performed better than Fish (Shi et al., 2021), AND-mask (Parascandolo et al.,
2021) and SAND-mask (Shahtalebi et al., 2021). As a final note, Fishr + IGA — i.e., matching simultaneously gradient
means (the first moment) and variances (the second moment) — performs best. Future works may further analyze the
complementary of these gradient-based methods.

D.3.3. HYPERPARAMETER DISTRIBUTIONS

Table 14: Impact of the λ distribution from Table 8.

Model selection λ distribution CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

Test-domain
Constant(0) (= ERM) 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
10Uniform (1,4) 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.1 70.8
10Uniform (1,5) 68.7 ± 1.3 97.8 ± 0.0 78.7 ± 0.3 87.5 ± 0.1 68.0 ± 0.4 52.2 ± 0.5 42.0 ± 0.1 70.7

Training-domain
Constant(0) (= ERM) 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
10Uniform (1,4) 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1
10Uniform (1,5) 51.8 ± 0.3 97.9 ± 0.0 77.9 ± 0.1 85.5 ± 0.6 67.4 ± 0.3 47.2 ± 1.0 41.8 ± 0.1 67.1

This Section is a preliminary introduction to a meta-discussion, not about the methodology to select the best hyperparameters,
but about the methodology to select the hyperparameter distributions in DomainBed. This question has not been discussed
in previous works (as far as we know).

After few initial iterations on the main idea of the paper, we had to select the distributions to sample our three hyperparameters
from, as described in Table 8. First, to select the ema γ distribution, we knew that the authors from Le Roux et al. (2011)
have not noticed “any significant difference in validation errors” for different values higher than 0.9. Moreover γ should
remain strictly lower than 1. Thus, sampling from Uniform(0.9, 0.99) seemed appropriate. Second, sampling the number of
warmup iterations uniformly along training from Uniform(0, 5000) seemed the most natural and neutral choice. Lastly, the
choice of the λ distribution was more complex. As a reminder, a low λ inactivates the regularization while an extremely
high λ may destabilize the training.

In Table 14, we investigate two distributions: λ ∼ 10Uniform(1,4) (eventually chosen for Fishr) and λ ∼ 10Uniform(1,5). First,
we observe that results are mostly similar: it confirms that Fishr is consistently better than ERM (where λ = 0), and in
average is the best approach with the ‘Test-domain’ model selection and among the best approaches with the ‘Training-
domain’ model selection. Second, the existence of consistent differences in results suggests that the best hyperparameter
distribution depends on the dataset at hand and that the performance gap depends on the selection method.

While out of the scope of this paper, we believe these results were important for transparency (along with publishing our
code), and may motivate the need for new protocols — for example with bayesian hyperparameter search (Turner et al.,
2021) — that future benchmarks may introduce.

D.4. Full DomainBed results

Tables below detail results for each dataset with ’Test-domain’ and ’Training-domain’ model selection methods. We format
first and second best accuracies. Note that the per-dataset results for Fish (Shi et al., 2021) are not available.
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D.4.1. COLORED MNIST

Colored MNIST. Model selection: ‘Test-domain’ validation set

Algorithm +90% +80% 10% Avg Ranking

ERM 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8 16
IRM 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7 2
GroupDRO 73.5 ± 0.3 73.0 ± 0.3 36.8 ± 2.8 61.1 8
Mixup 72.5 ± 0.2 73.9 ± 0.4 28.6 ± 0.2 58.4 13
MLDG 71.9 ± 0.3 73.5 ± 0.2 29.1 ± 0.9 58.2 14
CORAL 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6 10
MMD 69.0 ± 2.3 70.4 ± 1.6 50.6 ± 0.2 63.3 4
DANN 72.4 ± 0.5 73.9 ± 0.5 24.9 ± 2.7 57.0 18
CDANN 71.8 ± 0.5 72.9 ± 0.1 33.8 ± 6.4 59.5 9
MTL 71.2 ± 0.2 73.5 ± 0.2 28.0 ± 0.6 57.6 17
SagNet 72.1 ± 0.3 73.2 ± 0.3 29.4 ± 0.5 58.2 14
ARM 84.9 ± 0.9 76.8 ± 0.6 27.9 ± 2.1 63.2 5
V-REx 72.8 ± 0.3 73.0 ± 0.3 55.2 ± 4.0 67.0 3
RSC 72.0 ± 0.1 73.2 ± 0.1 30.2 ± 1.6 58.5 12
AND-mask 71.9 ± 0.6 73.6 ± 0.5 30.2 ± 1.4 58.6 10
SAND-mask 79.9 ± 3.8 75.9 ± 1.6 31.6 ± 1.1 62.3 6
Fish 61.8 7

Fishr 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8 1

Colored MNIST. Model selection: ‘Training-domain’ validation set

Algorithm +90% +80% 10% Avg Ranking

ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5 12
IRM 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0 4
GroupDRO 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1 2
Mixup 72.7 ± 0.4 73.4 ± 0.1 10.1 ± 0.1 52.1 2
MLDG 71.5 ± 0.2 73.1 ± 0.2 9.8 ± 0.1 51.5 12
CORAL 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5 12
MMD 71.4 ± 0.3 73.1 ± 0.2 9.9 ± 0.3 51.5 12
DANN 71.4 ± 0.9 73.1 ± 0.1 10.0 ± 0.0 51.5 12
CDANN 72.0 ± 0.2 73.0 ± 0.2 10.2 ± 0.1 51.7 8
MTL 70.9 ± 0.2 72.8 ± 0.3 10.5 ± 0.1 51.4 17
SagNet 71.8 ± 0.2 73.0 ± 0.2 10.3 ± 0.0 51.7 8
ARM 82.0 ± 0.5 76.5 ± 0.3 10.2 ± 0.0 56.2 1
V-REx 72.4 ± 0.3 72.9 ± 0.4 10.2 ± 0.0 51.8 6
RSC 71.9 ± 0.3 73.1 ± 0.2 10.0 ± 0.2 51.7 8
AND-mask 70.7 ± 0.5 73.3 ± 0.2 10.0 ± 0.1 51.3 18
SAND-mask 72.0 ± 0.5 73.2 ± 0.4 10.3 ± 0.2 51.8 6
Fish 51.6 11

Fishr 72.3 ± 0.9 73.5 ± 0.2 10.1 ± 0.2 52.0 4
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D.4.2. ROTATED MNIST

Rotated MNIST. Model selection: ‘Test-domain’ validation set

Algorithm 0 15 30 45 60 75 Avg Ranking

ERM 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8 12
IRM 94.9 ± 0.6 98.7 ± 0.2 98.6 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 95.2 ± 0.3 97.5 16
GroupDRO 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 96.3 ± 0.4 97.9 5
Mixup 95.8 ± 0.3 98.7 ± 0.0 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.6 ± 0.2 98.0 2
MLDG 95.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 95.8 ± 0.4 97.8 12
CORAL 96.2 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 96.4 ± 0.2 98.0 2
MMD 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 96.4 ± 0.2 98.0 2
DANN 95.9 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 98.9 ± 0.0 96.3 ± 0.3 97.9 5
CDANN 95.9 ± 0.2 98.8 ± 0.0 98.7 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 96.1 ± 0.3 97.9 5
MTL 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.7 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9 5
SagNet 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 96.3 ± 0.1 97.9 5
ARM 95.9 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 99.1 ± 0.1 96.7 ± 0.2 98.1 1
V-REx 95.5 ± 0.2 99.0 ± 0.0 98.7 ± 0.2 98.8 ± 0.1 98.8 ± 0.0 96.4 ± 0.0 97.9 5
RSC 95.4 ± 0.1 98.6 ± 0.1 98.6 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.4 ± 0.3 97.6 15
AND-mask 94.9 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.7 ± 0.2 98.6 ± 0.2 95.5 ± 0.2 97.5 16
SAND-mask 94.7 ± 0.2 98.5 ± 0.2 98.6 ± 0.1 98.6 ± 0.1 98.5 ± 0.1 95.2 ± 0.1 97.4 18
Fish 97.9 11

Fishr 95.8 ± 0.1 98.3 ± 0.1 98.8 ± 0.1 98.6 ± 0.3 98.7 ± 0.1 96.5 ± 0.1 97.8 12

Rotated MNIST. Model selection: ‘Training-domain’ validation set

Algorithm 0 15 30 45 60 75 Avg Ranking

ERM 95.9 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 96.4 ± 0.0 98.0 2
IRM 95.5 ± 0.1 98.8 ± 0.2 98.7 ± 0.1 98.6 ± 0.1 98.7 ± 0.0 95.9 ± 0.2 97.7 15
GroupDRO 95.6 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.5 ± 0.2 98.0 2
Mixup 95.8 ± 0.3 98.9 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 98.8 ± 0.1 96.5 ± 0.3 98.0 2
MLDG 95.8 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9 8
CORAL 95.8 ± 0.3 98.8 ± 0.0 98.9 ± 0.0 99.0 ± 0.0 98.9 ± 0.1 96.4 ± 0.2 98.0 2
MMD 95.6 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 98.9 ± 0.0 96.0 ± 0.2 97.9 8
DANN 95.0 ± 0.5 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.1 98.9 ± 0.0 96.3 ± 0.2 97.8 13
CDANN 95.7 ± 0.2 98.8 ± 0.0 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.1 ± 0.3 97.9 8
MTL 95.6 ± 0.1 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.1 95.8 ± 0.2 97.9 8
SagNet 95.9 ± 0.3 98.9 ± 0.1 99.0 ± 0.1 99.1 ± 0.0 99.0 ± 0.1 96.3 ± 0.1 98.0 2
ARM 96.7 ± 0.2 99.1 ± 0.0 99.0 ± 0.0 99.0 ± 0.1 99.1 ± 0.1 96.5 ± 0.4 98.2 1
V-REx 95.9 ± 0.2 99.0 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.7 ± 0.1 96.2 ± 0.2 97.9 8
RSC 94.8 ± 0.5 98.7 ± 0.1 98.8 ± 0.1 98.8 ± 0.0 98.9 ± 0.1 95.9 ± 0.2 97.6 16
AND-mask 94.8 ± 0.2 98.8 ± 0.1 98.9 ± 0.0 98.7 ± 0.0 98.7 ± 0.1 95.5 ± 0.4 97.6 16
SAND-mask 94.5 ± 0.4 98.6 ± 0.1 98.8 ± 0.1 98.7 ± 0.1 98.6 ± 0.0 95.5 ± 0.2 97.4 18
Fish 98.0 2

Fishr 95.0 ± 0.3 98.5 ± 0.0 99.2 ± 0.1 98.9 ± 0.0 98.9 ± 0.1 96.5 ± 0.0 97.8 13
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D.4.3. VLCS

VLCS. Model selection: ‘Test-domain’ validation set

Algorithm C L S V Avg Ranking

ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6 12
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9 16
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4 15
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1 4
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5 14
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7 10
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9 6
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7 2
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9 1
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7 10
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6 12
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8 7
V-REx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1 4
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8 7
AND-mask 98.3 ± 0.3 64.5 ± 0.2 69.3 ± 1.3 73.4 ± 1.3 76.4 17
SAND-mask 97.6 ± 0.3 64.5 ± 0.6 69.7 ± 0.6 73.0 ± 1.2 76.2 18
Fish 77.8 7

Fishr 97.6 ± 0.7 67.3 ± 0.5 72.2 ± 0.9 75.7 ± 0.3 78.2 3

VLCS. Model selection: ‘Training-domain’ validation set

Algorithm C L S V Avg Ranking

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5 10
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5 3
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7 18
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4 13
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2 15
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8 1
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5 10
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6 2
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5 10
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2 15
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8 6
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6 9
V-REx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3 4
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1 17
AND-mask 97.8 ± 0.4 64.3 ± 1.2 73.5 ± 0.7 76.8 ± 2.6 78.1 5
SAND-mask 98.5 ± 0.3 63.6 ± 0.9 70.4 ± 0.8 77.1 ± 0.8 77.4 13
Fish 77.8 6

Fishr 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8 6
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D.4.4. PACS

PACS. Model selection: ‘Test-domain’ validation set

Algorithm A C P S Avg Ranking

ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7 8
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5 18
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1 3
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8 6
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8 6
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1 3
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2 1
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2 17
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8 14
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7 8
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4 10
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8 14
V-REx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2 1
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2 12
AND-mask 86.4 ± 1.1 80.8 ± 0.9 97.1 ± 0.2 81.3 ± 1.1 86.4 10
SAND-mask 86.1 ± 0.6 80.3 ± 1.0 97.1 ± 0.3 80.0 ± 1.3 85.9 13
Fish 85.8 14

Fishr 87.9 ± 0.6 80.8 ± 0.5 97.9 ± 0.4 81.1 ± 0.8 86.9 5

PACS. Model selection: ‘Training-domain’ validation set

Algorithm A C P S Avg Ranking

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5 3
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5 17
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4 14
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6 10
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9 8
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2 2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6 10
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6 16
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6 18
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6 10
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3 1
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1 7
V-REx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9 8
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2 6
AND-mask 85.3 ± 1.4 79.2 ± 2.0 96.9 ± 0.4 76.2 ± 1.4 84.4 14
SAND-mask 85.8 ± 1.7 79.2 ± 0.8 96.3 ± 0.2 76.9 ± 2.0 84.6 10
Fish 85.5 3

Fishr 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5 3
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D.4.5. OFFICEHOME

OfficeHome. Model selection: ‘Test-domain’ validation set

Algorithm A C P R Avg Ranking

ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4 8
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0 18
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2 3
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0 6
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6 6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4 3
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2 1
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3 17
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3 14
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5 8
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5 10
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8 14
V-REx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7 1
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5 12
AND-mask 60.3 ± 0.5 52.3 ± 0.6 75.1 ± 0.2 76.6 ± 0.3 66.1 10
SAND-mask 59.9 ± 0.7 53.6 ± 0.8 74.3 ± 0.4 75.8 ± 0.5 65.9 13
Fish 66.0 12

Fishr 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2 5

OfficeHome. Model selection: ‘Training-domain’ validation set

Algorithm A C P R Avg Ranking

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5 7
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3 18
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0 11
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1 3
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8 6
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7 1
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3 10
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9 12
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8 13
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4 8
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1 3
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8 17
V-REx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4 8
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5 16
ANDMask 59.5 ± 1.2 51.7 ± 0.2 73.9 ± 0.4 77.1 ± 0.2 65.6 15
SAND-mask 60.3 ± 0.5 53.3 ± 0.7 73.5 ± 0.7 76.2 ± 0.3 65.8 13
Fish 68.6 2

Fishr 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8 5



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

D.4.6. TERRAINCOGNITA

TerraIncognita. Model selection: ‘Test-domain’ validation set

Algorithm L100 L38 L43 L46 Avg Ranking

ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0 3
IRM 56.5 ± 2.5 49.8 ± 1.5 57.1 ± 2.2 38.6 ± 1.0 50.5 16
GroupDRO 60.4 ± 1.5 48.3 ± 0.4 58.6 ± 0.8 42.2 ± 0.8 52.4 6
Mixup 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4 1
MLDG 59.2 ± 0.1 49.0 ± 0.9 58.4 ± 0.9 41.4 ± 1.0 52.0 9
CORAL 60.4 ± 0.9 47.2 ± 0.5 59.3 ± 0.4 44.4 ± 0.4 52.8 4
MMD 60.6 ± 1.1 45.9 ± 0.3 57.8 ± 0.5 43.8 ± 1.2 52.0 9
DANN 55.2 ± 1.9 47.0 ± 0.7 57.2 ± 0.9 42.9 ± 0.9 50.6 15
CDANN 56.3 ± 2.0 47.1 ± 0.9 57.2 ± 1.1 42.4 ± 0.8 50.8 13
MTL 58.4 ± 2.1 48.4 ± 0.8 58.9 ± 0.6 43.0 ± 1.3 52.2 7
SagNet 56.4 ± 1.9 50.5 ± 2.3 59.1 ± 0.5 44.1 ± 0.6 52.5 5
ARM 60.1 ± 1.5 48.3 ± 1.6 55.3 ± 0.6 40.9 ± 1.1 51.2 12
V-REx 56.8 ± 1.7 46.5 ± 0.5 58.4 ± 0.3 43.8 ± 0.3 51.4 11
RSC 59.9 ± 1.4 46.7 ± 0.4 57.8 ± 0.5 44.3 ± 0.6 52.1 8
AND-mask 54.7 ± 1.8 48.4 ± 0.5 55.1 ± 0.5 41.3 ± 0.6 49.8 18
SAND-mask 56.2 ± 1.8 46.3 ± 0.3 55.8 ± 0.4 42.6 ± 1.2 50.2 17
Fish 50.8 13

Fishr 60.4 ± 0.9 50.3 ± 0.3 58.8 ± 0.5 44.9 ± 0.5 53.6 2

TerraIncognita. Model selection: ‘Training-domain’ validation set

Algorithm L100 L38 L43 L46 Avg Ranking

ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1 10
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6 4
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2 16
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9 2
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7 3
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6 4
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2 18
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7 7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8 11
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6 12
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6 1
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5 13
V-REx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4 9
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6 8
AND-mask 50.0 ± 2.9 40.2 ± 0.8 53.3 ± 0.7 34.8 ± 1.9 44.6 15
SAND-mask 45.7 ± 2.9 31.6 ± 4.7 55.1 ± 1.0 39.0 ± 1.8 42.9 17
Fish 45.1 14

Fishr 50.2 ± 3.9 43.9 ± 0.8 55.7 ± 2.2 39.8 ± 1.0 47.4 6



Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

D.4.7. DOMAINNET

DomainNet. Model selection: ‘Test-domain’ validation set

Algorithm clip info paint quick real sketch Avg Ranking

ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3 5
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0 17
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4 14
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6 8
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6 4
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8 2
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5 18
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3 11
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5 10
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8 6
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8 6
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0 13
V-REx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1 16
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9 9
AND-mask 52.3 ± 0.8 17.3 ± 0.5 43.7 ± 1.1 12.3 ± 0.4 55.8 ± 0.4 46.1 ± 0.8 37.9 12
SAND-mask 43.8 ± 1.3 15.2 ± 0.2 38.2 ± 0.6 9.0 ± 0.2 47.1 ± 1.1 39.9 ± 0.6 32.2 15
Fish 43.4 1

Fishr 58.3 ± 0.5 20.2 ± 0.2 47.9 ± 0.2 13.6 ± 0.3 60.5 ± 0.3 50.5 ± 0.3 41.8 2

DomainNet. Model selection: ‘Training-domain’ validation set

Algorithm clip info paint quick real sketch Avg Ranking

ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9 5
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9 14
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3 16
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2 8
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2 4
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5 3
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4 18
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3 10
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3 10
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6 6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3 7
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5 13
V-REx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6 15
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9 9
AND-mask 52.3 ± 0.8 16.6 ± 0.3 41.6 ± 1.1 11.3 ± 0.1 55.8 ± 0.4 45.4 ± 0.9 37.2 12
SAND-mask 43.8 ± 1.3 14.8 ± 0.3 38.2 ± 0.6 9.0 ± 0.3 47.0 ± 1.1 39.9 ± 0.6 32.1 17
Fish 42.7 1

Fishr 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7 2


