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Abstract
In this paper, we present an ongoing work whose aim is to
propose a new loop tiling technique where tiles are character-
ized by their volumes – the number of embedded iterations
– instead of their sizes – the lengths of their edges. Tiles
of quasi-equal volumes are dynamically generated while
the tiled loops are running, whatever are the original loop
bounds, which may be constant or depending linearly of
surrounding loop iterators. The adopted strategy is to succes-
sively and hierarchically slice the iteration domain in parts
of quasi-equal volumes, from the outermost to the innermost
loop dimensions. Since the number of such slices can be
exactly chosen, quasi-perfect load balancing is reached by
choosing, for each parallel loop, the number of slices as being
equal to the number of parallel threads, or to a multiple of
this number. Moreover, the approach avoids partial tiles by
construction, thus yielding a perfect covering of the iteration
domain minimizing the loop control cost. Finally, algebraic
tiling makes dynamic scheduling of the parallel threads fairly
purposeless for the handled parallel tiled loops.

Keywords Loop tiling, load balancing, parallel loop, data
locality, optimizing compilers

1 Introduction
Loop tiling [7, 13, 18, 19, 26] (variously called loop blocking
or partitioning) is a well-known loop optimizing transfor-
mation often providing significant speed-ups. It explicitly
addresses data locality by contracting the accessed data space
of inner loops in order to promote good cache reuse. When
handling parallel loops, it also provides a way to adjust the
grain of parallelism or to exploit vectorization while avoiding
register pressure on a single core. Loop tiling is an essential
strategy used by compilers and automatic parallelizers.

However, as it was pointed out by Sato et al. in [22], tradi-
tional loop tiling techniques do not address load balancing
explicitly when handling parallel loops, thus yielding bad
scalability for parallelism. Moreover, rectangular tiles of con-
stant size may generally not cover perfectly the iteration
domain, since tiles overlapping borders of the domain result
in partial tiles containing less iterations than the full tiles.
Iooss et al. in [12] and Renganarayanan et al. in [20] address
the limitations of fixed size tiling. They point out that the tile
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sizes have a huge influence on performance, and that para-
metric tiling in its full generality is known to be non-linear.
Allowing tile sizes to be symbolic parameters at compile
time has many benefits, including efficient auto-tuning, and
run-time adaptability to system variations [12, 20].
In the related literature, load balancing is sometimes ad-

dressed, but from a different perspective and for the particu-
lar class of loops that implement stencil computations. While
stencil loops mostly require a skewing transformation to be
amenable to parallelization [1, 18, 27], dedicated techniques
for data locality optimization and concurrent start for tiles
are proposed. Some noticeable proposals consist in generat-
ing tiles with a specific shape (diamond tiling [2], hexagonal
tiling [9], or split and overlapped tiling [11, 17]).

We propose a new tiling approach based on the volumes of
the tiles, i.e., the number of iterations delimited by the tiles,
instead of the sizes of standard (hyper-)rectangular tiles, i.e.,
the sizes of the edges of the tiles. In the proposed approach,
tiles are dynamically generated and have almost equal vol-
umes, even if their shape and edge sizes may differ. The
iteration domain is well covered by a minimum number of
tiles that are all almost full. Since the bounds of the generated
tiles are not linear and defined by algebraic mathematical
expressions, we call this loop tiling technique algebraic tiling.

Algebraic tiles are built by successive hierarchical slicing
of the initial iteration domain, from the outermost to the
innermost depth dimensions of the target loop nest, in a
way ensuring that slices have all quasi-equal volumes. The
bounds of the loop nests that are handled must be constants,
or linear functions of the surrounding loop iterators and of
unknown parameters – which are typically related to the
data input size. Such loops are also called polyhedral loops
since they may be handled using the polyhedral model [8].
Quasi-perfect load balancing is achieved when each parallel
loop is sliced using as many slices of quasi-equal volumes as
parallel threads, and when most of the iterations have close
execution times. Thus, such dynamic slicing strategy makes
the resulting parallel loop scalable regarding the number of
threads. Good data locality is reached by slicing profitably the
non-parallelized loops, and by slicing the parallel loops in a
number of parts equal to a multiple of the number of parallel
threads. The number of generated slices for each dimension
may stay as a parameter at compile-time, making algebraic
tiling a parameterized loop tiling technique, allowing the
produced code to adapt to the number of parallel threads
and data layout.
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We are currently implementing algebraic tiling as an ex-
tension of the automatic loop optimizer Pluto1 [3]. Our first
experiments show that algebraic tiling outperforms signif-
icantly (hyper-)rectangular tiling when parallelizing loops
with OpenMP using static scheduling, and mostly provides
similar or lower execution times when compared to tradi-
tionally tiled loops parallelized using dynamic scheduling of
OpenMP. Thus, algebraic tiling makes dynamic scheduling
fairly purposeless for the handled loop nests.

The paper is organized as follows. In the next section, we
first describe the optimizing strategy of algebraic tiling and
how it may be applied to any compliant loop nest. Then
in Section 3, we introduce the mathematical background
required for computing the bounds of algebraic tiles. Sev-
eral issues regarding the applicability of algebraic tiling are
addressed in Section 4. Our software that automatically gen-
erates the functions required for using algebraic tiles is de-
scribed in Section 5. Experiments showing significant speed-
ups against the (hyper-)rectangular tiling approach are ex-
hibited in Section 6. Related work is addressed in Section 7
and conclusions are given in Section 8.

2 Algebraic tiling in practice
In this section, we describe algebraic tiling regarding its
related programming aspects. Its mathematical foundations
are presented in the next section.

2.1 Overview
Consider the loop nest shown in Figure 1, which is extracted
from program syr2k of the polybench benchmark suite2 v4.2.
This loop kernel defines a triangular iteration domain. When
tiling this loop nest using the standard approach, the iteration
domain is partitioned into fixed-sized rectangular tiles.When
also parallelizing the outermost loop among a given number
of threads, each thread is traditionally assigned a slice of
the iteration domain, all slices being of the same width, as
illustrated in Figure 2. Two main issues can be highlighted
with this example: (1) many partial tiles occur at the borders
of the iteration domain and (2) slices assigned to the threads
are significantly unbalanced regarding their iteration counts.
In contrast, algebraic tiling first slices the outermost loop
into parts of quasi-equal volumes 𝑉𝑖 , as shown in Figure 3a,
where 𝑉0 ≃ 𝑉1 ≃ 𝑉2 ≃ 𝑉3 ≃ 𝑉4. Then, these slices are sliced
in turn along the inner loop direction in parts of quasi-equal
volumes𝑉𝑖 𝑗 , as shown in Figure 3b. Hence quasi-perfect load
balancing is reached when parallelizing the outermost loop,
while good data locality is achieved thanks to inner slicing
and perfect domain covering.

A sample of the algebraic tile bounds that are dynamically
generated is shown in Table 1, when slicing the outermost
loop in 24 parts, and the innermost in 64 parts, and with

1http://pluto-compiler.sourceforge.net
2https://sourceforge.net/projects/polybench

for ( i = 0 ; i < N ; i ++)
for ( j = 0 ; j <= i ; j ++)
for ( k = 0 ; k < M; k++)
C[ i ] [ j ] += A[ j ] [ k ] ∗ a lpha

∗B [ i ] [ k ]+B[ j ] [ k ]
∗ a lpha ∗A[ i ] [ k ] ;

Figure 1. syr2k loop kernel i
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Figure 3. Algebraic tiling applied on syr2k iteration domain

input data size LARGE DATASET (𝑀 = 1000; 𝑁 = 1200).
The first column of each of the three parts of the table shows
the 24 outermost slices and their respective lower and upper
bounds, 𝑙𝑏𝑖 and 𝑢𝑏𝑖 , and the resulting slice volumes (iter-
ation count). For each outermost slice, the second column
shows a sample of the related 64 inner slices and their respec-
tive lower and upper bounds, 𝑙𝑏 𝑗 and 𝑢𝑏 𝑗 , and the resulting
tile volumes. Each resulting tile contains a number of itera-
tions which is as close as possible to 𝐿𝑇𝐶/24/64 = 469140,
where 𝐿𝑇𝐶 denotes the total loop trip count of the syr2k loop
kernel. Note that all tiles have different sizes and may be
non-rectangular along the borders of the iteration domain.

2.2 Volumes of algebraic tiles
The target volumes of algebraic tiles are approached using
dividers, 𝐷𝐼𝑉1, 𝐷𝐼𝑉2, etc., that are the target number of slices
associated to every loop nest depth. When parallelizing the
outermost loop of a loop nest, the outermost divider 𝐷𝐼𝑉1 is
typically the number of parallel threads, and the volumes of
the outermost slicesmust be as close as possible to𝐿𝑇𝐶/𝐷𝐼𝑉1.
However, for data locality optimization reasons, it may be
beneficial in some cases to set 𝐷𝐼𝑉1 as equal to a multiple
of the number of threads. If so, the OpenMP static sched-
ule still yields a balanced distribution of the so-generated
smaller slices of quasi-equal volumes. The next dividers for
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inner slices are selected to reach good cache performance.
Note also that nested parallelism may also be managed effi-
ciently by selecting next dividers according to the number
of processing units of each hierarchical parallel level.

2.3 Code transformation
On Figure 4, it is shown how the original syr2k loop ker-
nel of Figure 1 is transformed for algebraic tiling. A similar
transformation may be applied on any target loop nest in
the same way:

line 1: function i_Ehrhart computes the loop trip count
(𝐿𝑇𝐶) of the target loop nest, given the values of the
size parameters𝑀 and 𝑁 .

line 2: the target volume TILE_VOL_L1 of the outermost
slices is computed using the given outermost divider
𝐷𝐼𝑉1.

lines 3-5: the outermost loop scanning the outermost
slices is parallelized with OpenMP, where private vari-
ables are defined appropriately.

lines 6-7: lower and upper bounds of every outermost
slice are computed at every iteration of the outermost
loop, and such that the resulting slice has a volume
as close as possible to TILE_VOL_L1. Slice bound val-
ues are obtained thanks to function trahrhe_i, that
computes the value of the original outermost loop iter-
ator, where it × TILE_VOL_L1 iterations have been
completed.

line 8: if the last iteration of the outermost loop scan-
ning the outermost slices has been reached, then the
last bound is set to the upper bound of the original
outermost loop.

line 9: the loop trip count of the current slice is com-
puted using function j_Ehrhart, which takes the cur-
rent slice bounds as input parameters.

lines 10-14: operations similar to lines 3-8 are performed
for the inner depth.

lines 15-21: loops scanning the interior of the tiles are
performed, where loop bounds are set using the bounds
of the algebraic tiles.

The implementation of algebraic tiling is mainly based on
functions that provide the values of loop iterators where a
given number of iterations has been completed (trahrhe_i
and trahrhe_j in the current example). Such functions eval-
uate algebraic expressions using floating-point arithmetic.
These algebraic expressions are symbolic roots of multi-
variate polynomial equations. The automatic generation of
such functions is detailed in the next section.

3 Trahrhe expressions
Name «trahrhe» comes from «Ehrhart» with letters in re-
versed order. Trahrhe expressions are roots of Ehrhart poly-
nomials, and they are also the inverses of particular Ehrhart
polynomials which are called ranking polynomials. Note that

these new mathematical objects were already used to col-
lapse non-rectangular loops in [5].

3.1 Ranking polynomials
Ehrhart polynomials were proposed and extended to pro-
gram analysis by Clauss in [4]. These integer-valued polyno-
mials express the exact number of integer points contained
in a finite multi-dimensional convex polyhedron which de-
pends linearly on integer parameters. They have many ap-
plications for the quantitative analysis of loop nests whose
loop bounds are linear functions of the surrounding loop
indices and integer parameters, and whose statements are
referencing multi-dimensional array elements through lin-
ear functions of the loop indices and parameters. Such a
counting of integer points may translate to the exact number
of iterations of a parameterized loop nest, the exact num-
ber of memory locations touched by a loop nest, the maxi-
mum number of parallel iterations, etc. When considering
a 𝑑-dimensional polyhedron – as for example the iteration
domain of a 𝑑-depth loop nest – depending linearly on in-
teger parameters 𝑝1, 𝑝2, . . . , 𝑝𝑚 , its Ehrhart polynomial is a
polynomial of degree 𝑑 whose variables are 𝑝1, 𝑝2, . . . , 𝑝𝑚 .
Ehrhart polynomials can be automatically computed using
existing algorithm implementations as the one of the barvi-
nok library [24].
Among their applications, Ehrhart polynomials are used

by Clauss and Meister in [6] to reorganize the memory lay-
out of array elements accessed by a loop nest, in order to
improve their spatial data locality: array elements are relo-
cated in memory in the same order as they are accessed. In
this approach, the new location of an array element is given
by the order, or rank, of the iteration referencing it.

Such a rank of iterations is given by a polynomial, called
a ranking polynomial, whose variables are the loop iterators,
and whose evaluation results in the number of iterations
preceding a given iteration. More formally, the ranking poly-
nomial of a 𝑑-depth loop nest whose loop iterators, from
the outermost to the innermost, are (𝑖1, 𝑖2, . . . , 𝑖𝑑 ), is denoted
𝑟 (𝑖1, 𝑖2, . . . , 𝑖𝑑 ). Without loss of generality, if (0, 0, . . . , 0) de-
fines the first iteration of the loop nest, then 𝑟 (0, 0, . . . , 0) = 1,
𝑟 (0, 0, . . . , 1) = 2, and so on. If (𝑁1, 𝑁2, . . . , 𝑁𝑑 ) are the in-
dices of the very last iteration, then 𝑟 (𝑁1, 𝑁2, . . . , 𝑁𝑑 ) is the
total number of iterations of the loop nest (𝐿𝑇𝐶).

The computation of the ranking polynomial of a loop nest
is detailed in [6]. We recall this technique by applying it to
the syr2k loop kernel of Figure 1, to compute the associated
ranking polynomial 𝑟 (𝑖, 𝑗, 𝑘).
The rank of a given iteration (𝑖0, 𝑗0, 𝑘0) is equal to the

number of iterations that are executed before (𝑖0, 𝑗0, 𝑘0) (in-
cluded), i.e., the number of triplets (𝑖, 𝑗, 𝑘) inside the iteration
domain which are lexicographically less than or equal to
(𝑖0, 𝑗0, 𝑘0):
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Table 1. Generated tile bounds and resulting tile volumes for kernel syr2k with dividers 24 and 64 (sample)

Target: 30,025K
𝑙𝑏𝑖 → 𝑢𝑏𝑖 𝑙𝑏 𝑗 → 𝑢𝑏 𝑗

Target: 467K
0→243 (29,890K) ...

1→2 (484K)
...
63→65 (537K)
...
191→200 (440K)
...
Target: 470K

244→345 (30,141K) 0→3 (408K)
...
277→284 (496K)
...
Target: 463K

346→422 (29,645K) 0→5 (462K)
...
362→369 (432K)
370→379 (440K)
380→392 (403K)
393→422 (30K)
Target: 470K

423→488 (30,129K) 0→6 (462K)
...
436→445 (440K)
...
Target: 469K

489→546 (30,073K) 0→7 (464K)
...
494→503 (440K)
...
Target: 465K

547→598 (29,822K) 0→7 (416K)
...
537→545 (468K)
...
Target: 467K

599→646 (29,928K) 0→8 (432K)
...
584→593 (480K)
...
Target: 471K

647→691 (30,150K) 0→9 (450K)
10→19 (450K)
20→30 (495K)
31→40 (450K)
41→51 (495K)
...
638→648 (484K)
...

𝑙𝑏𝑖 → 𝑢𝑏𝑖 𝑙𝑏 𝑗 → 𝑢𝑏 𝑗

Target: 468K
692→733 (29,967K) 0→10 (462K)

11→21 (462K)
...
434→444 (462K)
...
691→702 (384K)
...
Target: 471K

734→773 (30,180K) 0→10 (440K)
...
707→718 (480K)
...
Target: 471K

774→811 (30,153K) 0→11 (456K)
...
743→755 (494K)
756→767 (456K)
768→780 (416K)
781→811 (31K)
Target: 467K

812→847 (29,898K) 0→11 (432K)
...
791→803 (468K)
...
Target: 473K

848→882 (30,310K) 0→12 (455K)
...
825→837 (455K)
...
Target: 464K

883→915 (29,700K) 0→13 (462K)
...
871→885 (465K)
...
Target: 466K

916→947 (29,840K) 0→13 (448K)
...
830→844 (480K)
...
Target: 466K

948→978 (29,884K) 0→14 (465K)
15→29 (465K)
30→44 (465K)
45→59 (465K)
60→74 (465K)
...
948→978 (31K)

𝑙𝑏𝑖 → 𝑢𝑏𝑖 𝑙𝑏 𝑗 → 𝑢𝑏 𝑗

Target: 466K
979→1008 (29,835K) 0→14 (450K)

15→30 (480K)
...
621→636 (480K)
...
963→977 (450K)
978→1008 (31K)
Target: 480K

1009→1038 (30,735K) 0→15 (480K)
...
992→1007 (480K)
1008→1038 (31K)
Target: 460K

1039→1066 (29,498K) 0→15 (448K)
...
987→1003 (476K)
1004→1019 (448K)
1020→1036 (476K)
1037→1066 (30K)
Target: 473K

1067→1094 (30,282K) 0→15 (448K)
...
1047→1063 (476K)
...
Target: 467K

1095→1121 (29,943K) 0→16 (459K)
...
1039→1056 (486K)
...
Target: 461K

1122→1147 (29,523K) 0→16 (442K)
...
1082→1099 (468K)
...
Target: 471K

1148→1173 (30,199K) 0→17 (468K)
...
1125→1142 (468K)
1143→1173 (31K)
Target: 482K

1174→1199 (30,875K) 0→17 (468K)
18→36 (494K)
37→54 (468K)
55→73 (494K)
74→91 (468K)
92→110 (494K)
...

∀(𝑖0, 𝑗0, 𝑘0) s.t. 0 ≤ 𝑖0 < 𝑁 and 0 ≤ 𝑗0 ≤ 𝑖0

and 0 ≤ 𝑘0 < 𝑀,

𝑟 (𝑖0, 𝑗0, 𝑘0) = #{(𝑖, 𝑗, 𝑘) | (𝑖, 𝑗, 𝑘) ⊴ (𝑖0, 𝑗0, 𝑘0),
0 ≤ 𝑖 < 𝑁, 0 ≤ 𝑗 ≤ 𝑖, 0 ≤ 𝑘 < 𝑀}

where ⊴ denotes the lexicographic order. Since lexicographic
inequalities are not linear, the problem is split as the conjunc-
tion of three equivalent sets of linear inequalities, according
to the definition of the lexicographic order:

(𝑖, 𝑗, 𝑘) ⊴ (𝑖0, 𝑗0, 𝑘0) ⇔(𝑖 < 𝑖0) or (𝑖 = 𝑖0 and 𝑗 < 𝑗0) or
(𝑖 = 𝑖0 and 𝑗 = 𝑗0 and 𝑘 ≤ 𝑘0)

Therefore, the sets whose integer points must be counted can
be defined as the union of three disjoint convex polyhedra,

and 𝑟 (𝑖0, 𝑗0, 𝑘0) as the sum of three Ehrhart polynomials:

𝑟 (𝑖0, 𝑗0, 𝑘0) = #{(𝑖, 𝑗, 𝑘) | 0 ≤ 𝑖 < 𝑖0, 0 ≤ 𝑗 ≤ 𝑖, 0 ≤ 𝑘 < 𝑀}
+ #{(𝑖, 𝑗, 𝑘) | 𝑖 = 𝑖0, 0 ≤ 𝑗 < 𝑗0, 0 ≤ 𝑘 < 𝑀}
+ #{(𝑖, 𝑗, 𝑘) | 𝑖 = 𝑖0, 𝑗 = 𝑗0, 0 ≤ 𝑘 ≤ 𝑘0}

=
𝑀 𝑖0 (𝑖0 + 1)

2 +𝑀 𝑗0 + 𝑘0 + 1

=
2𝑘0 + 2𝑀 𝑗0 +𝑀 𝑖20 +𝑀 𝑖0 + 2

2

One can verify that the rank of the first iteration (0, 0, 0),
𝑟 (0, 0, 0), is equal to 1, the rank of the second iteration 𝑟 (0, 0, 1)
= 2, the rank of the third iteration 𝑟 (0, 0, 2) = 3 and so on.
The rank of the last 𝑘-iteration when 𝑖 = 0 and 𝑗 = 0,
𝑟 (0, 0, 𝑀 − 1) = 𝑀 , and the rank of the first iteration when
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1 i_pcmax = i _Eh r h a r t (N , M) ; /* Loop Trip Count */
2 TILE_VOL_L1 = i_pcmax / DIV1 ; /* Outermost Slices’ Targeted Volume */
3 #pragma omp para l l e l for f i r s t p r i v a t e ( i_pcmax , TILE_VOL_L1 ) \
4 pr ivate ( i , j , k , l b i , ubi , l b j , ubj , j t , j_pcmax , TILE_VOL_L2 )
5 for ( i t = 0 ; i t < DIV1 ; i t ++) { /* Loop Scanning the Outermost Slices */
6 l b i = trahrhe_i ( max ( i t ∗TILE_VOL_L1 , 1 ) , N ,M) ; /* Bounds of the 𝑖𝑡𝑡ℎslice */
7 ub i = trahrhe_i ( min ( ( i t + 1 ) ∗TILE_VOL_L1 , i_pcmax ) ,N ,M) −1 ;
8 i f ( i t ==DIV1 −1 ) ub i =N−1 ; /* Last slice adjustment */
9 j_pcmax= j _Eh r h a r t (N , M, l b i , ub i ) ; /* Loop Trip Count of the current outermost slice */
10 TILE_VOL_L2 = j_pcmax / DIV2 ; /* Tiles’ Targeted Volume */
11 for ( j t = 0 ; j t < DIV2 ; j t ++) { /* Loop Scanning the Tiles */
12 l b j = trahrhe_j ( max ( j t ∗TILE_VOL_L2 , 1 ) , N ,M, l b i , ub i ) ; /* Bounds of the 𝑗𝑡𝑡ℎtile */
13 ub j = trahrhe_j ( min ( ( j t + 1 ) ∗TILE_VOL_L2 , j_pcmax ) ,N ,M, l b i , ub i ) − 1 ;
14 i f ( j t ==DIV2 −1 ) ub j = ub i ; /* Last tile adjustment */
15 for ( i =max ( 0 , l b i ) ; i < min (N , ub i + 1 ) ; i ++) { /* Inner tile loops */
16 for ( j =max ( 0 , l b j ) ; j <= min ( i , ub j ) ; j ++) { /* Bounded by the tile bounds */
17 for ( k =0 ; k <= M−1 ; k++) {
18 C[ i ] [ j ]+=A[ j ] [ k ] ∗ a lpha ∗B [ i ] [ k ]+B[ j ] [ k ] ∗ a lpha ∗A[ i ] [ k ] ;
19 }
20 }
21 }
22 } / ∗ end f o r j t ∗ /
23 } / ∗ end f o r i t ∗ /

Figure 4. Algebraic tiling on syr2k loop kernel

𝑖 = 1 and 𝑗 = 0, 𝑟 (1, 0, 0) = 𝑀 + 1. The total number of
iterations is 𝐿𝑇𝐶 = 𝑟 (𝑁 − 1, 𝑁 − 1, 𝑀 − 1) = 𝑀 𝑁 (𝑁+1)

2 .
Such a ranking polynomial associates, to each iteration

index tuple, a unique integer of a continuous interval of in-
tegers starting at 1. This continuous interval is the range
of integers between one and the total number of iterations.
Conversely, each integer value in the interval is associated
to one unique iteration index tuple. The ranking polynomial
can also be seen as the one-dimensional polynomial schedule
function of the iterations, which is equivalent to the origi-
nal multi-dimensional linear schedule defined by the nested
loops. Another important property is that such a ranking
polynomial is monotonically increasing over the integers,
from 1 to the total number of iterations, relatively to the
lexicographic order of the loop indices. Thus, a ranking poly-
nomial defines a bijection between the iteration domain and
the interval of successive integers. It implies that in theory, it
can be inverted. Such inversions result in expressions called
trahrhe expressions, which are used to compute the bounds
of algebraic tiles.

3.2 Generating trahrhe expressions
For a given rank 𝑝𝑐 , 𝑡𝑟𝑎ℎ𝑟ℎ𝑒 (𝑝𝑐) is the tuple (𝑡1, 𝑡2, ..., 𝑡𝑑 )
such that 𝑟 (𝑡1, 𝑡2, ..., 𝑡𝑑 ) = 𝑝𝑐 , i.e., a solution of the latter
equation. The definition of function 𝑡𝑟𝑎ℎ𝑟ℎ𝑒 (𝑝𝑐) is calculated
incrementally by first determining 𝑡1, then propagating it to
determine 𝑡2, and so on. At each step, a symbolic uni-variate
polynomial equation is solved:

Find 𝑡1: Solve for 𝑠: 𝑟 (𝑠, 0, ..., 0) − 𝑝𝑐 = 0. Depending on
the degree 𝑑 of the ranking polynomial, this equation
may have 𝑑 real or complex solutions 𝑠1, ..., 𝑠𝑑 . Among
these solutions, only one solution 𝑠𝑘 is such that 𝑡1 =
⌊𝑠𝑘⌋ = 0 when 𝑝𝑐 = 1, which means that for the very
first iteration of the 𝑑-depth loop nest (𝑝𝑐 = 1), the
value of the outermost loop iterator 𝑡1 is, as expected,
0. This solution is propagated in the next equation.

Find 𝑡2: Solve for 𝑠: 𝑟 (𝑡1, 𝑠, 0, ..., 0) − 𝑝𝑐 = 0. Once again,
among the 𝑑 − 1 solutions, only one solution 𝑠𝑙 is such
that 𝑡2 = ⌊𝑠𝑙 ⌋ = 0 when 𝑝𝑐 = 1. This solution is propa-
gated in the next equation.

Find 𝑡3: Solve for 𝑠: 𝑟 (𝑡1, 𝑡2, 𝑠, 0, ..., 0) − 𝑝𝑐 = 0.
...
Find 𝑡𝑑 : Solve for 𝑠: 𝑟 (𝑡1, 𝑡2, 𝑡3, ..., 𝑠) − 𝑝𝑐 = 0. This last

equation is obviously linear: 𝑡𝑑 = 𝑝𝑐 − 𝑟 (𝑡1, 𝑡2, ..., 0).
As an example, let us compute step by step the trahrhe

expressions of the syr2k loop kernel:
1. 𝑟 (𝑖, 𝑗, 𝑘) = 2𝑘+2𝑀 𝑗+𝑀 𝑖2+𝑀 𝑖+2

2
2. Solve 𝑟 (𝑠, 0, 0)−𝑝𝑐 = 𝑀 𝑠2+𝑀 𝑠+2

2 −𝑝𝑐 = 0. This equation
has two solutions:

𝑠1 = −
√︁
8𝑀 pc +𝑀2 − 8𝑀 +𝑀

2𝑀 ,𝑠2 =

√︁
8𝑀 pc +𝑀2 − 8𝑀 − 𝑀

2𝑀

When 𝑝𝑐 = 1, 𝑠2 = 0. Thus 𝑡1 =
⌊√

8𝑀 pc+𝑀2−8𝑀−𝑀
2𝑀

⌋
3. Solve 𝑟 (𝑡1, 𝑠, 0) − 𝑝𝑐 =

𝑀 𝑡21+𝑀 𝑡1+2𝑀 𝑠+2
2 − 𝑝𝑐 = 0. This

equation has one solution. Thus 𝑡2 =
⌊
−𝑀 𝑡21+𝑀 𝑡1−2 pc+2

2𝑀

⌋
5
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4. Finally, 𝑡3 = 𝑝𝑐 − 𝑟 (𝑡1, 𝑡2, 0) = − 2𝑀 𝑡2+𝑀 𝑡21+𝑀 𝑡1−2 pc+2
2

One can verify that for rank 𝑝𝑐 = 2, the trahrhe expres-
sions result in (0, 0, 1) as expected:

• 𝑡1 =

⌊√
𝑀 (𝑀+8)−𝑀

2𝑀

⌋
= 0 for any𝑀 > 1

• 𝑡2 =
⌊ 2
2𝑀

⌋
= 0 for any𝑀 > 1

• 𝑡3 =
2
2 = 1

For rank 𝑝𝑐 = 𝑀 , the trahrhe expressions result in (0, 0, 𝑀 − 1)
as expected:

• 𝑡1 =

⌊√
𝑀 (9𝑀−8)−𝑀

2𝑀

⌋
= 0 for any𝑀 > 1

since 0 <

√
𝑀 (9𝑀−8)−𝑀

2𝑀 <
√
9𝑀2−𝑀
2𝑀 = 1

• 𝑡2 =
⌊
1 − 1

𝑀

⌋
= 0 for any𝑀 ≥ 1

• 𝑡3 =
2𝑀−2

2 = 𝑀 − 1
Note that since the degree of ranking polynomials is less

or equal to the depth of the target loop nest, their roots may
include radicals (square roots, cubic roots, ...), and such radi-
cals may result in complex numbers. However, the imaginary
parts of the entire numerical evaluations of trahrhe expres-
sions are always null. Nevertheless, it means that evaluations
must be performed using complex floating-point arithmetic.

Only polynomial equations whose degree is at most equal
to 4 can be solved symbolically, with exact expressions for
roots. The handled uni-variate polynomial equations are
built from a multi-variate ranking polynomial, where one
index 𝑖𝑘 is set as the equation unknown, indices 𝑖1, ..., 𝑖𝑘−1
are set as symbolic parameters, and indices 𝑖𝑘+1, ..., 𝑖𝑑 are set
to their lexicographic minimum values. Thus, to ensure that
such a built equation has a degree less than 4, the ranking
polynomial must be such that any index 𝑖𝑘 , in any of its
monomials, has a degree less than 4, i.e., any monomial is
of the form: 𝑎 𝑖𝑝11 𝑖

𝑝2
2 ...𝑖

𝑝𝑑
𝑑

where 𝑎 is a rational number, and
every power 𝑝𝑘 is such that 0 ≤ 𝑝𝑘 ≤ 4.
Loop nests yielding such ranking polynomials are such

that the maximum number of nested loops, whose loop trip
counts depend on a given index 𝑖𝑘 , is less than or equal to 4.
For example, both outermost loops of the syr2k loop kernel
in Figure 1 depend on index 𝑖 , yielding a ranking polynomial
where index 𝑖 is of power 2 in some monomial.

However, note that the dependence of loop trip counts
regarding indices is transitive: if a loop index 𝑗 depends on a
surrounding loop index 𝑖 , and an inner loop index 𝑘 depends
on 𝑗 , then 𝑘 depends also on 𝑖: index 𝑖 is of power 3, in some
monomial of the ranking polynomial. Note also that loops
may depend simultaneously on several surrounding loops’
indices, as for example in for(k=0;k<i+j;k++).

Hence, the loop nests that can be handled by our method
may be of any depth, but are such that the number of nested
loops that all depend on a given index is less than or equal
to 4. This should be quite sufficient for most cases, regarding
the usual loop nest depth and complexity of user codes.

N points

N+5 points

Figure 5. Why exact vol-
umes cannot be reached

i

j

lbi ubi

lbj

ubj

Figure 6. Changed lex-
icographic order from
(𝑖, 𝑗) to ( 𝑗, 𝑖) inside slices

This equation solving process has been implemented in
our software computing trahrhe expressions. In addition,
several issues regarding arithmetic precision and mathemat-
ical generalization had to be solved. They are detailed in
Section 5.

3.3 Bounds of algebraic tiles
As shown in Section 2, the bounds of algebraic tiles are
resulting from slicing the iteration domain into parts of quasi-
equal volumes, these latter being sliced in turn into parts of
quasi-equal volumes, and so on, from the outermost to the
innermost loop dimensions.

The slicing process is driven by a target volume for the re-
sulting parts. Nevertheless, this volume can generally never
be reached exactly, since slices are built along one unique di-
mension, as it is illustrated by Figure 5. Moreover, the target
volume cannot be less than the largest cutting hyperplane,
since smallest possible slices have their lower bounds equal
to their upper bounds. In the proposed approach, the target
volume results from dividing the total number of iterations
– which is the evaluation of an Ehrhart polynomial – by a
chosen divider, as explained in Section 2. Multi-dimensional
tiling is achieved dimension per dimension, from the outer-
most to the innermost loop depth. When handling a given
dimension, the associated iterator is considered as if it was
the outermost iterator, i.e., as the high-order index regarding
the lexicographic order. Thus, a different lexicographic order
of the iterator is considered at each step. This is illustrated
by Figure 6, where it is shown on the iteration domain of ker-
nel syr2k, that inner slices bounds must be computed “as if”
the outer slices were scanned relatively to an interchanged
lexicographic order.
More formally, consider a 𝑑-depth loop nest whose loop

iterators are (𝑖1, 𝑖2, . . . , 𝑖𝑑 ), from the outermost to the inner-
most. Let us denote by 𝐷 its iteration domain. First, 𝐷 is
sliced regarding dimension 𝑖1. For this dimension, the lexico-
graphic order defined by the original loop nest is considered.
The associated ranking polynomial 𝑟 (𝑖1, 𝑖2, . . . , 𝑖𝑑 ) is com-
puted and inverted as explained in Subsection 3.2, to get
the trahrhe expression, 𝑡𝑟𝑎ℎ𝑟ℎ𝑒_𝑖1 (𝑝𝑐), defining the value

6
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of 𝑖1 where 𝑝𝑐 iterations have been completed. The target
volume, named 𝑇 𝐼𝐿𝐸_𝑉𝑂𝐿_𝐿1, is computed by dividing the
total number of iterations by a given divider 𝐷𝐼𝑉1. Lower
and upper bounds of slices are then roughly defined as being:

𝑙𝑏𝑖1 (𝑖𝑡1) = 𝑡𝑟𝑎ℎ𝑟ℎ𝑒_𝑖1 (𝑖𝑡1 ×𝑇 𝐼𝐿𝐸_𝑉𝑂𝐿_𝐿1)
𝑢𝑏𝑖1 (𝑖𝑡1) = 𝑡𝑟𝑎ℎ𝑟ℎ𝑒_𝑖1 ((𝑖𝑡1 + 1) ×𝑇 𝐼𝐿𝐸_𝑉𝑂𝐿_𝐿1) − 1

where 𝑖𝑡1 ∈ [0...𝐷𝐼𝑉1 − 1].
Next, each resulting slice characterized by a value 𝑖𝑡1 is

sliced in turn regarding dimension 𝑖2. However, since each
slice 𝑖𝑡1 has to be sliced along dimension 𝑖2, 𝑖2 has now to
be considered as the outermost iterator regarding the lexi-
cographic order. Hence, for each outermost slice defined by
𝐷 ∩ {𝑙𝑏𝑖1 (𝑖𝑡1) ≤ 𝑖1 ≤ 𝑢𝑏𝑖1 (𝑖𝑡1)}, the associated ranking poly-
nomial 𝑟 ( 𝒊2, 𝑖1, 𝑖3, . . . , 𝑖𝑑 ) is computed and inverted, to get the
trahrhe expression, 𝑡𝑟𝑎ℎ𝑟ℎ𝑒_𝑖2 (𝑝𝑐, 𝑙𝑏𝑖1 (𝑖𝑡1), 𝑢𝑏𝑖1 (𝑖𝑡1)), defin-
ing the value of 𝑖2 where 𝑝𝑐 iterations have been completed.
The target volume 𝑇 𝐼𝐿𝐸_𝑉𝑂𝐿_𝐿2 is computed by dividing
the total number of iterations of the current outer slice 𝑖𝑡1
by a given divider 𝐷𝐼𝑉2. Lower and upper bounds of slices
are then roughly defined as being:
𝑙𝑏𝑖2 (𝑖𝑡2, 𝑙𝑏𝑖1 (𝑖𝑡1), 𝑢𝑏𝑖1 (𝑖𝑡1))
= 𝑡𝑟𝑎ℎ𝑟ℎ𝑒_𝑖2

(
𝑖𝑡2 ×𝑇 𝐼𝐿𝐸_𝑉𝑂𝐿_𝐿2, 𝑙𝑏𝑖1 (𝑖𝑡1), 𝑢𝑏𝑖1 (𝑖𝑡1)

)
𝑢𝑏𝑖2 (𝑖𝑡2, 𝑙𝑏𝑖1 (𝑖𝑡1), 𝑢𝑏𝑖1 (𝑖𝑡1))
= 𝑡𝑟𝑎ℎ𝑟ℎ𝑒_𝑖2 ((𝑖𝑡2 + 1) ×𝑇 𝐼𝐿𝐸_𝑉𝑂𝐿_𝐿2,

𝑙𝑏𝑖1 (𝑖𝑡1), 𝑢𝑏𝑖1 (𝑖𝑡1)
)
− 1

where 𝑖𝑡2 ∈ [0...𝐷𝐼𝑉2 − 1].
The same process is repeated until the deepest tiling di-

mension, by considering at each step a different lexicographic
order, where the current sliced dimension index is set as the
outermost iterator.

4 Applicability of algebraic tiling
Regarding its validity, algebraic tiling follows the same rules
as standard tiling: algebraic tiling may be applied when it is
valid regarding data dependences. Thus a prior affine trans-
formation of the target loop nest may be required. In practice,
we use the dependence analysis process implemented in the
automatic loop optimizer Pluto. Moreover, to promote vec-
torization and data locality, loops may be interchanged, as it
is performed by Pluto.
Regarding vectorization of the innermost loops, the non-

constant algebraic tile bounds may prevent compilers to
generate the fastest vector code. In such cases, a hybrid
tiling approach that combines standard and algebraic tiling
seems the best strategy for getting better code : the outer
dimension that is linked to the innermost vectorizable loop
is actually sliced using a constant value (e.g. 32 or 64), as it is
achieved with standard tiling, while the other dimensions are
sliced with non-constant algebraic bounds. In the future, we
expect that algebraic tiling will take advantage of hardware
extensions as SVE (Scalable Vector Extension) [23] to result
in more efficient vector code.

Algebraic tile bounds are obviously not linear and may
stay parameterized by the dividers and the problem size.
Parameterized tiling in the standard approach also yields
non-linear bounds, but those are polynomials while ours are
algebraic expressions. In [12], Iooss et al. propose parametric
tiling based on one unique parameter, which enables further
linear code transformations. By contrast, algebraic tiling
prevents any chance for further linear transformations, but
opens the field to managed non-linear transformations.

Algebraic tiling is also a parametric tiling approach whose
parameters are iteration count dividers rather than tile sizes.
The importance of parametric tiling is exemplified by the
ATLAS system [25] for empirical tuning of BLAS kernels.
ATLAS uses parametrically tiled BLAS kernels that are re-
peatedly executed on the target architecture for different
problem sizes using an empirical search strategy that varies
the tile sizes. A similar search could be performed by varying
the dividers in place of the tile sizes.

Another main difference compared to standard tiling is the
required complex floating-point arithmetic for computing
the bounds, which are algebraic expressions. Such computa-
tions may require high-order precision in some cases, when-
ever large integer values are involved – typically large loop
bounds related to problem sizes – or very small real values.
Such requirements are still essential, even if the final used
result is the integer part (floor) of the computed real value.
For this purpose, we implemented several related features
in our software: multiple-precision complex floating-point
computations, dichotomous search of the polynomial roots,
adjustment of the solution using the ranking polynomials,
verification code, and error handling functions computing
trahrhe expressions.

5 The Trahrhe software and the new
-atiling flag of Pluto

The Trahrhe software has been written as a bash script with
a few parsers in C, that makes intensive use of the computer-
algebra systemMaxima3 and of iscc4, the interactive interface
to the barvinok counting library and the isl integer set li-
brary. It is freely available5. It takes as input a parameterized
iteration domain in the iscc syntax, and several possible flags
as:

• -t𝑛: computes the trahrhe expressions required to tile
the 𝑛 outermost loops;

• -e: generates a C header file including all the definitions
of functions required to apply algebraic tiling to a loop
nest, as shown in Figure 4. It may be included by any
C/C++ code for algebraic tiling optimization. Complex
floating-point operations are performed with C type
long double. Function definitions include verification

3http://maxima.sourceforge.net
4https://repo.or.cz/barvinok.git
5https://webpages.gitlabpages.inria.fr/trahrhe
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instructions that stop the program whenever incoher-
ent values arise in the evaluations of trahrhe expres-
sions; arithmetic precision. This program compares
every tuple of original iterators to the corresponding
evaluation of the trahrhe expressions. It may be used
as a code pattern to algebraic-tile-transform a given
target code that includes an equivalent loop nest;

Ehrhart and ranking polynomials are computed by in-
voking iscc. To solve symbolic polynomial equations, our
software invokes the computer algebra system Maxima.
We are currently implementing algebraic tiling in the

polyhedral compiler Pluto. By using flag -atiling, alge-
braic tiling is automatically applied to loops identified by
the pragma #pragma scop in the input C source file. Addi-
tionally, the Trahrhe software is then invoked by Pluto to
generate the required header files where the relevant trahrhe
functions are generated in C.

6 Experiments
Some first experiments were conducted on 8 programs from
the polybench benchmark suite v4.2with data size EXTRALARGE.

All programswere compiled using gcc 10.3.0with flags -O3
-march=native -fopenmp -lm. Standard (hyper-)rectangu-
lar tiling and OpenMP parallelization were automatically
applied on the 8 programs thanks to Pluto, which performed
simultaneously some loop transformations to promote data
locality and vectorization. On each hardware platform, tile
sizes providing the lowest execution times were selected
by performing an exhaustive search among sizes that are
powers of 2, from 1 to 2048. When very lower execution
times were reached with algebraic tiling, standard tile sizes
that are as close as possible to the size of the best performing
algebraic tiles were also tested, although algebraic tile sizes
are not generally constant.
Note that size 1 for a tiling depth means that the related

loop was actually not tiled. The best performing tile sizes
were found separately by running programs with schedule
static and with schedule dynamic of OpenMP. With standard
tiling, schedule dynamic may provide better performance,
since it aims to improve load-balancing by dynamic distri-
bution of iterations among the threads. It is particularly
significant when the iteration domain is non-rectangular,
as it is for kernel syr2k (see Figure 2). However, when the
iteration domain is rectangular, schedule dynamic generally
yields lower performance than schedule static, due to its
underlying time overhead.
Regarding algebraic tiling, dividers providing the lowest

execution times were also selected through an exhaustive
search among powers of 2, from 1 to 2048, excepting for
the dimension of the parallel loop, where the search was
performed among dividers that are multiple of the number
of threads (up to 10 times the number of threads). The same
loop transformations as the ones generated by Pluto for

Figure 7. Speed-ups resulting from comparing algebraic
tiling vs standard tiling with non-vectorized codes (64 threads)

standard tiling (skewing or interchange) were also applied
with algebraic tiling. Note that programswith algebraic tiling
were exclusively run with schedule static of OpenMP, since
quasi-perfect load balancing is obviously expected. Hybrid
tiling (standard + algebraic) was applied in some cases, in
order to improve vectorization.

The programs were run on 2 × 32-core AMD Zen2 EPYC
7452@2.35 GHzwith Turbo-Boost andHyperthreading deac-
tivated, using 64 parallel threads. Runs were performed after
having set the environment variable OMP_PROC_BIND=true
to avoid thread migration and bind the threads to processor
cores.

The best performing tile sizes and dividers providing the
lowest execution times are reported in Table 2. Note that
only multiples of 64 are used as the outermost slices’ dividers.
When tiling is hybrid, symbol «×» precedes the standard tile
size that was selected, additionally to the algebraic dividers.

Speed-ups were computed by comparing execution times
of programs optimized with algebraic tiling (that include the
time spent in computing the algebraic tile bounds) against
execution times of programs optimized with standard tiling,
using the best performing dividers and tile sizes:

𝑠𝑝𝑒𝑒𝑑−𝑢𝑝 =
𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑡𝑖𝑙𝑖𝑛𝑔 − 𝑡𝑖𝑚𝑒_𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐_𝑡𝑖𝑙𝑖𝑛𝑔

𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑡𝑖𝑙𝑖𝑛𝑔

The resulting speed-ups against standard rectangular tiled
programs run using schedule either static or dynamic are
reported in Figures 7 and 8. For Figure 7, automatic vectoriza-
tion was deactivated using flag -fno-tree-vectorized of
gcc, while it was activated for Figure 8. One can observe that
vectorization has a significant influence in the lower speed-
up amount that is mostly obtained with algebraic tiling, even
when hybrid tiling is applied. It shows that current micro-
processor SIMD units and compilers seem not well suited
for inner parallel loops of varying sizes, although algebraic
tiling mostly outperforms standard tiling, particularly when
iteration domains are not rectangular.

8
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Table 2. Best performing tile sizes and trahrhe dividers with size EXTRALARGE_DATASET and 64 threads

Program without vectorization with vectorization
static dynamic algebraic static dynamic algebraic

correlation 4 × 2048 × 8 8 × 64 × 128 128, 1, 2048 16 × 128 × 16 16 × 128 × 8 128, 1, 2048
covariance 4 × 32 × 64 8 × 2048 × 1 64, 1, 32 16 × 128 × 128 16 × 128 × 128 64, 1024 × 128
gemm 32 × 32 × 32 32 × 16 × 256 64, 128, 1 32 × 64 × 64 32 × 64 × 32 64 × 1 × 256
gemver 5 × 2048 × 1 16 × 1 × 1 384, 1024 4 × 2048 × 1 16 × 1024 × 1 128, 128, 64
gesummv 22 × 2 × 1 44 × 1 × 1 512, 64, 1 5 × 8 × 1 43 × 1024 × 1 192, 1024, 1
syr2k 16 × 1 × 1 4 × 8 × 1 128, 64, 1 32 × 64 × 1 8 × 64 × 1 128, 32, 16
syrk 16 × 16 × 1 4 × 16 × 1 64, 4, 512 32 × 128 × 1 8 × 128 × 1 64, 128 × 16
trmm 14 × 64 × 1 8 × 2048 × 1 64, 16, 2 41 × 32 × 16 41 × 16 × 16 128, 256 × 64

Figure 8. Speed-ups resulting from comparing algebraic
tiling vs standard tiling with vectorized codes (64 threads)

7 Related work
Tiling has been a very productive research topic for nearly
thirty years [7, 13, 18, 19, 26]. However, tiling techniques that
have been proposed are all based on partitioning the iteration
domain into tiles, that may be (hyper-)rectangular or non-
rectangular (hexagonal, trapezoidal, etc.), but always defined
by their edge directions and sizes. Thus, their bounds are
always expressed as (min or max of) affine functions, or poly-
nomial functions when parameterized. To our knowledge,
tiles delimited by algebraic bounds were never proposed.
There have been many proposals regarding stencil com-

putations, which are an important class of programs that
occurs in a variety of scientific applications, and for which
tiling is particularly difficult. Stencil computations mostly
require skewing parallelizing transformations [1, 18, 27] that
have to be handled specifically [2, 9, 11, 17].
In [10], Hartono et al. propose PrimeTile, a parametric

multi-level tiler for imperfect loop nests. Their tiler is “multi-
level” as outer tiles may also be tiled at deeper levels. The
authors use this approach to distinguish full tiles from partial
tiles, and thus to avoid large partial tiles by deeper tiling of
areas along borders of the iteration domain. Note that such
strategy may be purposeless with algebraic tiling, since (full)

algebraic tiles are built by considering the volume of the
whole target iteration domain from the beginning.

Jiménez et al. [14] propose a code generation technique
for register tiling of non-rectangular iteration spaces. They
generate code that traverses the bounding box of the tile
iteration space to enable parameterized tile sizes. They apply
index-set splitting to tiled code to traverse parts of the tile
space that include only full tiles. Their approach involves
less overhead in the loop nest that visits the full tiles, at the
price of significant code expansion.
In their work, Sato et al. [22] address explicitly load bal-

ancing through an analytic model. They model the load bal-
ancing issue analytically and combine it with empirically
autotuning the loop tile size for many-core CPUs, through
an iterative compilation framework. However, they only
address standard rectangular tiling and obtain speed-ups
against a baseline which is all tile sizes equal to 32, while in
our approach, we obtain significant speed-ups against the
best performing rectangular tile sizes.
Sakellariou in [21] proposes a compile-time scheme for

partitioning non-rectangular loop nests, where the minimiza-
tion of load imbalance is based on symbolic cost estimates.
In [16], Kejariwal et al. present a geometric approach for
partitioning N-dimensional non-rectangular iteration spaces.
They partition an iteration space along the axis correspond-
ing to the outermost loop to achieve a near-optimal partition.
Kafri and Abu Sbeih in [15] focus on static decomposition of
perfect triangular iteration spaces to achieve load balancing,
by partitioning a triangular iteration space of a loop nest
along the outermost loop index.

8 Conclusion
When compared to standard (hyper-)rectangular tiling, alge-
braic tiling provides significant performance improvements,
despite the relatively complex algebraic expressions that
have to be evaluated at runtime to determine the tile bounds.
It clearly confirms that load balancing among computing
hardware units is crucial for performance. Moreover, with
this technique, dynamic scheduling becomes purposeless for
the handled loops.

9
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Algebraic tiling may be further extended and adapted,
particularly for heterogeneous computing platforms by as-
sociating performance ratios to the target computing units.
More generally, trahrhe expressions open a new field for
loop optimizations based on iteration counts. Besides tiling,
we plan to investigate other promising directions such as
algebraic scheduling.
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