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Vision-enhanced GNSS-based environmental context detection for autonomous vehicle navigation

Context-adaptive navigation is currently considered as one of the potential solutions to achieve a more precise and robust positioning. The goal would be to adapt the sensor parameters and the navigation filter structure so that it takes into account the context-dependant sensor performance, notably GNSS signal degradations. For that, a reliable context detection is essential. This paper proposes a GNSS-based environmental context detector which classifies the environment surrounding a vehicle into four classes: canyon, open-sky, trees and urban. A support-vector machine classifier is trained on our database collected around Toulouse. We first show the classification results of a model based on GNSS data only, revealing its limitation to distinguish trees and urban contexts. For addressing this issue, this paper proposes the vision-enhanced model by adding satellite visibility information from sky segmentation on fisheye camera images. Compared to the GNSS-only model, the proposed vision-enhanced model significantly improved the classification performance and raised an average F1-score from 78% to 86%.

I. INTRODUCTION

Mobile robots and autonomous vehicles are today planned to be used in many day-life applications (e.g. warehouse, autonomous driving, transportation, delivery). This growing demand for mobile robots to operate in complex environments is directly linked with the increasing environment variability. For such navigation tasks, the main sensor used is the Global Navigation Satellite System (GNSS) especially because of its availability but also due to its unique property of being able to provide localization in a global reference system. Even if the GNSS positioning error in open-sky environment dropped from ten of meters to centimeters in the early 2000's it still has a limited positioning precision in cluttered environment due to signal reflection on obstacles. The measured pseudorange (as well as the phase) is thus biased and changes the final position solution. This problem is divided in two different sub-parts: multipaths and Non Line-Of-Sight (NLOS). This distinction is important because the two phenomena generate different range of positioning error while the mitigation techniques available are also different. Multipaths are composed of both the direct Line-Of-Sight and the reflected signal. NLOS appears when only the reflected signal reaches the receiver and leads to higher positional error than standard multipaths [START_REF] Matera | Characterization of Line-of-Sight and Non-Line-of-Sight Pseudorange Multipath Errors in Urban Environment for GPS and Galileo[END_REF]. Those problems can be mitigated or limited thanks to specific hardware setup like antenna arrays or with dedicated design such as dual-polarization antenna, gain roll-off or 1 F. Feriol and D.Vivet are with ISAE-SUPAERO, Université de Toulouse, France, France {florent.feriol,damien.vivet}@isae-supaero.fr 2 Y.Watanabe is with the DTIS, Onera, Toulouse, France yoko.watanabe@onera.fr choke rings. However those elements have cost and bulkiness issues which are a problem for mobile robot applications. Fortunately, algorithm-based methods also exist to perform mitigation [START_REF] Wang | Smartphone shadow matching for better cross-street gnss positioning in urban environments[END_REF] [3] but those solutions can only work for dedicated scenario. It then appears that information about the environment is mandatory to adapt the navigation solution. The surrounding of a navigating robot or vehicle is referred as the environmental context [START_REF] Groves | Context detection, categorization and connectivity for advanced adaptive integrated navigation[END_REF]. Context-adaptive navigation solution, which adapts the sensor data processing and/or the navigation filter structure to a detected context would be more robust and precise. The first step toward such advance navigation is the context detection. The goal of this study is to build an algorithm capable of classifying the environmental context based on GNSS data provided by an off-the-shelf receiver. The four main contexts of interest (Open-sky, Trees, Urban, Canyon) are defined, each of which causes different impact on GNSS signal reception (e.g. signal attenuation, occlusion, multipaths). We first show the classification results of the Support-Vector Machine (SVM) classifier trained on GNSS data only. It is based on our previous work [START_REF] Feriol | GNSS-based environmental context detection for navigation[END_REF], but applied to larger city-scale datasets. As it is revealed that this GNSS-only SVM model has difficulty in distinguishing the two moderate contexts (Trees and Urban), this paper proposes to enhance the model by adding satellite NLOS information obtained from semantic segmentation on sky-oriented fisheye camera images. Moreover, because it exists no public dataset comprising complete GNSS data and images for such navigation task, another contribution of this work is to provide to the public our GNSS/Vision dataset representing more than 150 km in urban and suburban areas 1 . This database allows fair comparison between different state-of-art approaches.

The remaining of the paper is organized as follow: a review of the existing GNSS-based environmental context detection solutions is provided in Section II. The data acquisition setup and collected datasets are described in III. Section IV and Section V explains our environment context classification methods using respectively GNSS data only and the visionenhanced GNSS data.

II. LITERATURE REVIEW

There are few works dealing with GNSS-based environmental context detection. For example, [START_REF] Rahman Lighari | Classification of gnss snr data for different environments and satellite orbital information[END_REF] builds a look-up table of the mean and the standard deviation of the Carrier-to-Noise ratio (C/N0) for each context of interest and for each satellite elevation range. Four different environmental contexts were labelled (open, forest, single building blockage, and street canyon) by using a fisheye video. The labelling process is however not really detailed in the paper. One of the drawbacks of their work is that the database used is very small (2220 samples) and its generality remains open to question. Also using only the C/N0 as the main feature is an issue since it can be impacted by many phenomena. Fig. 1 shows an example of the histogram of the mean C/N0 values we obtained for each of our environment contexts. This result implies that C/N0 cannot be used as a standalone feature to extract context information.

[7] tries to classify GNSS data into five different environment scenarios: open sky, low-density trees, high-density trees, high wall/overpass and tunnel/depot. The GNSS receiver is mounted on a agricultural tractor and is setup to track BeiDou, GLONASS and GPS constellations at a frequency of 10 Hz. Two main metrics are used in their classification approach: the number of satellites in view (NSV) with C/N0 higher than 37 dB-Hz and the horizontal dilution of precision (HDOP). Four different signal occlusion states are defined by combining the thresholds for those two metrics. Then a four state Markov chain model (MCM) is built for each environment by statistical analysis of the labelled training data. The environment class is then obtained with a measure of similarity (Frobenius norm) between the MCM parameter matrix of a test data segment and the parameter matrix of each environmental scenario. The test results achieve an overall accuracy of 97.08%. However the testing and training datasets are biased with classes size variations going from 910 to 11096 samples. This uneven distribution can create leaks in the learning phase since some classes are less characterized and also in the testing phase where challenging classes can be under-represented. This method shows good results but does not confirm our experimental data which show a weak separability of the position dilution of precision (PDOP) and the number of satellites in view (NSV) ( Lastly, [START_REF] Wang | Urban environment recognition based on the gnss signal characteristics[END_REF] presents a support vector machine (SVM) algorithm capable of classifying GNSS data into six urban classes: urban canyon, semi-urban, suburb, viaduct-up, viaduct-down and boulevard (roads bordered by trees). The definition of each class is unclear since environments they labelled as suburb and semi-urban look very similar on the Baidu street view even for an human eye. The model uses features derived from the C/N0, NSV and GDOP. The training data (10 5 samples) were recorded in Shanghai with a GNSS receiver (Ublox-M8N) placed on the top of a vehicle with a frequency of 5 Hz. The testing data were recorded with the same setup in Nanjing. The collected data are pre-processed by a z-score standardization as a first step and the atan function as a second step to ensure same magnitude for each feature and outliers filtering. A onevs-all SVM model is then trained on the Shanghai data. The outputs of the SVM model are used as probabilities to perform Bayesian filtering in order to improve the results by avoiding the occasional miss-classifications. The results attains 89.3% classification accuracy but the ground truth is not very precise and the database is not available. Another drawback of this approach is that the feature vector requires an access to the almanac which is not always possible.

From this literature review we can observe that there exists several approaches proposing to use GNSS data to classify the environment. However, those solutions often use a low number of features which seems, from our experiment, insufficient to represent the variability of the environment (see Fig. 1,2). Most of the papers used data collected in China and do not make their database open access. This makes their work not reproducible. At the same time, their labelling strategies are not explained which can create labelling differences between their and our method.

III. DATABASE CONSTITUTION A. Hardware setup

As stated in the previous section, there is no existing dataset with complete GNSS data in the context of autonomous navigation. Hence we first built a GNSS database and made it available to the navigation research community. The database is made of 150 km of GNSS data and sky-orientated fisheye images of Toulouse surroundings. Each context of interest are traveled thanks to route selection in which we tried to limit mixed scenarios. The database construction was achieved thanks to the ISAE-Supaero recording platform that has been mounted on the top of a vehicle (Fig. 3). This platform contains an Ublox-M8T and a NovAtel PwrPak7 GNSS receiver. The first one is an off-the-shelf receiver while the second is a in-house Differential-GPS (D-GPS) used as reference.

Both receivers share the same signal input coming from a VEXXIS GNSS-804 antenna (NovAtel). Finally a sky-oriented Flir BlackFly-S (1936×1464 px) camera is equipped with an f θ-fisheye lens with a FOV of 185°. The acquisition frequency of the Ublox receiver was 5Hz and that of the Flir BlackFly-S was 2Hz. The choice of reducing the frequency of image acquisition is due to storage limitation. Three independent trajectories have been recorded on different days and with different weather conditions. A table summing-up all the acquisition is available in Tab. I.

B. Context labelling strategy

For each dataset, context labelling was made manually by using the fisheye images and the satellites projection (see Section V). To insure that the model learns specific context the labelling was only made at points where the context was without ambiguity. Indeed it is easier to characterize a clear context rather than detecting transitions which are by definition more variable. Therefore mixed scenarios and transition areas are not labelled. The flow chart of the labelling strategy is available in Fig. 5. Visual examples of the four different environmental context (Canyon, Open-sky,Trees, Urban) are given in Fig 4 . Open-sky consists of areas without any GNSS degradation, Trees include zones under foliage, Urban is innercity sector with tall buildings but with a relatively high sky visibility. Finally urban Canyon are narrow streets with a very low sky visibility. Tab. II summarizes the numbers of samples labelled for each context for the three datasets.

IV. CLASSIFICATION METHOD BASED ON GNSS-ONLY

As a first step, our previous work [START_REF] Feriol | GNSS-based environmental context detection for navigation[END_REF] of GNSS-only SVM classifier is applied to this new city-scale dataset. The original Table III provides the resulting F1-score for the tree test cases. The results show that the solution that was firstly developed in a local on-campus environment has limited performance when applied at a larger city-scale. The main limitation is the difficulty to distinguish urban and trees (Tab. IV) due to the fact that both multipaths and signal attenuation phenomena appear in those intermediate degradation areas. Therefore in order to overcome this difficulty and improve the classification performance this paper proposes to add additional semantic segmentation about the GNSS constellation by NLOS detection of each satellite. With this knowledge it would be possible to characterize the signal of masked satellite and hence to retrieve information about the element responsible of the blocking. The NLOS satellite detection can be performed by using sky-segmented fisheye images coupled to satellite projection. Note that for urban application similar semantic information could also be extracted without camera if a digital 3D-terrain model is available. The whole framework is presented in the following section.

V. VISION-ENHANCED CLASSIFICATION METHOD

A. Sky segmentation

In outdoor navigation the different meteorological conditions can radically change the sky illuminance and texture. Such variance makes the classification of the sky region complex and the use of standard image processing algorithms difficult. To overcome this problem we decided to use deeplearning solution which is more robust than texture/color-based methods. A solution based on a long wave infrared camera could also avoid those illumination problems given that the sky segmentation only relies on a simple threshold [START_REF] Feriol | A review of environmental context detection for navigation based on multiple sensors[END_REF]. However there is no wide angle lens available on the market for such camera design due to size and material issues.

Since our problem is essentially a binary classification (sky/non-sky) a simple NN-model such as ResNet-18 is sufficient for the feature extractor part. The fully connected and the average pooling layers were removed. Due to the convolutional structure of the backbone model, the output shape is totally different from the original picture size (the feature map depth is 512). In order to re-obtain the desired image shape, deconvolutions need to be performed. The structure of our model can be seen on Figure . 6. To train the model, 4000 images from a previous recording have been labelled. 1 . Thanks to the data split we found that the best epoch number was 25. The setup used was made of two NVIDIA Titan XP graphic cards limiting the batch size to 3. Data augmentation has been implemented to make the training database more complete and is based on random rotation, flipping and contrast modification. The loss function used is the cross-entropy and the optimizer is Adam. The learning rate was set to 0.0005. The test subset is used to evaluate the sky segmentation performance with the IOU metric (defined in Eq. 2). Our model achieved an IOU of 90.8%.

IOU = Img P red ∩ Img GT Img P red ∪ Img GT (2) 

B. Camera calibration

Once the segmentation of the sky is obtained, the next step is to project each satellite position on the image. In order to perform this satellite projection correctly, camera calibration was performed thanks to OpenCV with the classical checkerboard pattern. The following calibration results were obtained: fisheye distortion parameters (k1 = 0.0138, k2 = 0.0022, k3 = -0.0027, k4 = -0.0001) intrinsic parameters (f = 393.7, c x = 977.4, c x = 749.8) and root mean square error of the calibration for both axis (RM S x =0.499 RM S y =0.462).

C. Satellite projection and NLOS detection

From the knowledge of the ephemeris of a satellite and the position solution, the GNSS receiver computes its position in the receiver-carried frame, and outputs it in a form of the azimuth and elevation angles (α, e). From this latter and the previous calibration parameters obtained, it is possible to project the satellites onto the image by applying the fisheye camera model. The use of this model, which leads to computational issues for low angle of arrival, is possible in our case where low elevation satellites (generally < 10-15 degrees) are eliminated from the solution calculation. The projection error can be obtained by propagating the error covariance 

D. Feature vector

With the LOS/NLOS information available for each satellite, it opens the possibility to compute new features of interest in order to characterize more precisely the GNSS signal blockage element. For each data sample the following features are computed separately for LOS and NLOS satellites:

N SV k = Card(S k ) (3) 
µ C/N 0 k = 1 N SV k i∈S k µ C/N 0i (4) 
elev k = 1 N SV k i∈S k e i ( 5 
)
res k = 1 N SV k i∈S k |ρ m,i (t) -ρ e,i (t)| (6) 
where k ∈ {LOS, N LOS}. i is the satellite ID, S LOS a set of IDs of visible satellites, S N LOS a set of IDs of NLOS satellites, µ C/N 0 the mean C/N0, e the elevation angle, ρ m the measured pseudorange and ρ e the estimated pseudorange. A 10-dimensional feature vector ( 7) is then defined by splitting µ C/N 0 into GPS and Galileo instances due to the different properties of those two constellations.

v(t) =[N SV LOS , N SV N LOS , µ gps C/N 0 LOS , µ gal C/N 0 LOS µ gps C/N 0 N LOS , µ gal C/N 0 N LOS , elev LOS , elev N LOS res LOS , res N LOS ] (7) 
VI. PERFORMANCES EVALUATION Same tests as those made in Section IV are performed using this new feature vector (Eq. 7) as input and with γ= 5 and C= 50 which have been re-optimized due to the change of features vector. A summary of the F1-score results is given in Tab. V where a clear increase of the classification rate is observed. The confusion matrix is also available in Tab. VI. The low F1score for the third test can be explained with a constellation topology that is very different from the two others (Fig. 8) for a similar environment and location. Indeed, for the third dataset, most of the visible satellites in direct path are at the azimuth which normally appears in very constraint environment but not in open-sky environment. With a more complete database that could represent a wider variety of constellation geometries the classification error would be reduced. This can be show by using a training database now composed of 20% of the labelled points from each of the three trajectories. The test database is the remaining 80% of each trajectory. F1-score results are shown in Tab. VII, where we can see an improvement of the classification rate compared to the previous test (Tab. III). Each context is properly detected with 86.4%, 99.5% 91.0%, 82.0% of correct classification for canyon, open-sky,trees and urban classes respectively. The fact that the urban class is the most difficult to classify could reside in its high variability and the high level of filtering inside the Ublox receiver. With an access to the data before filtering it would be easier to extract GNSS-signal degradation. The predicted context along the trajectories of the different dataset is displayed in Fig. 9 and 10. From Fig. 9 (black rectangle) it can be seen that our method can classify overpass areas as canyon which seems logical due to high degradation of the GNSS-signal in that environment. Also, most of the crossing roads in the city center (black circles on Fig. 10) are classified as open-sky which seems natural given that the signal degradation is very low in this high sky availability environment. Finally, in canyon areas some of the turns are classified as urban which is an interesting result (orange circles on Fig. 10) . This can be explained firstly by an augmentation of the sky availability leading to a higher number of visible satellites. The increase of the NSV could also be due to different orientations of the surrounding buildings which can create multipath effect by single or multiple reflections.

VII. CONCLUSION

In this paper we proposed a vision-enhanced GNSS-based method to classify the environmental context. The mean F1score was raised from 0.7820 to 0.8587 when we added the satellite NLOS information obtained from sky segmentation of the fisheye camera images. With a more generic training database including data points selected from all the three trajectories the mean F1-score was further improved and reached 90.8%. Our future work is to test the developed solution on a dataset collected in another city to verify its generalization at a larger scale. Also, we are currently developing a robustified navigation method which adapts its parameters in function of the detected environmental context.
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 8 Fig. 8: Comparison of the constellation from Dataset 1 and Dataset 3 in the similar environment and location TABLE VII: F1-score of each dataset with GNSS-Vision based feature vector (training database = 20% of each trajectory) Dataset Dataset 1 Dataset 2 Dataset 3 F1-score 0.9555 0.9064 0.8646
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TABLE I :

 I List of the trajectories (SoR: Start Of Recording)

	Name	Date	SoR	Weather	Samples GNSS Images
	Dataset 1	2022/02/04	11h04	Cloudy	31776	12627
	Dataset 2	2022/03/24	11h22	Sunny	31742	12672
	Dataset 3	2022/03/24	14h32	Sunny	53247	21290

TABLE II :

 II Learning database details

	Dataset	Context	Canyon	Open-Sky	Trees	Urban	Total
	Dataset 1	635	1015	439	805	2892
	Dataset 2	1166	1384	1044	768	4362
	Dataset 3	1457	1559	975	974	4965

TABLE III :

 III F1-score of each test case with GNSS-based feature vector

	Test	Dataset 1	Dataset 2	Dataset 3
	F1-score	0.7696	0.7951	0.7813

TABLE IV :

 IV Confusion matrix for the three trajectories with GNSS-based feature vector

	True Class	Predicted Class	Canyon	Open-Sky	Trees	Urban	T%	F%
		Canyon	2701	0	24	533	82.9	17.1
		Open-Sky	1	3750	141	66	94.5	5.5
		Trees	22	346	1658	432	67.4	32.6
		Urban	366	71	496	1614	63.4	36.6

TABLE V :

 V F1-score of each dataset with Vision-enhanced based feature vector (independent test and train dataset)

	Dataset	Dataset 1	Dataset 2	Dataset 3
	F1-score	0.9225	0.8442	0.8094

TABLE VI :

 VI Confusion matrix for the three trajectories with the vision-enhanced feature vector

	True Class	Predicted Class	Canyon	Open-Sky	Trees	Urban	T%	F%
		Canyon	2503	0	164	591	76.8	23.2
		Open-Sky	0	3787	11	158	95.6	4.4
		Trees	123	7	2141	187	87.1	12.9
		Urban	274	127	216	1930	75.7	24.3

The database used in this paper is a available at: https://doi.org/10.34849/ T4ICUX

The database used in this paper is available at: https://doi.org/10.34849/ LP3YVF
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