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Abstract: This paper aims to quantify the errors in the provided agricultural crop types, estimate
the possible error rate in the available dataset, and propose a correction strategy. This quantification
could establish a confidence criterion useful for decisions taken on this data or to have a better
apprehension of the possible consequences of using this data in learning downstream functions
such as classification. We consider two agricultural label errors: crop type mislabels and mis-split
crops. To process and correct these errors, we design a two-step methodology. Using class-specific
convolutional autoencoders applied to synthetic aperture radar (SAR) time series of free-to-use and
temporally dense Sentinel-1 data, we detect out-of-distribution temporal profiles of crop time series,
which we categorize as one out of the three following possibilities: crop edge confusion, incorrectly
split crop areas, and potentially mislabeled crop. We then relabel crops flagged as mislabeled
using an Otsu threshold-derived confidence criteria. We numerically validate our methodology
using a controlled disruption of labels over crops of confidence. We then compare our methods to
supervised algorithms and show improved quality of relabels, with up to 98% correct relabels for
our method, against up to 91% for Random Forest-based approaches. We show a drastic decrease
in the performance of supervised algorithms under critical conditions (smaller and larger amounts
of introduced label errors), with Random Forest falling to 56% of correct relabels against 95% for
our approach. We also explicit the trade-off made in the design of our method between the number
of relabels, and their quality. In addition, we apply this methodology to a set of agricultural labels
containing probable mislabels. We also validate the quality of the corrections using optical imagery,
which helps highlight incorrectly cut crops and potential mislabels. We then assess the applicability
of the proposed method in various contexts and scales and present how it is suitable for verifying
and correcting farmers’ crop declarations.

Keywords: autoencoder; deep learning; SAR; time-series; agriculture; label noise; mislabels
correction; crop type mapping

1. Introduction

Historically, remote sensing data, and in particular, synthetic aperture radar (SAR)
data have been used in support of agricultural processes: their sensibility to the physio-
logical state of crops enabled the monitoring of their growth [1–3] or the classification of
crop types, with supervision [4–7] or without [8–10]. SAR temporal data over optical or
hyperspectral data allows for continuous worldwide monitoring, regardless of weather
conditions. Furthermore, the launch of Sentinel-1 satellites, with free-to-use and open
data of up to 6 days of time-interval between acquisitions, favors the increased use of
SAR for agricultural monitoring. Recently, SAR has been combined with deep learning
technologies [11,12] for the task of agricultural monitoring, which allow for improved
performance, and generalization, over traditional approaches.

Said applications usually rely on agricultural labels, which may come with a significant
amount of label noise [13,14]. This label noise can have a non-negligible impact on decision-
making for agricultural policies, as they “misinform key statistics and hence grand development
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programs”, according to [15]. Thus, tackling label noise is critical, for downstream tasks
relying on highly qualitative agricultural data.

Deep learning algorithms can extract label noise, such as mislabels, using anomaly
detection frameworks [16,17]. According to [18], anomalies correspond to an observation
that “deviates so significantly from other observations as to arouse suspicion that it was generated
by a different mechanism”. Thus, the extraction of label noise relies on anomaly detection
methodology, which can be split into mainly three categories:

• supervised anomaly detection, where a model is trained to detect anomalies that are
labeled as such. Such an approach is prevalent in medical applications for novelty
detection [19]. However, having a labeled anomaly dataset is rare, and such a training
paradigm is not robust against unexpected anomalies.

• semi-supervised anomaly detection [20,21]: labels of anomalies and normal instances
are still present but in a significant imbalance. In this context, deep autoencoders [22]
are used. They are unsupervised deep learning models trained with a reconstruction
task. In a semi-supervised context, they are trained only on normal observations.
Then, deviating instances are used to fit a reconstruction performance threshold above
which anomalies can be separated from the norm. However, despite requiring a much
lower amount of anomalies than supervised anomaly detection, there is still a need
for such labels. If there is no anomalous label on hand, one must use unsupervised
anomaly detection.

• unsupervised anomaly detection [23]: methodologies of this kind train deep autoen-
coders in the same way, but without knowledge of which data point is normal and
which is an anomaly. The distinction between the two classes is entirely made from
data and is much harder to find. However, it is much more robust to new unseen
kinds of anomalies.

In remote sensing, anomaly detection algorithms have been applied to a various
range of earth observation applications, such as sea monitoring [24], vegetation anomaly
detection [25] or the problem at stake: agricultural monitoring [26]. In our work, we
primarily focus on label anomalies: in particular, mislabels. Their detection and correction
in remote sensing context is the topic of multiple studies. Santos et al. [27] presents a class
noise quality control method in the context of land cover classification of satellite time
series using self-organizing maps. Wang et al. [28] detect and correct label noise in a target
recognition context using training loss curves of deep learning models to characterize,
extract and classify outliers.

A particular kind of remote sensing data anomaly we are interested in is crop type
anomaly. Di Martino et al. [9] studies the retrieval of agricultural classes from SAR time
series using unsupervised algorithms. We uncover a series of crops labeled as “cotton”
which appear closer to “sugar beets”, both in terms of optical reflectance and radiome-
try. However, this work does not automatically detect and correct mislabels. For that,
Avolio et al. [29] presents a methodology that uses satellite image time series and dynamic
time warping to compare a given NVDI temporal signature with per-class trends. However,
the usage of optical imagery to characterize plant growth patterns is sensitive to clouds and
atmospheric conditions [30]. In addition, such trends may not be discriminative enough to
separate crop types.

In an alarming agricultural context worldwide, it becomes crucial to find solutions to
prevent the transmission of agrarian census errors and to optimize the efficiency of agro-
nomic measures. In this paper, we present a candidate solution for the task of diagnosing
agricultural census quality and correcting labeling mistakes by combining remote sensing
data and a custom deep learning anomaly detection and correction algorithm, with the
three following contributions to the literature:
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• we use deep convolutional autoencoders to model, without supervision, the expected
temporal signature of crops in Sentinel-1 multitemporal images.

• we leverage the reconstruction performance of autoencoders as a class belonging-
ness measure and present an automatic binary thresholding strategy for confidence
relabeling using Otsu thresholding [31].

• we combine time series-level and parcel-level analysis to better extract and cor-
rect anomalies.

We first present our methodology by introducing the context of the illustrating use case
and the multi-stage FARMSAR algorithm (Fixing AgRicultural Mislabels using Sentinel-1
time series and AutoencodeRs). We validate the proposed methodology in a controlled
environment. We isolate the labels of trustworthy time series within a first half of the
dataset and randomly introduce mislabels. We then run our method, and we numerically
quantify the mislabel retrieval and correction performance for quantitative analysis of our
method’s performance. We repeat this process multiple times, with varying amounts of
introduced label errors, for statistical relevance. We then apply FARMSAR to the second
half of the available dataset, supporting the presented corrections and diagnostics using
qualitative validation with Sentinel-2 imagery.

2. The Stakes in Agricultural Ground Truths
2.1. The Value of Ground Truths

Agricultural ground truth products are of interest to various bodies, including public
institutions and scientists. Indeed, in Angus et al. [32], the World Bank details the impor-
tance of agriculture for national and international economic development. Agricultural
policy frameworks are in place in every region of the world. For instance, in Europe, the
Common Agricultural Policy of the European Union (CAP) supports farmers with subsidies
to improve the quantity and quality of agricultural production. In return, farmers need
to declare crop parcels with information on location and harvest. The European Union
then uses the reports to ensure that it is self-sufficient in food production of various kinds.
Institutions take advantage of agricultural censuses to support their decisions with quan-
titative arguments. This reporting process is part of a general approach by the European
Commission to digitize agricultural information. It involves the creation, among other
things, of the Land Parcel Identification System.

On the other hand, agricultural labels are crucial for the work of scientists in various
fields, including Agronomy, Ecology, and Earth Sciences. In particular, in remote sensing,
agricultural labels can help in crop type mapping applications at different scale: local [5],
national [33] or continental [34]. These applications use trusted ground truths to fit a
classification model that predicts an agricultural label for unseen areas. The quality of these
predictions is a function of the quality of the training datasets. The presence of label noise
in these datasets is directly connected to the creation of these crop surveys.

2.2. The Difficulties of Building Agricultural Datasets

Both authorities and farmers encounter many difficulties during and after crop survey
completion. For instance, Beegle et al. [35] shows complications regarding the reliability
of recall in agricultural data collected from a variety of sources. Further studied by Woll-
burg et al. [36], there exists a non-negligible correlation between survey question recall
length and measurement errors in agricultural censuses. The authors also detail the impact
of these errors on agricultural variables, key to decision making for administrations.

On another hand, Tiedeman et al. [13] shows the impact of data collection methods on
crop yield estimations based on Sentinel-2 images analysis, comparing farmer estimated
ground truth and true measured ground truth. Their results point towards the idea that the
design of the survey process in itself can lead to the introduction of errors [37].

Depending on the use of these agricultural labels, the impacts of label noise are various.
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2.3. The Impacts of Errors in Ground Truth Data

While errors in agricultural surveys are explicable, they remain damaging for both
institutions and scientists. For instance, Abay [15] shows the direct impact of plot size
overestimation on the returns to modern agricultural inputs, which directly support the
decision process of institutions to invest in new agronomic technologies. The presence
of errors, intentional or not, is a matter of interest to authorities such as the Italian gov-
ernment, which mandated Avolio et al. [29] to develop a tool for compliance checks of
farmers’ declarations.

Remote sensing applications such as crop type mapping or yield estimation also suffer
from label noise. In the presence of errors in the training ground truths, the model will
damage the predictions with approximations. Indeed, knowing the impact of errors in
annotated databases on learning algorithms is also a topic of interest. Some works have
shown that below a certain threshold of errors, and for sufficiently large learning bases,
the impact is negligible [38]. However, this conclusion does not necessarily extend to
all scenarios, especially those for which the learning bases are too small, not diversified
enough, or when the learning techniques are weakly supervised.

For instance, in the context of Land Cover mapping [38], a sharp decline in perfor-
mance appears after 20% of label noise. In another context, in the context of crop type
mapping with NDVI time series, Pelletier et al. [14] shows the impact of errors in agri-
cultural training labels which become non-negligible when reaching more than 20% of
label noise.

Thus, having a criterion to qualify potential errors could therefore be of interest
to conduct a parametric study to better study their impact. The types of label noise
encountered in an agricultural setting are multiple. In our work, we focus on label noise
errors, that we now introduce and characterize.

2.4. Ontology of Studied Crop Type Errors

The concept of an agricultural survey previously introduced can be seen as a dataset
of parcels that has the following characteristics:

• Each parcel is atomic, because they are not supposed to be dividable into smaller parcels.
• The atomicity of parcels is assured by the homogeneity of the crop type: every part of

the parcel contains the same plant. We can then assign to the field this crop type as
a class.

From these two axioms may arise errors that must, at least, be detected and, at best, be
corrected. The first type of error regards the supposed atomicity of the parcel; the parcel
consists of two sub-parcels. We call this error “mis-split parcel”. The second type of error
regards the assigned crop type; the assigned crop type is not the real crop type. We call this
error “mislabeled parcel”.

The axioms presented above are valid within a single unit of time, defined by the
harvesting strategy of the farmer. We are working with a time unit of 1 year (i.e., year-long
crop rotations), but the presented method stays valid for any other crop rotations scheme.

Building on this axiomatic representation of crop type errors, we develop a method-
ology entitled FARMSAR: Fixing AgRicultural Mislabels using Sentinel-1 time series
and AutoencodeRs.

3. The FARMSAR Methodology
3.1. SAR Temporal Modeling of Crops, a Study Case of Sector BXII, Sevilla

Mestre-Quereda et al. [5] shows the ability of SAR backscatter time series to perform
crop type mapping. In particular, Sentinel-1 satellites offer numerous advantages regarding
their usage for agricultural monitoring. Their capacity to perform exploitable acquisi-
tions no matter the weather, their high temporal resolution (from 6 to 12 days), and high
availability make it an ideal candidate for continuous crop monitoring.
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This article illustrates our methodology with a dataset of Sentinel-1 acquisitions over
agricultural fields of Sector BXII, a farming area located near Sevilla, Spain. Sector BXII is a
group of farmers gathered under the concept of community irrigation [39], which increases
the efficiency of water usage through a bulk supply of water to the agricultural fields from a
given source. With a total of 1128 members in 2018, the community is frequently under the
radar of local and national Spanish governments for its experimental irrigation technology.
For that matter, errors in crop census are detrimental to decision-makers at various levels
of responsibility.

The Sentinel-1 multitemporal stack was processed as presented by Mestre-Quereda et al. [5]
and consists of 61 acquisitions during the whole year of 2017. The processing includes
in particular a boxcar speckle filter of 19 samples in range, and 4 samples in azimuth,
performed before geocoding, which results in anomalies we present later. We display in
Table 1 the metadata of the acquisitions.

Table 1. Metadata of Sector BXII Sentinel-1 multitemporal stack.

Sentinel-1 Acquisitions Metadata

Acquisition Mode Interferometric Wide
Polarisation VV + VH

Relative Orbit Number 74
Wavelength C-Band
Orbit Pass Ascending

Near Incidence Angle approx. 31.47°
Far Incidence Angle approx. 32.82°
Acquisition Dates 3 Jan. to 29 Dec. 2017

Location 36°59′00.0′ ′ N 6°06′00.0′ ′ W

Illustrated in Figure 1, 16 crop types act as labels for the Sentinel-1 time series, with
a total of around 3200 unique crops and 1.2M pixel-wise time series. These labels were
created by farmers of Sector BXII and correspond to the annual harvest classes of 2017. The
main products of the sector are sugar beet, tomato, and cotton. Further details regarding
crop types distribution are displayed in Figure 2.

Wheat
Maize
Fallow
Sunflower
Chickpea
Alfalfa
Cotton
Sugar beet
Potato
Sweet Potato
Pepper
Onion
Carrot
Pumpkin
Tomato
Quinoa

Figure 1. Illustration of the BXII Sector (36°59 N 6°06 W) and reference crop types data over a Sentinel
1 σ0 VH polarization image acquired in orbit 74 on the 3rd of January 2017.
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Figure 2. Histogram of referenced crop types distribution (in number of fields).

This Sector BXII crop survey contains labeling errors, and we illustrate examples of
these mistakes in Figure 3 with the display of suspected mislabels and in Figure 4 with the
display of a supposed mis-split crop. When observing the aspect of the suspect beet crop in
Figure 3b, it appears very dissimilar from other neighboring beet crops. Considering that
the 22nd of April is during the beet growing season in the Sevilla region, it seems highly
unlikely for this crop to be beets. Conversely, the second suspect crop, labeled as cotton,
appears green on the same image, despite the cotton growing season happening over the
summer (June–August). These remarks lead us to believe that both of these crops are of the
wrong label. When observing the crop highlighted in Figure 4b, it appears heterogeneous
in the 22nd of April image, making it a suspected mis-split crop.

(a) (b)
Figure 3. Visualization of an example of suspected mislabeled crops from the Sector BXII crop survey,
with confusion between Cotton (green) and Sugar Beet (dark green) crops. (a) Superposition of
Sentinel-2 RGB image of 22/04/17 and supplied crop types; (b) Sentinel-2 RGB image acquired the
22/04/17.

More suspicious crops are scattered within the agricultural area. However, with more
than 3000 crops, it becomes complex and time-consuming to double-check all their labels
individually and verify the atomicity of each parcel.
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(a) (b)
Figure 4. Visualization of an example of a suspected mis-split Cotton crop from the Sector BXII
crop survey. (a) Superposition of Sentinel-2 RGB image of 22/04/17 and supplied crop types; (b)
Sentinel-2 RGB image acquired the 22/04/17.

Thus, this paper details an automatic correction process of the labels of this dataset
with the support of Sentinel-1 time series. The validity of relabels are then assessed
quantitatively using controlled degradation of labels of crops we consider as “trustworthy”
as well as qualitatively using Sentinel-2 optical imagery.

For presentation and validation purposes, we have split the available crops into
two groups:

• A first group, representing 50% of the crops (field-wise), is used for quantitative
validation of the methodology. In this group, we filter out any suspicious crop,
with a process that we detail in the following sections, only to keep crops with
high confidence in the veracity of their labels. We then perform repeated random
introduction of label errors ten separate times for accurate statistical and numerical
evaluation of the proposed methodology. The reader may also find details of this
process in the validation section.

• A second group, representing the other 50% of the crops, illustrates the methodology
workflow and is corrected. We extract what FARMSAR classifies as mis-split and
mislabeled crops and evaluate the appointed corrections qualitatively using Sentinel-
2 imagery.

3.2. Convolutional Autoencoder for SAR Time Series

In the context of noisy labels, unsupervised algorithms help to gain insights entirely
from data without disruption from mislabeled samples. Indeed, considering the tasks of
detecting mis-split and mislabeled crops as well as being able to correct mislabels, we need
a method that models both dissimilarity, to detect anomalies within a class, and similarity,
to correct anomalies. Unsupervised learning methodologies can be used to perform these
detections and corrections.

In particular, Convolutional Autoencoders (CAE) are used to model a dataset’s dis-
tribution. CAEs are a Deep Learning model consisting of two components, as shown in
Figure 5; a convolutional encoder and a decoder:

• The convolutional encoder uses convolutions to extract temporal features from the
input time series that are then transformed by a stack of fully-connected layers (FC
Layers), with Exponential Linear Unit (ELU) activation functions [40], and projected
onto an embedding space of low dimension.

• The decoder consists of a stack of fully-connected layers, combined with ELU activa-
tion functions, tasked with reconstructing the original time series, from the embedding
space representation, through a mean square error loss function computed between
the input time series and the output of the decoder.
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Figure 5. Convolutional Autoencoders Architecture for the processing of sequential data, such as
SAR time series.

The architecture used for our version of the CAE is detailed in Table 2.

Table 2. Architecture of the Convolutional Autoencoder used in this study.

Operation Layer Number of
Filters

Size of Each
Filter Stride Value Padding

Value
Ouput

Vector Size

Input time series - - - - 61× 2

Convolution Layer 1D Convolution 64 7 1 1 64× 57
ELU - - - - 64× 57

Pooling Layer Max Pooling 1D - 2 2 - 64× 28

Convolution Layer 1D Convolution 128 5 1 0 128× 24
ELU - - - - 128× 24

Pooling Layer Max Pooling 1D - 2 2 - 128× 12

Convolution Layer 1D Convolution 256 3 1 0 256× 10
ELU - - - - 256× 10

Pooling Layer Max Pooling 1D - 2 2 - 256× 5

Flatten Layer Flatten - - - - 1280

FC Layer Fully Connected - - - - 128
ELU - - - - 128

FC Layer Fully Connected - - - - 64
ELU - - - - 64

FC Layer Fully Connected - - - - 32
ELU - - - - 32

Embedding Layer Fully Connected - - - - 1
ELU - - - - 1

FC Layer Fully Connected - - - - 32
ELU - - - - 32

FC Layer Fully Connected - - - - 64
ELU - - - - 64

FC Layer Fully Connected - - - - 128
ELU - - - - 128

Output Layer Fully Connected - - - - 122
Reshape - - - - 61× 2

Formally, the forward pass of a CAE can be written as:

X̃ = decoder(encoder(X; θenc); θdec) (1)
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where θenc is the weight matrix of the encoder and θdec is the weight matrix of the decoder.
The loss used to train a CAE, can then be expressed as:

L(X, X̃) =
1
N

N

∑
i

(
Xi − X̃i

)2 (2)

This mean-square error loss, also called “reconstruction error”, clarifies the training
task of the network, which is to recreate the input time series after its compression in the
embedding space. This bottlenecking strategy forces the autoencoder to extract discrimina-
tive features from the input data and then encode it into a lower-dimension vector. The
recreation task that follows the compression can help detect outliers: in-distribution data
points will be relatively better reconstructed than anomalies, to the condition that said
anomalies are in the minority compared to the norm. Using a threshold over the MSE value
of every data point, we can separate the anomalies from the norm. Thus, the reconstruction
mean-squared error of a time series and a well-defined thresholding strategy are an efficient
anomaly detection criteria.

The CAEs architectures are developed using PyTorch 1.10.2, and trained on an RTX
5000 with 16 GB of VRAM, alongside 64 GB of RAM and an Intel Xeon W-2255 CPU.

3.3. Detection of Mis-Split and Mislabeled Crops

As described in Figure 6, the whole methodology consists of a series of steps: first, we
work at pixel-wise time series-level and extract “suspicious” time series. Then, we gather
them at the crop-level and decide, using various thresholding strategies, whether the whole
parcel is mislabeled, mis-split, or neither. In the following subsections, we go over the
details of these two steps.

Labelled
Agricultural
Time Series

Train class-
expert CAEs

Min MSE 
= 

labelled 
class

Consider as
trustworthy

YES

Consider as
suspicious

Plot-Wise

suspicious 
time-series 

per plot 
> 

75%

NO

2 min mse
deduced
classes 

> 
40%

Label as 
misplit

Candidate for 
relabel with

new class

YES

NO

YES

Figure 6. Methodology for the detection of mis-split and mislabeled crops with a pixel-wise time
series-level analysis at first, followed by a crop-level analysis.

3.3.1. Iterative Training of Class-Expert CAEs

The first step of our methodology consists in flagging what we call “suspicious” agri-
cultural pixel-wise time series. The suspiciousness criteria can be defined using an anomaly
detection scheme: finding the anomaly within the norm. In the context of multiclass label-
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ing, we need to account for the presence of a variety of norms. We employ class-expert
CAEs: multiple Convolutional Autoencoders, each trained exclusively on time series of
their respectively assigned class. For that, we use the original classes of the supplied dataset.

Given a survey with n crop types, we then obtain n CAEs, as shown in Figure 7. Each
CAE is designed with an embedding dimension of 1 to ensure the strictest bottlenecking
possible for improved outlier detection. The training process of CAEs is summarized in
Algorithm 1, and training parameters are displayed in Table 3.

Training n class-experts CAEs at modelling each class distribution 

Multiclass
Agricultural Dataset

Class 1 Time Series

Class 2 Time Series

Class n Time Series

CAE 1

CAE 2

CAE n

…

Figure 7. Class-expert CAEs parallel training.

Algorithm 1 Iterative training of CAE, with removal of suspicious elements

1: function PER CLASS CAE ITERATIVE TRAINING(X, labels)
2: for iter = 1 to 10 do
3: for class in labels do
4: CAEclass,iter ← training(Xclass)
5: end for . Class-expert CAE training with non-suspicious time series
6: mse_vector ← [MSE(X, CAE1,iter), MSE(X, CAE2,iter), ..., MSE(X, CAEn,iter)]
7: for class in labels do
8: for i in number_o f _class_elts do
9: if argmin(mse_vectori) <> class then

10: delete Xclass,i . Remove suspicious time series
11: end if
12: end for
13: end for
14: end for
15: end function
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Table 3. Training parameters for Class-expert CAEs.

Method Parameterization

CAE ADAM optimizer

Learning Rate = 1 × 10−3

Batch Size = 128

Epochs = 20

For improved detection of suspicious elements, we retrain, from scratch, class-expert
CAEs with a refined dataset, where previously suspicious pixel-wise time series have been
removed. This iterative process allows different degrees of outliers extraction: from easier
to find in the first iterations to more complex in the last. We iterate 10 times over the dataset,
performing progressive filtering of suspicious elements. While we could have used a stop
criterion, we found an iteration-based solution to be more flexible for the diversities in
profile distributions of each class.

The decision to identify an input time series as suspicious relies on a vector of mean-
squared errors (cf. Figure 8), one per class-expert CAE.

From now on, we call argmin(mse_vector) the “candidate new class” of X. If this can-
didate new class does not correspond to the original ground truth class of the input time
series, we label this time series as “suspicious”, “trustworthy” otherwise.

…

CAE 1 CAE 2 CAE n

min

of class 
2 ?

Label as
suspicious

and set aside

Label as
trustworthy

No

Yes

Figure 8. Illustration of a vector of Mean-Squarred errors, used to identify suspicious and non-
suspicious time series.

After the first iteration of the assignation of “suspicious” and “trustworthy” labels, the
suspicious elements of each class are set aside, and we start a new training of class-expert
CAEs from scratch, only with “trustworthy” time series. We iterate this process ten times.

After the last iteration, we obtain a list of “suspicious” time series that we use to detect
plot-level anomalies.

3.3.2. Plot-Level Classification of Time Series Anomalies

For plot-level classification of anomalies, 3 outcomes are possible, as shown in Figure 9:

• “Candidate for relabeling”: we consider a plot as a candidate for relabeling when
more than 75% of the pixel-wise time series within the field are of the same new class.
We empirically chose the value of 75% as “edge cases“ can represent up to 20% of the
time series-level mislabels within a field. Allowing a margin of error of approximately
5%, we thus reach the threshold of 75%.
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• “Mis-split plot”: we consider a plot as “mis-split” if two different classes are present
with the crops boundaries, according to each time series’ candidate new class, with
each representing at least 40% of the plot size. The 40% criteria is also empirically
found, as a field composed of at least two candidates classes, each representing 40% of
its inner time series, will have 80% categorized as candidates classes, leaving up to
20% of the rest to potential edge cases.

• “Edge Cases”: we consider any other time series-level anomaly as edge cases. We
believe they arise for multiple reasons, including differences in resolution between the
labels and the satellite imagery, the preprocessing of Sentinel-1 data, which included
boxcar despeckling, or approximate incorrect geolocation of labels/SAR data.

Ground Truth Classes Candidate new class Plot-Wise Anomaly
detected

IF more than 75% of
time series of a plot are of
another new class

THEN the plot is
candidate for relabeling

IF plot split in two new
classes with more than
40% of time series each

THEN the plot is
considered as mis-split

IF neither of both
category

THEN plot class stays
the same, anomalies
considered as plot border
issues

Figure 9. Plot-Level rule-based classification of anomalies. Class color code is the same as in Figure 1.

Now that we have extracted candidates for relabeling, we present a confidence-based
methodology to assign, or not, a new class to the mislabeled crop plots.

3.4. Correction of Mislabeled Crops

Used until then to detect class anomalies, the reconstruction performance of CAEs can
also serve as a measure of class belongingness. Indeed, having a minimum reconstruction
performance from a CAE trained on data from another class does not necessarily mean that
the current plot is of the wrong class and that this new class is a better fit. Thus, we need
this confidence-based methodology to ensure the following two points:
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• The prior class of a given time series is not correct (i.e., class outlier detection). We
model this using MSE(X, CAEclass(X)).

• A given time series belongs to the new candidate class (i.e., class belongingness
detection). We model this using MSE(X, CAEnew_class(X)).

Class outlierness and belongingness are antagonistic measures, so we opt for a single
binary thresholding strategy, providing a reconstruction threshold below which we consider
belongingness and above which we consider outlierness. For that, we use histogram-based
thresholding with the Otsu Method, developed by Otsu [31]. Initially introduced for the
transformation of gray-level images into black and white images, this methodology allows
for separating a histogram with two spikes. It searches for a binary threshold that results in
the smallest intra-class variance, averaged over the two groups. We can formulate this idea
with Equation (3):

find τ that minimizes σ2(τ) = w1(τ) ∗ σ2
1 (τ) + w2(τ) ∗ σ2

2 (τ) (3)

where σ2
1 (τ) = StD(XX6τ), σ2

2 (τ) = StD(XX>τ), with StD being the standard devia-
tion function and w1 = P(X 6 τ) (empirical probability that X is equal or below τ),
w2 = P(X > τ) (empirical probability that X is above τ).

We can observe in Figure 10 the results of the application of the Otsu methodology
on different class histograms with different distributions. In the case of Figure 10a, we
observe two clear spikes with various spread. The found threshold significantly separates
these two spikes. In the case of Figure 10b, we have many more labeled plots, inducing
a more skewed histogram. Despite this, the Otsu thresholding method separates the
central spike of reconstruction from outlier values. For the last case, with carrots, in
Figure 10c, there is no clear threshold above which outliers are present. The quality of the
threshold method depends on the quality of separation of outliers by the autoencoders,
or even on the presence on outliers. Under the harder conditions of Figure 10c, the Otsu
methodology splits the histogram into two dense regions. These three situations illustrate
good automatic thresholding results, extracting candidate outliers on one side and, on the
other side, candidate true labels.
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Figure 10. Multiple applications of automatic binary Otsu Thresholding strategy to reconstruction
histograms of class-specific time series. (a) Histogram of reconstruction error of onion-labeled S1 time
series (blue), with Intra-class variance curve for different values of thresholds (orange) and optimal
threshold (red). (b) Histogram of reconstruction error of sugar beet-labeled S1 time series (blue), with
Intra-class variance curve for different values of thresholds (orange) and optimal threshold (red).
(c) Histogram of reconstruction error of carrot-labeled S1 time series (blue), with Intra-class variance
curve for different values of thresholds (orange) and optimal threshold (red).

Thus, to validate relabeling, we verify if these two formulas hold for the crop at hand:

• Check that the parcel is among the least well reconstructed of its ground truth class,

i.e., 1
Nplot
∗∑

Nplot
i=1 MSE(X(plot,i), CAEclass(X(plot,i))) > τclass.

• Check that the parcel is among the best reconstructed of its new class,

i.e., 1
Nplot
∗∑

Nplot
i=1 MSE(X(plot,i), CAEnew_class(X(plot,i))) < τnew_class.

This double-check strategy ensures that relabels are performed only with high confidence.
To validate the presented methodology on the dataset of Sevilla crops, we first turn to

quantitative validations using the controlled disruption of labels.

4. Numerical Validation of the Methodology

To validate the FARMSAR method presented before, we first opt for quantitative
validation to measure the expected error rate in the relabeling process. For that, we design
a custom and controlled experimental environment.
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4.1. Quantitative Validation Scheme: A Controlled Disturbed Environment

To measure the label correction performance of our methodology, we need the ground
truth of introduced label errors: i.e., errors that we produce ourselves, from original labels
in which we have a high degree of trust. For that, we need to filter out from this half of the
dataset any potential mislabel and mis-split crop.

Illustrated in Figure 11, the method used to extract trustworthy crops is based on the
same method as the one used to extract suspicious crops: we keep every crop with more
than 75% of their time series considered as trustworthy, i.e., where the CAE performing
the best reconstruction in terms of mean-square error is of the same class as the input time
series. The threshold of 75% is empirical and is also deduced from the observation that
edge cases anomalies may represent up to 25% of the area of a crop. As a result, out of the
1588 available crops, we keep 1008, for which we have high confidence in their label.

Labelled
Agricultural
Time Series

Train class-
expert CAEs

Trustworthy
per plot > 

75%

Plot-Wise

Consider as 
trustworthy

Min MSE
corresponds 

to time-
series’ class

Consider as 
suspicious

Keep
the crop

Discard
the crop

YES

NO

YES

NO

Figure 11. Trustworthy crops filtering process for Quantitative Validation.

After building our dataset of high-confidence labels, we now randomly introduce
label errors repeatedly in different amounts. In total, we run ten experiments. We introduce
errors for 1, 5, 10, 15, 20, 25, and 30% of the labels and run our methodology on these
error-riddled datasets. We run these experiments ten times for statistical relevance of the
retrieved performance.

4.2. Correction Performance, a Comparison with Supervised and Unsupervised Methods

To justify the use of our methodology for the correction of mislabels, we compare the
performance of our method against supervised (Random Forests, Linear Support Vector
Classifier) and unsupervised methods (CAE without Otsu thresholding verification of
relabeling candidates).

Supervised algorithms are trained using a 4-folds cross-validation process, on flattened
time-series (122 sized vectors instead of the original 61× 2 multimodal vector): a first model
is trained on 75% of the data and performs predictions on the 25% left. Any prediction
diverging from known labels is considered a relabel prediction. If the algorithm relabels
more than 75% of a crop, the entire crop is then relabeled.

Taking into account the context of diagnosing the quality of an agricultural labeling
process, we consider two performance metrics:

• How many mislabels are correctly relabeled?
This metric offers a measure of how many mislabels we expect to miss, given the
chosen method. It provides an approximate of how many mistakes may be remaining
in the cleaned crop type survey (without taking into account mistakes that may be
added by the correcting algorithms themselves).

• Out of every relabels, how many are correct?
Given a set of corrections, this metric provides an estimate of how many are erroneous.
In other words, it is similar to estimating how many mistakes are introduced by the
correcting algorithm.

As illustrated in Figure 12 and Table 4, we observe a concrete performance distinction
between our proposed method and other methodologies. Indeed, while fewer relabels
are corrected overall (cf Figure 12a), the quality of the relabels is critically improved (cf



Remote Sens. 2023, 15, 35 16 of 32

Figure 12b). For example, in a case of 10% of mislabels within an agricultural census, if
our methodology suggests a relabel, there is only 2% chance that the suggested relabel is
incorrect, against 9% for Random Forest-based methodologies, 8% for vanilla-CAE and
21% for Linear SVMs.

In addition, the amount of correct relabels from supervised methodologies is at its
worst for low amounts of mislabels introduced (1%). In other words, the less there is to
correct, the more supervised methods introduce mistakes. In comparison, such methodolo-
gies make almost twice more relabeling mistakes than our methodology: 56% of correct
relabels for Random Forest against 95% of proper relabels for our methods. This gap be-
tween methods is inherent to the supervised nature of Random Forest and Support-Vector
Machines, where it becomes hard to distinguish relabeling candidates from classification
errors. Indeed, by training our CAEs with no classification task, we explicitly fit them with
modeling each class’s norm, improving their performance at extracting deviating crops.
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Figure 12. Performance measurements and comparison between our methodology and others (Vanilla
CAE, Random Forests, Linear SVM). (a) Amount of corrected mislabels (eq. to recall measurement).
(b) Amount of correct relabels (eq. to precision measurement).

Table 4. Performance comparison between methodologies. (Best performance highlighted in bold).

Mislabels’ Proportion
Amount of Corrected Mislabels Amount of Correct Relabels

F-CAE 1 CAE SVM RF F-CAE 1 CAE SVM RF

1 0.62 0.92 0.90 0.95 0.95 0.71 0.52 0.56
5 0.62 0.90 0.85 0.94 0.97 0.90 0.80 0.86

10 0.59 0.88 0.77 0.90 0.98 0.92 0.79 0.91
15 0.53 0.81 0.67 0.87 0.94 0.84 0.78 0.90
20 0.44 0.71 0.59 0.83 0.92 0.77 0.70 0.89
25 0.42 0.67 0.48 0.73 0.89 0.73 0.55 0.85
30 0.31 0.59 0.38 0.60 0.86 0.71 0.49 0.77

1 Otsu-Filtered CAE, our methodology.

With these metrics, we strengthen the validation of relabels using our methodologies,
and we explicit the trade-off made with our method: fewer relabels overall but a higher
quality of relabels. This trade-off is however a function of the thresholding strategy
employed, in our case Otsu thresholding. One may prefer to prioritize recall, to the
detriment of precision to identify and correct more crops, with less confidence in the
suggested correction. This still may be a valid strategy for users of FARMSAR with ground
expertise who are ready to double-check the suggested new label of crops.

5. Results, and Their Qualitative Validation

Now that we have validated our methodology quantitatively for the relabeling, using
numerical criteria, we apply FARMSAR to the other half of the dataset and extract label
errors and relabels. Then, we study the suggested relabels, and the detected mis-splits using
optical imagery for qualitative validation of our method. A distribution of the embedding
values of the class-expert CAEs used in this analysis are provided in Appendix A, but are
not used in this study, as they do not offer a clear distinction of label anomalies.
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5.1. Results

After applying the FARMSAR methodology to the second half of the dataset, left
untouched and containing probable mislabels, we can extract suspicious crops, correct
potential mislabels, and detect mis-split crops. At first, we isolate 40,000 suspicious time
series, out of the approximately 600,000 that make up this half of the dataset. Then,
according to Figure 13:

• FARMSAR discovers 3 mis-split crops;
• our method classifies 81 crops as suspicious mislabels (around 5% out of the approx.

1600 crops of this half of the dataset). FARMSAR relabels 44 crops confidently, and
37 crops are to be inspected for potential erroneous labels.

mis-split
corrected
uncorrected
suspicious
crop
others

Figure 13. Maps of diagnosed Sector BXII crop fields.

We also can observe in Figure 13a common pattern within the “suspicious” plots, cor-
rected or not. Indeed, multiple of them appear side-by-side with one another. Considering
that the labeling software of Sector BXII farmers is point-and-click, we assume that parts
of the detected errors come from misclick manipulations, which swapped labels of two
neighboring plots.

In Figure 14, we display a comparison between the corrected crops’ class before
launching FARMSAR and after every step of the method. We can observe the presence
of a variety of error types, as aforementioned: in Figure 14b, we notice the presence of
edge cases but also heterogeneously relabeled crop. This relabeling noise justifies the
shift toward a crop-level relabeling decision, as illustrated in Figure 14c. Nonetheless,
given the proposed agricultural context, high confidence is required and thus restricts
the number of final decisions regarding relabeling, as seen in the varying proportion of
corrected crops between Figure 14c,d. However, as mentioned before, the suspicious crops
are not discarded but set aside to be reinspected. Indeed, while the assignment of a new
class is deemed inconclusive, the crop is still identified as an anomaly compared to the
radiometric profiles of other crops of its class.

In addition, in Figure 14c,d, we observe the inversion of classes between juxtaposed
crops, when compared to the ground truth displayed in Figure 14a. While not all instances
of this phenomenon were confidently relabeled, four pairs of crops still got their labels
inverted. This strengthens once more our original hypothesis regarding the probable origin
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of some of the detected mislabels: part of the mislabels come from click errors during the
manipulation of the labeling software. Thus, the addition of a priori knowledge regarding
common labeling mistakes could improve the relabeling decision by directing mislabel
detection algorithms in a suggested direction or another.

(a)

(b)
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(c)

(d)
Figure 14. State of suspect crops and time series classes at every step of the method. Classes are
displayed only for suspect crops/time series, for ease of visualization. Other crops are shown in gray.
(a) Class image of suspect crops before relabeling. (b) Candidate class image of every suspicious time
series (trustworthy time series in gray). (c) Candidate class image of every suspicious crops (no Otsu
Thresholding applied). (d) Class image after relabeling (Otsu Thresholding applied).
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For numerical interpretation of the progressive filtering of candidate relabels per-
formed by FARMSAR, we display in Figure 15 what we call relabeling matrices. We count,
for each old class, how many time series are relabeled in a new class, and normalize it by
the total amount of time series in the old class. We observe that candidate relabels at the
first stage of the algorithm, in Figure 15a, are numerous: the reported confusions of small
amplitude correspond to the aforementioned edge cases, illustrated in Figure 14b. They
are removed at the second stage of the algorithm when turning to plot-level decision, as
shown in Figure 15b. Finally, the ultimate confidence-based filtering reveals the relabels.
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Figure 15. State of suspect crops and time series classes at every step of the method. Classes are
displayed only for suspect crops/time series, for ease of visualization. Other crops are shown in
gray. (a) Relabeling matrix at the first step of FARMSAR: time series relabeling (in percentage).
(b) Relabeling matrix at the second step of FARMSAR: crop relabeling (in percentage) (no Otsu
Thresholding applied). (c) Relabeling matrix at the second step of FARMSAR: crop relabeling (in
percentage) (Otsu Thresholding applied).

When analyzing relabels on a relative class per-class basis, they range from less than 1%
for classes like Cotton to more than 20% for classes like Onion. We then highlight labeling
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mistakes that, taken in a global context, are in the minority but represent a significant
portion of their crop type population. Thus, they must be addressed as decision-making on
a crop type to crop type basis relies on the accurate indexing of crops. A percentage bias of
more than two digits can critically impact the efficiency of decisions.

5.2. Qualitative Validation: Sentinel-2 Imagery over the First Group of Crops

The qualitative validation regards the validation of the results, presented in Section 5.1,
using optical imagery to evaluate the credibility of relabeled crops and crops diagnosed as
mis-splits.

5.2.1. Validation of Relabels

The validation of relabels involves a two-step process: validate that they are not of
the supplied class, and that the new class is correct. We compare trustworthy plots of each
class with mislabeled and relabeled plots of the same class, using Sentinel-2 imagery in
visible light.

We display in Table 5 for a given class C a reference image of a trustworthy parcel,
which we compare with the visual aspect of parcels that were mislabeled as C, and with
parcels that were relabeled as C. If no field was mislabeled as C, or relabeled as C, we simply
display the ∅ symbol. The majority of the detected mislabeled and proposed relabels can
be corroborated using the available Sentinel-2 imagery. Some classes are still difficult to
distinguish with optical imagery only: examples of such are the Pepper mislabels. When
we compare, in Figure 16, the average temporal profiles of Sentinel-2 visible bands of the
Pepper class to others, we highlight a high degree of similarities between peppers, sweet
potatoes and cotton crops, for instance.

500

1000

1500

2000

2500

3000

Wheat
B4
B3
B2

Maize
B4
B3
B2

Fallow
B4
B3
B2

Sunflower
B4
B3
B2

500

1000

1500

2000

2500

3000

Chickpea
B4
B3
B2

Alfalfa
B4
B3
B2

Cotton
B4
B3
B2

Sugar beet
B4
B3
B2

500

1000

1500

2000

2500

3000

Potato
B4
B3
B2

Sweet Potato
B4
B3
B2

Pepper
B4
B3
B2

Onion
B4
B3
B2

12
-04

02
-05

01
-06

01
-07

21
-07

20
-08

09
-10

500

1000

1500

2000

2500

3000

Carrot
B4
B3
B2

12
-04

02
-05

01
-06

01
-07

21
-07

20
-08

09
-10

Pumpkin
B4
B3
B2

12
-04

02
-05

01
-06

01
-07

21
-07

20
-08

09
-10

Tomato
B4
B3
B2

12
-04

02
-05

01
-06

01
-07

21
-07

20
-08

09
-10

Quinoa
B4
B3
B2

Figure 16. Average temporal profile, per available agricultural class, from Sentinel-2 visible light bands.
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Table 5. Visual validation of mislabels and relabels with Sentinel-2 Imagery.

Class S2 Date
(DD/MM/YYYY)

True ... Mislabeled as ... Relabeled as ...

Alfalfa

12/04

11/07

Carrot

22/05

21/07

Chickpea

12/04 ∅

01/06 ∅

Cotton

01/06

20/08
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Table 5. Cont.

Class S2 Date
(DD/MM/YYYY)

True ... Mislabeled as ... Relabeled as ...

Fallow

12/04 ∅

21/06 ∅

Maize

12/04 ∅

21/06 ∅

Onion

12/04 ∅

21/06 ∅

Pepper

12/04

20/08

Potato

12/04

20/08
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Table 5. Cont.

Class S2 Date
(DD/MM/YYYY)

True ... Mislabeled as ... Relabeled as ...

Quinoa

12/04 ∅

21/06 ∅

Sugar Beet

22/05

20/08

Sunflower

12/04 ∅

01/06 ∅

Sweet Potato

21/06 ∅

30/08 ∅
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Table 5. Cont.

Class S2 Date
(DD/MM/YYYY)

True ... Mislabeled as ... Relabeled as ...

Tomato

12/04

21/06

Wheat

22/05 ∅

01/06 ∅

5.2.2. Validation of Mis-Splits

As mentioned above, we diagnosed three mis-split crops that we will independently
validate, one by one, using Sentinel-2 imagery. To better understand the decision to label
them as mis-split, we first compare a ground truth image of the plot’s class alongside
an image where individual pixels correspond to their respective Sentinel-1 time series’
candidate class, according to their MSE vector. Then, we accompany it with Sentinel-2
images of each available timestamp over the observed region in 2017.

Mis-Split Field n°1

In Figure 17, we observe a clear split in two halves of the supposedly uniform crop: the
first half, in light green, corresponds to cotton, while the second, in dark green, corresponds
to Sugar Beets. The plot thus appears mis-split, according to our processing of Sentinel-
1 time series. When turning to the optical analysis of the field’s evolution, shown in
Figure 17c, we also observe an apparent separation between two halves of the crop, with a
supposed cotton half of the field and a supposed sugar beet half. Each of them appears to
be split even further in two, potentially resulting in four distinct crop types within a single
field. Upon inspection of the radiometric temporal profile of each of these four, we establish
that the visible differences in April for the Cotton half, and July for the Sugar Beets class,
are linked to offset in harvest/seeding dates. Thus, taking into account the approximate
growing period of sugar beets (December to May) and cotton (May to September), we can
corroborate our method decision to relabel the top half as cotton, and the bottom half as
sugar beets, when observing the Sentinel-2 images in Figure 17a.
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(a) (b)
12-04 22-04 02-05 22-05 01-06

21-06 01-07 11-07 21-07 31-07

20-08 19-09 09-10

(c)
Figure 17. Comparison between the ground truth and candidate classes image of the first mis-split
field, alongside multitemporal Sentinel-2 imagery of the parcel. (a) Ground truth class image of the
mis-split field n°1. (b) Candidate classes image of the mis-split field n°1. (c) Sentinel-2 imagery of the
first detected mis-split field.

Mis-Split Field n°2

In this second result, displayed in Figure 18, we observe once again a substantial
distinction between the two halves of the crops, with the same presence of both sugar beets
and cotton. In Figure 18c, the growth and harvest differences between the two halves of
the crop make the mis-split condition of the crop very clear: the left half of the plot appears
green during the growing season of beets, while the right half appears green during the
growing season of cotton.

On a side note, we note in Figure 18b the presence of a third class, in light pink, which
corresponds to fallow crops. When observing the Sentinel-2 images over the pixels labeled
as fallow, some of them appear to be kept as bare ground (e.g., bottom-right of the plot).
Thus, while the plot-level analysis is helpful in diagnosing plot-level anomalies, a time
series-level analysis helps extract such insights, mostly linked to approximate labels and
satellite imagery superposition.
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(a) (b)
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21-06 01-07 11-07 21-07 31-07

20-08 19-09 09-10

(c)
Figure 18. Comparison between the ground truth and candidate classes image of the second mis-split
field, alongside multitemporal Sentinel-2 imagery of the parcel. (a) Ground truth class image of the
mis-split field n°2. (b) Candidate classes image of the mis-split field n°2. (c) Sentinel-2 imagery of the
second detected mis-split field.

Mis-Split Field n°3

This third mis-split detection (Figure 19) is different than the last two we observed:

• the two classes that are potentially seen in the mis-split crop are “cotton” and “pumpkin”.
• the separation is not as clear as the last two mis-split crops.

In addition, when observing Figure 19c, we see a distinction between the two halves
of the crop, but it appears much less apparent than for the other cases: a clear distinction
regarding the ground conditions of the two halves can be observed in the images of the
12th of April and 1st of June. In this situation, the help of a field-expert to diagnose the
reported mis-split is required.
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(a) (b)

12-04 22-04 02-05 22-05 01-06

21-06 01-07 11-07 21-07 31-07

20-08 19-09 09-10

(c)
Figure 19. Comparison between the ground truth and candidate classes image of the second mis-split
field, alongside multitemporal Sentinel-2 imagery of the parcel. (a) Ground truth class image of the
mis-split field n°3. (b) Candidate classes image of the mis-split field n°3. (c) Sentinel-2 imagery of the
third detected mis-split field.

6. Discussion

With its ability to extract a wide range of anomalies from field surveys, one of the
potential applications of the presented methodology is its integration into farmers’ crop
census process, as proposed in Figure 20. Indeed, various legal obligations regarding
agricultural plots on a regional, national or international scale require a high-quality
agricultural crop census for better big-picture monitoring of the farming performance by
administrations. To further ensure this quality, providing farmers with automated tools
that combine the latest advances in Remote Sensing and Artificial Intelligence can help
tackle human mistakes, which could otherwise result in sanctions. However, such a tool
should not introduce new errors under any circumstance. The action of relabeling must be
subject to solid confidence criteria, which is embodied by the reconstruction error of our
class-expert CAEs. In addition, we do not discard relabeling candidates that do not pass
Otsu-based confidence criteria, but we label them as “uncorrected suspicious crops”. We can
imagine providing the farmer with a candidate relabeling class for these suspicious crops.
His final decision to relabel or remap crops builds on top of the FARMSAR methodology,
making the whole process a sort of anomaly detection-guided double-check.
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Figure 20. Suggested pipeline of usage of our methodology to support farmer’s field survey process.

In this context, such a methodology can be useful for various administrative bodies:

• On a farmer’s side, FARMSAR provides a fast and reliable methodology to double-
check the agricultural census of grown crops, leading to less risk-taking at the time
of declaration.

• On the local administration side, FARMSAR provides a tool to monitor the quality
of the delivered census. FARMSAR could facilitate the detection and extraction of
anomalies in declarations.

As of today, our application of FARMSAR to Sector BXII is at a local scale. We consider
the extraction of anomalies relative to a norm extracted on a per-farm basis. The application
of FARMSAR to multiple farming environments, of different regions, at the same time has
yet to be assessed. While it is suitable for regional and national-scale anomaly detection,
mixing different farms, the expected diagnosis performance we present in this paper is not
directly applicable. Indeed, the more diversity in farming strategies of crops, the harder
it becomes to define the norm that is used to detect deviating crops. Hopefully, previous
work involving the use of autoencoders and crops has already demonstrated their capacity
to model intra-class variance of crops and variations in harvesting strategies effectively [41].
In this way, the use of autoencoders for this task is full of potential and to be further studied.

7. Conclusions

This work presents a methodology to diagnose the labeling quality of crop census
and offer corrections of detected mislabels, using a confidence metric based on autoen-
coders reconstruction error and binary otsu thresholding. We show the potential of our
methodology to identify mis-split crops and mislabels and correct them. We also consider
in this paper a concrete use-case of this methodology if supplied to farmers performing
field surveys. We assess the possibility of running this methodology after the farmer’s
declaration to detect and eventually correct human labeling mistakes. In a context where
farmers’ declarations are subject to strict regulations and can drive economic and ecologic
decision-making, limiting the impact of mislabels on the said decisions is critical.

To conclude, in Angus et al. [32], the World Bank points out the “need for more suitable
technologies” to support collaboration between “scientists, policymakers and farmers”. We
believe FARMSAR is a step toward this collaborative direction.
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Figure A1. Density plots of each class 1D latent space after class-expert training for dataset correction,
estimated using a kernel density estimate.
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