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GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR A1

NON-CONSERVATIVE BITEMPERATURE EULER MODEL∗2

DENISE AREGBA-DRIOLLET† , STÉPHANE BRULL† , AND YUE-JUN PENG‡3

Abstract. The bitemperature Euler model describes a crucial step of Inertial Confinement4
Fusion (ICF) when the plasma is quasineutral while ionic and electronic temperatures remain distinct.5
The model is written as a first-order hyperbolic system in non-conservative form with partially6
dissipative source terms. We consider the polytropic case for both ions and electrons with different7
γ-law pressures. The system does not fulfill the Shizuta-Kawashima condition and the physical8
entropy, which is a strictly convex function, does not provide a symmetrizer of the system. In this9
paper we exhibit a symmetrizer to apply the result on the local existence of smooth solutions in10
several space dimensions. In the one-dimensional case we establish energy and dissipation estimates11
leading to global existence for small perturbations of equilibrium states.12

Key words. non-conservative hyperbolic system, partial dissipation, symmetrization, energy13
estimates, Euler type model for plasmas14

AMS subject classifications. 35L60, 35F55, 35Q31, 76N10, 76W0515

1. Introduction. This paper is devoted to the study of the global existence of16

smooth solutions near constant equilibrium states for a bitemperature Euler system.17

This fluid model describes the interaction of a mixture of one species of ions and18

one species of electrons in thermal nonequilibrium, with applications in the field of19

Inertial Confinement Fusion (ICF). It was derived from a kinetic model by using a20

hydrodynamic limit and the Boltzmann entropy. For this kinetic model, a Discrete21

Velocity Model (DVM) method with an asymptotic preserving discretization toward22

Euler equations was obtained. The kinetic approach also allows to design numerical23

schemes for the bitemperature Euler equations. See [1, 5].24

We denote by ρe and ρi the electronic and ionic densities, ρ = ρe + ρi the total25

density, me and mi the related masses, ce and ci the mass fractions. These variables26

satisfy27

(1.1) ρe = mene = ceρ, ρi = mini = ciρ, me > 0, mi > 0, ce + ci = 1.28

Quasineutrality is assumed, so that the ionization ratio Z = ne/ni is a constant. This29

implies that the electronic and ionic mass fractions are constant and given by30

(1.2) ce =
Zme

mi + Zme
, ci =

mi

mi + Zme
.31

We suppose that the ionic and electronic velocities are equal: ue = ui = u, and the32

pressure of each species satisfies a gamma-law with its own γ exponent :33

(1.3) pe = (γe − 1)ρeεe = nekBTe, pi = (γi − 1)ρiεi = nikBTi, γe > 1, γi > 1,34

where kB is the Boltzmann constant (kB > 0), εα and Tα represent respectively the35

internal specific energy and the temperature of species α for α = e, i.36
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‡Université Clermont Auvergne and CNRS, LMBP, F-63000 Clermont-Ferrand, France (yue-

jun.peng@uca.fr)

1

This manuscript is for review purposes only.

mailto:denise.aregba@math.u-bordeaux.fr
mailto:stephane.brull@math.u-bordeaux.fr
mailto:yue-jun.peng@uca.fr
mailto:yue-jun.peng@uca.fr


2 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

Denoting by | · | the Euclidean norm in Rd, the total energies for the particles are37

defined by38

(1.4) Eα = ραεα +
1

2
ρα|u|2 = cα

(
ρεα +

1

2
ρ|u|2

)
, α = e, i.39

We denote by ν ≥ 0 the interaction coefficient between the electronic and ionic tem-40

peratures. Physically this coefficient is a complicated function of the electronic and41

ionic temperatures and of ρ, see the NRL plasma formulary [11]. A rigorous derivation42

of ν is obtained via a kinetic underlying formulation [1]. It gives ν(ρ) = Kρ where43

K is a positive constant. This expression of ν implies that more dense is the plasma,44

faster it reaches the thermal equilibrium. In order to simplify the notation, we as-45

sume that ν is a sufficiently smooth function of ρ, denoted by ν = ν(ρ), and satisfies46

ν(ρ) > 0 for ρ > 0. In particular, it suffices to assume that ν(1) > 0 in the study of47

the global existence of smooth solutions for ρ near 1. From the proof of the main the-48

orem, we will see easily that global existence still holds when ν is a smooth function49

of (Te, Ti, ρ) and remains positive at an equilibrium point (Te, Ti, ρ) = (T̄ , T̄ , 1) for a50

positive constant T̄ .51

The model consists of two conservative equations for mass and momentum and52

two non-conservative equations for each energy:53

(1.5)


∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇(pe + pi) = 0,

∂tEe + div
(
u(Ee + pe)

)
− u · (ci∇pe − ce∇pi) = ρν(Ti − Te),

∂tEi + div
(
u(Ei + pi)

)
+ u · (ci∇pe − ce∇pi) = −ρν(Ti − Te),

54

where ”·” stands for the inner product in Rd. This is a non-conservative hyperbolic55

system which can be written in the synthetic form56

(1.6) ∂tW +

d∑
j=1

Cj(W)∂xjW = F (W).57

Now we introduce58

(1.7)


η(ρ, ρu, Ee, Ei) = −

∑
α=e,i

ρα
bα

ln
( (γα − 1)ραεα

ργαα

)
,

φ(ρ, ρu, Ee, Ei) = η(ρ, ρu, Ee, Ei)u,
59

where60

(1.8) bα =
(γα − 1)mα

kB
> 0, α = e, i.61

It was proved in [1] (see Theorem 2.9) that the functions (η, φ) defined in (1.7) are a62

pair of entropy-entropy flux of (1.5), and η is strictly convex in the set of state space63

Ω given by64

Ω =
{

(ρ, u, εe, εi) ∈ Rd+3
∣∣ ρ > 0, εe > 0, εi > 0

}
.65

Moreover, any smooth solution of the system satisfies the entropy equality66

(1.9) ∂tη(ρ, ρu, Ee, Ei) + div φ(ρ, ρu, Ee, Ei) = − νρ

TeTi
(Te − Ti)2,67
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GLOBAL EXISTENCE FOR EULER BITEMPERATURE EQUATIONS 3

which is a partially dissipative condition of the system. It is known that the second-68

order derivative of a strictly convex entropy provides a symmetrizer of a hyperbolic69

system in conservative form (see [9, 3]). Unfortunately, the equations for Ee and70

Ei in (1.5) are not in conservative form. As already noticed in [2], η′′(W) is not a71

symmetrizer of system (1.5). For the sake of completeness we prove this result in the72

Appendix of the present article.73

According to the theory on the symmetrizable hyperbolic system [14, 12, 15], the74

existence of a symmetrizer is very important to study smooth solutions in Sobolev75

spaces. Such a symmetrizer for (1.5) is constructed in Section 2 in any space dimen-76

sion. It implies the local existence of smooth solutions. See B0(V) defined in (2.10)77

and Proposition 2.1.78

In order to study global existence, we may introduce the total energy E and the79

total pressure p defined by80

E = Ee + Ei, p = pe + pi.81

From (1.3) and (1.5), we have82

E =
pe

γe − 1
+

pi
γi − 1

+
1

2
ρ|u|2, p = ρ

[
(γe − 1)ceεe + (γi − 1)ciεi

]
83

and84

(1.10)


∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = 0,

∂tE + div
(
u(E + p)

)
= 0, t > 0, x ∈ Rd.

85

The last equation in (1.10) shows that the total energy is a conservative variable. If86

γe = γi, we introduce a total internal specific energy ε by ε = ceεe + ciεi. Then87

E = ρε+
1

2
ρ|u|2, p = (γe − 1)ρε.88

Therefore, (1.10) becomes the gas dynamics equations. In this case, system (1.5) is89

decoupled and contains (1.10). It is known that smooth solutions to the gas dynamics90

equations blow up in finite time [13, 23]. Hence, global existence is not expected.91

In physically realistic situations, one can define a weak solution containing shocks.92

Existence and uniqueness of weak entropy solutions is rather well understood for one-93

dimensional strictly hyperbolic systems of conservation laws, see [4] and references94

therein. For systems with non-conservative products, the authors of [8] gave a def-95

inition of shocks, but to our knowledge there is no result on the existence of such96

solutions for (1.5).97

In what follows, we consider the Cauchy problem for (1.5) near constant equilib-98

rium states in case γe 6= γi. Let us introduce99

V =
(
ρ, uT , εe, εi

)T
.100

An equilibrium state V̄ is a constant solution of (1.5). We consider in particular an101

equilibrium state with zero velocity. Let102

V̄ = (1, 0, ε̄e, ε̄i)
T ,103

be such an equilibrium state with ε̄e > 0 and ε̄i > 0.104

This manuscript is for review purposes only.



4 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

System (1.5) is supplemented by an initial condition105

(1.11) t = 0 : V = V0(x)
def
=
(
ρ0(x), uT0 (x), εe0(x), εi0(x)

)T
, x ∈ Rd.106

For a positive integer m we denote by Hm(Rd) the usual Sobolev space equipped with107

the norm ‖ · ‖m. The result of the global existence of solutions holds in one space108

dimension and can be stated as follows.109

Theorem 1.1. Let d = 1 and m ≥ 2. Assume V0 − V̄ ∈ Hm(R) and γe 6= γi.110

There are two positive constants c and κ0 such that if ‖V0 − V̄‖m ≤ κ0, then the111

Cauchy problem (1.5) and (1.11) admits a unique global solution V satisfying V −V̄ ∈112

C(R+;Hm(R)) ∩ C1(R+;Hm−1(R)). Moreover,113

(1.12) sup
t∈R+

‖V(t, ·)− V̄‖m ≤ c‖V0 − V̄‖m.114

For conservative hyperbolic systems with source terms, the global existence of115

smooth solutions near constant equilibrium states was proved in [10, 26] in a general116

framework under two main conditions. A typical example in this framework can be117

seen in [24, 7] for the gas dynamics equations with damping. The first condition118

required in [10, 26] is an entropy dissipation near an equilibrium state. It implies in119

particular an L2 energy estimate of solutions. The second one is the classical Shizuta-120

Kawashima condition (SK) at the equilibrium state [22]. Unfortunately, these two121

conditions are not satisfied by system (1.5). The first condition obviously fails because122

(1.5) is not a conservative system. However, it is known that (SK) is not a necessary123

condition for the global existence of smooth solutions. There do exist conservative124

systems for which global existence holds without this condition. We refer the reader125

to [27, 6, 19, 17] for examples in which different techniques are employed to avoid126

condition (SK).127

Thus, it is important to establish a global existence result for a class of systems128

including at least one of these examples. In [16] the authors studied energy estimates129

of smooth solutions near non-constant equilibrium states for conservative systems. In130

one space dimension, they obtained global existence for systems violating condition131

(SK) but admitting a very special structure. This allows them to give a proof of global132

existence by using only a partially dissipative condition via an entropy dissipation.133

This situation is different from that of the present paper. In the proof of Theorem 1.1,134

we not only need a partially dissipative condition but also a dissipation estimate for135

other variables (see Lemma 3.5). In [21] the authors tried to explore a link between the136

linear degeneracy of characteristic fields and condition (SK) for conservative systems.137

Under restrictive conditions, they obtained time-decay estimates of solutions which138

imply global existence. One can check that the conditions in [16] and [21] are not139

fulfilled by (1.5) and the systems in [27, 6, 19, 17].140

Up to our knowledge, Theorem 1.1 provides a first result on the global existence141

of smooth solutions for a non-conservative partially dissipative hyperbolic system142

with source terms without condition (SK). The proof of this theorem is based on143

the local existence of solutions and uniform energy estimates with respect to time144

through Lagrangian coordinates. It consists of three steps. The first step concerns145

an L2 energy estimate. For this purpose, the entropy equality (1.9) is not sufficient146

because the system is not in conservative form. We need further to prove equilibrium147

conditions between the system and the entropy η given in (1.7) at the equilibrium148

state. The verification of these conditions is very complicated and tedious for (1.5).149

To avoid this, we turn to consider the Cauchy problem in Lagrangian coordinates150

This manuscript is for review purposes only.
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where these conditions can be easily checked (see Lemma 3.1). The second step is to151

establish higher-order energy estimates with a dissipation estimate for Te−Ti. This is152

a classical step which is done by choosing an appropriate symmetrizer of the system153

(see Lemma 3.4). In the last step, we prove a dissipation estimate for (∇u,∇p)154

(see Lemma 3.5). In view of special structures of the system, these estimates are155

sufficient to obtain the global existence of solutions in Lagrangian coordinates. Then156

Theorem 1.1 follows from the equivalence result for the solutions between Eulerian157

and Lagrangian coordinates. Remark that in the proof of Theorem 1.1, we need to use158

different independent unknown variables in different energy estimates. The difficulty159

on the lack of condition (SK) for system (1.5) is overcome by choosing appropriate160

variables connected by C∞-diffeomorphisms.161

Finally, we point out that there exists a result on the global existence of solutions162

for partially dissipative hyperbolic systems in non-conservative form which satisfy163

condition (SK). However, the space dimension is required to be bigger than 3 [20]164

(see Theorem 2.4). System (1.5) is not included in this framework since it does not165

satisfy condition (SK). So far, global existence in several space dimensions is an open166

problem for (1.5).167

This paper is organized as follows. In the next section, we first exhibit a sym-168

metrizer to apply the result on the local existence of smooth solutions in several space169

dimensions. Then we study the structure of the system in one space dimension in Eu-170

lerian and Lagrangian coordinates. In particular, we show that system (1.5) does not171

satisfy condition (SK). We also state a result on the global existence of solutions for172

the system in Lagrangian coordinates (see Theorem 2.3). Section 3 is devoted to the173

proof of the energy estimates in the three steps mentioned above. In the last section,174

we give the proof of Theorem 2.3 and then the proof of Theorem 1.1 by using a result175

on the equivalence of solutions for the Cauchy problem in Eulerian and Lagrangian176

coordinates.177

2. Study of the bitemperature Euler model.178

2.1. Symmetrization of the system. System (1.5) can be written in the form179

(2.1)


∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = 0,

∂tEe + div
(
u(Ee + pe)

)
− u · (ci∇pe − ce∇pi) = ν(ρ)v,

∂tEi + div
(
u(Ei + pi)

)
+ u · (ci∇pe − ce∇pi) = −ν(ρ)v, t > 0, x ∈ Rd,

180

with relations (1.1)–(1.4) and (1.8) and181

v = ρ(Ti − Te), Tα = bαεα, α = e, i.182

Now we write the system with variables (ρ, u, εe, εi). We first remark that183

(2.2) div(ρu⊗ u) = ρ(u · ∇)u+ udiv(ρu), p = pe + pi.184

Then, for ρ > 0, the first two equations in (2.1) give185

(2.3) ∂tu+ (u · ∇)u+ ρ−1∇p = 0.186

By the definition of Eα and the first two equations in (2.1) together with (2.3), we187

This manuscript is for review purposes only.



6 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

have188

1

cα

[
∂tEα + div(uEα)

]
=

1

2
ρu · ∂tu+

1

2
u · ∂t(ρu) + ρ∂tεα + εα∂tρ+ div

(1

2
ρ|u|2u+ ρuεα

)
189

= −1

2
ρu ·

[
(u · ∇)u+ ρ−1∇p

]
− 1

2
u ·
[

div(ρu⊗ u) +∇p
]

+ ρ∂tεα190

− εα div(ρu) + div
(1

2
ρ|u|2u+ ρuεα

)
.191

Since192

−ρu ·
[
(u · ∇)u] = −1

2
ρu · ∇(|u|2),193

div
(1

2
ρ|u|2u

)
=

1

2
|u|2 div(ρu) +

1

2
ρu · ∇(|u|2),194

using (2.2), we obtain195

−1

2
ρu ·

[
(u · ∇)u+ ρ−1∇p

]
− 1

2
u ·
[

div(ρu⊗ u) +∇p
]

+ div
(1

2
ρ|u|2u

)
196

= −1

2
ρu · ∇(|u|2)− u · ∇p− 1

2
|u|2 div(ρu) + div

(1

2
ρ|u|2u)

)
197

= −u · ∇p.198

We also have199

−εα div(ρu) + div(ρuεα) = ρu · ∇εα.200

These equalities imply that201

1

cα

[
∂tEα + div(uEα)

]
= ρ∂tεα + ρu · ∇εα − u · ∇p.202

Moreover,203

(2.4)

{
div(upe)− u · (ci∇pe − ce∇pi) = pe div u+ ceu · ∇p,
div(upi) + u · (ci∇pe − ce∇pi) = pi div u+ ciu · ∇p.

204

It follows that205

1

ce

[
∂tEe + div

(
u(Ee + pe)

)
− u · (ci∇pe − ce∇pi)

]
= ρ∂tεe + ρu · ∇εe +

1

ce
pe div u,206

207
1

ci

[
∂tEi + div

(
u(Ei + pi)

)
+ u · (ci∇pe − ce∇pi)

]
= ρ∂tεi + ρu · ∇εi +

1

ci
pi div u.208

Finally, by the expression of pα and the last two equations in (2.1), we obtain209

∂tεe + u · ∇εe + (γe − 1)εe div u = ν(ρ)(ceρ)−1v,210

∂tεi + u · ∇εi + (γi − 1)εi div u = −ν(ρ)(ciρ)−1v,211

which are the equations for εe and εi. Thus, system (2.1) is equivalent to212

(2.5)


∂tρ+ div(ρu) = 0,

∂tu+ (u · ∇)u+ ρ−1∇p = 0,

∂tεe + u · ∇εe + (γe − 1)εe div u = ν(ρ)(ceρ)−1v,

∂tεi + u · ∇εi + (γi − 1)εi div u = −ν(ρ)(ciρ)−1v, t > 0, x ∈ Rd,

213

This manuscript is for review purposes only.
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where214

(2.6)

{
p = ρ[ce(γe − 1)εe + ci(γi − 1)εi],

v = ρ(biεi − beεe).
215

Let216

V = (ρ, uT , εe, εi)
T , ε1 = ce(γe − 1)εe + ci(γi − 1)εi,217

where the superscript T denotes the transpose of a vector. Since p = ρε1 and218

ρ−1∇p = ρ−1ε1∇ρ+ ce(γe − 1)∇εe + ci(γi − 1)∇εi,219

system (2.5) is written in the form220

(2.7) ∂tV +

d∑
j=1

Bj(V)∂xjV = H(V), t > 0, x = (x1, · · · , xd) ∈ Rd,221

where222

(2.8) Bj(V) =


uj ρeTj 0 0

ρ−1ε1ej ujId ce(γe − 1)ej ci(γi − 1)ej

0 (γe − 1)εee
T
j uj 0

0 (γi − 1)εie
T
j 0 uj

 ,223

and224

(2.9) H(V) =


0

0

ν(ρ)(ceρ)−1v

−ν(ρ)(ciρ)−1v

 ,225

with u = (u1, · · · , ud)T , Id being the unit matrix and (e1, · · · , ed) being the standard226

basis of Rd.227

By a symmetrizer B0(V) for system (2.7) we mean that B0(V) is a symmetric228

positive definite matrix such that B0(V)Bj(W) is symmetric for all j ∈ {1, 2, · · · , d}229

(see [15]). Now we introduce a diagonal matrix230

(2.10) B0(V) = diag
(
ε1εeεi, ρ

2εeεiId, ceρ
2εi, ciρ

2εe
)
.231

Obviously, B0(V) is symmetric positive definite in Ω. Moreover,232

B0(V)Bj(V)

=


ujε1εeεi ρε1εeεie

T
j 0 0

ρε1εeεiej ρ2ujεeεiId ce(γe − 1)ρ2εeεiej ci(γi − 1)ρ2εeεiej

0 ce(γe − 1)ρ2εeεie
T
j ceρ

2ujεi 0

0 ci(γi − 1)ρ2εeεie
T
j 0 ciρ

2ujεe

233

which is a symmetric matrix. Therefore, B0(V) is a symmetrizer and system (2.7) is234

symmetrizable hyperbolic in the sense of Friedrichs. According to Lax [14] or Kato235

[12] (see also Majda [15]), for smooth initial data, the Cauchy problem for (2.1) admits236

a unique smooth solution, locally in time. This result is stated as follows and it holds237

in any space dimension.238
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8 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

Proposition 2.1. Let m > d/2 + 1 be an integer and ε̄e > 0 and ε̄i > 0 be two239

constants. We suppose that V0 − V̄ ∈ Hm(Rd) and240

(2.11) inf
x∈Rd

ρ0(x) > 0, inf
x∈Rd

εe0(x) > 0, inf
x∈Rd

εi0(x) > 0.241

Then, there exist T > 0 and a unique smooth solution V to the Cauchy problem (1.5)242

and (1.11). This solution satisfies V − V̄ ∈ C([0, T ];Hm(Rd))∩C1([0, T ];Hm−1(Rd))243

and244

inf
(t,x)∈[0,T ]×Rd

ρ(t, x) > 0, inf
(t,x)∈[0,T ]×Rd

εe(t, x) > 0, inf
(t,x)∈[0,T ]×Rd

εi(t, x) > 0.245

Remark 2.2.246

Condition ‖V0−V̄‖m ≤ κ0 in Theorem 1.1 with κ0 being sufficiently small implies247

(2.11).248

2.2. The system in one space dimension. In one space dimension, systems249

(2.1) and (2.5) are written as :250

(2.12)


∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂tEe + ∂x
(
u(Ee + pe)

)
− u(ci∂xpe − ce∂xpi) = ν(ρ)v,

∂tEi + ∂x
(
u(Ei + pi)

)
+ u(ci∂xpe − ce∂xpi) = −ν(ρ)v, t > 0, x ∈ R

251

and252

(2.13)


∂tρ+ ∂x(ρu) = 0,

∂tu+ u∂xu+ ρ−1∂xp = 0,

∂tεe + u∂xεe + (γe − 1)εe∂xu = ν(ρ)(ceρ)−1v,

∂tεi + u∂xεi + (γi − 1)εi∂xu = −ν(ρ)(ciρ)−1v, t > 0, x ∈ R

253

respectively. From (2.6) and (2.13), we further obtain254 
∂t(ρ

2εe) + ∂x(ρ2εeu) + γeρ
2εe∂xu =

1

ce
ν(ρ)ρv,

∂t(ρ
2εi) + ∂x(ρ2εiu) + γiρ

2εi∂xu = − 1

ci
ν(ρ)ρv,

255

which imply that256

(2.14)


∂t(ρp) + ∂x(ρpu) + ρµ1∂xu = (γe − γi)ν(ρ)ρv,

∂t(ρv) + ∂x(ρvu) + ρµ2∂xu = −
(bi
ci

+
be
ce

)
ν(ρ)ρv,

257

where258

(2.15)

{
µ1 = ρ

[
ceγe(γe − 1)εe + ciγi(γi − 1)εi

]
,

µ2 = ρ
(
biγiεi − beγeεe

)
.

259

By (2.6) and the expression of µ2 above, we see that µ1 and µ2 can further be expressed260

as linear functions of p and v as261

(2.16)

(
µ1

µ2

)
= M

(
p

v

)
,262
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where M is a constant invertible matrix given by263

(2.17) M =
1

(meci +mice)kB

(
kB(meciγi +miceγe) cecik

2
B(γi − γe)

memi(γi − γe) kB(meciγe +miceγi)

)
.264

By the expression of Bj given in (2.8), we can calculate the eigenvalues λi and265

the eigenvectors ri of (2.13). They are given by266

λ1(V) = u− a, λ2(V) = λ3(V) = u, λ4(V) = u+ a,267

268

r1(V)=


ρ
−a

(γe − 1)εe
(γi − 1)εi

 , r2(V)=


0
0

−(γi − 1)ci
(γe − 1)ce



r3(V)=


−ρ
0
εe
εi

 , r4(V)=


ρ
a

(γe − 1)εe
(γi − 1)εi

 ,

269

where270

a(εe, εi) =
√
ceγe(γe − 1)εe + ciγi(γi − 1)εi.271

Moreover, by (2.9), we have272

H′(V̄) =


0 0 0 0

0 0 0 0

0 0 − bece ν(1) bi
ce
ν(1)

0 0 be
ci
ν(1) − bici ν(1)

 .273

It is known that condition (SK) is invariant under a change of unknown variables274

by a C1-diffeomorphism [10]. This condition shows a coupling property between the275

eigenvectors and the source terms of the system. At a given equilibrium state V̄,276

it means that H′(V̄)ri(V̄) 6= 0 for all i = 1, 2, 3, 4. From (3.3), we see easily that277

H′(V̄)r3(V̄) = 0. This shows that condition (SK) is not satisfied for system (2.13).278

2.3. The system in Lagrangian coordinates. Let (ρ, u) ∈ C1(R+ × R) sat-279

isfying ρ ≥ const > 0 in R+ × R and280

(2.18) ∂tρ+ ∂x(ρu) = 0.281

The Euler-Lagrange change of variables from (t, x) to (t′, y) is defined by282

t′ = t, dy = ρdx− ρudt,283

or equivalently for y :284

y =

∫ x

X1(t)

ρ(t, ξ)dξ, with X ′1(t) = u(t,X1(t)).285

It is clear that this change of variables is a diffeomorphism from R+×R to itself. For286

simplicity, we use the same notation for unknown variables in Eulerian coordinates287

(t, x) and in Lagrangian coordinates (t, y).288
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Consider smooth solutions for (2.12). Let289

(2.19) τ = ρ−1, Eα = τEα =
1

2
cαu

2 + cαεα, α = e, i.290

Given a first-order partial differential equation291

(2.20) ∂tw + ∂xz1 + b∂xz2 = f.292

By (2.18), in Lagrangian coordinates this equation is written equivalently as293

(2.21) ∂t(τw) + ∂y(z1 − wu) + b∂yz2 = τf.294

Applying this to (2.12), we obtain295

(2.22)


∂tτ − ∂yu = 0,

∂tu+ ∂yp = 0,

∂tEe + pe∂yu+ ceu∂yp = ντv,

∂tEi + pi∂yu+ ciu∂yp = −ντv.

296

Similarly to (2.14), by (2.4), we obtain297

(2.23)


∂tp+ τ−1µ1∂yu = (γe − γi)νv,

∂tv + τ−1µ2∂yu = −
(bi
ci

+
be
ce

)
νv,

298

where µ1 and µ2 are given in (2.16).299

Regarding pα and p as functions of (τ, u, Ee, Ei), we have300

pα =
1

τ
(γα − 1)

(
Eα −

1

2
cαu

2
)
, α = e, i, p = pe + pi.301

Hence, system (2.22) can be written as302

(2.24) ∂tU +A(U)∂yU = G(U), t > 0, y ∈ R, U = (τ, u, Ee, Ei)
T ,303

which is supplemented by an initial condition304

(2.25) t = 0 : U = U0(y)
def
=
(
τ0(y), u0(y), Ee0(y), Ei0(y)

)
, y ∈ R.305

Here,306

A(U) =


0 −1 0 0

∂τp ∂up ∂Eep ∂Eip

ceu∂τp pe + ceu∂up ceu∂Eep ceu∂Eip

ciu∂τp pi + ciu∂up ciu∂Eep ciu∂Eip

 , G(U) =


0

0

ντv

−ντv

 ,307

with308

∂τp = −p
τ
, ∂up = − [ce(γe − 1) + ci(γi − 1)]u

τ
, ∂Eep =

γe − 1

τ
, ∂Eip =

γi − 1

τ
.309

Let310

Ū = (1, 0, Ēe, Ēi)
T ,311

which is an equilibrium state of (2.24) with Ēe > 0 and Ēi > 0. The result of global312

existence of solutions to (2.24) and (2.25) can be stated as follows.313
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Theorem 2.3. Let m ≥ 2 and U0−Ū ∈ Hm(R). Assume γe 6= γi. There are two314

positive constants c and κ1 such that if ‖U0 − Ū‖m ≤ κ1, then the Cauchy problem315

(2.24) and (2.25) admits a unique global solution U satisfying U−Ū ∈ C(R+;Hm(R))∩316

C1(R+;Hm−1(R)). Moreover,317

(2.26) sup
t∈R+

‖U(t, ·)−Ū‖2m+

∫ +∞

0

(
‖∂yu‖2m−1+‖∂yp‖2m−1+‖v‖2m

)
dt′ ≤ c‖U0−Ū‖2m.318

3. Energy estimates in Lagrangian coordinates. We study energy esti-319

mates for the Cauchy problem (2.24) and (2.25). Let m ≥ 2 be an integer and T > 0320

such that the local smooth solution U is defined on time interval [0, T ]. We denote321

by ‖ · ‖, ‖ · ‖∞ and ‖ · ‖l the usual norms of L2(R), L∞(R) and H l(R) for l ∈ N,322

respectively. We also denote323

UT = max
t∈[0,T ]

‖U(t, ·)− Ū‖m.324

We consider a smooth solution U near Ū , namely, UT is small. In the proof below, we325

denote by C > 0 and c0 > 0 generic constants independent of t and T .326

The global existence of smooth solutions to (2.24) and (2.25) will be proved in327

the three steps shown in Introduction.328

3.1. An L2 estimate. We first look at the entropy equality (1.9) in Lagrangian329

coordinates. From (2.6), we have330 
εe =

(mip− cikBv)τ

(γe − 1)(meci +mice)
,

εi =
(mep+ cekBv)τ

(γi − 1)(meci +mice)
,

331

which are strictly positive in a neighborhood of v = 0 when τ > 0 and p > 0. It332

follows from the definition of bα, Tα and v that333

− νρ

TeTi
(Ti − Te)2 = −ν1ρv2,334

where ν1 = ν1(τ, p, v) given by335

(3.1) ν1 =
k2B(meci +mice)

2ν

memi(mip− cikBv)(mep+ cekBv)
.336

It is clear that, for all τ > 0 and p > 0, ν1 > 0 in a neighborhood of v = 0. We337

introduce a new variable338

s = τη = −
∑
α=e,i

cα
bα

ln
[( (γα − 1)τγα−1

cγαα

)(
Eα −

cα
2
u2
)]
,339

which is a function of variable U . According to the equivalence of equations (2.20)340

and (2.21) in two coordinates, the entropy equality (1.9) in variables (t, y) becomes341

(3.2) ∂ts = −ν1v2,342

which means that s is an entropy of system (2.24) with 0 as its entropy-flux.343
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Recall that an equilibrium state with zero velocity is of the from344

V̄ = (1, 0, ε̄e, ε̄i)
T .345

By definition, V̄ is an equilibrium state for (2.7) if H(V̄) = 0. Since ν > 0, by the346

definition of H and v, we have347

(3.3) beε̄e = biε̄i.348

Combining this with (2.19) yields349

beĒe
ce

=
biĒi
ci

def
= Ē∗ > 0.350

Lemma 3.1. For all U in the domain under consideration, it holds351

(3.4) ∇s(Ū)G(U) = 0352

and353

(3.5) ∇s(Ū)A(U) = ∇F(U),354

where355

F(U) =
1

Ē∗
up− kB

( ce
me

+
ci
mi

)
u.356

Proof. A straightforward calculation gives357

−∂τs(U) =
kB
τ

( ce
me

+
ci
mi

)
,358

−∂us(U) = −
( ce
beεe

+
ci
biεi

)
u,359

−∂Ees(U) =
1

beεe
, −∂Eis(U) =

1

biεi
,360

where361

εα =
1

cα
Eα −

1

2
u2, α = e, i.362

Therefore,363

−∂τs(Ū) = kB

( ce
me

+
ci
mi

)
,364

−∂us(Ū) = 0,365

−∂Ees(Ū) = −∂Eis(Ū) =
1

Ē∗
.366

Hence, it is easy to check that (3.4) and (3.5) are satisfied.367

Lemma 3.2. In a neighborhood of Ū , it holds368

(3.6) ‖U(t, ·)− Ū‖2 +

∫ t

0

‖v(t′, ·)‖2dt′ ≤ C‖U0 − Ū‖2, ∀ t ∈ [0, T ].369
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Proof. We introduce370

S(U) = s(U)− s(Ū) +∇s(Ū)(U − Ū).371

Since η is a strictly convex entropy for (2.1), by a result in [25], s is a strictly convex372

entropy for (2.24). Hence, by Taylor formula, in a neighborhood of Ū , these exist two373

constants c2 ≥ c1 > 0 such that374

c1|U − Ū|2 ≤ S(U) ≤ c2|U − Ū|2.375

Using (2.24) and (3.2), we have376

∂tS −∇s(Ū)A(U)∂yU = −ν1v2 −∇s(Ū)G(U).377

It follows from Lemma 3.1 that378

∂tS − ∂yF(U) = −ν1v2.379

In a neighborhood of Ū , there is a constant ν̄1 > 0 such that ν1 ≥ ν̄1. Thus, integrating380

this equality over [0, t]× R with t ∈ [0, T ], we obtain (3.6).381

3.2. Higher-order energy estimates. Let U = (u, p, v, s)T . We use variable382

U in higher-order energy estimates. From (2.22), (2.23), and (3.2), we have383

(3.7)


∂tu+ ∂yp = 0,

∂tp+ τ−1µ1∂yu = −(γi − γe)νv,
∂tv + τ−1µ2∂yu = −bνv,
∂ts = −ν1v2, t > 0, x ∈ R,

384

where ν1 is defined in (3.1), µ1 and µ2 are defined in (2.16) and (2.17), and385

b =
bi
ci

+
be
ce
> 0.386

In particular, µ1 and µ2 are linear functions of p and v. This system can be written387

as388

(3.8) ∂tU +A(U)∂yU = G(U), t > 0, x ∈ R,389

where390

A(U) =


0 1 0 0

τ−1µ1 0 0 0

τ−1µ2 0 0 0

0 0 0 0

 , G(U) =


0

−(γi − γe)νv
−bνv
−ν1v2

 ,391

and τ is regarded as a function of U . By the definition in (2.6), the equilibrium state392

for U is Ū = (0, p̄, v̄, s̄) with393

p̄ = (γe − 1)Ēe + (γi − 1)Ēi > 0, v̄ = 0, s̄ = s(Ū).394

We first prove the following useful property.395

This manuscript is for review purposes only.



14 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

Lemma 3.3. Let δ(p, v) be defined by396

(3.9) δ(p, v) = bµ1(p, v)− (γi − γe)µ2(p, v).397

There is a constant δ̄ > 0 such that δ(p, v) ≥ δ̄ in a neighborhood of (p̄, 0).398

Proof. By continuity, it is sufficient to prove that δ(p̄, 0) > 0. From (1.2), we have399

ce
ci

=
Zme

mi
.400

It follows from the definition of bα in (1.8) that401

bice(γe − 1)

ci
= Zbe(γi − 1),

beci(γi − 1)

ce
=
bi
Z

(γe − 1).402

Since ρ̄ = 1, from (2.15) we obtain403

δ(p̄, 0) =

(
γi − 1 +

γe − 1

Z

)
(Zγebeε̄e + γibiε̄i)− (γi − γe) (γibiε̄i − γebeε̄e) .404

Using the fact that beε̄e = biε̄i > 0 (see (3.3), δ(p̄, 0) > 0 if and only if405 (
γi − 1 +

γe − 1

Z

)
(Zγe + γi) > (γi − γe)2,406

or equivalently,407

γeZ(γi − 1) + γi(γe − 1) > 0.408

Lemma 3.3 is proved since Z > 0, γi > 1 and γe > 1.409

Lemma 3.4. Let the conditions of Theorem 2.3 hold. If ‖U − Ū‖m is sufficiently410

small, for all t ∈ [0, T ], we have411

(3.10)

‖U(t, ·)− Ū‖2m +

∫ t

0

‖v(t′, ·)‖2mdt′

≤ C‖U0 − Ū‖2m + C

∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
‖U − Ū‖mdt′.

412

Proof. Let413

A0(U) =


µ0 0 0 0

0 bµ2

γi−γe −µ2 0

0 −µ2 µ1 0

0 0 0 1

 ,414

where415

µ0(τ, p, v) =
1

(γi − γe)τ
µ2(p, v)δ(p, v),416

and δ(p, v) is defined in (3.9). By Lemma 3.3, in a neighborhood of Ū , there are417

positive constants µ̄1, µ̄2 and µ̄0 such that418

µ1(p, v) ≥ µ̄1, (γi − γe)µ2(p, v) ≥ µ̄2, µ0(τ, p, v) ≥ µ̄0.419
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Then it is easy to check that, in a neighborhood of Ū , A0(U) is a symmetrizer of system420

(3.8), namely, A0(U) is symmetric positive definite and A0(U)A(U) is symmetric. In421

particular,422

A0(U)A(U) =


0 µ0 0 0

µ0 0 0 0

0 0 0 0

0 0 0 0

 , A0(U)G(U) =


0

0

−δνv
−ν1v2

 .423

Let 1 ≤ k ≤ m be an integer. We denote Uk = ∂kyU . From (3.8), we have424

(3.11) ∂tUk +A(U)∂yUk = ∂kyG(U) + Jk,425

where426

Jk = A(U)∂yUk − ∂ky (A(U)∂yU).427

Taking the inner product of (3.11) with A0(U)Uk in L2(R), we obtain the Friedrichs428

energy equality429

(3.12)

d

dt

〈
A0(U)Uk, Uk

〉
= 2
〈
A0(U)∂kyG(U), Uk

〉
+ 2
〈
A0(U)Jk, Uk

〉
+
〈

div ~A(U)Uk, Uk
〉
,

430

where 〈·, ·〉 is the inner product of L2(R) and431

div ~A(U) = ∂tA0(U) + ∂yÃ(U), Ã = A0A.432

By the definition of A0 and Ã, we have433

div ~A(U) =


∂tµ0 ∂yµ0 0 0

∂yµ0
b

γi−γe ∂tµ2 −∂tµ2 0

0 −∂tµ2 ∂tµ1 0

0 0 0 0

 ,434

with435

∂yµ0(U) = µ′0(U)∂yU,436

∂tµi(U) = µ′i(U)∂tU = µ′i(U)
(
G(U)−A(U)∂yU

)
, i = 0, 1, 2.437

Since G(U) = O(v) and the imbedding from Hm(R) to W 1,∞(R) is continuous, we438

obtain439

(3.13)
〈

div ~A(U)Uk, Uk
〉
≤ C

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖∂yv‖2m−1

)
‖U − Ū‖m.440

Next, a direct calculation yields441

A0(U)Jk =


0[

τ−1
(

b
γi−γeµ1 − µ2

)
∂k+1
y u− ∂ky (τ−1

(
b

γi−γeµ1 − µ2

)
∂yu)

]
µ2

µ2∂
k
y (τ−1µ1∂yu)− µ1∂

k
y (τ−1µ2∂yu)

0

 .442
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By the Moser-type inequalities [15], we have443

(3.14) 2
〈
A0(U)Jk, Uk

〉
≤ C

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖∂yv‖2m−1

)
‖U − Ū‖m.444

Moreover,445

∂kyG(U) =


0

−(γi − γe)ν∂kyv
−bν∂kyv

0

+


0

(γi − γe)
(
ν∂kyv − ∂ky (νv)

)
bν∂kyv − b∂ky (νv)

−∂ky (ν1v
2)

 def
= G1 +G2,446

with447

A0(U)G1 =


0

0

−δν∂kyv
0

448

and449

A0(U)G2 =


0

a22(γi − γe)
(
ν∂kyv − ∂ky (νv)

)
− µ2

[
bν∂kyv − b∂ky (νv)

]
µ1

[
bν∂kyv − b∂ky (νv)

]
− µ2(γi − γe)

(
ν∂kyv − ∂ky (νv)

)
−∂ky (ν1v

2)

 ,450

where451

a22 =
bµ2

γi − γe
.452

These equalities imply that453

A0(U)G1 · Uk = −δν|∂kyv|2454

and455

(3.15)

A0(U)G2 · Uk =
(
a22(γi − γe)

(
ν∂kyv − ∂ky (νv)

)
− µ2

[
bν∂kyv − b∂ky (νv)

])
∂kyu

+
(
µ1

[
bν∂kyv − b∂ky (νv)

]
− µ2(γi − γe)

(
ν∂kyv − ∂ky (νv)

))
∂kyp

− ∂ky (ν1v
2)∂ky s.

456

Observe that each of three terms on the right-hand side of (3.15) is quadratic in457

variables (u, p, v) with coefficients depending on derivatives of U − Ū up to order m.458

Moreover, using Lemma 3.3, we have δν ≥ δ̄ν̄ in a neighborhood of Ū , where ν̄ > 0 is459

a constant. Thus, the Moser-type inequalities imply that460

(3.16)

〈
A0(U)∂kyG(U), Uk

〉
+ δ̄ν̄‖∂kyv‖2

≤ C
(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
‖U − Ū‖m.

461

Since A0(U) is positive definite,
〈
A0(U)Uk, Uk

〉
is equivalent to ‖Uk‖2. Combining462

(3.12)-(3.16) and integrating (3.12) over [0, t] with t ∈ [0, T ], we have463

‖Uk‖2 +

∫ t

0

‖∂kyv(t′, ·)‖2dt′464

≤ C‖U0 − Ū‖2m + C

∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
‖U − Ū‖mdt′,465
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where U0 is the initial data of U . Finally, the change of variables U 7−→ U is a C∞-466

diffeomorphism in a neighborhood of Ū . Then, ‖U − Ū‖l is equivalent to ‖U −Ū‖l for467

all l ∈ N. Summing up this inequality for all k = 1, 2, · · · ,m, and using Lemma 3.2,468

we obtain (3.10).469

3.3. Dissipation estimates.470

Lemma 3.5. Let the conditions of Theorem 2.3 hold. If ‖U − Ū‖m is sufficiently471

small, for all t ∈ [0, T ], we have472

(3.17)

∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1

)
dt′

≤ C‖U0 − Ū‖2m + C

∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
‖U − Ū‖mdt′.

473

Proof. Let k be an integer with 0 ≤ k ≤ m − 1. Applying ∂ky to the first three474

equations in (3.7) yields475

(3.18)


∂t∂

k
yu+ ∂k+1

y p = 0,

∂t∂
k
yp+ τ−1µ1∂

k+1
y u = τ−1µ1∂

k+1
y u− ∂ky

(
τ−1µ1∂yu

)
− (γi − γe)∂ky (νv),

∂t∂
k
yv + τ−1µ2∂

k+1
y u = τ−1µ2∂

k+1
y u− ∂ky

(
τ−1µ2∂yu

)
− b∂ky (νv).

476

We multiply the third equation in (3.18) by (γi−γe) and take the inner product with477

∂k+1
y u in L2(R). Using (γi − γe)τ−1µ2 ≥ 3c0 it yields478

3c0‖∂k+1
y u‖2 ≤− (γi − γe)

〈
∂t∂

k
yv, ∂

k+1
y u

〉
+ (γi − γe)

〈
τ−1µ2∂

k+1
y u− ∂ky

(
τ−1µ2∂yu

)
− b∂ky (νv), ∂k+1

y u
〉
.

479

By the Young inequality and the Moser-type inequalities, the last term above is480

bounded by481

c0‖∂k+1
y u‖2 + C‖v‖2m + C‖∂yu‖2m−1‖U − Ū‖m.482

Moreover, by the first equation in (3.18) and an integration by parts, we have483

−(γi − γe)
〈
∂t∂

k
yv, ∂

k+1
y u

〉
= −(γi − γe)

d

dt

〈
∂kyv, ∂

k+1
y u

〉
+ (γi − γe)

〈
∂k+1
y v, ∂k+1

y p
〉

484

≤ −(γi − γe)
d

dt

〈
∂kyv, ∂

k+1
y u

〉
+ β‖∂k+1

y p‖2 + C‖v‖2m,485

where β > 0 is a small constant to be chosen. This implies that486

(3.19)
2c0‖∂k+1

y u‖2 ≤− (γi − γe)
d

dt

〈
∂kyv, ∂

k+1
y u

〉
+ β‖∂k+1

y p‖2 + C‖v‖2m + C‖∂yu‖2m−1‖U − Ū‖m.
487

Similarly, taking the inner product of the first equation in (3.18) with ∂k+1
y p in488

L2(R) and using an integration by parts, we have489

‖∂k+1
y p‖2 = − d

dt

〈
∂kyu, ∂

k+1
y p

〉
−
〈
∂k+1
y u, ∂ky∂tp

〉
.490

By the second equation in (3.18), we obtain as above491

−
〈
∂k+1
y u, ∂ky∂tp

〉
=
〈
∂ky (τ−1µ1∂yu)− τ−1µ1∂

k+1
y u+ (γi − γe)∂ky (νv), ∂k+1

y u
〉

492

+
〈
τ−1µ1∂

k+1
y u, ∂k+1

y u
〉

493

≤ C‖∂k+1
y u‖2 + C‖v‖2m + C‖∂yu‖2m−1‖U − Ū‖m.494
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Hence,495

(3.20) ‖∂k+1
y p‖2 ≤ − d

dt

〈
∂kyu, ∂

k+1
y p

〉
+C‖∂k+1

y u‖2 +C‖v‖2m+C‖∂yu‖2m−1‖U −Ū‖m.496

Combining (3.19) and (3.20), and choosing β > 0 to be sufficiently small, it yields497

(3.21)
c0‖∂k+1

y u‖2 + β‖∂k+1
y p‖2 ≤ − d

dt

[
(γi − γe)

〈
∂kyv, ∂

k+1
y u

〉
+ 2β

〈
∂kyu, ∂

k+1
y p

〉]
+ C‖v‖2m + C‖∂yu‖2m−1‖U − Ū‖m.

498

Finally, since 0 ≤ k ≤ m− 1, we have499 ∣∣〈∂kyv, ∂k+1
y u

〉∣∣+
∣∣〈∂kyu, ∂k+1

y p
〉∣∣ ≤ C‖U − Ū‖2m.500

Integrating (3.21) over [0, t] with t ∈ [0, T ], we obtain501 ∫ t

0

(
‖∂k+1
y u‖2 + ‖∂k+1

y p‖2
)
dt′ ≤ C‖U − Ū‖2m + C‖U0 − Ū‖2m502

+C

∫ t

0

(
‖v‖2m + ‖∂yu‖2m−1‖U − Ū‖m

)
dt′.503

Summing this inequality for all k = 0, 1, · · · ,m− 1 and using Lemma 3.4, we obtain504

(3.17).505

3.4. Proof of Theorem 2.3. From (3.10) and (3.17), we have506

‖U(t, ·)− Ū‖2m +

∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
dt′507

≤ C‖U0 − Ū‖2m + CUT
∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
dt′, ∀ t ∈ [0, T ].508

Since UT is sufficiently small, we further obtain509

‖U(t, ·)−Ū‖2m +

∫ t

0

(
‖∂yu‖2m−1 + ‖∂yp‖2m−1 + ‖v‖2m

)
dt′ ≤ C‖U0−Ū‖2m, ∀ t ∈ [0, T ].510

This estimate together with a bootstrap argument implies (2.26) and the global ex-511

istence of a solution U to (2.24) and (2.25), provided that ‖U0 − Ū‖m is sufficiently512

small. �513

4. Proof of Theorem 1.1. For the Cauchy problem for (2.12) with initial data514

given in (1.11), we first define515

Y0(x) =

∫ x

0

ρ0(ξ)dξ.516

Then Y ′0 = ρ0. By the condition in Theorem 1.1, we have inf
x∈R

ρ0(x) > 0 and ρ0 −517

1 ∈ Hm(R). Therefore, the continuous imbedding from Hm(R) to Cm−1(R) implies518

that Y0 is a Cm-diffeomorphism from R to R. We denote by X0 the inverse Cm-519

diffeomorphism of Y0 and define520

U0(y) =
( 1

ρ0
, u0,

1

2
ceu

2
0 + ceεe0,

1

2
ciu

2
0 + ciεi0

)
(X0(y)).521
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Then condition V0 − V̄ ∈ Hm(R) implies that U0 − Ū ∈ Hm(R) and condition ‖V0 −522

V̄‖m ≤ κ0 with κ0 being sufficiently small implies that ‖U0 − Ū‖m is sufficiently523

small. According to Theorem 2.3, there exists a global smooth solution U(t, y) =524

(τ(t, y), u(t, y), Ee(t, y), Ei(t, y))T to the Cauchy problem (2.24) and (2.25). Then, we525

define526

ρ(t, y) =
1

τ(t, y)
, εα(t, y) =

1

cα
Eα(t, y)− 1

2
u2(t, y), α = e, i.527

On the other hand, the result in Theorem 2.3 also implies that U ∈ C1(R+ × R)528

and U is globally Lipschitzian on R with respect to y (in particular for τ and u). Then529

the Cauchy problem to the following ordinary differential equation530

Y ′1(t) = u(t, Y1(t)), Y1(0) = 0,531

admits a unique global solution Y1 ∈ C2(R+). Let us further define a function X by532

X(t, y) =

∫ y

Y1(t)

τ(t, η)dη.533

Then, X ∈ C1(R+×R). Similarly to Y0, for all t ∈ R+, X(t, ·) is a Cm-diffeomorphism534

from R to R. Let us denote by Y (t, ·) the inverse Cm-diffeomorphism of X(t, ·). It is535

easy to see that536

X(0, y) = X0(y), Y (0, x) = Y0(x).537

Finally, we define538

V(t, x) = (ρ, u, εe, εi)
T
(
t, Y (t, x)

)
.539

It is proved in [18] (see also [25]) that entropy solutions of the Cauchy problem for540

a hyperbolic system of conservation laws are equivalent in Eulerian and Lagrangian541

coordinates. Moreover, there are explicit formulations of the solutions between two542

coordinates. Since the solutions studied here are smooth, it is obvious that this543

equivalence result holds for non-conservative systems. Applying this result, we see544

that V is a smooth solution to the Cauchy problem (2.13) and (1.11). Estimate (1.12)545

follows from (2.26) together with Moser-type inequalities. �546

Appendix A. Strictly convex entropy and symmetrizer. There is a well-547

known result showing that the second-order derivative of a strictly convex entropy is548

a symmetrizer for the hyperbolic system of conservation laws [9, 3]. In general, this549

result does not hold for a non-conservative system. In this Appendix, we want to show550

that the bitemperature Euler model, which is a non-conservative system, provides a551

good example on this topic.552

More precisely, we consider the system in the form (1.5) or equivalently (1.6). De-553

note W = (ρ, ρuT , Ee, Ei). Since η defined in (1.7) is a strictly convex entropy, η′′(W)554

is a symmetric positive definite matrix. The result below implies that η′′(W)Cj(W)555

is not symmetric in one space dimension.556

Proposition. Consider the one dimensional system (2.12) and denote by C1(W) =557

C(W) the related matrix. Then η′′(W)C(W) is symmetric if and only if Te = Ti.558
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Proof. We denote Γ = ceγe+ ciγi. A straightforward calculation using (1.5) gives559

C=



0 1 0 0

1
2
(Γ− 3)u2 −(Γ− 3)u γe − 1 γi − 1

− γeupe
(γe−1)ρ

+ 1
2
ce(Γ− 2)u3 γepe

(γe−1)ρ
+ ce(

3
2
− Γ)u2 (γece + ci)u ce(γi − 1)u

− γiupi
(γi−1)ρ

+ 1
2
ci(Γ− 2)u3 γipi

(γi−1)ρ
+ ci(

3
2
− Γ)u2 ci(γe − 1)u (γici + ce)u


.560

561

Let q = ρu. From (1.3) and (1.4), we may write pα in variable W as562

pα = (γα − 1)
(
Eα −

cαq
2

2ρ

)
.563

Then η defined in (1.7) can be expressed as564

η = ηe + ηi, ηα = −cαρ
bα

ln
( pα
cγαα ργα

)
, α = e, i.565

Obviously,566

η′e(W) =

(
ηe
ρ
− kBc

2
eq

2

2meρpe
+
γece
be

,
kBc

2
eq

mepe
,−kBceρ

mepe
, 0

)
,

η′i(W) =

(
ηi
ρ
− kBc

2
i q

2

2miρpi
+
γici
bi

,
kBc

2
i q

mipi
, 0,−kBciρ

mipi

)
,

η′(W) = η′e(W) + η′i(W).

567

Since ∂2EeEiη = 0, the hessian matrix of η is of the following form :568

η′′(W) =


∂2ρρ(ηe + ηi) ∂2ρq(ηe + ηi) ∂2ρEeηe ∂2ρEiηi
∂2ρq(ηe + ηi) ∂2qq(ηe + ηi) ∂2qEeηe ∂2qEiηi
∂2ρEeηe ∂2qEeηe ∂2EeEeηe 0

∂2ρEiηi ∂2qEiηi 0 ∂2EiEiηi

 ,569

with570

∂2ρρηα =
γαcα
bαρ

+
cαu

4

4bαρε2α
, ∂2ρqηα = − cαu

3

2bαρε2α
, ∂2ρEαηα = − 1

bαρεα
+

u2

2bαρε2α
,571

572

∂2qqηα =
cα

bαρεα
+

cαu
2

bαρε2α
, ∂2qEαηα = − u

bαρε2α
,573

574

∂2EαEαηα =
1

cαbαρε2α
, α = e, i.575

Hence we obtain576

∂2ρρη =
∑
α=e,i

(
γαcα
bαρ

+
cαu

4

4bαρε2α

)
, ∂2ρqη = −

∑
α=e,i

cαu
3

2bαρε2α
, ∂2ρEαη =

1

bαρε2α
(
u2

2
−εα)577

578

∂2qqη =
∑
α=e,i

cα
bαρε2α

(
εα + u2

)
, ∂2qEαη = − u

bαρε2α
,579

580

∂2EαEαη =
1

bαcαρε2α
, α = e, i.581
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The entry in the 3-th row and 1-th column of η′′C is582

(η′′C)31 = ∂2qEeηe ×
1

2
(ceγe + ciγi − 3)u2 + ∂2EeEeηe[

1

2
ce(ceγe + ciγi − 2)u3 − ceγeuεe]

=
u3

2beρε2e
− γeu

beρεe
.

583

Similarly,584

(η′′C)13 =
u3

2beρε2e
−
(γece + ci

beεe
+
ci(γe − 1)

biεi

)u
ρ
.585

Therefore, (η′′C)31 = (η′′C)13 if and only if beεe = biεi, that is to say Te = Ti. This586

proves that η is not a symmetrizer of the system. In a same way, we can show that587

η′′C is symmetric if and only if Ti = Te.588
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