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GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR A
NON-CONSERVATIVE BITEMPERATURE EULER MODEL*

DENISE AREGBA-DRIOLLET?, STEPHANE BRULL', AND YUE-JUN PENGH

Abstract. The bitemperature Euler model describes a crucial step of Inertial Confinement
Fusion (ICF) when the plasma is quasineutral while ionic and electronic temperatures remain distinct.
The model is written as a first-order hyperbolic system in non-conservative form with partially
dissipative source terms. We consider the polytropic case for both ions and electrons with different
v-law pressures. The system does not fulfill the Shizuta-Kawashima condition and the physical
entropy, which is a strictly convex function, does not provide a symmetrizer of the system. In this
paper we exhibit a symmetrizer to apply the result on the local existence of smooth solutions in
several space dimensions. In the one-dimensional case we establish energy and dissipation estimates
leading to global existence for small perturbations of equilibrium states.

Key words. non-conservative hyperbolic system, partial dissipation, symmetrization, energy
estimates, Euler type model for plasmas

AMS subject classifications. 35L60, 35F55, 35Q31, 7T6N10, 76 W05

1. Introduction. This paper is devoted to the study of the global existence of
smooth solutions near constant equilibrium states for a bitemperature Euler system.
This fluid model describes the interaction of a mixture of one species of ions and
one species of electrons in thermal nonequilibrium, with applications in the field of
Inertial Confinement Fusion (ICF). It was derived from a kinetic model by using a
hydrodynamic limit and the Boltzmann entropy. For this kinetic model, a Discrete
Velocity Model (DVM) method with an asymptotic preserving discretization toward
Euler equations was obtained. The kinetic approach also allows to design numerical
schemes for the bitemperature Euler equations. See [1, 5].

We denote by p. and p; the electronic and ionic densities, p = pe + p; the total
density, m, and m; the related masses, c. and ¢; the mass fractions. These variables
satisfy

(1.1) Pe = MeNe = Cepy,  Pi =myun; =c;p, Me >0, m; >0, c.+c¢ =1

Quasineutrality is assumed, so that the ionization ratio Z = n./n; is a constant. This
implies that the electronic and ionic mass fractions are constant and given by

(1.2) Ce = _Zme ¢ = i

m; + Zme’ m; + Zme

We suppose that the ionic and electronic velocities are equal: u. = u; = u, and the
pressure of each species satisfies a gamma-law with its own v exponent :

(1.3) pe = (Ve — )pece = nekpTe, pi = (vi — 1)pici = nikpTi, ve >1, v > 1,

where kp is the Boltzmann constant (kg > 0), €, and T, represent respectively the
internal specific energy and the temperature of species « for a = e, 1.
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2 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

Denoting by |- | the Euclidean norm in R?, the total energies for the particles are
defined by

1 1
(1.4) Eo = pata + §,oa|u|2 = cCq (pzsa + §p|u|2), a=e,i.

We denote by v > 0 the interaction coefficient between the electronic and ionic tem-
peratures. Physically this coeflicient is a complicated function of the electronic and
ionic temperatures and of p, see the NRL plasma formulary [11]. A rigorous derivation
of v is obtained wvia a kinetic underlying formulation [1]. It gives v(p) = Kp where
K is a positive constant. This expression of v implies that more dense is the plasma,
faster it reaches the thermal equilibrium. In order to simplify the notation, we as-
sume that v is a sufficiently smooth function of p, denoted by v = v(p), and satisfies
v(p) > 0 for p > 0. In particular, it suffices to assume that v(1) > 0 in the study of
the global existence of smooth solutions for p near 1. From the proof of the main the-
orem, we will see easily that global existence still holds when v is a smooth function
of (T,,T;, p) and remains positive at an equilibrium point (7, T}, p) = (T, T, 1) for a
positive constant 7.

The model consists of two conservative equations for mass and momentum and
two non-conservative equations for each energy:

Op + div(pu) =0,
9 (pu) + div(pu @ u) + V(pe +pi) = 0,

1.5
(15) e+ div (u(€e + pe)) —u- (¢;Vpe — c.Vpi) = pv(T; — To),
0E; + div (w(& +pi)) + u- (¢;Vpe — c.Vp;) = —pv(T; — To),
where ”” stands for the inner product in R%. This is a non-conservative hyperbolic

system which can be written in the synthetic form

d
(1.6) AW+ Ci (W), W = F(W).

j=1
Now we introduce

_ Pa ('705 B 1)pa€a
(1.7) (s purEer &) = - O;m, b (T)

¢(p7 pPU, gea gz) = 77(/)7 pu, gea gz)ua
where

(1.8) by Da=VUMa oy
ks
It was proved in [1] (see Theorem 2.9) that the functions (7, ¢) defined in (1.7) are a
pair of entropy-entropy flux of (1.5), and 7 is strictly convex in the set of state space
Q given by
Q={(pu,ec,e;) ER™ | p>0,e.>0,¢ >0}

Moreover, any smooth solution of the system satisfies the entropy equality

vp

Te - E 23
TETZ( - )

(19) 3t77(,0a pu, 567 51) +div ¢(pa pu, 583 gz) = -

This manuscript is for review purposes only.
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GLOBAL EXISTENCE FOR EULER BITEMPERATURE EQUATIONS 3

which is a partially dissipative condition of the system. It is known that the second-
order derivative of a strictly convex entropy provides a symmetrizer of a hyperbolic
system in conservative form (see [9, 3]). Unfortunately, the equations for &, and
& in (1.5) are not in conservative form. As already noticed in [2], (W) is not a
symmetrizer of system (1.5). For the sake of completeness we prove this result in the
Appendix of the present article.

According to the theory on the symmetrizable hyperbolic system [14, 12, 15], the
existence of a symmetrizer is very important to study smooth solutions in Sobolev
spaces. Such a symmetrizer for (1.5) is constructed in Section 2 in any space dimen-
sion. It implies the local existence of smooth solutions. See By(V) defined in (2.10)
and Proposition 2.1.

In order to study global existence, we may introduce the total energy £ and the
total pressure p defined by

E=E+&, p=petpi
From (1.3) and (1.5), we have

De Di
£=_"Le
'Ve_l+'7i_1

1
+5plul, p=p[(e = Deeee + (i — Deei]

and

Op + div(pu) = 0,
(1.10) O¢(pu) + div(pu @ u) + Vp = 0,
0 +div (u(€ +p)) =0, ¢>0, z€R™

The last equation in (1.10) shows that the total energy is a conservative variable. If
Ye = i, we introduce a total internal specific energy € by € = cee. + c;¢;. Then

1
€=pe+5plul’s p= (7 —1pe.

Therefore, (1.10) becomes the gas dynamics equations. In this case, system (1.5) is
decoupled and contains (1.10). It is known that smooth solutions to the gas dynamics
equations blow up in finite time [13, 23]. Hence, global existence is not expected.
In physically realistic situations, one can define a weak solution containing shocks.
Existence and uniqueness of weak entropy solutions is rather well understood for one-
dimensional strictly hyperbolic systems of conservation laws, see [4] and references
therein. For systems with non-conservative products, the authors of [8] gave a def-
inition of shocks, but to our knowledge there is no result on the existence of such
solutions for (1.5).

In what follows, we consider the Cauchy problem for (1.5) near constant equilib-
rium states in case 7y, # ;. Let us introduce

V= (pa uT766;€i)T

An equilibrium state V is a constant solution of (1.5). We consider in particular an
equilibrium state with zero velocity. Let

f} = (1707§Ea§i)Ta

be such an equilibrium state with £, > 0 and &; > 0.

This manuscript is for review purposes only.
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4 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG
System (1.5) is supplemented by an initial condition

(1.11) t=0: V=VWx) &f (po(ac),uOT(x),seo(x),Eio(x))T, r € R

For a positive integer m we denote by H™ (R?) the usual Sobolev space equipped with
the norm || - ||,,. The result of the global existence of solutions holds in one space
dimension and can be stated as follows.

THEOREM 1.1. Let d = 1 and m > 2. Assume Vo —V € H™(R) and ve # vi-
There are two positive constants ¢ and ko such that if [|[Vo — V|[m < ko, then the

Cauchy problem (1.5) and (1.11) admits a unique global solution V satisfyingV —V €
C(R*; H™(R)) N CHR*; H™L(R)). Moreover,

(1.12) sup [[V(t,+) = Vllm < c[Vo = V|lm.
teRT

For conservative hyperbolic systems with source terms, the global existence of
smooth solutions near constant equilibrium states was proved in [10, 26] in a general
framework under two main conditions. A typical example in this framework can be
seen in [24, 7] for the gas dynamics equations with damping. The first condition
required in [10, 26] is an entropy dissipation near an equilibrium state. It implies in
particular an L? energy estimate of solutions. The second one is the classical Shizuta-
Kawashima condition (SK) at the equilibrium state [22]. Unfortunately, these two
conditions are not satisfied by system (1.5). The first condition obviously fails because
(1.5) is not a conservative system. However, it is known that (SK) is not a necessary
condition for the global existence of smooth solutions. There do exist conservative
systems for which global existence holds without this condition. We refer the reader
to [27, 6, 19, 17] for examples in which different techniques are employed to avoid
condition (SK).

Thus, it is important to establish a global existence result for a class of systems
including at least one of these examples. In [16] the authors studied energy estimates
of smooth solutions near non-constant equilibrium states for conservative systems. In
one space dimension, they obtained global existence for systems violating condition
(SK) but admitting a very special structure. This allows them to give a proof of global
existence by using only a partially dissipative condition via an entropy dissipation.
This situation is different from that of the present paper. In the proof of Theorem 1.1,
we not only need a partially dissipative condition but also a dissipation estimate for
other variables (see Lemma 3.5). In [21] the authors tried to explore a link between the
linear degeneracy of characteristic fields and condition (SK) for conservative systems.
Under restrictive conditions, they obtained time-decay estimates of solutions which
imply global existence. One can check that the conditions in [16] and [21] are not
fulfilled by (1.5) and the systems in [27, 6, 19, 17].

Up to our knowledge, Theorem 1.1 provides a first result on the global existence
of smooth solutions for a non-conservative partially dissipative hyperbolic system
with source terms without condition (SK). The proof of this theorem is based on
the local existence of solutions and uniform energy estimates with respect to time
through Lagrangian coordinates. It consists of three steps. The first step concerns
an L? energy estimate. For this purpose, the entropy equality (1.9) is not sufficient
because the system is not in conservative form. We need further to prove equilibrium
conditions between the system and the entropy 1 given in (1.7) at the equilibrium
state. The verification of these conditions is very complicated and tedious for (1.5).
To avoid this, we turn to consider the Cauchy problem in Lagrangian coordinates

This manuscript is for review purposes only.
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GLOBAL EXISTENCE FOR EULER BITEMPERATURE EQUATIONS 5

where these conditions can be easily checked (see Lemma 3.1). The second step is to
establish higher-order energy estimates with a dissipation estimate for T, —T;. This is
a classical step which is done by choosing an appropriate symmetrizer of the system
(see Lemma 3.4). In the last step, we prove a dissipation estimate for (Vu, Vp)
(see Lemma 3.5). In view of special structures of the system, these estimates are
sufficient to obtain the global existence of solutions in Lagrangian coordinates. Then
Theorem 1.1 follows from the equivalence result for the solutions between Eulerian
and Lagrangian coordinates. Remark that in the proof of Theorem 1.1, we need to use
different independent unknown variables in different energy estimates. The difficulty
on the lack of condition (SK) for system (1.5) is overcome by choosing appropriate
variables connected by C°°-diffeomorphisms.

Finally, we point out that there exists a result on the global existence of solutions
for partially dissipative hyperbolic systems in non-conservative form which satisfy
condition (SK). However, the space dimension is required to be bigger than 3 [20]
(see Theorem 2.4). System (1.5) is not included in this framework since it does not
satisfy condition (SK). So far, global existence in several space dimensions is an open
problem for (1.5).

This paper is organized as follows. In the next section, we first exhibit a sym-
metrizer to apply the result on the local existence of smooth solutions in several space
dimensions. Then we study the structure of the system in one space dimension in Eu-
lerian and Lagrangian coordinates. In particular, we show that system (1.5) does not
satisfy condition (SK). We also state a result on the global existence of solutions for
the system in Lagrangian coordinates (see Theorem 2.3). Section 3 is devoted to the
proof of the energy estimates in the three steps mentioned above. In the last section,
we give the proof of Theorem 2.3 and then the proof of Theorem 1.1 by using a result
on the equivalence of solutions for the Cauchy problem in Eulerian and Lagrangian
coordinates.

2. Study of the bitemperature Euler model.

2.1. Symmetrization of the system. System (1.5) can be written in the form
Op + div(pu) =0,

O (pu) + div(pu @ u) + Vp =0,

0:Ee + div (u(&’e —|—pe)) —u-(¢;Vpe —c.Vp;) = v(p)v,

0.&; + div (u(é’Z —|—pi)) +u-(¢;Vpe —e.Vp;) = —v(p)v, t>0, z¢€ R,

(2.1)

with relations (1.1)—(1.4) and (1.8) and
v=p(T; = T.), To=Dbaca, «a=e,i.
Now we write the system with variables (p, u, ec, ;). We first remark that
(2:2) div(pu® u) = p(u- V)u+ udiv(pu), p=pe+pi.
Then, for p > 0, the first two equations in (2.1) give
(2.3) ou+ (u-Vu+p~'Vp=0.

By the definition of &£, and the first two equations in (2.1) together with (2.3), we

This manuscript is for review purposes only.
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6 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

have

1 1 1 1
— 00 + div(ua)] = FPu Oru + Tkl Ot(pu) + pdieq + €401p + div (§p|u|2u + pusa)

1 1
=—gpu- [(u-V)u+ p71Vp] BELE [div(pu @ u) + Vp| + pdiea
1

—eq div(pu) + div <§p|u|2u + pusa).

Since
1
~pu- [(u- V)] =~ gpu- V(JuP),
div ( Splufu) = ¢ [uf? div(pu) + S pu- V(uf?)

2 2 2 ’

using (2.2), we obtain

1 1 1
—5pu [(u-V)u+ p_1Vp] - U [div(pu @ u) + Vp] + div (§p|u|2u)

_ 1 2y L e (L2
= —5pu- V(jul?) = u- Vp = S[uf*div(pu) + div (Splul*v))

= —u-Vp.

We also have
—eq div(pu) + div(pue,) = pu - Ve,.

These equalities imply that

L [8t8a + div(ué’a)] = pOieq + pu - Ve, —u - Vp.

Ca
Moreover,
(2.4) div(upe) —u - (¢;Vpe — ceVp;) = pe divu + cou - Vp,
' div(up;) +u - (¢;Vpe — ceVp;) = pidivu + c;u - Vp.

It follows that

1 1
— [8,566 + div (u(c‘je +pe)) —u- (¢;Vpe — ceVpi)] = pOiee + pu - Vee + c—pe div u,

€

1 1
= [0:E; + div (w(& + i) +u- (¢;Vpe — V)| = pdiei + pu - Ve; + P div u.
Finally, by the expression of p, and the last two equations in (2.1), we obtain
Otee +1u-Vee + (ve — Ve divu = v(p)(cep) v,
i +u- Ve + (i — e divu = —v(p)(cip) "o,

which are the equations for . and ¢;. Thus, system (2.1) is equivalent to

Op + div(pu) =0,

Ou+ (u-V)u+p~tVp =0,

Otee +u-Vee + (Y — Ve divu = v(p)(cep) v,

Orei +u-Ve; + (v — Ve divu = —v(p)(cip) " tv, t>0, z€RY

(2.5)

This manuscript is for review purposes only.
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GLOBAL EXISTENCE FOR EULER BITEMPERATURE EQUATIONS 7

where
(2.6) p = plee(Ve — Dee + ci(vi — Vil
v = p(big; — bege).
Let
V=(pu" cc,e))", €1 =ce(ve — Dee + ci(vi — Ve,
where the superscript 7' denotes the transpose of a vector. Since p = pe; and

p Wp=pteVp+ Ce(Ve — 1)Vee + ci(yi — 1)Vey,

system (2.5) is written in the form

d
(2.7) Y+ Bi(V)0,,V=H(V), t>0, x= (1, - ,24) € R,
j=1
where
U pef 0 0
-1 ] I e\'Je — 1 AN 1
(2.8) B,(V) = P gley ( Ujld . ce(y Je; iy )e; ,
Ye — l)Eeej Uj 0
0 (vi = Desef 0 U
and
0
0
(2.9) HY) = ,

v(p)(cep) v
—v(p)(cip)~tv
with u = (u1,- - ,uq)?, Iz being the unit matrix and (ey, - , eq) being the standard
basis of RY.

By a symmetrizer By()) for system (2.7) we mean that By()) is a symmetric

positive definite matrix such that By(V)B;(W) is symmetric for all j € {1,2,--- ,d}
(see [15]). Now we introduce a diagonal matrix

(2.10) Bo(V) = diag(e1€cei, p°eceila, cepei, cip®ee).

Obviously, By(V) is symmetric positive definite in 2. Moreover,

Bo(V)B;(V)
UjE1EeE; pslsesiejT 0 0
PE1ECEE; pPujeceily ce(Ve — 1)p*eceie;  ci(vi — 1)pPcecie;
- 0 ce(Ye — 1)pPeceie] cepuje; 0
0 ci(yi — D)pPeceie] 0 cip?uje,

which is a symmetric matrix. Therefore, By(V) is a symmetrizer and system (2.7) is
symmetrizable hyperbolic in the sense of Friedrichs. According to Lax [14] or Kato
[12] (see also Majda [15]), for smooth initial data, the Cauchy problem for (2.1) admits
a unique smooth solution, locally in time. This result is stated as follows and it holds
in any space dimension.

This manuscript is for review purposes only.
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PROPOSITION 2.1. Let m > d[? + 1 be an integer and €, > 0 and &; > 0 be two
constants. We suppose that Vo —V € H™(R?) and

2.11 inf >0, inf eq(z) >0, inf ei(z) > 0.
@ B >0 a0 i col)

Then, there exist T > 0 and a unique smooth solution V to the Cauchy problem (1.5)
and (1.11). This solution satisfies V —V € C([0,T]; H™(R?)) N CL([0,T]; H™~1(R9))
and

inf t,z) >0, inf t,x) >0, inf i(t,x) > 0.
<m>€1[3T1Xde( =) (t,x>el[3T1de€e( z) (t,w)el[&T]deaz( z)
Remark 2.2.

Condition ||[Vo—V||m < ko in Theorem 1.1 with g being sufficiently small implies
(2.11).

2.2. The system in one space dimension. In one space dimension, systems
(2.1) and (2.5) are written as :

Orp + 0, (pu) =0,
0y (pu) + 04 (pu + p) = 0,

(2.12)
e + 0y (u(Ee +pe)) — ulciOzpe — cdupi) = v(p)v,
i + 00 (W& + pi)) + u(ciOppe — CeOupi) = —v(p)v, t>0, z€R
and
Op + 9x(pu) =0,
(2.13) Ou + u0,u + pflamp =0,

Oree +u0pee + (Ve — 1)ec0pu = v(p)(cep) v,
Ore; +u0ze; + (v — 1)gi0pu = —V(p)(cl-p)_lv, t>0, x€R

respectively. From (2.6) and (2.13), we further obtain

1
O (p%ee) + O (pPect) + Yep cedzu = —v(p)pu,

€

1
Du(p?ei) + Ou(p?eiu) + vip?eidau = ——v(p)pv,

which imply that

Ot(pp) + 0 (ppu) + pr1dsu = (ve — vi)v(p)pv,
(2.14)

bi be
9t (pv) + Ox(pvu) + pp2dyu = — (* + *) v(p)pv,
C; Ce
where
(2 15) H1 = P[Ce%(% - 1)56 + ci’)/i(lyi - 1)5i]a
p2 = p(biviei — bevece)-

By (2.6) and the expression of u above, we see that 11 and po can further be expressed
as linear functions of p and v as

(2.16) <M1>:M<p>,
o v

This manuscript is for review purposes only.
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where M is a constant invertible matrix given by

(217) M = ! <

(mec; +mice)kp

kp (meci’yi + mice'\/e) Cecik2B (lyi - 'Ye)
memi (Vi — Ye) kp(mecive +miceyi) .

By the expression of B; given in (2.8), we can calculate the eigenvalues \; and
the eigenvectors r; of (2.13). They are given by

)\1(V) =u-—a, )\Q(V) :)\3(V) = u, )\4(V) =u+a,

p 0
—a 0
B B B
(v — Ve (Ve — Dee
—p P
0 a
= 2. n)=| o e |
€ (vi — D&

where

a(gea5i> = \/Ce')/e(’ye - 1>€e + Ci’Yi(’Yi - 1)Ei~
Moreover, by (2.9), we have

00 0 0

' 00 0 0
V) = 00 —z—zy(l) 2v(1)
00 Zy1) —2u(1)

It is known that condition (SK) is invariant under a change of unknown variables
by a C!-diffeomorphism [10]. This condition shows a coupling property between the
eigenvectors and the source terms of the system. At a given equilibrium state V,
it means that H'(V)r;(V) # 0 for all i = 1,2,3,4. From (3.3), we see easily that

H'(V)r3(V) = 0. This shows that condition (SK) is not satisfied for system (2.13).

2.3. The system in Lagrangian coordinates. Let (p,u) € C'(RT x R) sat-
isfying p > const > 0 in RT x R and

(2.18) Op + 0z (pu) = 0.
The Euler-Lagrange change of variables from (¢,z) to (¢,y) is defined by
t'=t, dy= pdr — pudt,

or equivalently for y :

y=/mpm®% with X4(t) = u(t, X, (¢)).

Xl(t)

It is clear that this change of variables is a diffeomorphism from R* x R to itself. For
simplicity, we use the same notation for unknown variables in FEulerian coordinates
(t,z) and in Lagrangian coordinates (¢,vy).

This manuscript is for review purposes only.
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10 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG
Consider smooth solutions for (2.12). Let
(2.19) T=pt, Ey,=7& = %coéu2 + Cafa, a=e,i.
Given a first-order partial differential equation
(2.20) 0w + Opz1 + b0yp2z0 = f.
By (2.18), in Lagrangian coordinates this equation is written equivalently as
(2.21) O(Tw) + 0y (21 — wu) + bOyze = Tf.
Applying this to (2.12), we obtain

Oy — Oyu =0,
Opu + ayp =0,

(2.22)
OrEe + peOyu + cculyp = v1v,

OcE; + piOyu + c;ulyp = —vTv.
Similarly to (2.14), by (2.4), we obtain
O+ 7 0yu = (ve — vi)vv,

bi b
O + 17 e 0yu = —(i + —e)m),
Ci Ce

(2.23)

where p; and po are given in (2.16).
Regarding p,, and p as functions of (7, u, E,, E;), we have

1 1
Pa = 7(7& - 1)(E(x -3

Cau2)7 Oé:(f,i7 P = DPe + Di-
T 2

Hence, system (2.22) can be written as
(2.24) U+ AU)OU =GU), t>0, yeR, U= (1,u,E., E;)",

which is supplemented by an initial condition

def

(2.25) t=0: U=Uy) = (To(y),uo(y% Eeo(y)yEio(y)), y € R.
Here,
0 -1 0 0 0
Or Oy 0 OE, 0
AU) = '4 p E.D E;P 7 g(U) _ ,
0P Pe+ CeuOup Cceulp,p  Cceulgp,p VTV
culrp i+ culyp culg,p  culg,p —VUTV
with
Ce(Ve — 1) +ci(v;i — 1)|u e — 1 i — 1
op=—-2, 8up=—[ G ) (i V) ; 61;519:7 , Opp= ik
T T T
Let - -
U= (]—7 03 Eea Ei)Ta
which is an equilibrium state of (2.24) with £, > 0 and E; > 0. The result of global
existence of solutions to (2.24) and (2.25) can be stated as follows.

This manuscript is for review purposes only.
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THEOREM 2.3. Letm > 2 and Uy —U € H™(R). Assume v, # ;- There are two
positive constants ¢ and k1 such that if [[Uy — U||lm < K1, then the Cauchy problem
(2.24) and (2.25) admits a unique global solutionU satisfyingUU—U € C(R*; H™(R))N
CL(R*; H™(R)). Moreover,

(2.26) sup IIU(t,-)—UllimL/O (I0yul7 1 +10ypl7 1 +lvI7,) dt” < clltd — U7,
€

3. Energy estimates in Lagrangian coordinates. We study energy esti-
mates for the Cauchy problem (2.24) and (2.25). Let m > 2 be an integer and T > 0
such that the local smooth solution U is defined on time interval [0,7]. We denote
by || - I, || - lleo and || - ||; the usual norms of L?(R), L>(R) and H!(R) for I € N,
respectively. We also denote

Up = Ut, ) = Ul|m.
T tgg§]ll (t,-) = U]

We consider a smooth solution I near I, namely, Uy is small. In the proof below, we
denote by C' > 0 and ¢y > 0 generic constants independent of ¢t and T

The global existence of smooth solutions to (2.24) and (2.25) will be proved in
the three steps shown in Introduction.

3.1. An L? estimate. We first look at the entropy equality (1.9) in Lagrangian
coordinates. From (2.6), we have

(mp — c;kpv)T

(Ve = D)(meci +mice)’
(mep + CekB'U)T

(vi = D) (meci +mice)’

Ee =

E; =
which are strictly positive in a neighborhood of v = 0 when 7 > 0 and p > 0. It
follows from the definition of b, T, and v that

vp
Te Ti

(T; — T.)* = —v1pv°,

where v; = v1(7,p, v) given by

k% (meci +mice)?v

3.1 - _
(3.1) v mem;(mp — c;kpv)(mep + cekpv)

It is clear that, for all 7 > 0 and p > 0, ¥; > 0 in a neighborhood of v = 0. We
introduce a new variable

which is a function of variable #. According to the equivalence of equations (2.20)
and (2.21) in two coordinates, the entropy equality (1.9) in variables (¢, y) becomes

(3.2) Ors = —110%,

which means that s is an entropy of system (2.24) with 0 as its entropy-flux.
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344 Recall that an equilibrium state with zero velocity is of the from

345 V=(1,0,&,5)T.

346 By definition, V is an equilibrium state for (2.7) if #(V) = 0. Since v > 0, by the
347  definition of H and v, we have

348 (3.3) beEe = bjE;.
3149 Combining this with (2.19) yields

beEe _ szz def =

350 = = E, >0
Ce C;
351 LEMMA 3.1. For allU in the domain under consideration, it holds
352 (3.4) Vs(U)GU) =0
353 and
354 (3.5) VsU)AU) = VFU),
355  where
1 e T

356 FU) = E—*up — kg <ﬂcle + ﬂ%)u
357 Proof. A straightforward calculation gives
358 —0-s(U) = ks (& + &>,

T me m;

¢ ¢
35¢ —0y u:—( © Z) ,
o 8( ) bege + bif‘:i Y
360 Op,s(U) = L O, s(U) = !
o Be B b€€67 B B bi5i7
361  where
1 1, .
362 Ea=—F,—-u*, a=e,i.
Coy 2

363 Therefore,

- ¢ Ci
364 -0, =kp(—+—),
36 s(U) B(me + mi)
365 —0ysU) =0,
- - 1

366 —0g,s(U) = —0g,s(U) = =.
367 Hence, it is easy to check that (3.4) and (3.5) are satisfied. |
368 LEMMA 3.2. In a neighborhood of U, it holds

— t —
369 (3.6) ed(t,-) — U2 +/ o, )%t < C|lUo —U||?, Vte[0,T).

0
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GLOBAL EXISTENCE FOR EULER BITEMPERATURE EQUATIONS 13
Proof. We introduce
SU) = sU) — s(U) + VsU)(U —U).

Since 7 is a strictly convex entropy for (2.1), by a result in [25], s is a strictly convex
entropy for (2.24). Hence, by Taylor formula, in a neighborhood of U, these exist two
constants co > ¢; > 0 such that

ald —U? < SU) < et — U
Using (2.24) and (3.2), we have
oS — VsU)AU)OU = —v1v* — VsU)GU).
It follows from Lemma 3.1 that
oS — 9, FU) = —v1v?.

In a neighborhood of U, there is a constant 7; > 0 such that v; > 7;. Thus, integrating

this equality over [0,¢] x R with ¢ € [0, T, we obtain (3.6). d
3.2. Higher-order energy estimates. Let U = (u,p,v,s)’. We use variable

U in higher-order energy estimates. From (2.22), (2.23), and (3.2), we have

atu + (9yp = 0,

(3.7) Op + 7 mdyu = (i — ye)vo,

) v + T_lugayu = —bvw,

Ors = —V11)2, t>0, xR,

where v is defined in (3.1), p1 and pg are defined in (2.16) and (2.17), and

L)

Ci Ce

In particular, g and ps are linear functions of p and v. This system can be written
as

(3.8) U+ AU, U =GU), t>0, zeR,
where
0 1 0 0 0
-1 0 0 O —(Vi — Ve
AU) = T71u1 o) - (Vi = ve)vv 7
T w2 0 0 0 —bvv
0 0 0 O -0

and 7 is regarded as a function of U. By the definition in (2.6), the equilibrium state
for U is U = (0,p, 7, 3) with

p = (75 - l)Ee + (71 - 1)E1 > 0) = Oa s = S(U)

S]]

We first prove the following useful property.
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LEMMA 3.3. Let d(p,v) be defined by

(3.9) d(p,v) = bpa(p,v) — (vi — ve)p2(p, v).
There is a constant § > 0 such that §(p,v) > § in a neighborhood of (p,0).

Proof. By continuity, it is sufficient to prove that 4(p,0) > 0. From (1.2), we have

Ce Zme

(& m;

It follows from the definition of b, in (1.8) that

bice(’}/e - 1) beci(% - 1) b;
—_ =7 — Lt -2 —1).
e be (i )’ Co 7 (Ve )

Since p = 1, from (2.15) we obtain
= Ve — 1 — _ _ _
6(p,0) = | i = 1+ = | (Zyebee +7ibigi) = (i = 7e) (ibii — Yebece) -

Using the fact that b.&. = b;5; > 0 (see (3.3), §(p,0) > 0 if and only if

-1
(% -1+ %Z ) (Z9e +7) > (v = 7e)?,
or equivalently,
YeZ(vi — 1) +vi(ye — 1) > 0.

Lemma 3.3 is proved since Z > 0, ; > 1 and v, > 1. 0

LEMMA 3.4. Let the conditions of Theorem 2.3 hold. If U — U|| is sufficiently
small, for all t € [0,T], we have

t
U, ) — )% + / lo(#, ) 2.de
0

(3.10) .
< Oltho —Ull7, + C/O (I0yullm—y + 10yl -y + l0ll2) 1 = Ullmdt'.
Proof. Let
Ho 0 0 0
0 22—y 0
AO(U) = Yi—Ye H2 ,
0 — U2 M1 0
0 0 0 1
where
Ho(\T, P, V) = 7T—— M p,vép,v,
0(rp.0) = (. 2)8(0. )

and d(p,v) is defined in (3.9). By Lemma 3.3, in a neighborhood of U, there are
positive constants i1, fie and fig such that

Nl(p, ’U) > 1, (72 - ’Ye),u‘Q(p7v) > 2, IU'O(Tapa U) > Ho-

This manuscript is for review purposes only.



GLOBAL EXISTENCE FOR EULER BITEMPERATURE EQUATIONS 15

120 Then it is easy to check that, in a neighborhood of U, Ay (U) is a symmetrizer of system
421 (3.8), namely, Ag(U) is symmetric positive definite and Ag(U)A(U) is symmetric. In
422 particular,

0 u 0 0 0
gw 0 0 0 0

42 Ag(U)A(U) = . Ag(U)GU) =

23 o(U)A(U) 0 0 0 0 o(U)G(U) s
0O 0 0 0 —1 02

124 Let 1 < k < m be an integer. We denote Uy, = 8§U. From (3.8), we have

125 (3.11) Uy, + A(U)0, Uy, = 05G(U) + Jy,

426 where

427 Je = A(U)0, Uy, — 95 (A(U)0,U).

128 Taking the inner product of (3.11) with Ag(U)Uy in L?(R), we obtain the Friedrichs
129 energy equality

4

o0 (3.12) dt(Ao(U)Uk, Ur) = 2(Ao(U)05G(U), Ui) + 2(Ao(U) Ji, Ur)

+ (div A(U) U, Uy ),

431 where (-,-) is the inner product of L?(R) and

432 div A(U) = 8, A0(U) + 8,A(U), A= AA.
433 By the definition of Ay and A, we have
Otfio Oy o 0 0
- 0 b_p -0 0
434 leA(U) _ yHo e— L2 t 2 ,
0 — O 1o Oy 0
0 0 0 0
135  with
436 Oypo(U) = po(0)0,U,
437 i (U) = pi(U)oU = pi(U)(G(U) — A(U)9,U), i=0,1,2.

138 Since G(U) = O(v) and the imbedding from H™(R) to W1°(R) is continuous, we
139 obtain

w0 (313)  {(div AU Us) < C(10,ullay + 10,0101 + 10,0131 ) U = Tl

441  Next, a direct calculation yields

0
w2 AUy = 7 (5 — o) 9= Ol (7 (5 — ) Oy) |
20l (1~ ) — w0 (77" p2dyu)
0
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16 D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

By the Moser-type inequalities [15], we have
(3.14)  2(Ao(U)Ji, Ur) < C(II0yull7—y + 10y2l -1 + 10y0l7 - )IU = Ul

Moreover,
0 0
_('71’ - 'Ye)VakU (’Yi - 76) (Vakv - ak(VU)) def
yG(U) —bvdfv * brdfv — bdy (vv) G
0 —oF (n1v?)
with
0
Ag(U)Gy = 0
o L —51/851)
0
and
0
ass (i — %)(1/8511 — 85(1/1})) — [i2 [bu@l’jv — b@l’j(uv)]
Ao(U)G2 = k k k k )
11 [buayv — boy ()] = pa (v — %)(uayv — 0, (vv))
—8§(V1’U2)
where
__bus
a99 .
Vi — Ve

These equalities imply that
Ao(U)Gy - Uy = —bv|ov]?

and
Ag(U)Gy - Uy :<a22(’yl— - ye)(yalgv — 65(1/1))) — 2 [bu@fv - b@g(uv)Dﬁgu
(3.15) + (,ul [bV8§U - baf(uv)] — pa(y — ’ye)(l/ﬁlzjv — 85(1/11)))851)

— 85(1/1112)8];8.

Observe that each of three terms on the right-hand side of (3.15) is quadratic in

variables (u,p,v) with coefficients depending on derivatives of U — U up to order m.
Moreover, using Lemma 3.3, we have dv > §v in a neighborhood of U, where 7 > 0 is
a constant. Thus, the Moser-type inequalities imply that

(Ao(U)9;G(U), Uy) + 67050

(3.16) _
< C(I0yull—y + 18yl -1 + 1) 1T = Ulln-

Since Ag(U) is positive definite, (Ao (U)Uy, Uy, ) is equivalent to [|[Ug||*>. Combining
(3.12)-(3.16) and integrating (3.12) over [0,t] with ¢ € [0, 7], we have

t
U + / loku(e, )| Pd

t
< C||Uo — U7, + C/O (Iyull7 -1 + 18ypll5 -1 + I0IZ)IU = Tllmdt’,
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where Uj is the initial data of U. Finally, the change of variables U —— U is a C'*°-
diffeomorphism in a neighborhood of U. Then, ||U —U||; is equivalent to || —U||; for
all [ € N. Summing up this inequality for all £ = 1,2,--- ,m, and using Lemma 3.2,
we obtain (3.10). o

3.3. Dissipation estimates.

LEMMA 3.5. Let the conditions of Theorem 2.3 hold. If ||U — U||,, is sufficiently
small, for all t € [0,T], we have

t
LA (18yul%s_y + 10,012 1) d’
(3.17)

t
< Oty — U7, + C/O 0y ullfuzy + 10yl -1 + 0ll5) 106 — Ullmdt".
Proof. Let k be an integer with 0 < k < m — 1. Applying 65 to the first three
equations in (3.7) yields
Oi0yu+ 9yt p =0,
(3.18) 8t8§p + T_1u18§+1u = T_1u16§+1u - 85 (t7 moyu) — (vi — %)85(1/11),
3@51} + 771u265+1u = 771u285+1u — 35 (77 p20yu) — b@z’j(uv).
We multiply the third equation in (3.18) by (; —v.) and take the inner product with
%y in L*(R). Using (v; — ve)7 2 > 3co it yields
3co||8§+1u\|2 < —(vi— fye)<8t8§v, 8§+1u>
+ (v — 7€)<T_1u28§+1u — 85 (T_lugayu) — bag(yv), 65+1u>.

By the Young inequality and the Moser-type inequalities, the last term above is
bounded by -
coll0y Frull® + Clloll, + Clldyully, 1 U — Ul

Moreover, by the first equation in (3.18) and an integration by parts, we have

d
= (% = )00y, 0y ) = = (35 = 7e) (v, Oy ) + (v = 7e)(0y v, 0y )

IN

d
— (s = ) 5 (O, Dl ) + B0 + Cllel2,
where # > 0 is a small constant to be chosen. This implies that
d
2010y ull® < — (v = 7e) (v, 0y )
+ 810y pl1? + Clloll, + Clloyulln - 1 = Ul .

(3.19)

Similarly, taking the inner product of the first equation in (3.18) with 65“17 in
L?(R) and using an integration by parts, we have

d
105 pl1* = == (0yu, 0 p) — (95 u, Oy 0nm).
By the second equation in (3.18), we obtain as above
—<8§+1UJ, 6§3tp> = <a§(7_1ulayu) - T_1M18§+1U + (Vi — %)55(’/11)7 3§+1U>
+ <7’71u135+1u, 35+1u>

< Cloy  ull + Clloll7, + Clloyully, 1 U — Ul
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Hence,

d _
(3.20) [|a; " pll* < —a@fu,3§+1p>+C||3§+1u||2+C|\v||31+0||3yu||3nflllu—U||m~
Combining (3.19) and (3.20), and choosing 8 > 0 to be sufficiently small, it yields

d
collOy ull + B0y pl* < = (v = 7e)(Oyv, 0y ) + 28(0yu, 9, p)]

+ Cllvll%, + Clloyull 1t = Ullm-

(3.21)

Finally, since 0 < k < m — 1, we have
[(Oyv. 0y )| + [(Oyu. 0y 'p)| < Cllud — U5,

Integrating (3.21) over [0,¢] with ¢ € [0,7T], we obtain
t
/ (g + ull® + oy pl*)dt’ < Clld — Ull7, + Clitlo — U1,
0

t
0 [ (ol + oyl st =) ).

Summing this inequality for all k =0,1,--- ,m — 1 and using Lemma 3.4, we obtain
(3.17). a0

3.4. Proof of Theorem 2.3. From (3.10) and (3.17), we have
led(t,-) — U7, + /Ot (10yullZe-y + 110ypll -y + [[0l17,)dt’
< Oty — U7, + CUr /Ot (Iyullz,y + 10ypll7, 1 + I0ll7,)dt’, ¥t € [0,T].
Since Ur is sufficiently small, we further obtain
led(t, ) = U7, +/Ot (I8yullzy +10ypll5, 1 + llvl7) dt" < Clltdo —U|I7,, ¥t € [0,T].
This estimate together with a bootstrap argument implies (2.26) and the global ex-

istence of a solution U to (2.24) and (2.25), provided that |[Uy — U||,, is sufficiently
small. 0

4. Proof of Theorem 1.1. For the Cauchy problem for (2.12) with initial data
given in (1.11), we first define

Yo(x) = /0 " pol€)de.

Then Yy = po. By the condition in Theorem 1.1, we have in@fR po(z) > 0 and py —
TrE

1 € H™(R). Therefore, the continuous imbedding from H™(R) to C™ () implies
that Yy is a C"™-diffeomorphism from R to R. We denote by Xy the inverse C™-
diffeomorphism of Yy and define

1

1 1
Uo(y) = (pi()’ U, 5%“3 + Ce€eo, 501‘“(2) + Cﬁz‘o) (Xo(y)).
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Then condition Vo —V € H™(R) implies that Uy — U € H™(R) and condition ||V —
V|m < ko with k¢ being sufficiently small implies that ||Uy — U||., is sufficiently
small. According to Theorem 2.3, there exists a global smooth solution U(t,y) =
((t,y),u(t,y), Ec(t,y), Ei(t,y))T to the Cauchy problem (2.24) and (2.25). Then, we
define

1 1 1
t = alt :7Eozta 772t7 ) :a"
p(t,y) Tty © (ty) o (ty) —gu'(ty), a=es
On the other hand, the result in Theorem 2.3 also implies that & € C*(R* x R)
and U is globally Lipschitzian on R with respect to y (in particular for 7 and ). Then
the Cauchy problem to the following ordinary differential equation

Yi(t) = u(t,Y1(t)), Y1(0) =0,

admits a unique global solution Y; € C?(R*). Let us further define a function X by

X(t,y) = /y 7(t,m)dn.

Yi(t)

Then, X € CH(RT xR). Similarly to Yy, for all t € R, X (¢,-) is a C™-diffeomorphism
from R to R. Let us denote by Y (¢,-) the inverse C™-diffeomorphism of X (¢,-). It is
easy to see that

X(O’y) = XO(y)7 Y(O,CL’) = YO(CC)

Finally, we define
V(t,z) = (pusee, )’ (1Y (t, ).

It is proved in [18] (see also [25]) that entropy solutions of the Cauchy problem for
a hyperbolic system of conservation laws are equivalent in Eulerian and Lagrangian
coordinates. Moreover, there are explicit formulations of the solutions between two
coordinates. Since the solutions studied here are smooth, it is obvious that this
equivalence result holds for non-conservative systems. Applying this result, we see
that V is a smooth solution to the Cauchy problem (2.13) and (1.11). Estimate (1.12)
follows from (2.26) together with Moser-type inequalities. O

Appendix A. Strictly convex entropy and symmetrizer. There is a well-
known result showing that the second-order derivative of a strictly convex entropy is
a symmetrizer for the hyperbolic system of conservation laws [9, 3]. In general, this
result does not hold for a non-conservative system. In this Appendix, we want to show
that the bitemperature Euler model, which is a non-conservative system, provides a
good example on this topic.

More precisely, we consider the system in the form (1.5) or equivalently (1.6). De-
note W = (p, pu”’, &, &;). Since n defined in (1.7) is a strictly convex entropy, n” (W)
is a symmetric positive definite matrix. The result below implies that n”(W)C;(W)
is not symmetric in one space dimension.

Proposition. Consider the one dimensional system (2.12) and denote by C; (W) =
C(W) the related matrix. Then 7" (W)C(W) is symmetric if and only if T, = T;.

This manuscript is for review purposes only.



20

D. AREGBA-DRIOLLET, S. BRULL, AND Y.-J. PENG

559 Proof. We denote I' = ¢ +¢;y;. A straightforward calculation using (1.5) gives
0 1 0 0
(= 3)u? —(T =3)u Yo —1 v — 1
560 C= .
— et + Lee(I = 2)u? i ce(2 —D)u?  (vece +ci)u  ce(vi—1u
s+ 1ei(I —2)u? s (2 -T)w® ci(ve—Du (vici +ce)u
561
562 Let ¢ = pu. From (1.3) and (1.4), we may write p, in variable W as
2
Cad
563 Pa = (Yo — 1) (5a - ;“p )
564 Then n defined in (1.7) can be expressed as
. Cap b .
565 0= 1Te + i, Ua:_%aln(cga;)’ a=or
566 Obviously,
V) = (ne  kB2q® | Yece kpclq  kpcep 0)
¢ P 2Meppe be MePe ’ MePe ’ ’
567 V) = (m 3 kpciq®  vici kpclq 0 _k?BCip>
’ p o 2mippi b T omapi T mupi )
' (W) = 1.(W) + 15 (W).
568 Since 8%6 g;n = 0, the hessian matrix of 7 is of the following form :

2y (e + 1) Dog(ne +mi) Do 1e 3};& i

2 2 2
569 n//(W) _ apq(ge + 772) aqq(ge + 772) 32(186776 aq&-ni )
D e Dge.Me O, .Me 0
32& i aq&' i 0 agi &l
570  with
4 3 2
- YaCa Call 9 Call 9 U
571 2 = b —__>" 5 - 4=
. pp'le bap  4dbaped’ pa'le 20, p2’ peale bapca  2bapel’
572
2
c Call u
573 D2 = —— S OeMa =
) (4
1 .
575 agagana = W’ a =e,1.
aVa ey

Hence we obtain

cqut

. Yala 2 Call 2
[k 82 = —+ o = — [ = g
D[ ppn a:ZEi < ba/) 4bap5i ’ pqn azzei 2bap€3’ pgan b [)5%( 2 a)
:Z: 02 n= Z Ca (ea+u?), O2en L.
(e « ’ ’
i = bape? e bape?

580
. 2 1 _
581 €0l =61
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The entry in the 3-th row and 1-th column of r”C is

1 1
('Char = D, me % (e + e = B + OB, meleclecre + e — 200 = cereue.)
u? Yell

T 2epe? bepe.

Similarly,

(n"Chs = w - (%Ce o + e = 1)>E

 2b.pe? bece bie; p
Therefore, (”C)31 = (7”'C)13 if and only if bee. = b;e;, that is to say T, = T;. This
proves that n is not a symmetrizer of the system. In a same way, we can show that
7'C is symmetric if and only if T; = 7. 0
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