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Abstract

Space and shape have special importance in science and technology, as they underly an impressive range of real-

world structures and phenomena. Thanks to concepts and methods from calculus, it becomes possible to approximate

functions, curves, surfaces, and vector fields in terms of respective first-order (tangent) approximations obtained by

using the Taylor series. By providing an effective approximation, this approach has been extensively adopted not

only in theoretical studies (e.g. linear approximations of non-linear dynamics), but also in the most diverse types of

applications. The present work is aimed at providing an accessible introduction to first-order approximation of several

mathematical mappings and structures, with emphasis on the possibility of using these approximations as a means to

define local coordinate systems that adapt effectively to the studied mathematical entity. After providing a motivation

about first-order approximations respectively to single-variable functions, we proceed to parametric curves, multivariate

functions, implicit functions and surfaces, as well as vector fields. Several numeric case-examples and illustrations have

been provided to help the consolidation of the presented topics.

“...each human being carries a personal coordinate system, an

effective first-order approximation constantly adapting to the

surroundings.”

Excerpt from the present work.

1 Introduction

After space, shape is probably one of the aspects of the

real physical world that are closest to human intuition and

experience. Time eventually comes next, though being

intrinsically less palpable and objective.

For us, humans, space typically refers to 3D (the ge-

ometrical world where we live), 2D, and 1D Euclidean

spaces. Though we seem to be well-acquainted with shape,

this aspect of nature is not so easy to be objectively de-

fined, generally speaking.

One aspect of shape that seems to be a consensus

among humans is that it does not change under transla-

tion, rotation, reflections, and possibly scalings (e.g. [2]).

In addition, shapes distinguish themselves in terms of

varying respective topological and geometric properties,

such as curvature and torsion (see Figure 1), which are di-

rectly related to first-order variations of the tangent field

along a curve or surface.

It goes without saying that shape plays a key role in

Figure 1: Space and shape are closely interrelated not only in gen-

eral relativity, but in our day to day experience as well. To a great

extent, the important features of shapes relate to variations of their

local properties, such as orientation, along the embedding space.

For instance, abrupt variations of the tangent field along a curve

can be particularly effective in catching our attention up (saliency,

e.g. [1]). In a sense, curvature can be though in analogy to a light-

ning rod concentrating the surrounding lines of electric field.

several day to day pattern recognition tasks.

As a consequence of the key importance of space and

shape for humans, not to mean their intrinsic relationship

with nature, these two concepts underlie much of our sci-
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entific and technological developments. In mathematics,

too, space and shape often play a central role, not only

in the more straightforward Euclidean approach, but also

involving higher dimensional non-Euclidean vector spaces

that can include functions and fields.

The present work is aimed at providing a reasonably ac-

cessible introduction to local representations of space and

shape in 2D and 3D spaces, especially Euclidean cases,

as well as to the local approximation of mappings, such

functions and vector fields. Interestingly, mappings such

as y = f(x) can be immediately transformed into struc-

tures, such as the curve (x, f(x)) defined by the mapping.

Because such a study could easily become too broad,

we focus on the key possibility to represent functions,

curves, surfaces, and vector fields in terms of their re-

spective first-order approximations, as allowed mainly by

the Taylor series. In doing so, it is expected that the

present work may also contribute to developing a basic

background that can facilitate subsequent studies involv-

ing higher order and higher dimensional approaches pos-

sibly involving non-linear mappings.

Two main topics of theoretical and applied interest, are

developed here.

First, we have the possibility to obtain effective approx-

imations of functions, curves, surfaces, and vector fields

locally, around a small neighborhood of a reference point

of operation, by using the first-order respective Taylor

series approximation. This principle underlies much of

calculus as well as many numeric concepts and methods

in a broad range of areas and applications. For instance,

many non-linear dynamics can start to be investigated

locally, around a respective point of operation.

Second, we address the possibility to establish local co-

ordinate systems at the approximation points. The re-

spective motivation concerns practical applications, for

instance in data analysis, scientific visualization, and pat-

tern recogntion, where one is often interested in visualiz-

ing specific portions of multidimensional data and respec-

tive representations. In a sense, it could be said that each

human being carries a personal coordinate system, an ef-

fective first-order approximation constantly adapting to

the surroundings.

Additional motivation for coordinate system changes

have been elaborated in a previous work [3], of which the

current one can indeed be considered, in many aspects, a

continuation.

Despite the relative effectiveness of first-order ap-

proaches to local approximations, it should be kept in

mind that, when applied to complex systems involving

non-linear dynamics, a good deal of the respective struc-

ture and dynamics can be overlooked. Even so, first-order

approximations remain an interesting first approach, to

be possibly complemented by more comprehensive ap-

proaches.

A more effective reading of the present work will benefit

from previous familiarization with basic concepts from lin-

ear algebra and multivariate calculus (e.g. [4, 5, 6, 7, 8, 9]).

Two previous related works, namely [10] and [3], also

complement several aspects of the current presentation

respectively to trajectories as parametric curves, and ba-

sis transformations and coordinates change, respectively.

We start by presenting an overall motivation and il-

lustration of the potential of first-order approximations

respectively to single-variables functions of the type y =

f(x). More specifically, it is shown how non-linear func-

tions can be locally approximated around a point of refer-

ence, and how these approximations pave the way to effec-

tive estimation for calculations (e.g. integration) around

this point, as well as for defining local coordinate systems

that adapt to the shape of the function. These possibili-

ties are then discussed respectively to several other math-

ematical entities, namely parametric curves, multivariate

functions, parametric surfaces, and vector fields. A brief

discussion about the accuracy of first order approxima-

tions concludes the presentation.

2 Single Variable Motivation

To a considerable extent, the concepts of first order

derivative and differential have played a systematic and

decisive role in scientific and technological advancements,

underlying almost every mathematics-based approach.

Though these concepts may appear somewhat abstract

and intricate when applied to multivariate functions, sur-

faces and vector fields, it turns out that they are really

simple and approachable, especially when intuitive geo-

metrical terms are taken into account. In addition, a more

thorough knowledge about the simplest situation involv-

ing single-variable functions can also substantially con-

tribute to studies of more elaborate mappings and struc-

tures, because all these cases share to a large extent the

same motivation, concepts and methods.

In this section, we aim at developing the concept of first

order derivative and differential regarding this simplest

case, involving single variable functions.

Provided it can be calculated, the first derivative of g()

at a generic point x can be expressed as:

d g(x)

dx
= ġ(x) (1)

which allows us to approximate g(x) in terms of the

respective first-order Taylor series as follows:

g(x)
∣∣
x0

≈ g̃(x)
∣∣
x0

= g(x0) + ġ(x0) (x− x0) . (2)

where we shall use the notation “|x0
” to indicate a small

neighborhood around the reference point x0.
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By introducing the abbreviation m = ġ(x0), we can

rewrite Equation 2 as:

g(x)
∣∣
x0

≈ g̃(x)
∣∣
x0

= m (x− x0) + g(x0) =

= mx−mx0 + g(x0) = mx+ c

where: c = −mx0 + g(x0)

Though simple, this result is important enough to be

boxed:

g(x)
∣∣
x0

≈ mx+ c (3)

Basically, we have that the Taylor series approxima-

tion around point x0 corresponds simply to a straight line

equation.

Interestingly, in a wide range of cases in which g(x) is

reasonably smooth around the reference point, this can be

found to provide an effective approximation of the original

function g(x) around a small neighborhood of x around

x0.

This property is particularly important because it al-

lows us to represent and handle (e.g. differentiate, in-

tegrate, extrapolate, change coordinates, etc.), within a

given accuracy, the original function g(x) in terms of a

simpler representation as a line function. As a matter of

fact, the first order approximation of a function as above

underlies a vast range of theoretical and numerical con-

cepts and methods in mathematics, some of them to be

addressed in the present work.

Let us consider the following numeric example:

g(x) = 0.1x3 + 0.2x2 + 0.3x+ 0.1 (4)

x0 = 1 (5)

Fractional coefficients have been adopted in this third-

degree polynomial for the sake of more commensurate vi-

sualizations.

We start by calculating the first derivative of g(x) as:

ġ(x) = 0.3x2 + 0.4x+ 0.3 (6)

which allows us to write:

m = ġ(x0) = 0.3x20 + 0.4x0 + 0.3 = 1;

c = g(x0) = 0.1x3 + 0.2x2 + 0.3x+ 0.1 = 0.6;

g̃(x) = 1 (x− 1) + 0.6 = x− 0.4

Figure 2 illustrates the original function (in blue) as

well as its first-order approximation around x0 = 1. It

can be readily appreciated that function g̃(x) provides as

good approximations of g(x) as x is close to x0, especially

within the interval ∆ = [0.85, 1.15] (subjectively chosen

for illustrative purposes).

To begin with, and as could have been expected, the

exact derivative of g(x) at x0 can be immediately obtained

as corresponding to ġ(x0) = 1.

Figure 2: The function g(x) = 0.1x3 + 0.2x2 + 0.3x+ 0.1 approx-

imated as g̃(x) = x − 0.4 around the reference point x0 = 1. The

accuracy of the approximation increases as x becomes closer to x0.

A good overall approximation can be obtained within the indicated

interval ∆.

In addition, we can also estimate the area Ã of g(x)

along the interval ∆ as:

Ã =

ˆ xf

xi

g(x) dx ≈
ˆ xf

xi

g̃(x) dx =
|∆|
2

[g̃(xi) + g̃(xf )]

where: |∆| = xf − xi

in which we used the simple formula for calculating the

trapezium area.

Figure 3 illustrates the area to be estimated as corre-

sponding to the area of the highlighted trapezium defined

between the function g(x) and the x−axis along the in-

terval ∆.

In the particular case in which ∆ = [0.85, 1.15], we

have:

Ã =
|∆|
2

[g̃(0.85) + g̃(1.15)] = 2.1

Now, this is very close to the value ≈ 2.11125 obtained

analytically (relative error of 0.53%), which substantiates

how effective linear approximations can be, provided we

operate sufficiently close to the reference point x0.

Having obtained the approximation g̃(x), another in-

teresting possibility consists in defining a new coordinate

system that adapts effectively to the original function g(x)

at x0, as illustrated in Figure 4.

By “adapt” we mean that the new x̃ axis aligns with

the tangent of the function at x0, while having its origin

at P = (x0, g(x0)). Informally speaking, it thus provide a

representation of the function, as well as other elements
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Figure 3: Illustration of using the approximation g̃(x) for the es-

timation of the area comprised between the function g(x) and the

x−axis along the interval ∆. The obtained estimated area Ã = 2.1

is very close to the respective analytic value A = 2.11125...

Figure 4: A new coordinate system (x̃, ỹ) defined at P = (x0, g(x0))

by taking the tangent to the curve as being parallel to the first versor

associated to the basis of the new coordinates. The second versor

has been taken to be orthogonal to the first and oriented along the

y−axis of the old system.

in the original space, as perceived by a nanoscopic elon-

gated being placed at P = (x0, g(x0)) kept tangent to the

original function (see Fig. 5).

Let us obtain this new coordinate system. First, we

need to define the versors (vectors with unit magnitude)

corresponding to the basis b of the new system, i.e. b =

(bx, by). Let us represent these two versors in the original

coordinates as follows:

bx = (bxx, bxy) (7)

by = (byx, byy) (8)

Let consider the vector v having x0 = 1 for

x−coordinate 1, and the slope m for y−coordinate. Im-

portantly, m is here provided by the first-order approxi-

mation of the original function, i.e.:

v =

(
1,m =

dg

dx

∣∣∣
x0

= 1

)
This vector is parallel to the sought versor bx, which

can therefore be obtained by normalizing v so as to have

unit magnitude:

bx =
v

||v||
=

(√
2

2
,

√
2

2

)

Interestingly, though the the other versor by is orthog-

onal to the just determined bx, it cannot be determined

in a unique manner, given that there are two such or-

thogonal versors, oriented toward opposite directions. In

the case of our particular example, we take the upward

direction.

Therefore, in order to determine the second versor by
of our new basis, we start with the vector:

r = (rx, 1)

and them apply the orthogonality restriction, leading

to:

⟨r, bx⟩ = 0 =⇒ rx bxx + (1) byy = 0 =⇒

=⇒ rx = − byy
bxx

= −
√
2/2√
2/2

= −1

so that:

r = (−1, 1)

Thus, the second versor can be obtained by normalizing

r as:

by =
r

||r||
=

(
−
√
2

2
,

√
2

2

)

The versors constituting the basis of the new system of

coordinates can then be summarized as:

bx =

(√
2

2
,

√
2

2

)

by =

(
−
√
2

2
,

√
2

2

)
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The basis transformation from the old Cartesian basis b

to the new, rotated basis b̃ can now be performed (e.g. [3])

as follows:

b̃ = bA (9)

where:

b = [̂i ĵ]

b̃ = [bx by]

and the respective transformation matrix A corre-

sponds to:

A =

 ↑ ↑
bx bx
↓ ↓

 =

[ √
2
2 −

√
2
2√

2
2

√
2
2

]
(10)

The coordinates ṽ = (x̃ and ỹ) in the new system of co-

ordinates associated to the point P can the be expressed

in terms of the old coordinates v = (x and y) by translat-

ing the old coordinate to (x0, g(x0) and then performing

the basis transformation according to A (e.g. [3]), which

can be summarized as:

ṽ = A−1 [v − c] (11)

where:

c =

[
x0
g(x0)

]
=

[
1

0.7

]
A−1 =

[ √
2
2

√
2
2

−
√
2
2

√
2
2

]

Equation 11 corresponds to an affine transformation,

which has general form:

r̃ = B r + c (12)

This type of transformation involves a linear transfor-

mation B r plus a translation by c.

Figure 5 illustrates the representation in the new sys-

tem of coordinates of the curve derived from the func-

tion g(x). Observe how well the new coordinate x̃ aligns

with the original function, therefore “following” the re-

spectively defined curve.

It is interesting to realize that the obtained reference

frame is completely independent of the choice between

orthonormal coordinate systems to represent the original

function, reflecting only the shape of the curve at a small

neighborhood around the reference point.

In addition, it is important to keep in mind that linear

or affine transformations of a curve defined by a single-

variable function (as g(x) in the above example) may no

longer correspond to functions in the new coordinate sys-

tem, in the sense that two or more images my become

Figure 5: The representation in the new coordinate system x̃, ỹ) of

the curve defined by function g(x) in the considered example. The

new coordinate axis x̃ aligns effectively with the curve, especially in

the neighborhood around the reference point P .

associated to a single abscissae value. The more gen-

eral parametric representation or curves, to be addressed

in Section 4, can be adopted in order to transform one-

variable functions into respective, more versatile, para-

metric curves.

Now, let us suppose we had a set of fanning curves in

our original system, as illustrated in Figure 6, and that

we are interested in defining a new system of coordinates

that not only has its orientation aligned with the tangent

of the curves, but also could expand them so as to provide

a more detailed representation. More specifically, let us

focus on the set of curves at the right-hand side of point P

(a similar approach can be developed for the other side).

Figure 6: How can a set of several curves be better represented and

visualized by a new system of coordinates? The previous function

g(x) is shown in blue, for reference.

A suitable new, sheared system of coordinates is illus-

trated in green in Figure 7. Observe that the respective

versors corresponding to the new axes have different sizes,
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and are not orthonormal, as a means to better span the

fanning curves.

Figure 7: A possible new system of coordinates that, by being

sheared, can provided an expanded representation of the fanning

curves extending from P towards the right-hand side of the set of

curves.

In order to obtain this new system, we use the same

versor bx as before, while a new vector is used as second-

element of the now non-orthonormal basis. For instance,

we can choose:

bx =

(√
2

2
,

√
2

2

)
by = (0.90, 2.34)

This somewhat subjective choice of new basis vectors

determines the basis transformation matrix as:

A =

[ √
2
2 0.90√
2
2 2.34

]
which has respective inverse given as:

A−1 =

[
2.298 −0.884

−0.69 0.694

]
By using Equation 12, we can now obtain a visual-

ization of how the fanning curves appear as represented

in the new coordinate system, which is depicted in Fig-

ure 8. Observe how the curves have become more well-

separated one another, allowing more effective represen-

tation and visualization. Although these curves can no

longer be guaranteed to be expressible as functions of the

type ỹ = h(x̃), they can be translated into respective

parametric curves if necessary.

Figure 8: The fanning curves as represented in the new, sheared

system of coordinates result suitably expanded, allowing more ef-

fective representation and visualization. Observe that these curves

can no longer be guaranteed to correspond to functions of the type

ỹ = h(x̃), since multiple images of a same abscissae may be involved.

If necessary, these curves can be properly represented in terms of

parametric curves.

The example above concludes our presentation of how

linear approximations of a function or curve (or set of

curves, as well as points) can be obtained by consider-

ing the first-order Taylor expansion of one of the func-

tions, taken as reference. As illustrated, this approach

presents remarkable potential for performing several im-

portant mathematical operations in terms of the simpli-

fied first-order approximations. Observe that, though we

were mainly restricted to a third-degree polynomial, other

more intricate functions can be readily considered, pro-

vided we can calculate their first derivative at the point

P to be taken as reference.

Among the many tasks that can be performed in sim-

plified manner in terms of the first-order approximations,

we have: (i) estimating areas; (ii) extrapolation around a

reference point; and (iii) definition of new bases and sys-

tems of coordinates. In the latter case, which has been

here illustrated respectively to orthonormal and sheared

new coordinate systems, we verified that they can account

for interesting representations that adapts to the local ge-

ometry of the curve around P , as well as for expanding

regions through shearing.

One important related issue concerns how opera-

tions/measurements such as the inner product, angles

and magnitudes are affected by these coordinate changes.

While orthonormal new systems will not inflluence most

of these operations and measurements, sheared new sys-

tems modify several of them, though some operations and
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measurements can be identified as being invariant to the

implemented transformation (e.g. [3]).

In the following section, we present the important con-

cept of the Jacobian of a transformation and its applica-

tion to generalize the first-order expansion, discussed here

respectively to single-variable functions in 2D−spaces,

to mathematical structures in higher dimensional spaces.

The good news is that most of this can be done in di-

rect analogy to what we discussed and implemented in

the present section.

3 The Gradient as a First-Order

Multivariate Operator

Though in this section we shall focus on R3, the respective

discussion and results can be immediately translated to

smaller or higher dimensional spaces.

A scalar field ψ(x, y, z) mapping points (x, y, z) of R3

into R, is said to be differentiable in case we can obtain

its first-order multdimensional partial derivatives:

∂ ψ(x, y, z)

∂x
;

∂ ψ(x, y, z)

∂y
;

∂ ψ(x, y, z)

∂z
(13)

which will be henceforth abbreviated as:

∂ ψ

∂x
;

∂ ψ

∂y
;

∂ ψ

∂z
(14)

Each of these partial derivatives indicates how the

scalar field values vary as a consequence of respective

differential displacements dx, dy, and dz. As such, the

partial derivatives are respective to each adopted system

of coordinates.

In R2, the plane defined as ψ(x, y) = 2x − 3y + 1 will

have the following partial first derivatives:

∂ ψ

∂x
= 2;

∂ ψ

∂y
= −3

However, when the coordinates are changed as:[
x̃

ỹ

]
= A−1

[
x

y

]
=

[ √
2
2

√
2
2

−
√
2
2

√
2
2

] [
x

y

]
(15)

so that:[
x

y

]
= A

[
x̃

ỹ

]
=

[ √
2
2 −

√
2
2√

2
2

√
2
2

] [
x̃

ỹ

]
(16)

it follows that: {
x =

√
2
2 x̃−

√
2
2 ỹ

y =
√
2
2 x̃+

√
2
2 ỹ

(17)

which can be used to express the plane in the new co-

ordinate system as:

ψ(x, y) = 2x− 3 y + 1 =

= 2

(√
2

2
x̃−

√
2

2
ỹ

)
− 3

(√
2

2
x̃+

√
2

2
ỹ

)
+ 1 =

= −
√
2

2
x̃− 5

√
2

2
ỹ + 1 = ψ(x̃, ỹ) (18)

Thus, the partial derivatives in the new coordinate sys-

tem result as:

∂ ψ̃

∂x̃
= −

√
2

2
;

∂ ψ̃

∂ỹ
= −5

√
2

2

which, as expected, are distinct from the partial deriva-

tives in the old system of coordinates.

Though both old and new systems of coordinates in the

previous example were associated to orthonormal bases,

it is also interesting to consider the gradient in a sheared

coordinate system. Let us illustrate this interesting possi-

bility by using the following direct transformation matrix

instead of the previous one:

A =

[
1 2

−1 1

]
(19)

Therefore, the old coordinates can be expressed respec-

tively to the new coordinates as:{
x = x̃+ 2 ỹ

y = −x̃+ ỹ
(20)

From which the equation of the plane in the new coor-

dinate can be obtained as follows:

ψ(x, y) = 2x− 3 y + 1 =

= 2 (x̃+ 2ỹ)− 3 (−x̃+ ỹ) + 1 =

= 5x̃+ ỹ + 1 = ψ(x̃, ỹ) (21)

which has respective partial derivatives corresponding

to:

∂ ψ̃

∂x̃
= 5;

∂ ψ̃

∂ỹ
= 1

which are again different from the partial derivatives in

the old system.

Observe that the partial derivatives are calculated in

the same manner as in an orthonormal system, even

though x̃ and ỹ are respective to a sheared basis which

is neither orthogonal nor with vectors normalized to unit

magnitude. That is because the partial derivatives are

taken along each of the axes, irrespectively on if they are

sheared, normalized, or not. However, distinct results will

likely result in each of these cases.
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We could also have used the multivariate chain rule to

estimate the new derivatives, i.e.:

∂ ψ

∂x̃
=
∂ ψ

∂x

∂ x

∂x̃
+
∂ ψ

∂y

∂ y

∂x̃
= (2) (1) + (−3) (−1) = 5;

∂ ψ

∂ỹ
=
∂ ψ

∂x

∂ x

∂ỹ
+
∂ ψ

∂y

∂ y

∂ỹ
= (2) (2) + (−3) (1) = 1

therefore confirming the above results.

The vector defined by the three partial derivatives of

a scalar field ψ(x, y, z) at a point (x, y, z) corresponds to

the gradient of that field, which can thus be expressed as:

∇ψ =
∂ ψ

∂x
bx +

∂ ψ

∂y
by +

∂ ψ

∂z
bz (22)

where the canonical basis [̂i, ĵ, k̂] is often (but not nec-

essarily) chosen for b of R3.

Let us now consider the dot product of two vectors v

and r as:

v · r = ⟨v · r⟩ = vT r (23)

Though the scalar product is not preserved when trans-

formed into sheared coordinates (e.g. undergoing linear

transformations), it can be nevertheless be defined as

above for each of the respective coordinate systems. In

fact, the inner product can be though of as a more gen-

eral concept (satisfying some conditions), with the dot

product being a particular case.

Interestingly, the partial derivatives can be themselves

understood as an operator, which allows to express the

gradient in the following alternative manner involving the

dot product:

∇ψ =
[

∂
∂x bx

∂
∂y by

∂
∂z bz

] ψ

ψ

ψ

 = ∇ ·ψ (24)

observe that the gradient operator will be treated as a

row vector, while traditional vectors will be represented

as column vectors.

Let us know briefly consider how the gradient operator

is modified as a consequence of a linear basis transforma-

tion.

The terms covariant and contravariant are often em-

ployed in order to express how a structure (e.g. a vector)

or an operation (e.g. differentiation) change when under

a basis transformation by respective matrix A (e.g. [3]).

In case the entity is transformed in agreement with A,

the change is said to be covariant ; otherwise, in case the

change goes with the inverse of A, it is said to be con-

travariant.

Traditional column vectors are contravariant, but hori-

zontal vectors are covariant, and correspond to co-vectors.

Distinct bases are used to express vectors and covectors:

respectively the “direct” basis, and the dual basis. In the

case of orthonormal systems, these two bases are identi-

cal, hence vectors are rarely distinguished from co-vectors.

However, in more general sheared spaces the two bases are

distinct and have distinct transformation rules (e.g. [3]).

Because the resulting gradient of a scalar field is co-

variant (e.g. [3]), we can obtain its value in a linearly

transformed system as:

∇̃ψ = ∇ψA (25)

In the case of the previous example involving an or-

thonormal basis, we would have:

∇̃ψ =
[

∂ ψ̃
∂x̃

∂ ψ̃
∂ỹ

]
=

=
[
2 −3

] [ √
2
2 −

√
2
2√

2
2

√
2
2

]
=
[
−

√
2
2 − 5

√
2

2

]
and, in the case of the sheared basis:

∇̃ψ =
[
2 −3

] [ 1 2

−1 1

]
=
[
5 1

]
The total derivative of the scalar field ψ(x, y, z) corre-

sponds to how much that field changes as a consequence of

incremental displacements (i.e. differentials) dx, dy, and

dz along each of the respective axes. The total derivative

can be compactly expressed in terms of the following dot

product:

dψ =
[

∂ ψx

∂x
∂ ψx

∂y
∂ ψx

∂z

] dx

dy

dz

 (26)

The directional derivative of a scalar field ψ(x, y, z),

respectively to a versor û = (ux, uy, uz) at a reference

point v0 = (x0, y0, z0), can be expressed as:

∇ψ
∣∣
û,v0

=
〈
∇ψ

∣∣
v0
, û
〉
=
[

∂ ψx

∂x
∂ ψx

∂y
∂ ψx

∂z

] ux
uy
uz


(27)

This derivative quantifies how much the scalar field

changes along the orientation specified by the versor u

at the reference point v0.

As discussed in this section, though constituting a first-

order concept, the gradient can be applied to obtain in-

formation about a variety of properties of scalar fields,

including the direction of their largest variation, the in-

crease respective to small displacements, as well as the

incremental variation along a given orientation.

4 2D and 3D Parametric Curves

In Section 2, we started our study of first-order approx-

imation with a single-variable function which was trans-

formed into new bases. As discussed in that section, this
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can lead to a transformed curve that does not correspond

to a valid function in the transformed space, a problem

that can e avoided in case we consider parametric curves

from the beginning, instead of functions, which has an

additional advantage of allowing a wider range or curves

(and not only those described as a function) to be consid-

ered.

In this section, we introduce the concept of parametric

curves in 2D and 3D and then revisit the first-order ap-

proximation from this perspective. As we shall see, the

adoption of parametric curves has another advantage in

which an orthonormal system of coordinate can be di-

rectly assigned to all the points along the curve that do

not correspond to straight line segments. The problem

with the latter type of curves is that they only have a

well-defined tangent, so that the other axes have to be

decided by considering criteria extrinsic to the curve.

A parametrized curve g(t) of a free variable t ∈ [a, b]

can be expressed as:

g(t) = (gx(t), gy(t), gz(t))

In case they exist, its first and second derivatives with

respect to time then correspond to:{
ġ(t) = (ġx(t), ġy(t), ġz(t))

g̈(t) = (g̈x(t), g̈y(t), g̈z(t))
(28)

As with single-variable functions g(x), parametric

curves g(t) on a generic parameter t can be approximated

in terms of their first-order derivatives by applying the

Taylor series on the respective components, i.e.:
gx(t)

∣∣
t0

≈ gx(t0) + ġx(t0) (t− t0)

gy(t)
∣∣
t0

≈ gy(t0) + ġy(t0) (t− t0)

gz(t)
∣∣
t0

≈ gz(t0) + ġz(t0) (t− t0)

. (29)

Let us illustrate the first-order approximation of a para-

metric curve respectively to the following particular curve:
gx(t) = sin(t) + 2 sin(2 t)

gy(t) = cos(t)− 2 cos(2 t)

gz(t) = sin(2 t)

The first derivatives of its components are as follows:
ġx(t) = cos(t) + 4 cos(2 t)

ġy(t) = − sin(t) + 4 cos(2 t)

ġz(t) = −2 cos(2 t)

By substituting these derivatives in Equation 29 for t =

1.7, we obtain the first order approximation shown as a

dashed red line in Figure 9.

The differential arc length of g(t) can be expressed as:

ds =
√
ẋ2 + ẏ2 + ż2 dt (30)

Figure 9: A parametric curve and the first-order approximation

for t = 1.7, implying (0.480, 1.80, 0.25), shown as the dashed red

straight line.

so that the accumulated arc-length from the beginning

g(ti) of the curve can be calculated as:

s(τ) =

ˆ τ

ti

ds =

ˆ τ

ti

√
ẋ2 + ẏ2 + ż2 dt (31)

Parametric curves g(s) having parameter correspond-

ing to the arc-length along the curve are particularly im-

portant, being said to be in arc-length parametrization.

Let one such curve be represented as:

g = (gx(s), gy(s), gz(s))

It follows that:{
t(s) = ġ(s) = (ġx(s), ġy(s), ġz(s)), with: ||t(s)|| = 1

ñ(s) = g̈(s) = (g̈x(s), g̈y(s), g̈z(s))

(32)

where ñ(s) is normal to the curve. One of the impor-

tant implications of arc-length parametrization is that,

given that the velocity associated to the tangent t(s) has

constant magnitude, the effect of the normal field becomes

restricted to changing only the orientation of the velocity.

Though ñ(s) is a field normal to the curve, it is not

necessarily a versor (unit length). The normalized normal

field can thus be obtained as:

n(s) =
ñ(s)

||ñ(s)||
=

g̈(s)

||g̈(s)||
(33)

The two vector functions t(s) and n(s) of the arc-length

parameter s are centrally important, corresponding to the

tangent and normal fields along the curve.

In the case of R2, at the portions of the curve which do

not correspond to straight line segments, these two vector

functions provide a natural choice to be taken as a basis

underlying respective orthonormal systems of coordinates

extending continuously along all the points of the curve.

For instance, only the tangent filed can be defined for

a straight line, implying the normal field to be imposed

through some additional restriction.

9



As discussed above, t(s) and n(s) therefore implement

in an effective manner the task of obtaining coordinate

systems that adapt locally to the curve, which had been

preliminary considered in Section 2.

The idea of assigning locally adapted systems of coordi-

nates along a curve can be extended to higher dimensional

mathematical structures, such as surfaces and volumes.

These approaches are systematically studied in differen-

tial geometry and tensor calculus.

In the case of R3 we need a third versor to complete

the coordinate systems to be assigned to the curve. This

third vector can be readily obtained from t(s) and n(s)

in terms of their cross product, i.e.:

b(s) = t(s)× n(s) (34)

where we chose to have a right-hand coordinate system.

The vector b is a versor called the binormal vector. Ob-

serve that the cross product of two non-parallel versors is

necessarily a versor.

So, provided the curve is differentiable and do not cor-

respond to a straight line, the above vector functions of s

constitute a natural choice for an adaptable orthonormal

basis [t(s),n(s), b(s)]. This orthonormal system of coor-

dinates is know as the Frenet-Serret trihedron. It can be

shown that the derivatives of these vector functions can

be expressed as:

dt

ds
= κn (35)

dn

ds
= −κ t− τb (36)

db

ds
= τ n (37)

which are the Frenet-Serret vector derivatives of g(s).

In the above equations, τ(s) is the torsion of the curve,

and κ(s) is its curvature, defined as:

κ(s) = ||g̈(s)|| = ||ṫ(s)|| = ||ñ(s)|| (38)

In case the curve parameter t does not correspond to

the arc-length, it is still possible to obtain the respective

curvature by using the expression:

κ(t) =
ġxg̈y − ġy g̈x(
ġ2x + ġ2y

)3/2 (39)

It can be shown that for any κ(s) and τ(s), a parametric

curve g(s) can be found that is characterized by those two

properties.

Observe that, although the first-order tangent approx-

imation to the curve is employed in the Frenet trihedron,

that frame also involves second-order elements, namely

the normal field obtained from the second derivative of

the original parametric curve. Thus, by incorporating ad-

ditional information about the original parametric curve,

the consideration of the second derivative leads to a ref-

erence frame that is even more adapted to the local curve

shape.

Though theoretically appealing and effective, in prac-

tice it often constitutes a challenge to place a curve in a

generic parameter t into arc-length parametrization. Nev-

ertheless, the above results provide a powerful resource in

theoretic-analytical aspects of differential geometry and

related areas.

In addition, the Frenet trihedron at a specific reference

point (x0, y0, z0) can be obtained in a relatively simple

manner for a regular curve in generic parametrization by

obtaining non-normalized tangent and normal fields, and

then normalizing them.

This approach is possible because the following vector

fields obtained more directly from a curve not necessar-

ily in arc-length parametrization will also be tangent and

normal, respectively, to the curve, though not necessarily

having unit length:

ġ(t) =
dg(t)

dt
(40)

g̈(t) =
d2g(t)

dt2
(41)

We will illustrate the above approach respectively to

the following parametric curve:

g :


gx(x, y, z) = 3t

gy(x, y, z) = (et − 1) cos 20t

gz(x, y, z) = (et − 1) sin 20t

(42)

The respective first derivatives are:
ġx = 3

ġy = et cos (f0 t)− 20 sin (f0 t) (e
t − 1)

ġz = et sin (f0 t) + 20 cos (f0 t) (e
t − 1)

and the second derivatives correspond to:
ġx = 0

ġy = −399et cos (f0 t)− 40et sin (f0 t) + 400 cos (f0 t)

ġz = −399et sin (f0 t) + 40et cos (f0 t) + 400 sin (f0 t)

The Frenet trihedron obtained fro T = 0.45, shown in

Figure 10, was calculated as:

t =

 0.252

−0.515

−0.818

 ; n =

 0.000

0.865

−0.501

 ; b =

 0.967

0.126

0.219


Figure 10 shows the parametric curve in Equation 42,

as well as its respective Frenet trihedron obtained for

t = 0.45. It is interesting to observe how the obtained

frame adapts along the tangent and normal to this 3D

parametric curve, which was indeed our initial objective.

A specific Frenet trihedron can be for each of the possi-

ble points of reference defined by respective values of t,

therefore covering the whole curve.
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Figure 10: The parametric curve g(t) in Eq. 42 and the Frenet tri-

hedron obtained at the reference point (gx(0.5), gy(0.45), gz(0.45).

The tangent, normal, and binormal vectors are shown in red, blue

and green, respectively.

5 Multivariate Functions and Sur-

faces

A function of two variables can be understood as a scalar

field on R2, i.e.:

g(x, y) : (x, y) ∈ R2 −→ g(x, y) = z ∈ R (43)

which is also known as a graph representation of the

function because it involves the graph z = g(x, y).

As with single-variable functions, a scalar field can be

approximated in the neighborhood of one of its domain

points (x0, y0) in terms of the respective Taylor series:

g(x, y)
∣∣
v0

≈ g(x0, y0) + [∇(x0, y0)]
T · [(x, y)− (x0, y0)]

(44)

where v0 = (x0, y0).

The above concepts can be immediately extended to

higher dimensions:

g(v) : v ∈ RN −→ g(v) = z ∈ R (45)

where v = (x1, x2, . . . , xN ).

g(v)
∣∣
v0

≈ g(v0) + [∇(v0)]
T · (v − v0) (46)

where v0 = (x1,0, x2,0, . . . , xN,0).

We illustrate the first order approximation of

two-variable functions respectively to the following

paraboloid:

z = y(x, y) = −x2 − y2 (47)

whose first derivatives can be readily expressed as fol-

lows;

∂z

∂x
= −2x

∂z

∂y
= −2y

Thus, the first-order approximation of this function

around the reference point (x0, y0) = (1, 1) can be written

as:

g(x, y)
∣∣
(x0,y0)

≈

≈ g(x0, y0) +∇T g
∣∣
(x0,y0)

· [(x, y)− (x0, y0)] =

= g(x0, y0) + (−2x0 − 2y0) · [(x, y)− (1, 1)] =

= g(1, 1) + (−2,−2) · (x− 1, y − 1) =

= −2− 2x− 2y + 4 = −2x− 2y + 2

which corresponds to the equation of the plane that is

tangent to the paraboloid at the reference point (x0, y0) =

(1, 1), as illustrated in Figure 11.

Figure 11: The paraboloid corresponding to Equation 47 and the

plane that is tangent to it at the point (1, 1). This plane, which

corresponds to the first-order respective representation of the orig-

inal multivariate function, provides a good approximation of that

function around the reference point.

6 Implicit Representations

We have approached curves in terms of single-variable

functions (called a graph representation) and paramet-

ric forms. There is a third, equally interesting manner to
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define a 1D curve in R2, which consists of understanding

that every point that satisfies a given relation, restriction,

or constraint belongs to the curve. A restriction is simply

an equation of the type:

g(x, y) = 0, (x, y) ∈ R2;

g(x, y, y) = 0, (x, y, z) ∈ R3;

which corresponds to an implicit curve, given that it is

not expressed in terms of the graph forms y = f(x) or

z = g(x, y). Observe that g(x, y) can be understood as a

scalar field on the domain (x, y).

Each of these three manners to represent a function has

specific characteristics that complement one another. In

this section we take a brief look at implicit representa-

tions of functions, curves and surfaces, mainly from the

perspective of first-order approximations and, in particu-

lar, the respective gradient.

Let us start with on of the simplest possible restrictions

in R2:

x− 3 = 0 (48)

corresponding to the vertical line x = 3, passing

through the point (3, 0), leaving the other coordinate y

unconstrained. In R3, this same restriction would imply

a vertical plane parallel to the y × z plane. In case we

wanted a line in R3, we would need an additional restric-

tion, e.g.:

y − 3 = 0. (49)

x− 2 = 0 (50)

which would therefore define a vertical line parallel to

z, passing through (3, 2, 0). Observe that if we impose one

restriction to a space with dimension N , a mathematical

structure with dimension N − 1 will result. In case R

non-redundant restrictions are considered, the structure

will have at most N − R dimensions. Observe that, for

example, two restrictions defining two parallel, but not

identical, planes in R3 will still imply a 2D structure.

The straight line for finite slope m can be defined as a

single variable function:

y = mx+ c (51)

It immediately follows that:

g(x, y) = y −mx− c = 0 (52)

which can also represent lines with infinite slope, as

is the case of our previous example above, because no

mapping as a graph is involved.

The circle with radius ρ centered at (xc, yc) can be im-

plicitly represented as:

g(x, y) =
√
(x− xc)2 + (y − yc)2 − ρ = 0 (53)

Let us try to transform this equation into a graph form

in the case (x0, y0) = (0, 0) and ρ = 1:√
x2 + y2 = 1 =⇒

x2 + y2 = 1 =⇒

y =
√
1− x2

We have two possible solutions:

y1 = +
√
1− x2 (54)

y2 = −
√
1− x2 (55)

Each of then corresponds to a distinct graph represen-

tation of one of two halves of a circle. It follows that

implicit functions can lead to more than one graph repre-

sentation, involving possible decisions to be taken, as in

the previous example.

As a more intricate example, let us consider the Cassini

oval which, in implicit form, can be written as:√
(x2 + y2)2 − a(x2 − y2) = 0 (56)

with a ∈ R.
Cassini ovals are interesting closed curves obtained in a

manner analogous to an ellipse, but considering constant

product, instead of sum, of distances to the two consid-

ered foci. Figure 12(a) illustrates a set of Cassini ovals

obtained by varying the level set values.

Figure 12: Cassini ovals obtained by varying the level set values

from -3 to 10.

Though it is immediate to transform a graph form of a

curve into a respective implicit representation, the oppo-

site can be challenging or even impossible. As an example

of the latter situation, we have the implicit function:

c sin(x y) = x y

12



where c is a non-zero real-valued constant.

The implicit function theorem (e.g. []) provides the con-

ditions in which an implicitly represented function can be

solved in terms of the coordinates x, y and z, but even so

the explicit representation may not be possibly obtained.

For a function g(x, y) = 0 in 2D, provided that:

∂g

∂y

∣∣∣
(xc,yc)

̸= 0 (57)

this theorem states provides a sufficient condition for

expressing this curve as an explicit function y = h(x)

around a neighborhood of (x0, y0). Observe that this con-

dition is simply verifying wether the function y = y(x)

takes infinite slope in the considered neighborhood, in

which case it cannot be represented as a graph function.

In higher dimensional cases, this theorem takes into ac-

count wether the respective Jacobian (a matrix of first-

order derivatives) is invertible or not.

Given a 2D function in implicit form g(x, y) = 0, its

first derivative can be calculated as:

ġ(x) = −
∂g
∂x
∂g
∂y

(58)

As an example, let us calculate the first derivative of

the function in Equation 52:

∂g

∂x
= −m;

∂g

∂y
= 1

and we get:

ġ(x) = −−m
1

= m

which does correspond to the first derivative of the func-

tion g(x, y) at each of its points (x, y). This property pro-

vides an effective manner for obtaining the derivative of

2D curves, to be used in respective first-order approxima-

tions.

As with curves, surfaces can also be defined in implicit

manner. We have already seem that x − 3 = 0 defines a

plane in R3. Let us consider some further examples:

A generic plane in R3 can be represented implicity as:

g(x, y, z) = a x+ b y + c z + d = 0 (59)

The sphere with radius ρ centered at (xc, yc, zc) can be

implicitly represented as:

g̃(x, y, z) =
√
(x− xc)2 + (y − yc)2 + (z − zc)2 − ρ = 0

(60)

The same surface can also be expressed as:

g(x, y, z) = (x− xc)
2 + (y − yc)

2 + (z − zc)
2 ± ρ2 = 0

(61)

One particularly interesting property of implicit repre-

sentation of surfaces is that the respective normal field

can be obtained simply as being parallel to the respective

3D gradient:

∇g(x, y, z) (62)

As an example, let us obtain a normal field b to the

sphere in the above example:

∂g

∂x
= 2(x− xc)

∂g

∂y
= 2(y − yc)

∂g

∂z
= 2(z − zc)

n = ∇g
∣∣
(x0,y0)

=
∂g

∂x
î+

∂g

∂x
ĵ +

∂g

∂x
k̂ (63)

Observe that the obtained results do not depend on

ρ, indicating that the gradient is actually “seeing” the

homogeneous scalar field g̃(x, y, z) = (x − xc)
2 + (y −

yc)
2 + (z − zc)

2, of which the above sphere is but a level

set. As a consequence, the gradient will correspond, in

the 3D space, to the normal to the sphere in Equation 61

specified by a particular value of ρ.

Figure 13 illustrates the projection onto the (x, y)

plane of the above obtained gradient considering z = 1,

(xc, yc, zc) = (2, 2, 1) and ρ = 2. It can be immediately

observed that this gradient provides a vector field that is

normal to the original surface.

Figure 13: A normal field obtained for a sphere with (xc, yc, zc) =

(2, 2, 1) and ρ = 2 sliced at z = 1 and projected onto the (x, y)

plane. The projected gradient is shown to 50% scale for the sake of

enhanced visualization.

It is interesting to observe that the implicit representa-

tion of the sphere allowed a respective normal field to be

obtained in a particularly straightforward manner.
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As an additional example, let us derive the implicit

representation of a paraboloid in 3D, and calculate the

respective normal field.

We start by writing the graph representation of the

paraboloid centered at (xc, yc) as a function of (x, y):

r =

√
(x− xc)

2
+ (y − yc)

2

z = r2 = (x− xc)
2
+ (y − yc)

2
(64)

so that a respective implicit representation is as follows:

(x− xc)
2
+ (y − yc)

2 − z = 0 (65)

The respective gradient is:

∂g

∂x
= 2(x− xc)

∂g

∂y
= 2(y − yc)

∂g

∂z
= −1

n = ∇g
∣∣
(xc,yc)

=
∂g

∂x
î+

∂g

∂x
ĵ +

∂g

∂x
k̂ (66)

The projection onto the (x, y) plane of the above

gradient considering obtained for the paraboloid with

(xc, yc, zc) = (2, 2, 1), sliced at z = 1, is depicted in Fig-

ure 14.

Figure 14: The normal field of a paraboloid with (xc, yc) = (2, 2).

The gradient is shown to 20% scale for the sake of enhanced visu-

alization.

It should be kept in mind that projections of the ob-

tained 3D gradient onto the (x, y) plane will not neces-

sarily correspond to the gradient of the respective graph

representation. Even though these two vector fields will

be mutually parallel, one of them may have opposite di-

rection than the other (recall that two opposite vectors

are also parallel one another). This is a consequence of

the fact that both g(x, y, z) and −g(x, y, z), having op-

positely oriented gradients, will correspond to the same

original surface.

7 Graph Surfaces and Local

Frames

In Section 2, we approached the interesting task of as-

signing a local frame that adapted to a given function

around a small neighborhood of a reference point x0. This

problem was addressed in a more comprehensive manner

in Section 4, respectively to parametric curves. In both

cases, we were able to define, from first-order approxima-

tions of the original function/curve, reference frames that

were independent of the adopted coordinate system.

In this section, we develop an approach to obtaining lo-

cal reference frames for multivariate functions and graph

surfaces that do not depend on the specific choice of or-

thonormal coordinate system.

Our objective here is to define an orthogonal frame at

a chosen reference point (x0, y0) that adapts locally to

the curve shape around that point. In the case of single-

variable functions and parametric curves, we resourced to

the tangent as a reference for adapting our system. In

the case of multivariate functions and surfaces, however,

more than one tangent can be defined along the surface

at the reference point.

An interesting possibility to follow in this case consists

of considering the normal field to the surface, from which

the plane that is tangent to that same surface can be

readily determined. Then, we are left with the task of

orienting a respective set of orthogonal vectors onto this

plane, therefore defined a possible reference frame.

We will illustrate this approach, as described in the fol-

lowing, respectively to a specific multivariate paraboloid

given as:

z = f(x, y) = − (x− xc)
2 − (y − yc)

2
(graph repr.);

− z − (x− xc)
2 − (y − yc)

2
= 0 (implicit repr.)

with (xc, yc) = (2, 3).

We obtain the 3D gradient of the respective implicit

representation as follows:

∂g

∂x
= −2(x− 2)

∂g

∂y
= −2(y − 3)

∂g

∂z
= −1

n = ∇g
∣∣
(xc,yc)

=
∂g

∂x
î+

∂g

∂x
ĵ +

∂g

∂x
k̂ (67)
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Let us consider (x0, y0) = (2, 2) as the reference point,

which implies:

n = 0 î+ 2 ĵ − 1 k̂ (68)

However, we shall take the inverse of the above vector,

so that the normal points outward from the paraboloid

surface:

n = 0 î− 2 ĵ + 1 k̂ (69)

As it turned out, the determination of the normal field

was straightforward for this considered surface, illustrat-

ing the effectiveness of the implicit representation ap-

proach.

Now, we need to find two orthogonal vectors t and b

belonging to the plane perpendicular to the normal field

at the reference point (x0, y0). Actually, we only need to

determine one of them, as the other can be obtained by

the cross-product of the former two vectors. Observe that

any vector belonging to the perpendicular plane will be

automatically tangent to the surface at (x0, y0).

One particularly interesting possibility is to find a ref-

erence frame that does not depend on rotations or trans-

lations of the coordinate system, and that also reflects the

local shape of the surface around the reference point. We

already have a normal vector that has these two proper-

ties, though its direction may have been determined while

taking into account the z−axis direction.

In this sense, one particularly interesting possibility is

to consider the tangent vector that coincides with the

tangent of a 3D parametric curve contained (embedded)

in the original surface which has the largest curvature at

(x0, y0).

Let us approach this problem by considering the em-

bedded curves to be defined by all possible intersections

between the paraboloid and planes that are orthogonal to

the (x, y) plane and pass through (x0, y0) = (2, 2), which

imply in the following generic parametric straight curves

on the (x, y) plane:{
x(t) = [cos(θ) t+ 2]

y(t) = [sin(θ) t+ 2]
(70)

Recall that the peak of the paraboloid is centered at

(xc, yc) = (2, 3). By substituting the above expressions in

the paraboloid graph equations, it follows that:

z = − (x− 2)
2 − (y − 3)

2
;

z = f(t) = − [cos(θ) t]
2 − [sin(θ) t− 1]

2

The respective derivatives are:

ḟ(t) = −2t cos2(θ)− 2 sin(θ) [sin(θ) t− 1] ;

f̈(t) = −2 cos2(θ)− 2 sin2(θ) = −2

The curvature of any of the above single-variable func-

tions z = f(t) can now be calculated as:

κ(t) =

∣∣∣f̈(t)∣∣∣(
1 + ḟ2(t)

)3/2
At t = 0, which specifies point (x0, y0), we have:

κ(t = 0) =
|−2|(

1 + 4 sin2(θ)
)3/2 =

2(
1 + 4 sin2(θ)

)3/2
which is maximized when sin(θ) = 0 ⇒ θ = 0, with the

maximum curvature being equal to:

κ(t) =
2(

1 + 4 sin2(0)
)3/2 = 2

As an aside, the maximum curvature is known as the

first principal curvature κ1 of the surface at a specific

reference pointe. The second principal curvature κ2 is de-

fined as corresponding to the minimal curvature at the

same reference point. These two curvatures are said to be

extrinsic, as they depend on how the surface is embedded

into a given space. A simple example of extrinsic prop-

erty is the angle of a tangent with respect to any of the

axes, which changes as the basis is rotated. In contrast,

intrinsic properties of the surface (or curve) do not de-

pend on the embedding. An example of intrinsic property

is the product κ1 κ2, which is called Gaussian curvature,

while the mean between κ1 and κ2 is said to be the mean

curvature.

Going back to our Frenet trihedron, given that θ = 0,

we can choose the orientation along the x−axis, which we

take as having the same orientation and direction than x.

Thus, we obtain the following tangent vector:

t = 1 î+ 0 ĵ + zt k̂

in order to determine zt, we consider that it is perpen-

dicular to the normal vector, hence:

t · n = (1, 0, zt) · (0,−2, 1) = 0 =⇒
=⇒ 0 + zt = 0 =⇒ zt = 0

and we obtain:

t = 0 î− 1 ĵ + 0 k̂

The third vector needed to complete our orthogonal

basis can be now determined as:

b = t× n = 0 î− 1 ĵ − 2 k̂

which therefore is biorthogonal to the other two previ-

ous vectors, defining a right-hand basis.
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An orthogonal basis (t,n, τ ) reflecting locally the first-

order shape of the surface is therefore given as follows:
t = 1 î+ 0ĵ + 0k̂; .

n = 0 î− 2ĵ + 1 k̂;

τ = 0 î− 1 ĵ − 2 k̂

In summary, at (x0, y0) we have that n indicates the

normal to the surface, t has the orientation leading to the

maximum surface curvature at (x0, y0), and b is directly

determined from the two former vectors, so that the three

vectors are mutually orthogonal while defining a right-

hand system of coordinates.

Except for decisions regarding the orientation of the

normal and tangent vectors, the obtained frame is inde-

pendent of the choice among orthonormal coordinate sys-

tems, while reflecting closely the first-order shape of the

surface (observe that we did not resource to any second

or higher order derivatives of the surface) around a small

neighborhood of the reference point (x0, y0). If needed,

this orthogonal frame can be readily normalized so as to

become orthonormal.

A first-order local coordinate system can now be ob-

tained by translating the old orthogonal system, here un-

derstood to be the Euclidean space R3, to the reference

point (x0, y0, z0) and then implementing the transforma-

tion to the new basis (t,n, b). Figure 15 illustrates the

so-obtained new coordinate system.

8 Approximating Vector Fields

Thus far, in the present work, the generality of first-order

approximations has been illustrated respectively to sev-

eral mathematical entities, including single and multiple-

variable functions, curves, and surfaces.

It turns out that first-order can also be considered as

a means to approximate vector fields, in which vectors

from a space S are transformed into another space S̃.

These vector fields can be understood either as mappings

between vectors, or transformations of the original space

into a new, possibly non-linear space.

The key concept underlying first-order approximations

of vector fields consists in the Jacobian of the vec-

tor field, which plays a role analogous to the gradient

in multivariate functions, and to the first derivative in

single-variable functions. The Jacobian of a vector field

ϕ(ϕx(x, y, z), ϕy(x, y, z), ϕz(x, y, z)) can be expressed as

follows:

J =


∂ ϕx

∂x
∂ ϕx

∂y
∂ ϕx

∂z
∂ ϕy

∂x
∂ ϕy

∂y
∂ ϕy

∂z
∂ ϕz

∂x
∂ ϕz

∂y
∂ ϕz

∂z

 (71)

Now, given differential displacements dx, dy, and dz

along each of the respective axes, the differential variation

Figure 15: The Frenet trihedron obtained for the paraboloid. Ob-

serve how this frame adapts to the surface, with the tangent (red)

and binormal (green) vectors being contained in the respective tan-

gent plane, while being orthogonal to the normal vector (in blue).

The vectors, shown after being normalized for unit magnitude, have

been scaled down by 50% for the sake of enhanced vizualization.

of the vector field, which is itself a 3D vector, can be

quantified as the following set of three “parallel” total

derivatives:

dϕ =

 dϕx
dϕy
dϕz

 =


∂ ϕx

∂x
∂ ϕx

∂y
∂ ϕx

∂z
∂ ϕy

∂x
∂ ϕy

∂y
∂ ϕy

∂z
∂ ϕz

∂x
∂ ϕz

∂y
∂ ϕz

∂z


 dx

dy

dz

 (72)

In the particular case in which ϕ() is a linear map spec-

ified by a respective matrix A, we have that J = A. For

instance, in the case of the above example for the sheared

coordinate change, we have:[
x̃

ỹ

]
=

[
1 2

−1 1

] [
x

y

]
(73)

The fact that this mapping can be understood as a

vector field can be better appreciated by rewriting the

equation above as:

ϕ(x, y) = (ϕx(x, y), ϕy(x, y)) =⇒

=⇒
{
ϕx(x, y) = x̃ = x̃+ 2 ỹ

ϕy(x, y) = ỹ = −x̃+ ỹ
(74)

Therefore:

∂ϕx
∂x

= 1;
∂ϕx
∂y

= 2

∂ϕy
∂x

= −1;
∂ϕy
∂y

= 1
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So that the Jacobian of the vector field associated to

this transformation corresponds to direct transformation

matrix A, i.e.:

J =

[
1 2

−1 1

]
= A (75)

A particularly important property of the Jacobian is

that it provides the best linear approximation of the map

ϕ() around each point v0 = (x0, y0, z0) of the considered

space as follows:

ϕ̃(v)
∣∣
v0

≈ ϕ(v0) + J(v0) (v − v0) (76)

where v is a generic vector.

A direct analogy can be observed between the above ex-

pression and the Taylor series in Equation 2. Indeed, the

Jacobian is understood as the first-order differential of the

vector field ϕ(), in direct analogy to the tangent, which

is the first-order differential of single-variable functions.

The above approximation can be particularly effective

as a means to study and handle non-linear vector fields.

Similarly to the concepts and possibilities discussed in

Section 2, the idea is to perform one or more approxima-

tions of the non-linear vector field around a specific point

of interest v0 = (x0, y0, z0).

Figure 16 illustrates the first-order approximation of

the vector field: {
ϕx(x, y) = x2 y

ϕx(x, y) = x y
(77)

around the reference point (x0, y0) = (0.35, 0.52) ob-

tained by the Taylor series, in terms of the respective

Jacobian.

In addition to the effectiveness of the Jacobian to pro-

vide for linear approximations, its determinant det(J),

called Jacobian determinant, can provide important in-

formation about the local properties of the map around

the reference vector v0, including:

• |det(J)| indicates how the hypervolume changes

around each point, expanding for |det(J)| > 1 and

shrinking for 0 < |det(J)| < 1;

• det(J) > 0 means that the direction of the vectors is

maintained around each point;

• det(J) < 0 means that the direction of the vectors is

reversed around each point;

• the map is invertible around each point iff det(J) ̸= 0.

Let us illustrate the potential of the Jacobian respec-

tively to two situations: (a) the two sheared transforma-

tions discussed in Section 2; and (b) a non-linear vector

field.

(a)

(b)

Figure 16: (a): The first-order approximation of the vector field in

Eq. 77 around the reference point (x0, y0) = (0.35, 0.52) (shown in

red). The mapping of the boundary of a small neighborhood around

this reference point has also been shown in this figure, yielding

markedly similar results between the non-linear mapping (in red)

and first-order approximation (in blue). The sheared mesh, shown

as dotted curves, corresponds to the mapping by the original non-

linear vector field of a regular reticulate in the original space. (b)

Zooming into the mapping in (a).

Observe that, given that the Jacobian matrix of a lin-

ear transformation is constant (i.e. does not depend on

x or y), the indications provided by the Jacobian deter-

minant apply to every generic point (x, y). In the more

general case of non-linear transformations, the indications

provided by the Jacobian and its determinant apply only

around a small neighborhood around a point of reference

v0.

We start with the orthonormal transformation implied
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by the matrix:

A =

[ √
2
2 −

√
2
2√

2
2

√
2
2

]
(78)

Its determinant is det(A) = 1, because it is an orthonor-

mal matrix, meaning that there will be no changes of mag-

nitudes and that the geometry will be fully preserved up

to a rotation.

Let us now consider the matrix:

A =

[
1 2

−1 1

]
(79)

Its determinant is det(A) = 3, indicating that volume

expansion and preservation of vector directions.

Now, consider the following non-linear vector field:

ϕ(x, y) =

{
ϕx(x, y) = xy

ϕy(x, y) = x2
(80)

The respective Jacobian is given as:

J =

[
y x

2x 0

]
The respective determinant corresponds to the follow-

ing scalar field:

det(J) = −2x2

Figure 17 depicts the determinant of the vector field

ϕ(x, y) for x ∈ [−2, 2] and y ∈ [−2, 2].

Figure 17: The values of the determinant of the Jacobian of the

vector field in Eq. 80, considering x ∈ [−2, 2] and y ∈ [−2, 2], pro-

vide an objective quantification of the local expansion/contraction

implemented by the map, the preservation (or not) of vector di-

recdtion, as well as local differentiability. In this case, contraction

and direction inversion will be implemented by the respective vector

field mapping.

9 First-Order Approximation Er-

ror

Before concluding the present work, it is interesting to

pay at least some brief attention to the accuracy allowed

by first-order approximations.

One first important aspect to be realized is that the

first-order approximation accuracy depends on two main

factors: (i) the type and properties of the specific function

being approximated; and (ii) the points around which the

approximations are considered.

In the case of single-variable functions, it can be shown

that the first-order approximation:

g(x) ≈ y(x) = y(x0) + ġ(x0) (x− x0)

incurs an error given as:

ε(v) = g̈(v) (x− x0)

for some value v comprised in the interval [x0, x], so

that we can write:

g(x) = y(x0) + ġ(x0) (x− x0) + ε(v)

This results confirms that the error depends on the spe-

cific function g(x), as well as the specific neighborhood

considered in the approximation.

As an illustration, let us consider the possible error

while of the first order approximation of the functions:

g2(x) = x2

g3(x) = x3

we immediately have that:

ε2(v) = 2v (x− x0)

ε3(v) = 3v2 (x− x0)

In case we are interested in approximations in the in-

terval 0 ≤ x ≤ 1 (considering x0 = 0), we would have the

respective error as illustrated in Figure 18. As expected,

we have that the error depends on the interval, and also

on the type of function.

Indeed, the errors obtained for the third-degree func-

tion g3(x) = x3 are larger, but not substantially so, when

compared to the errors for g2(x) = x2. At the same time,

the error increases more markedly with x in the case of

the higher-degree polynomial. In other words, higher de-

gree polynomials will imply potentially larger first-order

approximation errors.

The error when approximating non-polynomial func-

tions can be estimated in a similar manner as discussed

above.
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(a) (b)

Figure 18: The maximum error that can be incurred in the approxi-

mation of the single-variable functions g(x) = x2 (a) and g(x) = x2

(b) in terms of x ∈ [0, 1] and v ∈ [0, x].

10 Concluding Remarks

Science and technology have undergone remarkable

progress while relying intense and extensively on math-

ematical concepts and methods, of which integro-

differential calculus has been particularly important. Be-

ing a related topic, first-order approximations underliy

an ample range of theoretical and applied approaches.

However, perhaps as a consequence of being so frequently

used, the special role that first order approximations have

seems sometimes to go unnoticed.

The present work was aimed at providing a (hopefully)

accessible introduction to first-order approximations rel-

atively to several types of mathematical structures, in-

cluding single- and multi-variable functions, curves, and

surfaces, as well as vector fields. Several numerical ex-

amples and illustrations have been incorporated in order

to contribute with the familiarization with the respective

concepts and methods.

In particular, we have seen how general, versatile

and powerful first-order approximations can be regarding

most related operations, including extrapolation, integra-

tion, and identification of particularly interesting basis

and coordinate systems that effectively adapt to the local

shape of functions, curves, surfaces, and vector fields.

As observed in the introduction, despite their

widespread application and effectiveness, first-order ap-

proximations cannot comprehensively represent non-

linear systems along larger regions. Additional concepts

and methods, including second and higher-order approxi-

mations in the respective Taylor series are required, which

deserve further attention. It is hoped that the present

work may motivate and facilitate such subsequent stud-

ies.
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