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Optimization of a 2D reinforced concrete frame considering a seismic load via cross-entropy method [START_REF] Abnt | NBR 15421: Projeto de estruturas resistentes a sismos -Procedimentos[END_REF] 

Introduction

Earthquakes represent a concern for several countries, since they have the potential to cause a great number of casualties and damages in structures. Brazil is a mid-plate country located in the South America tectonic plate, which is considered a stable region when compared to places near the boundaries of tectonic plates. For the sake of comparison, a seismic event of magnitude 5 occurs in Brazil once in five years on average, while in the Andean region an earthquake of this magnitude happens on average twice a week [START_REF] Assumpc ¸ão | Terremotos no brasil: preparando-se para eventos raros[END_REF]. Even though Brazil is located inside a tectonic plate, it presents a considerable history of small to moderate earthquakes, also including two events with moment magnitude (M) higher than 6. Studies also report damages occurred in the João Camara earthquake, in Rio Grande do Norte state and Itacarambi earthquake, in the state of Minas Gerais [START_REF] Takeya | The 1986-1988 intraplate earthquake sequence near joão câmara, northeast brazil-evolution of seismicity[END_REF], [START_REF] Chimpliganond | The intracratonic caraíbas-itacarambi earthquake of december 09, 2007 (4.9 mb), minas gerais state, brazil[END_REF]. Such damages are explained in places with small to moderate hazards with the definition of risk, which considers hazard, exposure, vulnerability, and consequences. One should note, therefore, that a low hazard does not imply low seismic risk in a region [START_REF] Reiter | Earthquake hazard analysis: issues and insights[END_REF], especially if buildings are not properly designed to withstand seismic loads.

In order to evaluate the risk of building damage and collapse, the concept of Performance-based earthquake engineering (PBEE) has been developed over the years [START_REF] Haselton | Calibration of model to simulate response of reinforced concrete beam-columns to collapse[END_REF]. According to Krawinkler [START_REF] Krawinkler | Challenges and progress in performance-based earthquake engineering[END_REF], it corresponds to the design, evaluation and construction of structures whose performance under extreme loads responds to the needs and objectives of owners-users and society. As a preliminary step, design professionals, owners and other stakeholders identify the desired building performance, and, as the design decisions are made, it is necessary to evaluate if the final building can achieve the indicated performance.

Improving the structural behavior can also be done with optimization techniques. In this respect, the optimization process under uncertainties has many advantages over deterministic ones, since deterministic optimization considers uncertainties in an indirect way. When the cost of failure is incorporated in the objective function, the optimization problem becomes a Risk Optimization, or also Life Cycle Cost Optimization [START_REF] Beck | A comparison of deterministic, reliability-based and risk-based structural optimization under uncertainty[END_REF]. So, this paper aims to apply the cross-entropy optimization technique to minimize the cost of a 2D reinforced concrete frame subjected to a seismic action.

Optimization problem and Methodology

Problem definition

The objective of this work is to find a set of parameters for column and beam cross section that minimizes the total expected repair costs and the probability of collapse of a 2D reinforced concrete frame subjected to El Centro earthquake. The design random variables for the problem are column cross section width and height (columns are considered to be squared) (c h ) and beam height (b h ).

Determine: d* = {c ⇤ h , b ⇤ h }; That minimizes: f (d) = h c c 2 ⇥ c 2 h + b h ⇥ b w + P m,f ail k=1 c f,k ⇥ p f,k i Subjected to: 0.19  c h  0.40; 0.30  b h  0.50 (in meters) With: M = {C h , B h }; C h ⇠ T N (c h , 0.04, 4.27, 0.97) ; B h ⇠ T N (b h , 0.04, 4.53, 0.47) . (1) 
Where: b w corresponds to the beam width; c c represents the initial cost of construction; c f corresponds to the expected cost associated with the failure mode considered; m, f ail corresponds to the modes of failure considered herein by the Damage Limit States. It is important to make clear that c h and b h are independent parameters. The initial cost of construction will be considered herein as the Brazilian "Basic Unity Construction Cost" (CUB) for the state of Sao Paulo, converted to dollar. For the month of June, the cost is estimated as R$1894.49/m 2 , and the dollar exchange rate is R$5.34, which means that the CUB value in dollar is $354.77/m 2 .

A representation of the 2D frame studied herein is presented in Figure 1a, with units in meters. Figure 1b shows the time-series for El Centro earthquake. The evaluation of the dynamic behavior of the 2D frame was done using OpenSees software [START_REF] Mckenna | Nonlinear finite-element analysis software architecture using object composition[END_REF], and details of the Finite Element Model used is presented in section 2.4. The design of the 2D frame considers the two columns containing 6 longitudinal reinforcement bars with diameter of 12.5 mm and a transverse reinforcement composed of one stirrup with two shear legs of 6.3 mm with 15 cm spacing. Beams have a fixed width (b w ) of 19 cm, and contain 2 longitudinal reinforcement bars with 12.5 mm diameter for tensile strength, and 2 longitudinal bars with 20 mm diameter for compression. The transverse reinforcement if done considers one stirrup with two shear legs of 5 mm diameter with 12 cm spacing. The compressive strength of concrete is 23 MPa, steel used is CA-50 and the concrete cover is 2.50 cm. Expected gravity loads are applied in the structure as an uniformly distributed load on the beam and are used to define seismic masses on the model. These loads include 1.05 times the dead load and 0.5 kN/m 2 for live load, which consists of 25% of the 2.0 kN/m 2 maximum live load for residential buildings established in ABNT NBR 6120 [START_REF] Abnt | NBR 6120: Cargas para o cálculo de estruturas de edificac ¸ões[END_REF]. P-Delta effects are considered in the columns.

In this paper, collapse is defined with the consideration of structural capacity (C) presented in Wen et al. [START_REF] Wen | Vulnerability function framework for consequence-based engineering[END_REF], corresponding to the maximum response a structure can withstand without reaching a limit state. This work considers the qualitative and quantitative definitions of the Damage Limit States proposed in Hazus manual [START_REF]Earthquake Loss Estimation Methodology: Advanced Engineering Building Module (AEBM), Technical and User's Manual[END_REF] for the building type reinforced concrete moment resisting frames (C1), being: Slight (SSD), Moderate (MSD), Extensive (ESD) and Complete (CSD) Structural Damage. Quantitative values for each Limit State considering a low-rise structure (1 to 3 pavements) and a pre-code classification, which means that structures do not take seismic actions in the design phase, are adopted considering values of median interstory drift (which means interstory displacement divided by story height) capacity (Sc), represented in Table 1.

All Damage Limit States are evaluated in this work, with an associated probability of failure for each one of them and an associated cost of failure. The reference of the cost is taken from Del Vecchio et al. [START_REF] Del | Repair costs of reinforced concrete building components: from actual data analysis to calibrated consequence functions[END_REF], that evaluated the actual repair cost of a database of 120 RC residential buildings damaged by the 2009 earthquake in L'Aquila, Italy. The costs were normalized and them calculated in dollars, making it possible to use the values for different regions from the study. The Damage States definition used by the authors are associated with the definitions from Hazus manual [START_REF]Earthquake Loss Estimation Methodology: Advanced Engineering Building Module (AEBM), Technical and User's Manual[END_REF], and the associated costs of failure (c f ) are summarized in Table 1 In each dynamic evaluation of the building, the algorithm check if any of the Limit States is reached, and save the information on the Index Function. Latter, using RWAS algorithm (described in section 2.3), the probability of failure (p f ) for each LS is calculated and, multiplied by the cost of failure, are summed in the objective function. An overview of the proposed methodology is presented in Figure 2, with all the implementation done using Matlab software [17]. All the steps of the methodology are described in details on the following sections. 

Cross-entropy optimization method

This paper uses the cross-entropy method to find the optimum parameters of the 2D frame considering seismic actions. The full presentation and discussion of the method is done by Cunha [START_REF] Cunha | Enhancing the performance of a bistable energy harvesting device via the cross-entropy method[END_REF]. The main idea of the method used herein is to transform the non-convex optimization problem into an equivalent problem to estimate a rare event, which can be efficiently treated as a Monte Carlo like algorithm. It is only necessary that the problem has a single solution. The feasible region is sampled considering a chosen probability distribution, and mean and standard deviation of the samples are used to update the optimum point estimation.

The two steps of the process are defined as sampling and learning. In the sampling step, the feasible region is sampled considering the chosen probability distribution (truncated Gaussian in this case), and the objective function is evaluated in each one of the samples. Next, on the learning step, a subset of these samples, named as elite sample set, is defined considering the samples that produces the highest values for the objective function.

After that, the distribution is updated using statistics from this elite sample set, modifying the given distribution in a way to make it as close as possible to a Dirac delta centered on the global optimum. The distribution mean value gives an approximation to the global optimum, and its update is done to move the center of the distribution toward the optimization problem optimum, while decreasing the standard deviation and "shrinking" the distribution around its central value [START_REF] Cunha | Enhancing the performance of a bistable energy harvesting device via the cross-entropy method[END_REF]. Based on the steps described, the algorithm for the computational implementation of the method, based on Cunha [START_REF] Cunha | Enhancing the performance of a bistable energy harvesting device via the cross-entropy method[END_REF], is described below:

Step 1: Define the number of samples N s and the number of elite samples N e , where N e < N s ; define the convergence tolerance tol, the maximum of iteration levels t max , a family of probability distributions (this work uses Gaussian distribution, and the equations presented are valid for this distribution) and an initial vector of the parameters of the model;

Step 2: Generate the N s independent and identically distributed samples to be evaluated;

Step 3: Evaluate the objective function in all N s samples, sort the results and define the elite samples N e with the points that better performed;

Step 4: Update the estimators of the mean value (µ t ) and standard deviation ( t ) with aid of the elite samples set, as shown in Equation 2.

µ t = ↵µ t + (1 ↵) µ t 1 t = t t + (1 t ) t 1 (2) 
Where µ t and t are the estimators with the aid of the elite sample on the actual iteration, ↵, and t are smooth parameters, and t is given by t

= ⇣ 1 1 q ⌘ q .
The parameters are such that 0 < ↵  1, 0.8   0.99 and 5  q  10.

Step 5: Repeat steps 2 to 4 until the stop criterion is met. Herein, max ( ) < tol.

Improved weighted average simulation (RWAS)

The improved weighted average simulation is a technique developed by Okasha [START_REF] Okasha | An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems[END_REF] to solve structural reliability problems, based on the weighted average simulation method (WASM) proposed by Rashki et al. [START_REF] Rashki | A new efficient simulation method to approximate the probability of failure and most probable point[END_REF]. Its main goal is to determine the probability of failure by generating uniformly distributed samples and applying the probability density value as the weight index at each sample. After that, the probability of failure is computed by dividing the sum of the weight indices of all samples [START_REF] Rashki | A new efficient simulation method to approximate the probability of failure and most probable point[END_REF] [START_REF] Okasha | An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems[END_REF]. The modification proposed allows the evaluation of the probability of failure with a small number of performance functions evaluation, since the p f converges faster to the final result with only a fraction of the generated samples [START_REF] Okasha | An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems[END_REF].

At the beginning of the method, it is necessary the evaluation of the Index function I(i) for all the samples generated using uniform distribution (N us ). This step is necessary to distinguish if the samples are located in the failed region (g i < 0) or in the safe region, (g i 0), based on the definition of failure of the problem. The Index function is represented in Equation 3. Since the problem evaluated herein consists on design values considered also as random values, the evaluation of the Index function can be performed only once, since a change in the mean value consists in only evaluate again the weight index.

I(i) = ( 1, if g i < 0 0, if g i 0 (3) 
The next step is to evaluate the PDF value (f X (x n )) of each random variable, based on the mean value for each variable considered in the step of the cross-entropy optimization method. With the PDF value, the weight indices of the samples are calculated as The modifications proposed in RWAS consist on sorting the generated samples in a descending order according to the values of their weight indices, with the id number of each sample assigned to the rank r i according to the place of this sample in the weight index sorting process [START_REF] Okasha | An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems[END_REF]. The probability of failure is than calculated incrementally in the order of the ranks, considering Equation 4.

W (n) = f X (x n ) ⇥ f Y (y n ) ⇥ f Z (z n ),
P k f = P k i=1 I (r i ) • W (r i ) P k i=1 W (i) (4) 
The incremental process can be terminated once a convergence criterion is reached. To evaluate this convergence criterion, it is necessary to evaluate the probability of failure already accumulated at increment k, as defined in Equation 5, which represents the upper limit value for the contributions of the remaining samples at increment k, assuming all of them are located in the failed region [START_REF] Okasha | An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems[END_REF].

R k f = P N j=k+1 W (r j ) P N i=1 W (i) (5) 
By doing this, the result is the highest probability of failure that can be predicted at increment k, even with the assumption that the rest of the samples all fail. The probability of failure cannot exceed the upper limit value of p f , given by Equation 6 [START_REF] Okasha | An improved weighted average simulation approach for solving reliability-based analysis and design optimization problems[END_REF].

P k f U = P k i=1 I (r i ) • W (r i ) + P N j=k+1 W (r j ) P N i=1 W (i) (6) 
The convergence criteria can be considered as the step where the difference between the upper limit value of p f and the value of the accumulated probability of failure of the kth increment is smaller than a specified tolerance (T OL), which means

⇣ P k f ⌘ U P k f < T OL.

Lumped Plasticity Model

The Finite Element Model used herein consists on a lumped plasticity model developed in OpenSees software [START_REF] Mckenna | Nonlinear finite-element analysis software architecture using object composition[END_REF] and its own library to create beams and columns elements. Figure 3a represents the model in a 2D frame. The model is used to simulate the nonlinear hysteretic response of reinforced concrete (RC) beams or columns under large deformation and is also developed to enable simulation of the nonlinear dynamic response of RC frame buildings under earthquake ground motions.

To properly model the inelastic behavior of beams and columns elements, a nonlinear spring model developed by Ibarra et al. [START_REF] Ibarra | Hysteretic models that incorporate strength and stiffness deterioration[END_REF] is used. The material, named uniaxialMaterial IMKPeakOriented on OpenSees library, is applied to a zero-length element represented by the springs on Figure 3a. Joints are represented by an elastic element with the length of the joint and infinity stiffness. The rest of the element is modeled also with elasticBeamColumn element with its area and Young's Modulus of resistance of the material. To account for the degradation of strength and stiffness associated with large deformations, suitable geometric transformations, and a leaning (P-) column are used in the analysis. The effects of foundation flexibility have not been considered at this part of the model development.

The nonlinear spring model consists of a monotonic backbone curve and hysteretic degradation rules to capture post-peak in-cycle softening which are associated with concrete crushing and reinforcing bar buckling at large cyclic deformations [START_REF] Haselton | Calibration of model to simulate response of reinforced concrete beam-columns to collapse[END_REF]. Figure 3b represents the monotonic curve by an idealized trilinear end moment (M) versus chord rotation (✓) response of an equivalent cantilever column. The curve is defined considering five parameters: yield moment capacity M y ; initial elastic secant stiffness to yield point K e ; maximum moment capacity M c ; plastic chord rotation from yield to cap point ✓ cap,pl ; post-capping plastic rotation capacity ✓ pc . The flexural yield strength M y generally is computed using strain compatibility approach. It is assumed that sections remain plane and uses an equivalent rectangular compressive stress distribution under ultimate loads with a concrete crushing strain of 0.003 [START_REF] Haselton | Calibration of model to simulate response of reinforced concrete beam-columns to collapse[END_REF]. The eqautions for the model parameters can be found on [START_REF] Haselton | Calibration of model to simulate response of reinforced concrete beam-columns to collapse[END_REF], [START_REF] Haselton | Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings[END_REF] and [START_REF] Rodrigues | Avaliac ¸ão da vulnerabilidade sísmica de edificac ¸ões regulares em concreto armado no brasil através da elaborac ¸ão de curvas de fragilidade[END_REF]. 

Results and Discussion

The solution of the optimization problem is presented. The domain is randomly sampled considering N s = 50 points, considering a truncated Gaussian distribution. The elite samples are selected considering N e = round (N s /10), the maximum number of iteration is t max = 150, and the convergence criteria is set as tol = 5⇥10 4 . The smoothing parameters are ↵ = 0, 7, = 0.8 and q = 5. The number of uniformly distributed samples for the RWAS method is N us = 5000 samples.

Figure 4 shows the domain sampling at different iterations of the algorithm, illustrating the CE method. The evolution of the algorithm is also represented in Table 2, where each line displays the iteration, the total cost obtained by the objective function (f (d)), mean and standard deviation of c h and b h . In this simulation, the optimum value obtained is $128.99 with the optimum dimensions of c h = 35.49 cm and b h = 40.32 cm. To check the accuracy of the results, the process is repeated 5 times, all with the same algorithm set up, to check the values of the objective function and dimensions of the frame. The summary of the process is shown in Table 3. One should notice that the results presented in Figure 4 and Table 2 correspond to simulation number 5. The results obtained in the 5 simulations are very close to each other, with the minimum cost of, approximately, $129.00. For simulation 5, the cost of construction corresponds to $116.14 (90.04% of total cost) and the cost of failure is $12.86 (9.96% of total cost). One can also notice that an increase on the mean value of the column cross section makes the beam height decrease to the minimum value, as observed in simulation 03. The performance of the algorithm can be evaluated by the time necessary to complete all 5 simulations, which are 17.84 hours in a Desktop Intel Core i5-10400 2.90 GHz, with RAM 16GB. The step that consumes most of the time on the simulations is the dynamic evaluation of the frame on OpenSees to calculate the Index Function for the RWAS, which also indicates the need to have a Finite Element Model that captures precisely the response of the building with a good processing time, justifying the choice for the Lumped Plasticity Model.

Conclusions

The results of this paper show the accuracy of the cross-entropy optimization method, associated with the improved weighted average simulation (RWAS) to calculate the probability of failure of a 2D reinforced concrete frame subjected to a seismic load. All 5 simulations performed converged to the same minimum of the objective function, making the algorithm suitable to find the optimum dimensions of column and beam cross section, considering a Risk Optimization process. This is an important step for the development of a optimization process of reinforced concrete structures with seismic actions, considering the PBEE.
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Figure 1 .

 1 Figure 1. Representation of the 2D RC frame studied herein and the time series of El Centro earthquake

Figure 2 .

 2 Figure 2. Flowchart of the methodology
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Figure 3 .

 3 Figure 3. Representation of the Finite Element Model and Idealized trilinear end moment versus chord rotation

Table 1 .

 1 . Damage Limit States considered, capacity (S C ) and cost of failure (c f ) associated (in dollars) Damage Limit State S c (%) c f ($)

	Slight Damage	0.40	66.56
	Moderate Damage	0.64	89.45
	Extensive Damage	1.60	108.91
	Complete Damage	4.00	140.34

Table 2 .

 2 Evolution of the CE algorithm t f(d) ($) µ c h (m) µ b h (m)

	c h (m)	b h (m)

Table 3 .

 3 Results of all the simulations performed

	Simulation f (d) ($) µ c h (m) µ b h (m) Number of iterations
	01	128.91	0.3556	0.3866	20
	02	128.36	0.3525	0.4060	20
	03	128.19	0.3640	0.3002	10
	04	129.41	0.3558	0.3950	14
	05	128.99	0.3549	0.4032	16
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