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Abstract
Crypto‐biometric schemes, such as fuzzy commitment, require binary sources. A novel
approach to binarising biometric data using Deep Neural Networks applied to facial
biometric data is introduced. The binary representations are evaluated on the MOBIO
and the Labelled Faces in the Wild databases, where their biometric recognition per-
formance and entropy are measured. The proposed binary embeddings give a state‐of‐
the‐art performance on both databases with almost negligible degradation compared to
the baseline. The representations' length can be controlled. Using a pretrained con-
volutional neural network and training the model on a cleaned version of the MS‐celeb‐
1M database, binary representations of length 4096 bits and 3300 bits of entropy are
obtained. The extracted representations have high entropy and are long enough to be
used in crypto‐biometric systems, such as fuzzy commitment. Furthermore, the proposed
approach is data‐driven and constitutes a locality preserving hashing that can be leveraged
for data clustering and similarity searches. As a use case of the binary representations, a
cancellable system is created based on the binary embeddings using a shuffling trans-
formation with a randomisation key as a second factor.

1 | INTRODUCTION

The face is one of the most widely used biometric charac-
teristics. With the availability of huge face recognition data
sets [1, 2] and growing computational power, face recognition
performance keeps improving [3–7]. Face recognition has
seen vast adoption thanks to its accuracy and ease of use.
From smartphones and computers to CCTV cameras and
surveillance, face recognition is present everywhere. This
widespread presence raises privacy and security concerns. A
solution to these concerns is to employ biometric template
protection schemes such as crypto‐systems and cancellable
biometrics. However, to protect the face templates, most of
the techniques employed need a binary representation of the
face. In addition, most face verification systems employ
continuous representations, which are less suitable for tem-
plate protection schemes.

The major contribution of this paper is introducing a data‐
driven template binarisation method using Deep Neural Net-
works (DNN), which does not degrade the performance of the

baseline system. Furthermore, we seek to obtain long binary
representations with high entropy to be used in crypto‐
biometric key regeneration schemes. The proposed binarisa-
tion method has four main advantages:

� The degradation of the recognition performance caused by
the binarisation is negligible compared to that of the base-
line system.

� The binarisation method can be applied to any type of real
representation.

� The length of the binary representation can be controlled.
The binarisation method provides arbitrary length repre-
sentations that are limited only by the quality of the training
database (size, noise). This allows for flexible representa-
tions that can be adapted to multiple applications, such as
crypto‐biometric key regeneration, fuzzy commitment, and
fuzzy extraction schemes.

� The binarisation method keeps the topology of the original
space, which allows for the use of the binary representation
in database searches and clustering.
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The paper is organised as follows: In Section 2, we provide a
brief survey of biometric binarisation techniques. Section 3
explains the different approaches we followed to extract binary
embeddings directly using DNN. Section 4 describes the data-
bases used in this paper. In Section 5, we analyse the perfor-
mance of the binary representations in terms of biometric
recognition and entropy. In Section 6, we study a use case for
the binary embeddings consisting in creating a cancellable
biometric system using a shuffling transformation as a protec-
tion scheme. Finally, the conclusions are laid out in Section 7.

2 | RELATED WORKS

State‐of‐art face recognition systems use continuous vector
embeddings to represent the users. However, the majority of
biometric template protection schemes and crypto‐biometric
systems need a binary representation [8] as an input. Thus,
the continuous vectors need to be binarised. Binarisation
methods fall into two categories: data‐independent and data‐
dependent strategies.

For the data‐independent approaches, different schemes
were proposed. In Ref. [9], Drozdowski et al. benchmark data‐
independent binarisation methods such as Refs. [10–17]. These
rule‐based methods directly quantise the projected values with
a threshold or use an orthogonal matrix to obtain the binary
codes. Such methods do not preserve the locality structure in
the whole learning process.

As for data‐dependent approaches, recently, multiple
binarisation techniques based on neural networks such as Refs.
[18–20] were introduced. These techniques focus on projecting
the input on a predetermined space. For example, in Ref. [18],
the authors map a low‐density parity‐check (LDPC) code to
each identity in the training data set. Thus, each person in the
training set has their codeword, resulting in perfect discrimi-
nation between the training subjects. Nevertheless, the system's
performance degrades when enrolling a user that did not
belong to the training set.

Pandey et al. [21] use deep convolutional neural networks
to learn mapping from face images to maximum entropy bi-
nary codes. The mapping is robust enough to tackle the
problem of exact matching, yielding the same code for new
samples of a user as the code assigned during training. These
codes are then hashed to generate protected face templates.

In Ref. [22], Jindal et al. generate unique binary codes with
maximum entropy. In order to maximise the entropy of the bi-
nary codes, each bit of the binary code is randomly generated
and has no correlation with the original biometric sample. The
binary codes are used to replace the one‐hot encoding used to
train the VGG‐Face network. The network uses binary cross‐
entropy as the loss function, with the last layer activation func-
tion being the sigmoid function instead of the softmax function.

Similar to our approach, Carreira et al. [23] use auto‐
encoders for the binarisation of the data. The outputs of the
hidden layer are passed into a step function to binarise the
codes. Incorporating the step function in the learning leads to a
non‐smooth objective function. Optimising this non‐smooth

function is NP‐complete. Where the gradients do exist, they
are zero nearly everywhere. They use binary SVMs to learn the
model parameters to handle this difficulty. Whereas, in our
case, we ignore the gradient of the binarisation layer to keep
the non‐zero aspect of the gradient of the loss function.

The previously mentioned binarisation methods provide
binary representations with limited length. In this paper, we
aim to obtain long representations with high entropy to be
used in crypto‐biometric key regeneration.

As opposed to the methods that use a predefined mapping
space, the approach we present aims to preserve the topology
of the embeddings provided by the baseline DNN architecture.
As a result, we preserve the advantages of the underlying DNN
(resistance to noise, higher accuracy, and robustness) while
obtaining binary representations. Furthermore, persevering the
topology of the data also allows for using our binarisation
method in data retrieval applications.

In the following sections, we introduce our binarisation
method. Then, we study its performance and present a use case
of a cancellable biometric system based on the binary repre-
sentations created using our method.

3 | PROPOSED FACE BINARISATION
METHOD

This study uses deep neural networks to extract binary bio-
metric representations from face images. This way, we take
advantage of data‐driven approaches to generate an optimised
binary representation.

Our binarisation method consists of training an end‐to‐end
binary embedding extractor directly from aligned face images.
Thus, the binarisation layer considers the loss function and is
optimised for the task. We aim to obtain locality‐preserving
binary representations. The locality preserving property is
defined by Equation (1) where a, p and n are three random
points from the original space and f (.) is the projection
function. The triplet loss function (shown in Equation (2)) is
suitable for this task as the optimisation criterion is equivalent
to Equation (1). To this end, we based our DNN on the
FaceNet [7] architecture, which uses the triplet loss function
for the training.

dða; pÞ < dða; nÞ⇒ kf ðaÞ − f ðpÞk < kf ðaÞ − f ðnÞk ð1Þ

In the following subsections, we present the baseline face
recognition system and describe the approaches taken to
binarise the biometric data.

3.1 | Baseline face recognition system

Our goal is to obtain discriminating binary representations
from faces that do not degrade the performance of the baseline
system. The binarisation method proposed in this paper
transforms Euclidean face embeddings into binary embeddings
of different lengths. The Euclidean embeddings are
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constructed using a deep neural network based on FaceNet [7].
In Ref. [24] we describe in detail the methodology we followed
to create the face recognition system based on the OpenFace
implementation [3]. We trained a convolutional DNN using the
triplet loss function. The triplet loss function, given by
Equation (2), takes a triplet comprised of an anchor xai and a
positive sample xpi from the same subject, and a negative
sample xni selected randomly from the rest of the data set. The
training goal is to bring closer the anchor and positive samples
and distance the negative sample using the margin α.

L¼
XN

i
max

�
0;
�
� f
�
xai
�

− f
�
xpi
��
�2
2 −
�
� f
�
xai
�

− f
�
xni
��
�2
2 þ α

�

ð2Þ

The DNN architecture for training the face projection
space is composed of 24 layers and 3 733 968 parameters. The
training phase aims to obtain the best representation that
separates the positive identities from negative ones using the
triplet loss function. After the training phase, the network
outputs a low dimensional representation of an input image
consisting of a normalised Euclidean feature vector of size 128.

Figure 1 shows the pipeline of the face recognition system.
First, the face is detected and aligned according to a predefined
template. Afterwards, the aligned face is processed by the
DNN in order to extract a Euclidean representation. This
Euclidean representation constitutes the template that defines
the user either for enrolment or verification.

Face alignment consists of three steps: face detection,
landmark detection, affine transformation, and face cropping.
The face detection is carried out using a deep convolutional
neural network provided by OpenCV based on a Single‐Shot‐
Multibox Detector (SSD) [25] and uses ResNet‐10 architecture
as a backbone. This model gives state‐of‐the‐art performance
with a low computational overhead. The image needs to be
resized to 300 � 300 pixels to use the face detector. The image
is provided in RGB format after subtracting the mean from
each value. The output of the SSD detector is a bounding box.
Given the face‐bounding box, we use an implementation of
Ref. [26] provided by DLIB [27] to detect the facial landmarks.
Further details on the face alignment are provided in Ref. [28].

Finally, the Euclidean embedding extracted from the
aligned face using DNN can be used for face recognition either
in identification or verification scenarios. This paper aims to
binarise the Euclidean embeddings with the least amount of
degradation, which we explain in the next section.

3.2 | Locality preserving binary face
representations using auto‐encoders

Figure 2 shows the architecture of the proposed approaches.
Both approaches (a) and (b) follow the same architecture. The
difference lies in how the training data is used. In approaches
(a) and (b), we opted to use an auto‐encoder on top of the deep
convolutional neural network (FaceNet based) to obtain the
binary code.

The idea was to use an encoder to project the Euclidean
representation that we get from the DNN onto another vector.
This vector has the same size as the intended binary repre-
sentation. Afterwards, we apply a custom binarisation layer on
the vector and finally use a decoder to get back to the
Euclidean representation.

The binarisation layer is defined as follows: In this layer, we
apply a threshold to each input component. The output of this
layer is defined in Equation (3). The input is compared to a
threshold that is specified beforehand. The choice of the
threshold is based on the type of the previous layer activation
function. In our case, we chose a threshold of “0” as the
previous activation function is the hyperbolic tangent. This
layer does not have trainable parameters. In the back‐
propagation phase of the training, this layer is treated as the
identity function, and its gradient is equal to 1.

FðinputÞ ¼
�
0; if input ≤ threshold
1; otherwise

ð3Þ

This idea has two benefits. First, we get more control over
the length of the binary representation (we only need to
modify the auto‐encoder). The second benefit is that we get a
continuous output from the auto‐encoder, allowing us to use
standard optimisation methods in conjunction with the triplet
loss criteria. Figure 2 illustrates the example where we use a
code length of P. First, the image is fed to the DNN, and we
extract a Euclidean representation of size 128. Next, encode it
on a P‐component real vector, which is, in turn, binarised.

F I GURE 1 Pipeline of the baseline face recognition system

F I GURE 2 Block diagram of the binarisation method used in
approaches (a) and (b). In approach (a), the whole model is trained from
scratch. In approach (b), the FaceNet CNN is pretrained using the MS‐
celeb‐1M
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Then we reconstruct the initial Euclidean representation. The
architecture described in Figure 2 is only used during the
training phase. After training, we remove the decoder and
obtain a binary code given a face image.

To put this idea into practice, we first needed to find an auto‐
encoder architecture suitable for the output. In other words, we
sought to find the hyperparameters of the auto‐encoder (number
of hidden layers, width of the layers, and the activation functions)
that result in the least degradation of the recognition perfor-
mance compared to the original Euclidean representation. In
this step, we did not use the binarisation layer. As the binarisation
step generally degrades the performance, we would not be able
to say whether the performance was degraded due to the auto‐
encoder or the binarisation step. The architecture that resulted
in the least degradation was constructed using three layers. The
encoder consisted of two linear layers with a hyperbolic tangent
as an activation function. We used a single layer with a ReLU
activation function for the decoder. The auto‐encoder choice
was based on the difference between the auto‐encoder perfor-
mance and the baseline performance of the original DNN ar-
chitecture, which is 97.52% on the LFW. Once the auto‐encoder
architecture is set, we introduce the binarisation layer between
the encoder and the decoder. The Final DNN architecture is
presented in Table A1 of the appendix.

The difference between approach (a) and approach (b) is
that in (a), we train the whole architecture from scratch, while
in (b), we use a pretrained model on MS‐celeb‐1m. This model
is described in Ref. [24]. Compared to approach (a), where the
training is done from scratch, it is much faster for the DNN to
converge towards good results. The loss of the models con-
structed using approach (a) stabilises around 1000 epochs
compared to 100 epochs for models constructed using
approach (b).

The following section presents the databases used for
training and validating the models.

4 | DATABASES

We used the following databases to train and validate our
models. We chose MS‐celeb‐1M for training the models
because it is the biggest public data set for face recognition. In
addition, the triplet loss function requires a high number of
subjects with multiple images. LFW was chosen to evaluate the
system's performance because it serves as the benchmark for
most face recognition systems.

As for MOBIO, the data set was captured under chal-
lenging realistic use‐case conditions, a person accessing his/her
computer/phone. In this section, we provide a brief descrip-
tion of the particularities of these databases.

4.1 | Microsoft MS‐celeb‐1M

The MS‐celeb‐1M [1] is one of the largest publicly available
databases. It has 100 k subjects and almost 10 M images.
Popular search engines are used to provide about 100 images

for each subject. The images are collected based on their
metadata, not their content. This results in the data set having a
considerable amount of noise. The data set is constructed by
Microsoft and is available for non‐commercial use. Ref. [1]
further describes the process of assembling the images and the
metric used for the choice of the 100 K celebrity provided in
the data set. We used the whole data set for training the neural
network. The MS‐celeb‐1M database contains a significant
portion of mislabelling because it was collected automatically
using web crawlers.

In order to improve the performance, we leveraged clus-
tering algorithms to clean the database. First, we applied
Density‐Based Spatial Clustering of Applications with Noise
(DBSCAN) [29] to reduce the mislabelling of the database. We
worked under the assumption that there is no overlap between
the identities of the labels provided in the database metadata.
In other words, we can find multiple identities under the same
label, but there is no overlap between the identities belonging
to different labels. As the number of the identities in each label
is unknown, we proceed by applying the DBSCAN clustering
algorithm onto each label. The clustering is done on the em-
beddings computed using our model from Ref. [24]. The
cluster with the highest number of samples is kept, and the
remaining clusters are discarded. In cases where the number of
samples in the most significant cluster is lower than three, the
label is discarded.

Furthermore, the MS‐celeb‐1M database is biased towards
the LFW data set as there is an overlap of the identities be-
tween both databases. We detail in Ref. [28] how we tried to
reduce the bias towards the LFW database.

The cleaning reduced the training database to 80 k iden-
tities from the 100 k users provided in the MS‐celeb‐1M and
reduced the total number of images from 10 to 4.5 M. This
resulted in better overall performance for the baseline face
recognition system. For example, in the case of the LFW
database, using the same hyperparameters, the accuracy is
improved from 97.53% to 98.82%. The impact of the cleaning
is further shown in the case of the MOBIO database, where
the accuracy of the baseline system improved from 90.6% to
98.9%.

4.2 | Labelled faces in the wild

The LFW data set contains 13233 target face images with
considerable variability in facial expressions, age, race, occlu-
sion, and illumination conditions. 1680 of the people pictured
have two or more distinct photos in the data set. The only
constraint on these faces is that they were detected by the
Viola–Jones face detector [30]. The protocol specifies two
views of the data set. View one is for model selection and
algorithm development. It contains two sets: 1100 pairs per
class (matched/mismatched) for training and 500 pairs per
each class for testing. View 2 is designed for performance
reporting. It is divided into 10 sets (folders), each with 300
matched pairs and 300 mismatched pairs. The cross‐validation
evaluation can be adopted among these 10 folders. The final
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verification performance is reported as the mean recognition
rate and standard error over the 10 fold cross‐validation. It has
to be noted that the task is to do pair matching: given a pair of
images, the goal is to decide whether they belong to the same
subject. This task is similar to face verification, except that the
evaluation metrics proposed by the database collectors is the
accuracy of the pair matching.

4.3 | MOBIO

The MOBIO database [31] is a bimodal (face/speaker) data-
base recorded from 152 people. The database has a female–
male ratio of nearly 1:2 (52 females 100 males). In total, 12
sessions were captured for each individual. It consists of three
sets: training, development, and evaluation. In our experi-
ments, we used only the development and evaluation sets.

The development set contains 42 subjects: 24 males and 18
females. As for the evaluation set, it comprised 58 subjects, 38
males and 20 females. Each subject has at least 120 videos. In
the original protocol of the MOBIO database, the perfor-
mance on the development set is measured using the equal
error rate (EER) and the half total error rate (HTER) on the
evaluation set. The evaluation protocol is described in Ref.
[32]. The results are reported separately for males and females
because separating males from females for speaker recognition
gives better results. Therefore face recognition experiments
follow the same principle in this protocol.

However, in our case, we applied the 10‐fold cross‐
validation pair‐matching protocol similar to the LFW data-
base to have the same evaluation metric for both databases. We
concatenated the development and evaluation partitions to
obtain a single testing partition composed of 100 subjects (62
males and 28 females). We use three frames from each video.
Frames where the face is not present, are discarded. In order to
have a balanced accuracy, we used 50 000 matched pairs and 50
000 mismatched pairs. The accuracy is computed on the 100
000 pairs using 10‐fold cross‐validation. The performance
using the original protocol is reported in the appendix in
Figure A1 and Table A2.

5 | BIOMETRIC PERFORMANCE OF
THE BINARY REPRESENTATIONS

In this section, we present the biometric performance of the
binary representations. We evaluate the performance on the
LFW and the MOBIO databases using the accuracy, as a
common evaluation metric, computed using the 10‐fold cross‐
validation protocol.

We evaluate the recognition performance and the entropy
of the models. As the goal of the work is to binarise the
biometric samples to be suitable for biometric crypto‐systems
and biometric protection schemes, the binary representations
should have high entropy and good recognition performance.

In approach (a), we train the network, shown in Figure 2,
from scratch on the MS‐celeb‐1M data set using the triplet loss

function. We report in Table 1 the performance of this
approach for various lengths of the binary representations. The
training was carried out for 1000 epochs. We note that the best
performance on LFW is obtained with 512‐bit representations.
On the other hand, 512‐bit representations provide the best
performance on the MOBIO data set. We attribute that to the
overlap of the original MS‐celeb‐1M data set with the LFW
data set. As the representation length grows, the model overfits
to MS‐celeb‐1M, resulting in worse performance on MOBIO.

When the length of the embeddings reaches 4096 bits, the
recognition performance decreases dramatically. On LFW, the
accuracy plummets from 93% to 81% compared to the rep-
resentation with a length of 2048. The performance degrada-
tion is more accentuated on the MOBIO data set, where the
error reaches almost 50%. We attribute the cause of the
degradation when using 4096‐bit embeddings to the loss of
information in the training phase of the neural network due to
the thresholding process. The information propagated back-
ward is not enough to optimise the system's parameters. The
number of trainable parameters in the auto‐encoder evolves
exponentially from 33024 parameters for representations with
a length of 128 bits to 1 056 768 parameters for the 4096‐bit
representations.

Studying the biometric performance of the binary repre-
sentation alone is not enough, especially when we are trying to
have long representations. Appending a fixed portion to all the
representations will not degrade the recognition performance
of the system. However, as our primary goal is to obtain a long
binary representation, we need to study the entropy of the
representations. We report in Table 2 the entropy of the binary
representations according to their length.

The entropy is measured on 5 million samples from MS‐
celeb‐1M. We use Monte Carlo random sampling in order to
compute the entropy. From the 5 M samples, we select 500 k
samples randomly and measure the entropy based on those
500 k samples. This step is repeated for 1000 iterations. The

TABLE 1 Impact of the length of the binary representations on the
biometric performance of approach (a): Training the auto‐encoder using
triplet loss from scratch

Length Accuracy on LFW % Accuracy on MOBIO %

Baseline system 97.52 90.58

128*(median) 89.32 79.74

128 91.73 82.50

256 93.18 83.50

512 94.12 84.23

1024 93.62 81.46

2048 93.07 79.46

4096 81.13 53.60

Note: The baseline system is the system used in [17]. The results in the second row (row
‘128*’) are obtained by applying a median binarisation on the output of the CNN used
in Ref. [17]. The maximum standard deviation (std) on Labelled Faces in the Wild
(LFW) is around 1%. The maximum std on MOBIO is around 0.1%. Best results are
presented in BOLD.
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entropy provided in the tables is the average of the 1000 it-
erations. Representations of length 512 provide the highest
entropy with 163 bits. On the other hand, embeddings of
length 4096 give the lowest value for entropy, which is
consistent with their biometric recognition performance.

The results of the approach (a), especially the low entropy,
led us to use the pretrained face recognition models instead of
training from scratch. Table 3 reports the performance of the
system when we use a pretrained CNN. Using a pretrained
CNN significantly improves performance, especially for em-
beddings with 4096 bits. In addition, the pretraining reduces
the loss of information introduced by the auto‐encoder. Using
a pretrained model on the cleaned version of MS‐celeb‐1M and
adding the auto‐encoder previously discussed resulted in better
biometric verification performance compared to training the
model from scratch. The pretrained CNN is the FaceNet
model trained on the same data set as the auto‐encoder. So,
when we present the performance of the models trained on the
original/cleaned version of MS‐celeb‐1M, the pretrained CNN
is trained separately on the same set as the whole module.

We report the entropy of the binary representations ob-
tained using an auto‐encoder with a pretrained CNN in
Table 4. For the version trained on the original MS‐celeb‐1M,
we see that the entropy of the keys reaches its maximum of 260
for representations of size 1024. Besides, the p (x = 1) is
around 0.5 (except for length 4096), which shows that many
bits of the representations are constant. In addition, when we
use the cleaned training database for training the system, we
see that entropy improves significantly, in particular when the
length of the representation exceeds 512 bits.

To estimate the degradation of the biometric performance
introduced by the binarisation, we compare the performance
of the approach (a) to the system presented in Ref. [24]. For
approach (b), we compare the performance of the binarised
embeddings to the pretrained CNN that was used. Approach
(a) shows higher degradation of the performance, from 97.53%
to 94.12% accuracy on LFW and from 90.58% accuracy on
MOBIO to 84.23%. The degradation is more pronounced on
the MOBIO database due to the bias in the original version of
MS‐celeb‐1M towards the LFW data set.

As for approach (b), we present two cases. The first case is
when the pretrained CNN and the auto‐encoder are trained on
the original MS‐celeb‐1M. In this case, as shown in Table 3, the

accuracy on LFW is decreased by about 1%–2% compared to
the baseline. On the other hand, the accuracy on the MOBIO
data set improved compared to the performance of approach
(a). We attribute the difference of behaviour of the system to
the overlap between the training and LFWdatabases. However,
when the training is carried out on the cleaned database, the
degradation on both data sets is lower than 1%. On the LFW
database, we obtain 99.12% accuracy using the binary repre-
sentations, whereas we get 99.22% accuracy using the baseline
system. The same applies to the MOBIO database, where we
get 98.9% accuracy using the binary representations compared
to an accuracy of 98.93% with the baseline system. This shows
that our binarisation methods are highly dependent on the
quality of the training data. By the quality of the training data,
we refer to the level of the noise, mislabelling, quality of the
images, and size of the database. If we have little data, it will
result in low entropy of the representations. The mislabelling
and noise will also reduce the system's accuracy and lower the
entropy of the representations at the same time. As shown in
Table 4, the entropy of the representations depends on the

TABLE 2 Entropy of the representations created using approach (a)

Length p (x = 1) Entropy

128 0.487 98.26

256 0.532 113.87

512 0.514 163.4

1024 0.496 116.65

2048 0.511 143.92

4096 0.503 49.87

Note: The entropy was measured using 5 M samples from MS‐celeb‐1M. p (x = 1) is the
probability of a bit is equal to 1. Best results are presented in BOLD.

TABLE 3 Impact of the length of the binary representation on the
biometric recognition performance of approach (b) (using a pretrained
CNN with an auto‐encoder)

Length
Accuracy on LFW
%

Accuracy on
MOBIO %

Pretrained CNN 97.52 99.22 90.58 98.93

128*(median) 89.32 93.22 79.74 90.15

128 94.88 97.30 81.31 95.27

256 95.37 97.50 87.62 97.84

512 95.85 98.80 87.11 98.28

1024 96.32 99.12 89.35 98.87

2048 95.06 99.00 85.60 98.58

4096 95.15 99.00 80.12 98.90

Note: Values in bold are given by models trained using the cleaned version MS‐celeb‐
1M. The first row is provided to show the degradation of recognition performance
between the initial system (Euclidean embeddings) and the binarised embeddings. By
‘pretrained CNN’, we denote the initial OpenFace DNN. The results in the second row
(row ‘128*’) are obtained by applying a median binarisation on the output of the
pretrained CNN.

TABLE 4 Entropy of the representations created using approach (b)

Length p (x = 1) Entropy

128 0.497 0.489 112.22 116.20

256 0.486 0.481 205.67 233.59

512 0.493 0.482 252.01 473.74

1024 0.506 0.454 261.29 944.24

2048 0.498 0.315 223.99 1679.25

4096 0.826 0.308 179.08 3349.47

Note: The entropy was measured using 5 M samples from MS‐celeb‐1M. p (x = 1) is the
probability of a bit being equal to 1. Values in bold are given by models trained using
the cleaned version MS‐celeb‐1M.
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quality of the training data set (non‐cleaned/cleaned). For the
non‐cleaned version, representations with lengths longer than
256 bits have no further useful information. As for the cleaned
version, this behaviour appears when we exceed the length of
4096 bits. The proposed auto‐encoder can provide longer
representations, but their real length, which is shown through
their entropy (See Table 2)

Finally, in both approaches (a) and (b), the performance is
better than binarising simply using the median as described in
Ref. [33] Moreover, our method has the advantage of
providing arbitrary length representations limited only by the
quality of the training data set. The representation length can
thus be adapted to the sensitivity of the application.

We present in Table 5 a comparison between our proposed
approach and some classical binarisation methods. These
classical methods were presented in Refs. [9, 16] and bench-
marked on the AR and FERET data sets. We followed the
proposed approach presented in Ref. [9] for binarising the
output of the CNN by quantising the feature space and
applying an encoding to the codebook obtained in the quan-
tisation step. We follow the same processing chain presented in
Ref. [9], but we used our DNN features as input for the
binarisation methods. The binarisation methods that we re‐
implemented are the following:

� Direct Binary Representation (DBR), where the decimal
values from the quantisation are directly convected into their
binary representations.

� Binary Reflected Grey Code (BRGC), similar to the DBR
method, where the decimal values are encoded directly to
binary format using their BRG representations.

� Linearly separable Subcode (LSSC) [16], an encoding
method that aims to keep the distance from the decimal
space to the binary space.

� Sparse, in this scheme, which is similar to one‐hot encoding,
the number of encoded bits per real value is equal to the
number of quantisation intervals, and only one bit is set to
one per encoding.

We followed an equal‐width quantisation approach where
the feature space is divided into intervals of the same size.

In our comparison, we used the same output lengths for
each of the systems as in Ref. [9] Furthermore, we also
adapted the schemes to obtain 1024 bits for all the methods,
mainly by changing the number of quantisation intervals. For
example, for DBR to obtain representations with 1024 bits,
we used 256 quantisation intervals to obtain a DBR repre-
sentation on 8 bits for each real value. BRGC, LSSC, and
Sparse were quantised over 256, 9, and 8 intervals,
respectively.

As shown in Table 5, our approach gives better recog-
nition performance than the classical methods. Furthermore,
the entropy of our approach is higher than the classical ap-
proaches presented. For example, LSSC shows the best per-
formance among the studied classical binarisation approaches
with 98.62% accuracy on LFW compared to the original
baseline of 99.2%. Thus, the recognition degradation of this
approach is minor. However, it provides less than half the
entropy provided by our binarisation approach. In addition,
some of the methods show significant degradation of the
performance when using longer representations (such as
DBR) and, as such, limiting the length of the representation.
BRGC and Sparse, and especially DBR, suffer from perfor-
mance degradation when increasing the length of the repre-
sentations. We attribute the degradation of the performance
for DBR to two factors: first, the high number of quantisa-
tion intervals; second, the fact that the DBR code does not
conserve distances as opposed to LSSC and BGRC. On the
other hand, our method keeps the system's performance even
with much longer representations as we do not need to
change the number of quantisation intervals by increasing the
number of neurons in the bottleneck layer in the auto‐
encoder; we can increase the length of the binary
representation.

In the following section, we provide a use case of the bi-
nary representations consisting of a cancellable face verifica-
tion system.

TABLE 5 Performance of the classical
binarisation methods on the Labelled Faces in
the Wild (LFW) data set

Encoding Length (bits) Accuracy on LFW (%) Entropy

Euclidean representation (OpenFace) 128 floats 99.22 e

DBR 256 97.28 253.23

1024 84.25 650.50

BRGC 256 97.37 146.04

1024 96.17 561.74

LSSC 348 97.38 148.60

1024 98.62 409.03

Sparse 512 96.93 275.31

1024 94.35 418.67

Ours 1024 99.12 944.24

Note: The binarisation methods are applied to the output of our version of OpenFace CNN trained on the cleaned version
of MS‐celeb‐1M. The entropy of the methods is computed using the same approach presented previously. Best results are
presented in BOLD.
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6 | APPLICATION TO CANCELLABLE
BIOMETRICS

Biometrics systems are strongly associated with identity, and
therefore, biometric recognition creates a strong link between
the user's identity and the authenticator. However, many pri-
vacy concerns are being raised about biometrics. Since bio-
metric characteristics are permanently associated with the
person, they cannot be replaced in case of compromise. This
lack of revocability is a serious issue for user authentication
systems. Moreover, biometric templates originating from the
same biometric characteristics stored in different databases are
similar. Therefore, biometrics lack diversity, and two biometric
databases can be cross‐linked, compromising the user's privacy.
Recovery of biometric data from the biometric references and
possibly revealing physical conditions bring additional privacy
issues with biometric systems.

Cancellable biometrics is proposed in order to address
these problems. It consists of transforming the original bio-
metric template to obtain a cancellable biometric reference that
can be revoked. Therefore, when a biometric template is
compromised, it can be cancelled and replaced.

6.1 | Cancellable system requirements

There are some main criteria that a cancellable biometric
template should satisfy:

� Performance: the cancellable biometric system should not
degrade the verification performance of the underlying
baseline biometric system.

� Revocability: if the protected biometric template is stolen,
it should be possible to revoke that template and reissue a
new one;

� Diversity: is the maximum number of independently pro-
tected templates that can be created from one biometric
sample.

� Irreversibility: it should be computationally infeasible to
obtain the original biometric template from the protected
template.

� Unlinkability: the protected biometric templates created
from the same biometric sample using two different secret
keys should not be linkable.

In the following subsection, we present and evaluate the
performance of the biometric protection scheme applied to the
binary representations created using our binarisation method.
In the following evaluation, we use the terminology of the
ISO/IEC 24745:2011 [34]. We use PI to denote the Pseu-
donymous Identifier and SD for Supplementary Data.

6.2 | Proposed cancellable system

To protect the template, we apply the shuffling scheme pro-
posed by Kanade et al. in Ref. [35]. The shuffling scheme

(shown in Figure 3) uses a binary shuffling key. Since this key is
a long bit‐string, it is stored on a secure token, or it can be
derived from a password. The binary embedding is divided into
blocks of the same length. Two distinct parts are created: the
first part contains all the blocks corresponding to the positions
where the shuffling key bit value is ‘1’. All the remaining blocks
are taken into the second part. These two parts are concate-
nated to form the shuffled binary embedding, treated as the
protected template. The original and shuffled templates have a
one‐to‐one correspondence. A block from the original vector
is placed at a different position in the shuffled embedding.
When two binary embeddings are shuffled using the same
shuffling key, the absolute positions of the blocks change, but
this change occurs in the same way for both of the represen-
tations. As a result, the Hamming distance between them does
not change. On the other hand, if they are shuffled using two
different keys, the result is a randomisation of the represen-
tations, and the Hamming distance increases.

For this use case, we chose a block size of ‘1’ compared to
‘7’ in Ref. [35]. This has two main advantages. First, the size of
the shuffling key will be longer, thus harder to brute‐force.
Secondly, the permutation space becomes bigger, allowing for
a higher number of possible templates. The shuffled binary
embedding, which is the cancellable template, is the result of
combining the biometric sample and the Supplementary Data
(SD) (the shuffling key in our case). Therefore, it can be
revoked in case of compromise, and a new template can be
generated by changing the shuffling key. In our case, we chose
a block size of “1” with a shuffling key of size 1024. The
shuffling keys can be either generated and stored in the Secure
Element or derived from the password using, for example, a
password‐based key derivation function such as PBKDF2.

According to the results reported in Table 6, a binary
embedding of 1024 bits gives the best trade‐off between size
and performance. As such, all subsequent evaluation analyses
are carried out using 1024‐bit representations.

6.2.1 | Biometric recognition performance

The performance of the verification system is an important
point that must not be degraded by the transformation scheme.
Therefore, for a fair comparison, first, the biometric verifica-
tion performance of the baseline biometric system should be
evaluated, then the performance of the proposed cancellable
biometric system. It is necessary to evaluate the system

F I GURE 3 Shuffling scheme with block size of ‘1’ bit
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performance when one of the two factors is compromised.
Hence, two impostor scenarios are considered:

� Stolen biometric data: when the biometric data for the user
is compromised. Here, an impostor will try to provide the
stolen biometric data with the wrong SD;

� Stolen Supplementary data: when the SD of the user is
compromised. Here, an impostor will try to provide erro-
neous biometric data with the stolen SD.

The biometric recognition performance of the system is
reported in Table 6. The performance of the system is
improved compared to using non‐shuffled representations.
Moreover, we obtain better overall performance for the
shuffling when using our proposed binarisation method
compared to using median threshold as shown in the first and
second row of Table 6. We also note that thanks to the fact that
we can control the length of the generated binary representa-
tion, we can improve the recognition performance by using
longer representations.

For the stolen biometric scenario, the system has a False
Acceptance Rate (FAR) of 0%. This point is further developed
in the unlinkability analysis. Therefore, the protected biometric
templates created from the same biometric sample using two
different secret keys should not be linkable, which is the same
as using a compromised biometric sample with a different key.

As for the stolen SD scenario, the performance of the
system reverts to the case of non‐shuffled representations
shown in Table 3.

6.2.2 | Diversity

It is necessary to calculate the maximum number of pseu-
donymous identifiers (a pseudonymous identifier (PI) is a part
of a renewable biometric reference that represents an indi-
vidual or data subject) that can be generated. After that, un-
thinkability and irreversibility analysis should be done as a
function of PI issued. In the case of the previously described

shuffling scheme, the maximum number of PI is given using
the number of possible permutations. Moreover, because the
decision‐making is based on a threshold comparison, we
should not account for templates falling in the same neigh-
bourhood. We estimate the maximum number of templates
using the Hamming‐packing bound. Using a threshold t = 0.2,
for binary representations of length 1024, we get around 2194

possible PI for each user.

Number Of PI ¼
number of permutation

volume of Hamming spheres

¼
1024!

512! 512!
Pt�1024
k¼0

� 1024
k

�
≈ 2194

ð4Þ

6.2.3 | Irreversibility

There are two types of irreversibility analysis. The first type is to
analyse whether we can revert to the original template given the
SD. The second analysis is the analysis of the protected template
without having the SD. As the applied transformation is a
shuffling of the bits of the embedding without a loss of infor-
mation, given the second factor, the scheme is fully reversible.
However, without access to the second factor and prior
knowledge about the distribution of the non‐shuffled templates,
it is computationally not feasible to revert to the original binary
embedding as the number of permutations to be tested, which is
equal to 1024!

512! 512! ≈ 21018 is too big to be brute‐forced.

6.2.4 | Unlinkability

For this metric, we follow the methodology defined in Ref.
[36]. Two types of score distributions will be analysed for the
assessment of the unlinkability provided by the protected
templates:

� Mated instances: scores computed from templates
extracted from different samples of the same subject using
different keys.

� Non‐mated instances: scores obtained from templates
generated from samples of different subjects using different
keys.

As described in Ref. [36], two measures are computed,
D↔(s) ∈ [0,1] gives an estimation of the linkability of a system
for a specific score s, and Dsys↔ ∈[0,1] gives an estimation of the
linkability of a system as a whole, independently of the score. If
for a specific score s0 D↔(s0) = 0, this means that the system is
fully unlinkable for this particular score. Also, if Dsys↔ ¼ 0 where
both score distributions (mated and non‐mated) are over-
lapping, this means that the system is fully unlinkable for the
whole score range. The computation of D↔(s) and Dsys↔ de-
pends on the prior probability ratio ω of the mated and non‐
mated distributions, which may result in Dsys↔ ¼ 0 even if the

TABLE 6 Impact of the length of the shuffled binary representations
obtained following approach (b) (using a pretrained CNN with an auto‐
encoder) on the recognition performance

Length
Accuracy on
LFW % Accuracy on MOBIO %

128* 98.32 98.00 99.72 99.67

128 98.27 98.82 99.88 99.67

256 99.68 99.22 99.91 99.88

512 100 99.80 100 100

1024 100 99.88 100 100

2048 100 99.88 100 100

4096 100 99.77 100 100

Note: Values in bold are given by DNN models trained using the cleaned version MS‐
celeb‐1M. The results in the second row (row ‘128*’) are obtained by applying a median
binarisation on the output of the initial OpenFace DNN.
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distributions are not perfectly overlapping. In our case, the
prior probability ratio is ω = 0.2. Using this value for ω the
distribution of mated and non‐mated scores overlap, thus
making the function D↔(s) identically zero over the range of
the possible scores. In addition Dsys↔ is equal to 0, rendering the
system fully unlinkable. The scores used to estimate the
probabilities are computed using the whole LFW data set of
5749 users. For each user, we generate 50 different shuffling
keys and thus 50 protected templates. By considering the whole
population of the LFW data set, we get around 14 M mated
scores and 80 000 M non‐mated scores. To have the same
number of samples from each population, we sample uni-
formly 10 M mated scores and non‐mated scores. Hence,
D↔(s) and Dsys↔ are estimated in the mean case and do not take
account of user‐specific distributions. Based on D↔(s) and Dsys↔
we conclude that the proposed system is fully unlinkable for
the whole score range.

To further study the generalisation of the unlinkability of
the system, we study the unlikability metric for ω = 1. Figure 4
shows this case where we obtain a global linkability measure of
Dsys↔ ¼ 0:03. This is due to the fact that, for similarity scores
s < 0.48, it is more likely that templates stem from mated in-
stances. However, since the probability of obtaining such
scores is very low, the system is almost fully unlinkable, hence
the low value for Dsys↔ .

The diversity, irreversibility, and unlinkability metrics are
tightly correlated. If the system cannot satisfy the diversity
requirement, and as such, cannot create different PIs using
the same biometric data with different SDs, then the
identities will be linkable. Furthermore, if the irreversibility
requirement is not satisfied, the templates can be linked.
Finally, if the system is fully linkable, then it does not
satisfy the diversity requirement as all the generated PIs are
equal. Furthermore, even if the system is not fully linkable

and only partially unlinkable, it will result in easier attacks
on the original templates.

In addition to the evaluation criteria proposed by the ISO/
IEC 24745:2011 standard [34], in the case of cancellable bio-
metrics, one should check if the security of the system is only
based on the second factor. Cancellable systems tend to rely on
the second factor ignoring the biometric component, which is
one of the shortcomings of cancellable biometrics as shown in
Refs. [37, 38]. In fact, for the used shuffling scheme, if all the
users have the same initial representation, after shuffling, we
obtain 100% verification accuracy. Thus, the protection scheme
based on shuffling benefits greatly from the security of the
second factor. However, the combination of the binarisation
method we propose with the shuffling scheme constitutes a
system that relies on biometrics as well as on the second factor.
This is especially shown in the difference between the systems
trained on the original and cleaned version of MS‐celeb‐1M.
The degradation of performance of the cancellable system
shown in Table 6 when the training is done on the cleaned
version of the MS‐celeb‐1M is, in fact, due to the bad quality of
the images used in the tests. The system should not accept these
images because the face is obstructed, distorted, or not present.
When the binary embedding extractor is trained on the cleaned
data set, the system rejects client–client tests where either the
enrolment or probe samples are of low quality. On the other
hand, the version trained on the original version of MS‐celeb‐
1M (non‐cleaned) accepts these images because the verifica-
tion is done using the second factor, not the biometric refer-
ence. Examples of the images with bad quality are presented in
Figure 6b. The test scores from these images are circled in red in
Figure 5 (Hamming Distance>0.4). The face image samples are
taken from the MOBIO data set. The images of bad quality,
such as those presented in the figure, are not accepted by the
cancellable system based on binarised DNN embeddings

F I GURE 4 Unlinkability analysis of the system based on scores
computed on the Labelled Faces in the Wild (LFW) data set for ω = 1.
Templates used are of length 1024. The templates are obtained using DNN,
created corresponding to approach (b) (using a pretrained CNN with an
auto‐encoder) and trained on the cleaned version of MS‐celeb‐1M

F I GURE 5 Impact of the shuffling on the score distribution of the
data. Score distribution from templates of length 1024. The templates are
obtained using the DNN corresponding to approach (b) (using a pretrained
CNN with an auto‐encoder) and trained on the cleaned version of MS‐
celeb‐1M
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trained on the cleaned version of MS‐celeb‐1M. The system is
intended to work with images such as those in Figure 6a.

This shows that the system considers the biometric in-
formation and does not only focus on the second factor. As
the system trained on the cleaned version of MS‐celeb‐1M
rejects images of the same user of low quality, it does not
rely solely on the second factor.

7 | CONCLUSIONS

This paper presents a novel approach to extract binary em-
beddings directly from face images using a deep neural
network. We followed a data‐driven approach to binarise the
embeddings based on using auto‐encoders under supervised
training with the ‘Triplet loss’ loss function.

The binary embeddings are analysed in terms of biometric
recognition performance and entropy. The performance is
evaluated on the LFWand MOBIO databases. The degradation
of performance on both databases is around 0.1%. We obtain
99.12% accuracy on the LFW database, using the binary rep-
resentation, compared to 99.22% accuracy using the baseline
system. The same applies to the MOBIO database, where we
get 98.90% accuracy using the binary embeddings compared to
an accuracy of 98.93% of the baseline system. Using DNN to
extract the binary embeddings results in representations with
high entropy and high recognition performance. Compared to
the baseline Euclidean representations, the proposed binary
embeddings give a state‐of‐the‐art performance on both data-
bases with almost negligible degradation.

The approach proposed in this paper can be applied to any
continuous representation, not only Euclidean face represen-
tations. Moreover, the binarisation technique constitutes a
locality‐preserving hash where the relative distance between
the input values is preserved in the relative distance between
the output hash values. The representation can be used for
multiple applications such as similarity search, database search,
and biometric systems.

Furthermore, the binarisation method provides arbitrary
length representations that are limited only by the quality of the

training database. The embedding length can thus be adapted
to the sensitivity of the application. In addition, we compared
our binarisation approach to some classical binarisation
methods presented in Ref. [9] and show that our method has
better biometric recognition performance and higher entropy
than the presented methods.

The binary embeddings are also used to create a cancellable
face recognition system based on a shuffling transformation
using a second factor. The cancellable system is analysed ac-
cording to the standardised metrics given by the ISO/IEC
24745:2011. We show that the cancellable system gives high
accuracy and unlinkable templates when the second factor is
not compromised. When the second factor is compromised,
the system's security is assured by the recognition performance
of the binary representations, which is comparable to the
baseline non‐binarised system. Furthermore, the quality of the
binary representations impacts the behaviour of the cancellable
system. If the discriminative power of the representations is
low, the cancellable system depends mainly on the second
factor, which results in higher FAR.

These representations are meant to be used in a crypto‐
biometric key regeneration scheme based on fuzzy commit-
ment. This is why we seek to obtain long binary representa-
tions with high entropy.
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TABLE A1 Details of the nn4.small2 Inception architecture, which is a version of the nn4 model from FaceNet [7] hand‐tuned by Ref. [3] to have less
parameters

type output size #1 £ 1 #3 £ 3 reduce #3 £ 3 #5 £ 5 reduce #5 £ 5 Pool proj

Conv1 (7 � 7 � 3, 2) 48 � 48 � 64

Max pool + norm 24 � 24 � 64 m 3 � 3, 2

Inception (2) 24 � 24 � 192 64 192

Norm + max pool 12 � 12 � 192 m 3 � 3, 2

Inception (3a) 12 � 12 � 256 64 96 128 16 32 m, 32p

Inception (3b) 12 � 12 � 320 64 96 128 32 64 l2, 64p

Inception (3c) 6 � 6 � 640 128 256,2 32 64,2 m 3 � 3, 2

Inception (4a) 6 � 6 � 640 256 96 192 32 64 l2, 128p

Inception (4e) 3 � 3 � 1024 160 256,2 64 128,2 m 3 � 3, 2

Inception (5a) 3 � 3 � 736 256 96 384 l2, 96p

Inception (5b) 3 � 3 � 736 256 96 384 m, 96p

Avg pool 736

Linear (fc) 128

l2 normalisation 128

Linear N

Binarisation N

Linear 128

l2 normalisation 128

Note: Each row is a layer in the neural network and the last six columns indicate the parameters of pooling or the inception layers from [37]. This model is almost identical to the one
described in [37]. The two major differences are the use of L2 pooling instead of max pooling (m), where specified. That is, instead of taking the spatial max the L2 norm is computed.
The pooling is always 3 � 3 (aside from the final average pooling) and in parallel to the convolutional modules inside each Inception module. If there is a dimensionality reduction after
the pooling it is denoted with p. 1 � 1, 3 � 3, and 5 � 5 pooling are then concatenated to get the final output.

APPENDIX

F I GURE A 1 DET curves of the Eval male partition of the MOBIO database using the standard protocol [32]. The training of the models is done using the
MS‐celeb‐1M. Approach (a) denotes training from scratch, where approach (b) means training using pretrained models
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TABLE A2 Performance on the MOBIO database using the standard protocol [32]. The performance metric is the half total error rate (HTER)

Approach (a) Approach (b) (non‐cleaned training data) Approach (b) (cleaned training data)

Length
HTER (%) Eval
female

HTER (%) Eval
male

HTER (%) Eval
female

HTER (%) Eval
male

HTER (%) Eval
females

HTER (%) Eval
male

128 20.10 11.37 21.55 7.87 6.00 2.48

256 15.77 10.27 12.41 6.83 5.00 1.35

512 17.54 9.35 11.37 5.42 4.34 1.51

1024 16.60 14.09 9.82 5.48 5.26 1.27

2048 17.93 16.52 13.64 6.45 4.32 1.33

4096 46.80 47.26 25.87 10.68 4.29 1.38

Note: The training of the models is done using the MS‐celeb‐1M. Approach (a) denotes training from scratch, where approach (b) means training using pretrained models.
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