
HAL Id: hal-03943959
https://hal.science/hal-03943959v1

Preprint submitted on 17 Jan 2023 (v1), last revised 6 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking SIDH in polynomial time
Damien Robert

To cite this version:

Damien Robert. Breaking SIDH in polynomial time. 2022. �hal-03943959v1�

https://hal.science/hal-03943959v1
https://hal.archives-ouvertes.fr

Breaking SIDH in polynomial time

DAMIEN ROBERT

Abstract. We show that we can break SIDH in (classical deterministic) polynomial time,
even with a random starting curve 𝐸0.

1. Introduction

1.1. Result. We extend the recent attacks by [CD22; MM22] and prove that there exists a
proven deterministic polynomial time attack on SIDH [JD11; DJP14] / SIKE [JAC+17], even
with a random starting curve 𝐸0.

Both papers had the independent beautiful idea to use isogenies between abelian surfaces
(using [Kan97, § 2]) to break a large class of parameters on SIDH. Namely, on a random
starting curve 𝐸0, if the degree of the secret isogenies are 𝑁𝐴 > 𝑁𝐵, their attack essentially
apply whenever 𝑎 ≔ 𝑁𝐴 − 𝑁𝐵 is smooth. This is highly unlikely, however they use the fact
that it is possible to tweak the parameters 𝑁𝐴 and 𝑁𝐵 to augment the probability of success
(or reduce the smoothness bound on 𝑎), see Section 6. In the case where End(𝐸0) is known,
[CD22] also have a (heuristic) polynomial time attack, essentially because one can use the
endomorphism ring to compute an 𝑎-isogeny on 𝐸0 even if 𝑎 is not smooth, see Section 5.

A natural idea is to go in even higher dimension to extend the range of parameters on
which an attack is possible, even on a random curve 𝐸0. We show in Section 2 that by going
to dimension 8, it is possible to break in polynomial time all parameters for SIDH.

Theorem 1.1. We suppose that we are given the following input: we are given a secret 𝑁𝐵-
isogeny over a finite field 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 along with its images on (a basis of) the 𝑁𝐴-torsion
points of 𝐸0, where 𝑁𝐴 and 𝑁𝐵 are smooth coprime integers and 𝑁𝐴 > 𝑁𝐵. We also assume
that we are given the factorisations of 𝑁𝐴 and 𝑁𝐵 and (for simplicity) that we are given a basis
of 𝐸𝐵[𝑁𝐵] and a decomposition of 𝑁𝐴 − 𝑁𝐵 as a sum of four squares. Let 𝔽𝑞 be the smallest
field such that 𝜙𝐵, and the points of 𝐸0[𝑁𝐴] and 𝐸𝐵[𝑁𝐵] are defined1.

Then there is an explicit 𝑁𝐴-endomorphism 𝐹 ∶ 𝐸4
0 × 𝐸4

𝐵 in dimension 𝑔 = 8 such that
evaluating 𝐹 at (𝑃, 𝑃, 𝑃, 𝑃, 𝑄, 𝑄, 𝑄, 𝑄), for any 𝑃 ∈ 𝐸0(𝔽𝑞), 𝑄 ∈ 𝐸𝐵(𝔽𝑞) allows to recover
𝜙𝐵(𝑃) and 𝜙𝐵(𝑄). Furthermore the kernel of 𝐹 is described by 8 explicit rational generators
which can be computed in time 𝑂(log𝑁𝐴).

This reduces recovering 𝜙𝐵 to evaluating the isogeny 𝐹 in dimension 8 given generators of its
kernel. Using the algorithm of [LR22], such an isogeny can be evaluated, via the naive algorithm
to compute smooth isogenies, in time 𝑂(ℓ8

𝐴 log𝑁𝐴 + log2 𝑁𝐴) where ℓ𝐴 is the largest prime
divisor of 𝑁𝐴. This cost can even be reduced to 𝑂(ℓ8

𝐴 log𝑁𝐴) using the optimised computation
of smooth isogenies of [DJP14, § 4.2.2].

Date: October 6, 2022.
1Wemake no further assumptions on 𝐸0 and 𝐸𝐵: we do not require them to be supersingular. In the context

of SIDH, 𝔽𝑞 will be the base field 𝔽𝑝2.
1

2 DAMIEN ROBERT

In particular, we can find a basis for the kernel of 𝜙𝐵 in at most 2-evaluations of 𝐹 on the
basis of 𝐸𝐵[𝑁𝐵], for a total cost of 𝑂(ℓ8

𝐴 log𝑁𝐴).

Remark 1.2.

• The decomposition of 𝑎 as a sum of four squares is a precomputation step that
only depends on 𝑁𝐴 and 𝑁𝐵. It can be done in random polynomial time 𝑂(log2 𝑎)
binary operations by [RS86].

• When ℓ𝐴 = 𝑂(1), or even ℓ𝐴 = 𝑂(log log𝑁𝐴), the attack is thus “quasi-linear”, ie
in 𝑂(log𝑁𝐴) arithmetic operations in 𝔽𝑞. So it is as efficient asymptotically as the
key exchange itself (with a higher constant of course).

• The attack also breaks the TCSSI-security assumption of [DDF+21, Problem 3.2].
• In the context of SIDH, if 𝑁𝐵 > 𝑁𝐴 we will simply try to recover Alice’s secret

isogeny Φ𝐴 instead. By considering the dual isogeny ̃𝐹, we will also see in Section 6.4
that as in [QKL+21], in Theorem 1.1 it is also possible to directly reconstruct 𝜙𝐵
(with the same complexity) as long as 𝑁2

𝐴 > 𝑁𝐵.
• Another contribution of this paper is to give a precise (but heuristic, seeHeuristic 4.4)

complexity bound for a dimension 4 attack: 𝑂(log𝑁𝐴ℓ4
𝐴) arithmetic operations

(after a precomputation), see Section 4. This precise complexity bounds uses the
fact mentioned above that we can also explicitly build an 𝑁2

𝐴-isogeny 𝐹 rather than
just a 𝑁𝐴-isogeny. This gives more freedom for the tweaking of parameters needed
for the dimension 4 attack.

• Themethod of Sections 2 and 3 shows that the following powerful embedding lemma
holds: for any 𝑁-isogeny 𝑓 ∶ 𝐴 → 𝐵 between abelian varieties of dimension 𝑔, and
any 𝑁′ > 𝑁, it is possible to efficiently embed 𝑓 into an 𝑁′-isogeny 𝐹 in dimension 8𝑔
(or 4𝑔 or 2𝑔 in certain cases). This provides considerable flexibility at the cost of
going up in dimension, and was used in [Rob22b] to show that an isogeny over a
finite field always admits an efficient representation.

1.2. Outline. We prove Theorem 1.1 in Section 2. This Section is written to be short and
self contained, and since it applies in all cases, without requiring any parameter tweaks, the
complexity analysis is straightforward. We recommend the reader, unless interested in the
gory details of the dimension 2 and 4 attacks, to skip directly to this section.

For reasons stated in Remark 2.1, for practical attacks it would be more convenient to
go in lower dimension. We first describe a common framework encapsulating possible
dimension 2𝑔 attacks in Section 3, before describing our dimension 4 attack in Section 4.
We explain how the dimension 2 attacks of [CD22; MM22] fit into this common framework
in Section 5. Parameter tweaks, needed for the dimensions 2 and 4 attacks, are described in
Section 6.

For this introduction, we give more context in Section 1.3 explain how our attacks fit into
the broad class of “torsion point attacks” in Section 1.4, and summarize in Section 1.5 the
different complexities of the different dim 2, 4 and 8 attacks of [CD22; MM22; Rob22a].

1.3. Context. Supersingular Isogeny Diffie-Hellman (SIDH) is a post-quantum key ex-
change protocol initially proposed in [JD11] with further ameliorations (among many other
papers) in [DJP14; CLN16]. A standard transform gives a key encapsulation method SIKE
(supersingular isogeny key encapsulation) [JAC+17] which was submitted to the NIST post-
quantum competition, and recently selected as an alternative candidate in the fourth round
of the competition.

Breaking SIDH in polynomial time 3

The key hardness problem of many isogeny based protocols is based on the difficulty
of recovering a large degree isogeny 𝑓 ∶ 𝐸 → 𝐸′ between two ordinary or supersingular
elliptic curves, the so-called isogeny path problem. To the best of our knowledge, without
more information on 𝐸 and 𝐸′ (like an explicit representation of part of their endomorphism
rings) this problem still has exponential quantum security for supersingular curves.

However, for the SIDH key exchange, Bob will reveal not only the codomain 𝐸𝐵 of his
secret 𝑁𝐵-isogeny 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 (𝑁𝐵 a large smooth number) but also the action of 𝜙𝐵
on the 𝑁𝐴-torsion 𝐸0[𝑁𝐴] for an integer 𝑁𝐴 prime to 𝑁𝐵, typically by revealing the image
𝑄1 = 𝜙𝐵(𝑃1), 𝑄2 = 𝜙𝐵(𝑃2) of a basis (𝑃1, 𝑃2) of 𝐸0[𝑁𝐴]. This added information then
allows Alice to pushforward her secret 𝑁𝐴 isogeny 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴 to 𝜙′

𝐴 ∶ 𝐸𝐵 → 𝐸𝐴𝐵, via
Ker𝜙′

𝐴 = 𝜙𝐵(Ker𝜙𝐴). Alice also reveals the action of her secret isogeny 𝜙𝐴 on 𝐸0[𝑁𝐵],
and then Bob can pushforward his secret 𝑁𝐵 isogeny to 𝜙′

𝐵 ∶ 𝐸𝐴 → 𝐸𝐴𝐵 via Ker𝜙′
𝐵 =

𝜙𝐴(Ker𝜙𝐵). The codomain is the same since the maps 𝜙′
𝐵 ∘ 𝜙𝐴 ∶ 𝐸0 → 𝐸𝐴 → 𝐸𝐴𝐵 and

𝜙′
𝐴 ∘ 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 → 𝐸𝐴𝐵 have the same kernel Ker𝜙𝐴 + Ker𝜙𝐵:

𝐸0 𝐸𝐵

𝐸𝐴 𝐸𝐴𝐵

𝜙𝐵

𝜙𝐴 𝜙′
𝐴

𝜙′
𝐵

The supersingular curve 𝐸𝐴𝐵 is then the common secret of Alice and Bob.
But as we will see, this is a key weakness that allows to break the SIDH key exchange. This

is worth emphasizing once more: the work of [CD22; MM22; Rob22a] only breaks SSI-T,
the supersingular isogeny with torsion problem, not the more general supersingular isogeny
path problem. In particular, it does not apply to protocols like [CLM+18; DKL+20].

1.4. Torsion points attacks. Let us recall the setup. Eve wants to recover the secret 𝑁𝐵-
isogeny 𝜙𝐵, and she knows the image of 𝜙𝐵 on a basis of 𝐸0[𝑁𝐴]. It has been well known
that the publication of these so called torsion points could, for some parameters, reduce the
security of the supersingular isogeny problem.

Petit in [Pet17] had the first key idea of the following “torsion points” attack: assume that
the attacker Eve could somehow combine Bob’s secret 𝑁𝐵-isogeny 𝜙𝐵 and/or its dual 𝜙𝐵
with an isogeny 𝛼 she controls into a 𝑁𝐴-isogeny 𝐹 ∶ 𝐸0 → 𝐸′. Eve knows the action of
𝜙𝐵 on 𝐸0[𝑁𝐴] because Bob published it, and she also knows the action of the dual isogeny
𝜙𝐵 ∶ 𝐸𝐵 → 𝐸0 on 𝐸𝐵[𝑁𝐴]. Indeed, if (𝑃1, 𝑃2) is a basis of 𝐸0[𝑁𝐴], and 𝑄1 = 𝜙𝐵(𝑃1),
𝑄2 = 𝜙𝐵(𝑃2), then 𝜙𝐵(𝑄1) = 𝑁𝐵𝑃1, 𝜙𝐵(𝑄2) = 𝑁𝐵𝑃2. Notice that 𝑄1, 𝑄2 is a basis of
𝐸𝐵[𝑁𝐴] since 𝑁𝐴 is prime to 𝑁𝐵.

Since she knows the action of 𝛼 too because she controls it, she can recover the action of
𝐹 on (a basis of) 𝐸0[𝑁𝐴]. It is then easy for Eve to compute the kernel of 𝐹 using some linear
algebra and discrete logarithms, see Lemma 3.3. These discrete logarithms are inexpensive
because 𝑁𝐴 is assumed to be smooth.

From this kernelKer𝐹, she can then evaluate 𝐹 on any point of 𝐸0 via an isogeny algorithm,
from which she can try to recover 𝜙𝐵 if extracting 𝜙𝐵 from 𝐹 is possible.

In his attack, Petit considers for𝐹 an endomorphismof𝐸0 of the form𝐹 = 𝜙𝐵∘𝛾∘𝜙𝐵+[𝑑],
where 𝛾 is a trace 0 endomorphism (meaning that �̃� = −𝛾) of degree 𝑒. Then it is easy to
check that 𝐹 is a 𝑁2

𝐵𝑒+𝑑2-isogeny, so it remains to find parameters such that 𝑁2
𝐵𝑒+𝑑2 = 𝑁𝐴,

and to construct a 𝛾 of degree 𝑒. From the knowledge of 𝐹, it is not too hard to extract 𝜙𝐵.

Remark 1.3. A variant is to “tweak” the parameters, in order to increase the range of
susceptible parameters. For instance if we can find parameters such that 𝑁2

𝐵𝑒 + 𝑑2 = 𝑢𝑁𝐴

4 DAMIEN ROBERT

with 𝑢 smooth, then 𝐹 will be an 𝑢𝑁𝐴-isogeny. We only know its action on 𝐸0[𝑁𝐴], so we
cannot recover it directly. However 𝐹 is a composition 𝐹2 ∘𝐹1 of a 𝑁𝐴-isogeny 𝐹1 followed by
a 𝑢-isogeny 𝐹2, so we can at least recover 𝐹1 and then try to brute force 𝐹2. A similar strategy
holds for higher dimensional attacks, we will describe more possible tweaks in Section 6.

This attack, while powerful, can only apply to unbalanced parameters (here 𝑁𝐴 >
𝑁2

𝐵), and requires the knowledge of a non trivial endomorphism of 𝐸0. Further work, like
[QKL+21], improves the range of parameters susceptible to these attacks, but still requires a
non trivial endomorphism.

For SIKE’s NIST submission, such an endomorphism is easy to find because the starting
curve 𝐸0 = 𝐸NIST is defined over 𝔽𝑝. So in [Cos21], Costello argues that if this line of
“torsion points” attacks is improved to reach the SIKE’s parameters submitted to the NIST, a
preventive measure would be to switch the starting elliptic curve 𝐸0 to a “random” one, so
that Eve has no prior informations on its endomorphism ring. (This was not considered for
SIKE’s submission because it would involve either a trusted multipartite setup to build 𝐸0
or for Alice’s to first walk a random path and publish a “random” 𝐸0, hence adding some
complexity to the key exchange.)

The second key breakthrough was in the recent attacks by [CD22; MM22] by Castryck–
Decru and Maino–Martindale respectively (we refer to Sections 1.5 and 5 for more details
on these two articles). They both, independently, had the beautiful idea that it is possible
to extend the range of parameters susceptible to “torsion points” attack by constructing a
𝑁𝐴-isogeny 𝐹 in dimension 2, on a product of two supersingular curves. Indeed, going up
in dimension largely opens up the range of isogeny we can construct explicitly.

They exploit the following (easy) lemma, due to Kani in [Kan97] as part of his deep
work on classifying covers 𝐶 → 𝐸 of elliptic curves by genus 2 curves: given a 𝑁𝐵-isogeny
𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 and a 𝑎-isogeny 𝛼 ∶ 𝐸0 → 𝐸′, with 𝑎 prime to 𝑁𝐵, it is possible to build
an explicit 𝑎 + 𝑁𝐵-isogeny 𝐹 ∶ 𝐸0 × 𝐸" → 𝐸𝐵 × 𝐸′ in dimension 2 (see Section 3 for a
generalisation to dimension 𝑔). This means, assuming 𝑁𝐴 > 𝑁𝐵, that Eve can break SIDH
as long as she can find a 𝑎 = 𝑁𝐴 − 𝑁𝐵 isogeny from 𝐸0.

This is in particular the case whenever 𝑎 is smooth, and is the focus of Maino and Martin-
dale’s article (Castryck and Decru also consider this case briefly). While the probability to
get a smooth 𝑎 is small, tweaking the parameters can increase it, and subsequent analysis
by De Feo showed that this gives a (heuristic) subexponential 𝐿(1/2) attack. In particular,
torsion points attacks can apply even to “random curves”!

Castryck and Decru furthermore exploit the fact that for the NIST submission, the curve
𝐸0 = 𝐸NIST is either 𝑦2 = 𝑥3 + 𝑥 or 𝑦2 = 𝑥3 + 6𝑥2 + 𝑥. It has an explicit endomorphism
2𝑖, hence it is easy to construct an 𝑎-isogeny 𝛼 (which can be evaluated efficiently) whenever
𝑎 = 𝑎2

1 + 4𝑎2
2. In particular, they obtain a (heuristic) polynomial time attack for this specific

𝐸0 (assuming the factorisation of 𝑎 is precomputed).

Our current work stems from the fact that it is easy to extend Kani’s lemma to dimension 𝑔
abelian varieties (see Section 3). Namely, from a 𝑎-isogeny and a 𝑁𝐵-isogeny in dimension 𝑔
(with 𝑎 prime to 𝑁𝐵), we can build an explicit 𝑎+𝑁𝐵-isogeny in dimension 2𝑔. We will apply
this to the diagonal embedding of 𝜙𝐵 to 𝐸𝑔

0 → 𝐸𝑔
𝐵, this is still an 𝑁𝐵-isogeny, so it remains

to find an 𝑎-isogeny on 𝐸𝑔
0, where 𝑎 = 𝑁𝐴 − 𝑁𝐵. We then exploit that even if we do not

know End(𝐸0), on 𝐸2
0 we can always build endomorphisms of the form 𝛼 = (𝑎1 𝑎2

−𝑎2 𝑎1
),

which give 𝑎2
1 + 𝑎2

2-endomorphisms. Hence we get a dimension 2𝑔 attack, 𝑔 = 2, whenever
𝑎 = 𝑎2

1 + 𝑎2
2 (eventually after parameter tweaks).

Breaking SIDH in polynomial time 5

And of course the general case stems from the fact that an integer is always a sum of
four squares: 𝑎 = 𝑎2

1 + 𝑎2
2 + 𝑎2

3 + 𝑎2
4 [Διό50; Lag70], from which we can then build a 𝑎-

endomorphism 𝛼 on 𝐸4
0 in dimension 𝑔 = 4, hence get a dimension 2𝑔 = 8 attack. The fact

that there always exist 𝑎-endomorphisms on 𝐴4 for any abelian variety 𝐴 and any integer 𝑎
was first used by Zarhin in [Zar74] to show that 𝐴4 × 𝐴4 always has a principal polarisation,
and is known as “Zarhin’s trick” or the “quaternion trick”.

We remark also that unlike the decomposition of 𝑎 as a sum of two squares, which requires
its factorisation, the decomposition as a sum of four squares can be done in (random)
polynomial time, see Remark 1.2. It is then easy to build by hand a 𝑁𝐵 + 𝑎-endomorphism

on 𝐸4
0 × 𝐸4

𝐵, we will see in Section 2 that 𝐹 = (𝛼 𝜙𝐵
−𝜙𝐵 ̃𝛼) fits.

Asmentioned above, this endomorphism 𝐹 can be seen as a special case of the dimension 𝑔
generalisation in Section 3 of Kani’s lemma to build isogenies on product of abelian varieties.
But it can also be seen as a variant of Petit’s endomorphism to higher dimension. Indeed,
if 𝐹1 is a 𝑑1-endomorphism and 𝐹2 is a 𝑑2-endomorphism, then 𝐹1 + 𝐹2 is a 𝑑1 + 𝑑2-
endomorphism whenever 𝐹1𝐹2 = −𝐹2𝐹1. Our dimension 8 endomorphism is the case

𝐹 = 𝐹1 + 𝐹2 with 𝐹1 = (𝛼 0
0 ̃𝛼) a 𝑎-endomorphism and 𝐹2 = (0 𝜙𝐵

−𝜙𝐵 0), a 𝑁𝐵-

endomorphism. Petit’s endomorphism𝐹 = 𝜙𝐵∘𝛾∘𝜙𝐵+[𝑑] is the casewhere𝐹1 = 𝜙𝐵∘𝛾∘𝜙𝐵
is antisymmetric (ie of trace 0, ie 𝐹1 = −𝐹1) and 𝐹2 = [𝑑] is symmetric (ie 𝐹2 = 𝐹2), with
𝐹1𝐹2 = 𝐹2𝐹1.

1.5. Complexities of the different attacks. The article by Castryck and Decru was pub-
lished first in 2022-07-30, with only minor revisions since. As mentioned above, this article
mainly focuses on the dimension 2 attack when 𝐸0 = 𝐸NIST is NIST’s starting curve, ie
contains the endomorphism 2𝑖. In this case they obtain a heuristic polynomial time algorithm
(with no explicit bound).

The heuristic is due to two reasons. First in [CD22], Castryck and Decru guess a starting
path for 𝜙𝐵 and use 𝐹 as an oracle to know if the guess was correct or not, then they iterate
the process. The heuristic is then that if a wrong path is guessed, the codomain of 𝐹 will
be a Jacobian of a superspecial curve rather than a product of two supersingular elliptic
curves. Assuming heuristically that the codomain of 𝐹 for a wrong guess is uniform among
all superspecial surfaces, the probability of a mistake is ≈ 1/𝑝, hence negligible. But, as first
noticed by Maino and Martindale in [MM22], and also independently by Oudompheng
[Oud22], Petit, and Wesolowski [Wes22b], the isogeny 𝐹 allows to directly recover 𝜙𝐵. This
gives a more direct attack (no need to guess many isogenies), and removes the first heuristic.

The second reason is that for their attack to work on the starting curve 𝐸0 = 𝐸NIST, they
need 𝑎 = 𝑁𝐴 − 𝑁𝐵 to be of the form 𝑎 = 𝑎2

1 + 4𝑎2
2. In this case they can build an 𝑎-isogeny

𝛼 which can be evaluated in 𝑂(log 𝑎) arithmetic operations. For a uniform integer less than
𝑥, the probability to be decomposed in this form is roughly 1/√log 𝑥 (see Remark 4.2), so
assuming that parameter tweaks behave like uniform integers, we may assume that we can
tweak the parameters without increasing their size too much in such a way that the attack can
apply. Also this decomposition (which is a precomputation) supposes access to a factorisation
oracle; hence is in polynomial time only in the quantum model.

This second heuristic (and the need for factorisation) can be removed using work by
Wesolowski [Wes22b] explaining how to directly build a 𝑁𝐴 − 𝑁𝐵-isogeny 𝛼 when End(𝐸0)
is known. More precisely, Wesolowski builds an ideal 𝐼𝛼 of norm 𝑎 which represents 𝛼, and
evaluating 𝛼 on a point is done by using [FKM+22, Lemma 3.3]. Constructing this isogeny

6 DAMIEN ROBERT

and then evaluating it on a point can be done in polynomial time, but there is no clear
complexity bound as of yet. But the evaluation of 𝛼 on a basis of 𝐸0[𝑁𝐴] can be seen as a
polynomial time precomputation, depending on 𝐸0. Via this precomputation, the attack
then reduces to evaluating a 𝑁𝐴-isogeny 𝐹 in dimension 2.

We mention also that Castryck and Decru implemented their attack in Magma (so far
this is the only publicly available implemented attack), which showed that it was practical,
breaking Microsoft’s and the NIST parameters. The timings were then considerably improved
in an open source reimplementation in Sage [POP+22], where Oudompheng implemented
the direct isogeny recovery of [MM22] and the extended parameter tweaks of [Rob22a] (see
Section 5).

The article by Maino and Martindale was published in 2022-08-08, with a second major
revision in 2022-08-25, fixing an error where their initial endomorphism candidate did not
respect the product polarisations. The second version use the correct matrix from [Rob22a;
Oud22; Wes22b]. They focus on the case where End(𝐸0) is not known, case which is also
briefly investigated by Castryck and Decru. The first version does not contain a complexity
estimate, but in the second version they use an analysis due to De Feo which shows that,
using slightly more general parameter tweaks, they have an heuristic subexponential 𝐿(1/2)
attack.

This current article [Rob22a] was first published in 2022-08-11 (it’s better to forget
about the 2022-08-10 version which contained typos in the definition of the matrix 𝐹…)
focusing mainly on the polynomial time dimension 8 attack (and explaining very briefly
the dimension 4 attack). There was a revision on 2022-08-23 expanding on the dimension 4
attack and another revision on 2022-08-25 giving a general dimension 2𝑔 attack framework
that shows how the dimension 2 attacks of Castryck–Decru and Maino–Martindale and our
dimension 4 and 8 attacks all fit together. A further revision was published in 2022-09-02 to
expand the introduction and mention the complexity result of the second version of [MM22].
The current version was published in 2022-09-11 to give a precise heuristic and complexity
bound for the dimension 4 (and 2) attacks. We expect a last revision once the dimension 4
and 8 are finished to be implemented in order to give explicit timings.

At the time of its publication, [Rob22a] was the only one containing a precise complexity
estimate, and the only available polynomial time attack (with or without random starting
curve) with no heuristics. Due to the work of Wesolowski and De Feo mentioned above, and
the improved parameters tweaks of Section 6, the current situation (as far as I am aware) is
now as follow:

• When 𝐸0 = 𝐸NIST is NIST’s starting curve, the attack of Castryck-Decru using the
endomorphism 2𝑖 (as implemented in [POP+22]) is in heuristic polynomial time.
We refer to Proposition 5.1 for a complexity analysis: We can find a decomposition
𝑁𝐴 = (𝑏1 + 4𝑏2

2)𝑁𝐵/𝐷 + (𝑎1 + 4𝑎2
2) where 𝐷 is a divisor of 𝑁𝐵 heuristically of

magnitude Θ(log𝑁𝐵) in 𝑂(log3 𝑁𝐴) binary operations for this precomputation
step. The attack is then in 𝑂(𝐷 log𝑁𝐴ℓ2

𝐴) = 𝑂(log2 𝑁𝐴ℓ2
𝐴) arithmetic operations.

We can reduce the magnitude of 𝐷 to Θ(√(log𝑁𝐵)) (heuristically) at the price of
doing 𝑂(√log𝑁𝐵) factorisation calls in the precomputation. The attack is then in
𝑂(log1.5 𝑁𝐴ℓ2

𝐴) arithmetic operations.
Using [Wes22b], the dimension 2 attack can also apply to any elliptic curve with

known endomorphism ring in proven polynomial time (but the exact degree has
not been bounded yet). More precisely, after a polynomial time precomputation to
construct the 𝑎-isogeny 𝛼 and its action on a basis of 𝐸0[𝑁𝐴], the attack is the same

Breaking SIDH in polynomial time 7

as in Theorem 1.1 except that 𝐹 is computed in dimension 2, hence its evaluation
costs 𝑂(log𝑁𝐴ℓ2

𝐴) arithmetic operations in 𝔽𝑞, see Proposition 5.2.
• When 𝐸0 is a “random” curve, the dimension 2 attack of Maino and Martindale (and

also Castryck and Decru) is in (heuristic) subexponential time 𝐿(1/2) [MM22].
The dimension 4 attack of Section 4 is in heuristic polynomial time (because it

needs parameter tweaks). The precomputation is very similar to the precomputation
done for Castryck-Decru using the endomorphism 2𝑖 (because both attacks rely
on decomposing an integer as a sum of two squares), except that in this case we
can also build a 𝑁2

𝐴-isogeny with no added (asymptomatic) cost by Section 6.4.
Under Heuristic 4.4, the precomputation costs 𝑂(log3 𝑁𝐴) binary operations to
find a decomposition 𝑁2

𝐴 = (𝑏2
1 + 2𝑏2)2𝑁𝐵 + (𝑎2

1 + 𝑎2
2), and then the attack is

in 𝑂(log𝑁𝐴ℓ4
𝐴) arithmetic operations by Proposition 4.6. We stress that for the

dimension 4 attack the heuristic only concerns the average complexity of finding
this decomposition of 𝑁2

𝐴 (provided it exists), not the attack itself.
The dimension 8 attack of Section 2 is in proven polynomial time, and is in

𝑂(log𝑁𝐴ℓ8
𝐴) arithmetic operations by Theorem 1.1. The precomputation step is the

decomposition of 𝑁𝐴 −𝑁𝐵 as a sum of four squares and can be done in randomized
𝑂(log2 𝑁𝐴) binary operations.

The dimension 8 (resp. 4) attack remains the only proven (resp. heuristic) poly-
nomial time attacks for a random curve 𝐸0.

• When ℓ𝐴 = 𝑂(1) (or even 𝑂(log log𝑁𝐴)), the dimension 8, dimension 4, and
if End(𝐸) is known, the dimension 2 attacks, all have quasi-linear complexity of
𝑂(log𝑁𝐴) arithmetic operations.

The constants involved will be larger for the higher dimensional attack, however
the precomputation of the dimension 8 attack is faster than the precomputation of
the dimension 2 attack. Furthermore, in dimension 2, when 𝐸 has known endomor-
phisms but is not 𝐸NIST, the precomputation step also depends on the starting curve
𝐸0. An implementation is ongoing to compare timings.

1.6. Thanks. Many thanks are due to the persons who commented on the prior versions.
Special thanks to Benjamin Wesolowski and Marco Streng, for suggesting to simply use
𝑏 = 1 in the dimension 8 attack. This significantly simplify the description of the attack in
this case. (Although as noted above the general 𝑏 > 0 case is still useful for the dimension 4
attack).

This work was supported by the ANR ANR-19-CE48-0008 project Ciao.

2. Dimension 8 attack

Since 𝑁𝐴 > 𝑁𝐵, write 𝑁𝐴 = 𝑁𝐵 + 𝑎 for a positive integer 𝑎 > 0. It is harmless to
suppose that 𝑁𝐴 is prime to 𝑁𝐵, otherwise if 𝑑 = gcd(𝑁𝐴, 𝑁𝐵), we could recover the kernel
of a 𝑑-isogeny through which 𝜙𝐵 factors (since we know its action on 𝐸0[𝑑] ⊂ 𝐸0[𝑁𝐴]),
so we could reduce to solving the problem with new coprime parameters 𝑁′

𝐴 = 𝑁𝐴/𝑑,
𝑁′

𝐵 = 𝑁𝐵/𝑑.
As 𝑁𝐴 is prime to 𝑁𝐵, gcd(𝑁𝐴, 𝑎) = 1. Let 𝑀 ∈ 𝑀4(ℤ) be a 4 × 4 matrix such that

𝑀𝑇𝑀 = 𝑎 Id. Explicitly we write 𝑎 = 𝑎2
1 + 𝑎2

2 + 𝑎2
3 + 𝑎2

4 and take

𝑀 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1 −𝑎2 −𝑎3 −𝑎4
𝑎2 𝑎1 𝑎4 −𝑎3
𝑎3 −𝑎4 𝑎1 𝑎2
𝑎4 𝑎3 −𝑎2 𝑎1

⎞⎟⎟⎟⎟⎟⎟
⎠

,

8 DAMIEN ROBERT

the matrix of the multiplication of 𝑎1 + 𝑎2𝑖 + 𝑎3𝑗 + 𝑎4𝑘 in the standard quaternion algebra
ℤ[𝑖, 𝑗, 𝑘] [Ham44]. Let 𝛼0 be the endomorphism on 𝐸4

0 given matricially by 𝑀, The dual
(with respect to the product principal polarisation) ̃𝛼0 of 𝛼0 is given matricially by 𝑀𝑇 (since
integer multiplications are their own dual), so ̃𝛼0𝛼0 = 𝑎 Id, hence 𝛼0 is an 𝑎-isogeny, which
can be evaluated in 𝑂(log 𝑎) arithmetic operations. We let 𝛼𝐵 be the endomorphism of 𝐸4

𝐵
given by the same matrix 𝑀, and by abuse of notation we denote by 𝜙𝐵 Id ∶ 𝐸4

0 → 𝐸4
𝐵 the

diagonal embedding of 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵. We remark that since 𝛼0 is given by an integral
matrix, it commutes with 𝜙𝐵 in the sense that we have the equation: 𝜙𝐵𝛼0 = 𝛼𝐵𝜙𝐵:

𝐸4
0 𝐸4

𝐵

𝐸4
0 𝐸4

𝐵

𝜙𝐵 Id

𝛼0 𝛼𝐵

𝜙𝐵 Id

Let 𝐹 = (𝛼0 𝜙𝐵 Id
−𝜙𝐵 Id 𝛼𝐵

), where 𝜙𝐵 is the dual isogeny 𝐸𝐵 → 𝐸0 of 𝜙𝐵. 𝐹 is an

endomorphism on the 8-dimensional abelian variety 𝑋 = 𝐸4
0 × 𝐸4

𝐵. Since the dual ̃𝐹 of 𝐹 is

given by ̃𝐹 = (𝛼0 −𝜙𝐵 Id
𝜙𝐵 Id 𝛼𝐵

) by Lemma 3.2, we compute

̃𝐹𝐹 = 𝐹 ̃𝐹 = (𝑁𝐵 + 𝑎 0
0 𝑁𝐵 + 𝑎) = 𝑁𝐴 Id .

Hence 𝐹 is an 𝑁𝐴-isogeny on 𝑋 (with respect to the product polarisations).2
As in Section 1.4, the action of 𝐹 on the 𝑁𝐴-torsion is explicit, hence we can recover its

kernel. But in this case we can directly recover Ker𝐹 as follow: it is given by the image of ̃𝐹
on 𝑋[𝑁𝐴]. Furthermore, since 𝑎 is prime to 𝑁𝐴, the kernel of 𝐹 is exactly the image of ̃𝐹
on 𝐸4

0[𝑁𝐴] × 0, so we immediately get the 8 generators (𝑔1, … , 𝑔8) of the kernel Ker𝐹 =
{(𝛼0(𝑃), (𝜙𝐵 Id)(𝑃)) ∣ 𝑃 ∈ 𝐸4

0[𝑁𝐴]}. This step costs 𝑂(log 𝑎) arithmetic operations in
𝐸0(𝔽𝑞).

We can then compute 𝐹 (on any point 𝑃 ∈ 𝑋(𝔽𝑞)) using an isogeny algorithm in
dimension 8, decomposing the 𝑁𝐴-endomorphism 𝐹 as a chain of ℓ-isogeny for ℓ the
prime factors of 𝑁𝐴. If ℓ𝐴 is the largest prime divisor of 𝑁𝐴, the complexity of the first
ℓ𝐴-isogeny computation will first be 𝑂(log𝑁𝐴) arithmetic operations in 𝐴(𝔽𝑞) to com-
pute the multiples 𝑁𝐴

ℓ𝐴
𝑔𝑖, followed by the individual ℓ𝐴-isogeny computations on 𝑃 and

the 𝑔𝑖. These isogenies computations cost 𝑂(ℓ8
𝐴) operations over 𝔽𝑞 using [LR22]. Since

we compute a composition of at most 𝑂(log𝑁𝐴) isogenies, the total cost of evaluating 𝐹
on 𝑃 is 𝑂(log2 𝑁𝐴 + log𝑁𝐴ℓ8

𝐴 log ℓ𝐴). This naive method uses 𝑂(log𝑁𝐴) ℓ-isogeny calls
where ℓ ∣ 𝑁𝐴, and multiplications which cost 𝑂(log2 𝑁𝐴) in total. The optimised method
of [DJP14, § 4.2.2] shows that by increasing the number isogeny calls to 𝑂(log𝑁𝐴), the
multiplications cost can be reduced to 𝑂(log𝑁𝐴) multiplications by ℓ ∣ 𝑁𝐴. This optimised
version thus costs 𝑂(ℓ8

𝐴 log𝑁𝐴 + ℓ𝐴 log𝑁𝐴) = 𝑂(ℓ8
𝐴 log𝑁𝐴). (Note that since a ℓ-isogeny

in dimension 8 is going to be much more expansive than a multiplication by ℓ, for practical
attacks it will be important to apply the optimised weighted strategy of [DJP14, § 4.2.2] rather
than their balanced strategy.)

2We refer to Section 3 for the definition of an 𝑁-isogeny between principally polarised abelian varieties in
dimension 𝑔.

Breaking SIDH in polynomial time 9

Remark 2.1. The isogenies computations in [LR22; BCR10; Som21] use a (level 𝑚 = 4
or 𝑚 = 2) theta model of 𝑋, which we can compute as the (fourfold) product theta structure
of the theta models of 𝐸0 and 𝐸𝐵. It is also well known how to switch between the theta model
and the Weierstrass model on an elliptic curve, and it is not hard to extend the conversion
to the product of elliptic curves, since the product theta structure is given by the Segre
embedding. The arithmetic on the theta models can be done in 𝑂(1) arithmetic operations
in a 𝑂(1)-extension of 𝔽𝑞 (if 8 ∣ 𝑁𝐴𝑁𝐵 the theta model will already be rational). However
the big 𝑂() notation hides an exponential complexity in the dimension 𝑔. In dimension 8
and level 𝑚 = 4, the theta model uses 216 coordinates, so we would need in practice to
switch to theKummer model by working in level 𝑚 = 2 which “only” requires 28 coordinates.
This is another reason why we would prefer to compute an endomorphism in dimension
𝑔 = 4 rather than 𝑔 = 8: in dimension 4 we would only need 28 coordinates in level 𝑚 = 4,
or 24 coordinates in level 𝑚 = 2.

Thus we can evaluate 𝐹 on any point of 𝑋, so we can evaluate 𝜙𝐵 or 𝜙𝐵 on any point of
𝐸0 (resp. 𝐸𝐵). We can now recover the kernel of 𝜙𝐵 on 𝐸0 as the image of 𝜙𝐵 on 𝐸𝐵[𝑁𝐵].
If (𝑄1, 𝑄2) is a basis of 𝐸𝐵[𝑁𝐵], we compute 𝑄′

𝑖 = 𝜙𝐵(𝑄𝑖) by evaluating 𝐹 on the point
(0, 0, 0, 0, 𝑄𝑖, 0, 0, 0), and the kernel of 𝜙𝐵 is generated by whichever 𝑄′

𝑖 has order 𝑁𝐵. If
𝜔(𝑁𝐵) is the number of distinct prime divisors of 𝑁𝐵, this step costs 𝑂(𝜔(𝑁𝐵) log𝑁𝐵) op-
erations in 𝐸0(𝔽𝑞) (which can be improved to 𝑂(log𝑁𝐵 log log𝑁𝐵) using a binary product
tree) along with two calls to the evaluation of 𝐹.

This concludes the complexity analysis of Theorem 1.1.

Remark 2.2.

• It is immediate to generalize Theorem 1.1 to recover an 𝑁𝐵-isogeny 𝜙𝐵 between
abelian varieties 𝐸0, 𝐸𝐵 of dimension 𝑔. The attack reduces to computing one 𝑁𝐴-
isogeny in dimension 8𝑔 (or eventually 4𝑔 or even 2𝑔 if the parameters allow for
it).

The same proof as above holds; the complexity of evaluating the dimension 8𝑔
𝑁𝐴-isogeny will be 𝑂(log𝑁𝐴ℓ8𝑔) arithmetic operations using [LR22] and the fast
smooth isogeny computation of [DJP14, § 4.2.2].

We recover Ker𝜙𝐵 as the image of 𝜙𝐵 on a 2𝑔-dimensional basis of 𝐸𝐵[𝑁𝐵],
hence we get 2𝑔 generators. To extract a 𝑔 dimensional basis of the kernel from these
generators, we can take any 𝑔 points and check if the Weil pairing matrix with a basis
of 𝐸0[𝑁𝐵] has full rank (we expect this will be the case with high probability). This
can be done by computing the determinant of 𝑔 × 𝑔 submatrices and testing if it is of
primitive 𝑁𝐵-order. Hence, since the dimension 𝑔 is fixed, this still costs 𝑂(log𝑁𝐵).
An alternative to reduce the complexity in 𝑔 is to compute discrete logarithms using
Pohlig-Hellman’s algorithm in 𝑂(log𝑁𝐵ℓ1/2

𝐵) (see the proof of Lemma 3.3) so that
we may use linear algebra to extract a full rank submatrix.

3. Dimension 2𝑔 attack

We first generalize the construction of Section 2, and then show how it can be applied (in
certain cases) to mount an attack in dimension 4 or 2.

3.1. 𝑁-isogenies.

Definition 3.1. An 𝑁-isogeny 𝑓 ∶ (𝐴, 𝜆𝐴) → (𝐵, 𝜆𝐵) of principally polarised abelian
varieties is an isogeny such that 𝑓 ∗𝜆𝐵 ≔ ̂𝑓 ∘ 𝜆𝐵 ∘ 𝑓 = 𝑁𝜆𝐴, where ̂𝑓 ∶ �̂� → ̂𝐴 is the dual

10 DAMIEN ROBERT

isogeny. Letting ̃𝑓 = 𝜆−1
𝐴

̂𝑓 𝜆𝐵 be the dual isogeny ̃𝑓 ∶ 𝐵 → 𝐴 of 𝑓 with respect to the principal
polarisations, this condition is equivalent to ̃𝑓 𝑓 = 𝑁.

If Θ𝐵 is a divisor associated to 𝜆𝐵, then since 𝜆𝐵 ∶ 𝑃 ↦ 𝑡∗
𝑃Θ𝐵 − Θ𝐵 ∈ Pic0(𝐵) = �̂�, we

see that 𝑓 ∗𝜆𝐵 is the polarisation associated to 𝑓 ∗Θ𝐵, so 𝑓 is an 𝑁-isogeny exactly when this
polarisation is equal to 𝑁𝜆𝐴.

If Θ𝐴 is a divisor associated to 𝜆𝐴, sections of 𝑚Θ𝐴 gives coordinates on 𝐴 (if 𝑚 ≥ 3 we
get a projective embedding by Lefschetz’ theorem). Given a suitable model of (𝐴, 𝑚Θ𝐴),
a representation of the kernel 𝐾 = Ker 𝑓 of an 𝑁-isogeny 𝑓 (for instance coordinates for
its generators), and the coordinates of a point 𝑃 ∈ 𝐴, an 𝑁-isogeny algorithm will output
a suitable model of (𝐵, 𝑚Θ𝐵) and the coordinates of the image 𝑓 (𝑃) in this model. For
instance, the 𝑁-isogeny algorithm from [LR22] uses a theta model of level 𝑚 = 2 or 𝑚 = 4,
and in dimension 𝑔 can compute the image of an 𝑁-isogeny in 𝑂(𝑁𝑔) arithmetic operations
over the base field (where the theta model is defined).

Note that in general, for an 𝑁-isogeny algorithm, we only have the kernel 𝐾 and the
source polarised abelian variety (𝐴, Θ𝐴). We first need to check that the divisor 𝑁Θ𝐴
descends through the isogeny 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾. This implies that 𝐾 must be a subgroup of
𝐾(𝑁Θ𝐴), the kernel of the polarisation 𝑁𝜆𝐴 ∶ 𝐴 → ̂𝐴 associated to 𝑁Θ𝐴. And by descent
theory [Mum66, Proposition 1 p.291; Mum70, Theorem 2 p. 231], the descents of 𝑁Θ𝐴
correspond exactly to level subgroups 𝐾 of 𝐾 in Mumford’s theta group 𝐺(𝑁Θ𝐴). Hence
𝑁Θ𝐴 descends if and only if 𝐾 is isotropic for the commutator pairing of 𝐺(𝑁Θ𝐴) (and the
descent Θ𝐵 will be of degree one if and only if 𝐾 is maximal isotropic by a standard degree
computation). Mumford proves in [Mum70, (5) p.229] that this commutator pairing is yet
another incarnation of theWeil pairing. So the descent condition is thus equivalent to 𝐾 being
maximal isotropic for 𝑒𝑁,Θ𝐴

in 𝐴[𝑁], as is well known (see eg [Kan97, Proposition 1.1]).
Such a 𝐾 is usually the entry point of an 𝑁-isogeny algorithm.

Our current situation is different: we already have a target codomain 𝐵 with a polarisation
𝜆𝐵, and we want 𝑁Θ𝐴 to descend to 𝜆𝐵, not just any other principal polarisation 𝜆′

𝐵 (on
which there will be many, see Remark 3.6). So it does not suffice to check that Ker 𝑓 is
maximal isotropic for theWeil pairing, we want 𝑓 ∗Θ𝐵 ≃ 𝑁Θ𝐴 (isomorphism up to algebraic
equivalence), ie ̃𝑓 ∘ 𝑓 = 𝑁.

If this condition is satisfied, we know that 𝑁Θ𝐴 descend, hence by the above discussion
we automatically know that Ker 𝑓 is maximal isotropic. Another way to see that without
invoking descent theory is to use the fact that Ker 𝑓 = Im ̃𝑓 ∣ 𝐵[𝑁], and that since ̂𝑓 is
the dual of 𝑓 for the Weil pairings 𝑒𝐴,𝑁 on (𝐴 × ̂𝐴)[𝑁] and 𝑒𝐵,𝑁 on (𝐵 × �̂�)[𝑁], then

̃𝑓 is the dual of 𝑓 for the Weil pairings 𝑒𝜆𝐴,𝑁 on (𝐴 × 𝐴)[𝑁] and 𝑒𝜆𝐵,𝑁 on (𝐵 × 𝐵)[𝑁].
In particular, if 𝑥, 𝑦 ∈ Ker 𝑓, 𝑥 = ̃𝑓 (𝑥′), 𝑦 = ̃𝑓 (𝑦′) for 𝑥′, 𝑦′ ∈ 𝐵[𝑁], so 𝑒𝜆𝐴,𝑁(𝑥, 𝑦) =
𝑒𝜆𝐴,𝑁(̃𝑓 (𝑥′), ̃𝑓 (𝑦′)) = 𝑒𝜆𝐵,𝑁(𝑥′, 𝑓 ∘ ̃𝑓 (𝑦′)) = 𝑒𝜆𝐵,𝑁(𝑥′, 𝑁𝑦′) = 1.

We need the following standard Lemma:

Lemma 3.2. If 𝐹 = (𝑎 𝑏
𝑐 𝑑) ∶ (𝐴, 𝜆𝐴) × (𝐵, 𝜆𝐵) → (𝐶, 𝜆𝐶) × (𝐷, 𝜆𝐷), then for the product

polarisations on 𝐴 × 𝐵 and 𝐶 × 𝐷, ̃𝐹 = (̃𝑎 ̃𝑐
̃𝑏 ̃𝑑).

Proof. Recall that we have a canonical isomorphism ̂𝐴 ≃ Pic0(𝐴), and that under this
isomorphism the dual of 𝑓 is given by ̂𝑓 = 𝑓 ∗. This shows that ̂𝐹 ∶ ̂𝐶 × �̂� → ̂𝐴 × �̂� is given

by ̂𝐹 = (̂𝑎 ̂𝑐
̂𝑏 ̂𝑑) (see eg [MGE12, Proposition 11.28]). Since the product polarisations act

Breaking SIDH in polynomial time 11

component by component by definition (see eg the proof of [BL04, Corollary 5.3.6] or the

proof of [Kan16, Proposition 61]), we then get that ̃𝐹 = (̃𝑎 ̃𝑐
̃𝑏 ̃𝑑). �

We will also use the fact that once we have evaluated an isogeny on a basis of the 𝑁-torsion
it is easy to evaluate it on any other 𝑁-torsion point:

Lemma 3.3. Let 𝑓 ∶ 𝐴 → 𝐵 be an isogeny between abelian varieties. Assume that the𝑁-torsion
of 𝐴 is rational and that we are given a basis (𝑃1, … 𝑃2𝑔) of it. Then given the evaluation 𝑓 (𝑃𝑖)
of all 𝑃𝑖, it is possible to evaluate 𝑓 on a point 𝑃 ∈ 𝐴[𝑁] in time 𝑂(log𝑁ℓ1/2

𝑁) arithmetic
operations.

Furthermore, if 𝑓 is an 𝑁-isogeny and we are given a rational basis of 𝐵[𝑁], it is possible to
recover generators for its kernel Ker 𝑓 in 𝑂(log𝑁ℓ1/2

𝑁) arithmetic operations.

Proof. Given a point 𝑃 ∈ 𝐴[𝑁], we can evaluate the Weil pairing 𝑒𝑊,𝑁(𝑃, 𝑃𝑖) in 𝑂(log𝑁)
arithmetic operations (this assumes we work over a model which can compute the Weil
pairing; this will be the case in the theta model by [LR10; LR15]).

From theWeil pairingmatrix of the 𝑒𝑊,𝑁(𝑃𝑖, 𝑃𝑗), we can first do𝑂(𝑔2) discrete logarithm
computations from a 𝑁-th root of unity 𝜁 to get a matrix with coefficients in ℤ/𝑁ℤ. By
linear algebra over ℤ/𝑁ℤ, it is easy to compute a symplectic basis (𝑎1, … , 𝑎𝑔, 𝑎′

1, … 𝑎′
2𝑔) of

the 𝑁-torsion, along with the values of 𝑓 on this basis. Using a naive linear algebra algorithm,
this can be done in 𝑂(𝑔3 log𝑁). The dominant cost will be the discrete logarithms.

The Pohlig-Hellman algorithm [PH78] has complexity 𝑂(𝐸 log𝑁ℓ1/2
𝑁) operations in 𝐴,

where if 𝑁 = ∏ ℓ𝑒𝑖
𝑖 , 𝐸 = ∑ 𝑒𝑖. The iterative version of Pohlig-Helmman’s algorithm which

increases the current exponent 𝑒 in the ℓ𝑖-discrete logarithm by 1 at each step, can be replaced
by a Newton like version which double the precision. This faster variant, described in [Sho09,
§11.2.3], has complexity 𝑂(log𝑁𝐴ℓ1/2

𝐴).
Given the symplectic basis, one can decompose a point 𝑃 in this basis by 𝑂(𝑔) calls to the

Weil pairing and discrete logarithms. Evaluating 𝑓 (𝑃) can thus be done in 𝑂(log𝑁𝐴ℓ1/2
𝐴). If

𝑃 = ∑𝑔
𝑖=1 𝜆𝑖𝑎𝑖 + 𝜆′

𝑖𝑎′
𝑖, 𝑓 (𝑃) = ∑𝑔

𝑖=1(𝜆𝑖𝑓 (𝑎𝑖) + 𝜆′
𝑖𝑓 (𝑎′

𝑖).
If Ker 𝑓 ⊂ 𝐴[𝑁], and we are given a rational basis of 𝐵[𝑁], we can first transform this

into a symplectic basis (𝑏1, … , 𝑏𝑔, 𝑏′
1, … 𝑏′

𝑔) as above. We can express 𝑓 (𝑃𝑖) in this basis
using the Weil pairing and discrete logarithms, and solve a linear system over ℤ/𝑁ℤ. Once
again the discrete logarithms will dominate the complexity analysis. �

3.2. Isogeny diamonds. The endomorphism 𝐹 of Section 2 is a particular case of a con-
struction due to Kani for 𝑔 = 1 [Kan97, § 2], which generalizes immediately to 𝑔 > 1.

We define a (𝑑1, 𝑑2)-isogeny diamond as a decomposition of a 𝑑1𝑑2-isogeny 𝑓 ∶ 𝐴 → 𝐵
between principally polarised abelian varieties of dimension 𝑔 into two different decomposi-
tions 𝑓 = 𝑓 ′

1 ∘ 𝑓1 = 𝑓 ′
2 ∘ 𝑓2 where 𝑓1 is a 𝑑1-isogeny and 𝑓2 is a 𝑑2-isogeny. Then 𝑓 ′

1 will be a
𝑑2-isogeny and 𝑓 ′

2 a 𝑑1-isogeny:

𝐴 𝐴1

𝐴2 𝐵

𝑓1

𝑓2 𝑓 ′
1

𝑓 ′
2

Lemma 3.4 (Kani). Let 𝑓 = 𝑓 ′
1 ∘ 𝑓1 = 𝑓 ′

2 ∘ 𝑓2 be a (𝑑1, 𝑑2)-isogeny diamond as above. Then

𝐹 = (𝑓1 𝑓 ′
1

−𝑓2 𝑓 ′
2
) is a 𝑑-isogeny 𝐹 ∶ 𝐴 × 𝐵 → 𝐴1 × 𝐴2 where 𝑑 = 𝑑1 + 𝑑2.

12 DAMIEN ROBERT

Its kernel is given by the image of ̃𝐹 = (𝑓1 −𝑓2
𝑓 ′
2 𝑓 ′

2
) on (𝐴1 × 𝐴2)[𝑑]. If 𝑑1 is prime to 𝑑2,

we also have Ker𝐹 = {(𝑓1(𝑃), 𝑓 ′
2(𝑃)) ∣ 𝑃 ∈ 𝐴1[𝑑]}, the kernel is thus of rank 2𝑔.

Proof. We check, using Lemma 3.2, that ̃𝐹𝐹 = 𝑑 Id. Furthermore if 𝑑1 is prime to 𝑑2, then
the restriction of ̃𝐹 to 𝐴1[𝑑] × {0} is injective, hence its image spans the full kernel since
#𝐴1[𝑑] = 𝑑2𝑔. �

The matrix 𝐹 from Section 2 is a special case of Lemma 3.4 where 𝐴 = 𝐸𝑔
0, 𝐵 = 𝐸𝑔

𝐵 and 𝐹
is actually an endomorphism.

3.3. Description of the attack. Write 𝑁𝐴 = 𝑁𝐵 + 𝑎, 𝑎 > 0. Suppose that we can find an
explicit 𝑎-isogeny 𝛼0 ∶ 𝐸𝑔

0 → 𝑋0. Then we can consider the following pushout:

𝐸𝑔
0 𝐸𝑔

𝐵

𝑋0 𝑋𝐵

𝜙𝐵

𝛼0 𝛼𝐵

𝜙′
𝐵

Hence we have the following isogeny diamond

𝑋0 𝐸𝑔
0

𝑋𝐵 𝐸𝑔
𝐵

𝛼0

𝜙′
𝐵 𝜙𝐵

𝛼𝐵

so by Lemma 3.4, 𝐹 = (𝛼0 𝜙𝐵
−𝜙′

𝐵 𝛼𝐵
) is a 𝑁𝐴-isogeny 𝐹 ∶ 𝑋0 × 𝐸𝑔

𝐵 → 𝐸𝑔
0 × 𝑋𝐵. In particular,

Ker𝐹 is the image of ̃𝐹 on (𝐸𝑔
0 × 𝑋𝐵)[𝑁𝐴]. Since 𝑎 is prime to 𝑁𝑏, it is also the image of ̃𝐹

on 𝐸𝑔
0[𝑁𝐴] × 0: Ker𝐹 = {(𝛼0(𝑃), 𝜙𝐵(𝑃)) ∣ 𝑃 ∈ 𝐸𝑔

0[𝑁𝐴]}. In particular, we don’t need to
build 𝑋𝐵, we will recover it when evaluating 𝐹.

Notice that if 𝛼0 ∶ 𝐸0 → 𝐸′ is an 𝑎-isogeny, then diag(𝛼0) ∶ 𝐸𝑔
0 → 𝑋0 ≔ 𝐸′𝑔 is also an

𝑎-isogeny. So on our product of elliptic curves, we can always compose or precompose with
smooth isogenies, see Section 6.2.

To increase the parameters susceptible to this attack, we can also postcompose and
precompose 𝜙𝐵 ∶ 𝐸𝑔

0 → 𝐸𝑔
𝐵 by isogenies 𝛽1, 𝛽2. Write 𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎, 𝑎, 𝑏 > 0, eventually

applying the parameter tweaks of Section 6. Note that since 𝑁𝐴 is coprime to 𝑁𝐵, then
dividing by gcd(𝑁𝐴, 𝑎, 𝑏) if necessary, we may assume that 𝑁𝐴, 𝑎, 𝑏 are coprime. Write
𝑏 = 𝑏1𝑏2, and suppose that we can find an explicit 𝑏1-isogeny 𝛽1 ∶ 𝐸𝑔

0 → 𝑌0, a 𝑏2-isogeny
𝛽2 ∶ 𝐸𝑔

𝐵 → 𝑌𝐵, and a 𝑎-isogeny 𝛼0 ∶ 𝐸𝑔
0 → 𝑋0. Let 𝛾 = 𝛽2 ∘ 𝜙𝐵 ∘ 𝛽1 ∶ 𝑌0 → 𝑌𝐵, it is a

𝑏𝑁𝐵-isogeny. Consider the following pushouts,

𝑌0 𝐸𝑔
0 𝐸𝑔

𝐵 𝑌𝐵

𝑍0 𝑋0 𝑋𝐵 𝑍𝐵

𝛼′
0

𝜙𝐵

𝛼0

𝛽1

𝛽2

𝛼𝐵 𝛼′
𝐵

𝛽′
1

𝜙′
𝐵 𝛽′

2

since 𝑎 is prime to 𝑏𝑁𝐵, 𝛾′ = 𝛽′
2 ∘ 𝜙′

𝐵 ∘ 𝛽′
1 ∶ 𝑍0 → 𝑍𝐵 is a 𝑁𝐵𝑏-isogeny and 𝛼′, 𝛼″ are

𝑎-isogenies.

Breaking SIDH in polynomial time 13

We thus have the following isogeny diamond

𝑍0 𝑌0

𝑍𝐵 𝑌𝐵

𝛼′
0

𝛾′ 𝛾
𝛼′

𝐵

so by Lemma 3.4, 𝐹 = (𝛼′
0 �̃�

−𝛾′ 𝛼′
𝐵
) is a 𝑁𝐴-isogeny 𝐹 ∶ 𝑍0 × 𝑌𝐵 → 𝑌0 × 𝑍𝐵. In particular,

Ker𝐹 is the image of ̃𝐹 on (𝑌0 × 𝑍𝐵)[𝑁𝐴]. Since 𝑎 is prime to 𝑏𝑁𝑏, it is also the image of ̃𝐹
on 𝑌0 × 0: Ker𝐹 = {(𝛼′

0(𝑃), 𝛾(𝑃)) ∣ 𝑃 ∈ 𝑌0}. Note that as before, this means that we don’t
need to construct 𝑍𝐵 explicitly, however in this case we need to construct the pushout 𝑍0.

This allows to compute 𝐹 as a smooth 𝑁𝐴-isogeny of dimension 2𝑔 in time 𝑂(log2 𝑁𝐴 +
log𝑁𝐴ℓ2𝑔

𝐴) or even 𝑂(log𝑁𝐴ℓ2𝑔
𝐴) by [LR22], hence evaluate 𝛾 = 𝛽2 ∘ 𝜙𝐵 ∘ 𝛽1 on any

point of 𝑌0. It remains to recover 𝜙𝐵 from 𝛾. Applying 𝛽2 and 𝛽1, we can always recover
𝑏𝜙𝐵, hence we may recover 𝜙𝐵 whenever 𝑏 is prime to 𝑁𝐵. Otherwise, we at least recover a
𝑁𝐵/ gcd(𝑏, 𝑁𝐵)-isogeny through which 𝜙𝐵 factors, and we iterate, which is possible as long
as gcd(𝑏, 𝑁𝐵) < 𝑁𝐵.

We leave to the reader the case where 𝛼 is constructed from 𝐸𝐵. Note that, using discrete
logarithms if needed, we only need to evaluate 𝛼0, 𝛽1, 𝛽2 on a basis of the 𝑁𝐴-torsion of
their respective domain. It is thus better to build the isogenies from 𝐸𝑔

0 rather than from 𝐸𝑔
𝐵,

these evaluations can then be seen as a precomputation (involving the parameters and 𝐸0).
In summary we have reduced recovering 𝜙𝐵 to evaluating the isogeny 𝐹 in dimension 2𝑔:

Theorem 3.5. In the situation of Theorem 1.1, suppose that we can find 𝑎, 𝑏 > 0 such that
𝑁𝐴 = 𝑏𝑁𝐵 +𝑎 (eventually tweaking the parameters𝑁𝐴, 𝑁𝐵), with 𝑎, 𝑏, 𝑁𝑎 coprime, 𝑏 = 𝑏1𝑏2,
and a 𝑏1-isogeny 𝛽1 ∶ 𝐸𝑔

0 → 𝑌0, a 𝑏2-isogeny 𝛽2 ∶ 𝐸𝑔
𝐵 → 𝑌𝐵, and a 𝑎-isogeny 𝛼0 ∶ 𝐸𝑔

0 → 𝑋0.
Assume furthermore for simplicity that gcd(𝑏, 𝑁𝐵) = 1 (or is small). Let 𝑇 be a bound on the
arithmetic operations required to evaluate 𝛽1, 𝛽2 and the pushout 𝛼′ of 𝛼 and 𝛽1 on a basis
of the 𝑁𝐴-torsion of 𝐸𝑔

0, 𝐸𝑔
𝐵, 𝑌0 respectively. (By the discussion above, for 𝛼′ and 𝛽1, this can

be seen as a precomputation depending on 𝐸0).Then, we can recover generators of Ker𝜙𝐵 in
𝑂(ℓ2𝑔

𝐴 log𝑁𝐴 + log2 𝑁𝐴 + 𝑇) arithmetic operations in 𝔽𝑞, or even in 𝑂(ℓ2𝑔
𝐴 log𝑁𝐴 + 𝑇) via

the fast isogeny decomposition of [DJP14, § 4.2.2].
Remark 3.6. In dimension 8, the domain (and codomain) of 𝐹 is a product of supersingular
elliptic curves, so is a superspecial abelian variety.The same is true for the isogeny 𝐹 in dimen-
sion 2𝑔 by the argument below. Since 𝐹 is an 𝑁𝐴-isogeny with 𝑁𝐴 prime to the characteristic
of the base field, 𝐹, or its decomposition into a product of ℓ-isogenies, preserve the 𝑎-number
of the intermediate abelian varieties. Hence they have 𝑎-number equal to 2𝑔, so they are still
superspecial. By a theorem due to Deligne, Ogus and Shioda [Shi79, Theorem 3.5], they are
all isomorphic (without the polarisation!) to 𝐸2𝑔

0 . So in the decomposition of 𝐹 we always
stay on the same abelian variety 𝐸2𝑔

0 , except that we gradually change its polarisation. For
instance in the dimension 2 attack, we start with a product polarisation but the intermediate
polarisations will generically be indecomposable, hence correspond to Jacobians of genus 2
hyperelliptic superspecial curves.

4. Dimension 4 attack

In dimension 2, we can always write an 𝑎-endomorphism on 𝐸2
0 whenever 𝑎 = 𝑎2

1 + 𝑎2
2.

So using Section 3, we can do a dimension 4 attack whenever we can find 𝑎, 𝑏 > 0 such that

14 DAMIEN ROBERT

𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎 and both 𝑎 and 𝑏 are a sum of two squares. To increase our probability of
success, we can also tweaks the parameters 𝑁𝐴 and 𝑁𝐵 as explained in Section 6.

Remark 4.1. Since we can always prolong 𝛼 and 𝛽 by isogenies of smooth degree using
Section 6.2, we can consider the more general decompositions: 𝑁𝐴 = (𝑏2

1 + 𝑏2
2)𝑒𝑁𝐵 + (𝑎2

1 +
𝑎2

2)𝑒 with 𝑒, 𝑓 sufficiently smooth. But smooth integers are of negligible density compared to
sum of two squares, so for simplicity we focus only in this case here.

Write 𝑎 = 𝑎2
1 + 𝑎2

2, 𝑏 = 𝑏2
1 + 𝑏2

2. Note that unlike the decomposition of 𝑎 as a sum of
four squares from Section 2, these decompositions into a sum of two squares requires the
factorisation of 𝑎, 𝑏.

Write 𝛼 = (𝑎1 −𝑎2
𝑎2 𝑎1

), 𝛽 = (𝑏1 −𝑏2
𝑏2 𝑏1

). These matrices can be interpreted as endo-

morphisms of 𝐸2
0 or 𝐸2

𝐵 and commute with 𝜙𝐵 Id: 𝛽𝐵𝜙𝐵 Id = 𝜙𝐵 Id𝛽0, 𝛼𝐵𝜙𝐵 Id = 𝜙𝐵 Id 𝛼0.
Furthermore, ̃𝛼𝛼 = (𝑎2

1 + 𝑎2
2) Id, so 𝛼 is an 𝑎-endomorphism, and similarly 𝛽 is a 𝑏-

endomorphism:

𝐸2
0 𝐸2

𝐵

𝐸2
0 𝐸2

𝐵

𝜙𝐵𝛽

𝛼0 𝛼𝐵

𝜙𝐵𝛽

Lemma 3.4, or a direct computation, shows that 𝐹 = (𝛼0 𝜙𝐵 Id𝛽𝐵
−𝛽𝐵𝜙𝐵 Id 𝛼𝐵

) is a 𝑁𝐴 =

𝑎 + 𝑏𝑁𝐵-endomorphism of 𝐸2
0 × 𝐸2

𝐵. Its kernel is given by Ker𝐹 = {(𝛼0(𝑃), 𝛽𝐵𝜙𝐵 Id(𝑃)) ∣
𝑃 ∈ 𝐸2

0[𝑁𝐴]}.
We can thus evaluate 𝐹, hence evaluate 𝛽𝐵𝜙𝐵 Id = 𝜙𝐵 Id𝛽0 on any point in 𝐸2

0(𝔽𝑞) in
𝑂(log2 𝑁𝐴 + log𝑁𝐴ℓ4

𝐴) arithmetic operations over 𝔽𝑞 by [LR22]. In this situation we can
recover more than just 𝑏𝜙𝐵. Indeed from the matrix 𝛽𝐵𝜙𝐵 Id we can directly recover 𝑏1𝜙𝐵
and 𝑏2𝜙𝐵; so if 𝑏′ = gcd(𝑏1, 𝑏2), we can recover 𝑏′𝜙𝐵 in 𝑂(log 𝑏) arithmetic operations
on 𝐸𝐵. This means that we can recover the kernel of a 𝑁𝐵/ gcd(𝑁𝐵, 𝑏′)-isogeny 𝐸0 → 𝐸′

𝐵
through which 𝜙𝐵 factors. If gcd(𝑁𝐵, 𝑏′) = 1 we have directly recovered 𝜙𝐵, otherwise we
iterate the process, which is possible as long as gcd(𝑁𝐵, 𝑏′) < 𝑁𝐵.

Remark 4.2 (Sum of two squares). To decompose a number 𝑏 as a sum of two squares 𝑏 =
𝑏2

1 + 𝑏2
2 is the same as finding a factorisation 𝑏 = (𝑏1 + 𝑖𝑏2)(𝑏1 − 𝑖𝑏2) = 𝛽𝛽 in the Gaussian

integers ℤ[𝑖]. The order ℤ[𝑖] ⊂ ℚ(𝑖) is of discriminant −4, so it is the maximal order, and it
is euclidean by [Gau32], hence is principal. The prime (2) = ((1 + 𝑖)(1 − 𝑖)) = ((1 + 𝑖)2)
is ramified, and the other integer primes are unramified. By the quadratic reciprocity law
[Gau01], when 𝑝 is an odd prime, −1 is a square modulo 𝑝 if and only if 𝑝 ≡ 1 (mod 4).
Hence when 𝑝 ≡ 1 (mod 4) it splits in ℤ[𝑖], otherwise when 𝑝 ≡ 3 (mod 4) it stays inert.
In particular, 𝑝 is a sum of two squares if and only if 𝑝 = 2 or 𝑝 ≡ 1 (mod 4) [Ste25, p.622;
Fer40; DD94, Supplement XI].

We deduce that 𝑏 is a sum of two squares if and only if all odd primes 𝑝 ≡ 3 (mod 4)
dividing 𝑏 have even exponent 𝑣𝑝(𝑏). Also, gcd(𝑏1, 𝑏2) ∣ gcd(𝛽, 𝛽) ∣ 2 gcd(𝑏1, 𝑏2).Therefore,
if 𝑏 = 𝑏2

1 + 𝑏2
2, gcd(𝑏1, 𝑏2) = 2⌊𝑣2(𝑏)/2⌋ × ∏𝑝∣𝑏,𝑝≡3 (mod 4) 𝑝𝑣𝑝(𝑏)/2. In particular, 𝑏 admits

a primitive representation as a sum of two squares if and only if the odd prime divisors
of 𝑏 are all congruent to 1 modulo 4 and 4 ∤ 𝑏. More generally, if the odd prime divisors
of gcd(𝑏, 𝑁𝐵) are congruent to 1 modulo 4, and either 2 ∤ 𝑁𝐵 or 4 ∤ 𝑏, we can find a
decomposition 𝑏 = 𝑏2

1 + 𝑏2
2 such that gcd(𝑏1, 𝑏2, 𝑁𝐵) = 1.

Breaking SIDH in polynomial time 15

In Section 5, we will need decompositions of the form 𝑏 = 𝑏2
1+4𝑏2

2. Such a decomposition
exists if 𝛽 ∈ ℤ[2𝑖], which is a suborder of ℤ[𝑖] of index 2. So 𝑏 admits such a decomposition
if and only if it can be written a sum of two squares and 𝑣2(𝑏) is even.

Furthermore, the number of integers less than 𝑥 that can be written as a sum of two squares
is given by the asymptotic behaviour of the 𝐿 function 𝐿(𝑠) = (1− 1

2𝑠)−1 ∏𝑝≡1 (mod 4)(1−
1
𝑝𝑠)−1 ∏𝑝≡3 (mod 4)(1− 1

𝑝2𝑠)−1 at 𝑠 = 1. By Perron’s formula, it is asymptotically equivalent

to 𝐶/√log 𝑥 [LeV12, Volume 2, p. 260–263], where 𝐶 ≈ 0.7642 is the Landau-Ramanujan
constant. Adapting the proof, the same asymptotic bound holds for the number of integers
that are a primitive sum of two squares (resp. of the form 𝑏2

1 + 4𝑏2
2) via the 𝐿 function

𝐿(𝑠) = (1 + 1
2𝑠) ∏𝑝≡1 (mod 4)(1 − 1

𝑝𝑠)−1 (resp. 𝐿(𝑠) = (1 − 1
22𝑠)−1 ∏𝑝≡1 (mod 4)(1 −

1
𝑝𝑠)−1 ∏𝑝≡3 (mod 4)(1 − 1

𝑝2𝑠)−1), except with a different constant 𝐶 ≈ 0.49 (resp. 𝐶 ≈
0.51).

Summing up this discussion, we get for the dimension 4 attack:

Theorem 4.3. In the situation of Theorem 1.1, suppose that we can find 𝑎, 𝑏 > 0 such that
𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎 (eventually tweaking the parameters 𝑁𝐴, 𝑁𝐵) with 𝑁𝐴, 𝑎, 𝑏 coprime and 𝑎,
𝑏 can be written as a sum of two squares: 𝑎 = 𝑎2

1 + 𝑎2
2, 𝑏 = 𝑏2

1 + 𝑏2
2. Assume furthermore

for simplicity that gcd(𝑏, 𝑁𝐵) has its odd prime divisors congruent to 1 modulo 4, and if
2 ∣ gcd(𝑏, 𝑁𝐵) then 4 ∤ 𝑏.

Then, given the decomposition of 𝑎 and 𝑏 as a sum of two square (eg given their factorisation),
we can recover generators for Ker𝜙𝐵 in classical deterministic time 𝑂(ℓ4

𝐴 log ℓ𝐴 log𝑁𝐴 +
log2 𝑁𝐴) arithmetic operations in 𝔽𝑞, or even 𝑂(log𝑁𝐴ℓ4

𝐴) with the fast variant of smooth
isogeny computation.

As mentioned in Remark 4.1 and Section 6, we can more generally look at 𝑁𝐴 = 𝑒(𝑏2
1 +

𝑏2
2)𝑁𝐵 + 𝑓 (𝑎2

1 + 𝑎2
2) with 𝑒, 𝑓 sufficiently smooth.

4.1. Parameters selection. In order to find parameters such that wemay applyTheorem 4.3,
a first idea is the following. We search, using Section 6, parameters 𝑎, 𝑏 such that 𝑒𝑁𝐴 =
𝑏𝑁𝐵/𝐷 + 𝑎, where 𝑒 is an integer, 𝐷 is some divisor of 𝑁𝐵 (that we will want as small
as possible), and 𝑎, 𝑏 sum of two (primitive) squares. Since 𝑁𝐴 > 𝑁𝐵, there are 𝑂(𝑒𝐷)
possible choices for 𝑏, among whose Ω(𝑒𝐷/√log 𝑒𝐷) will be a primitive sum of two squares
by Remark 4.2. We thus have Ω(𝑒𝐷/√log 𝑒𝐷) candidates for 𝑎. If we make the heuristic
assumption that these 𝑎 behave like a random integer between 0 and 𝑁𝐴, the probability to
find a 𝑎 that is a sum of two squares is Ω(1/√log𝑁𝐴) by the same Remark. Hence we need
to take 𝑒𝐷 = 𝑂(√log𝑁𝐴). There are 𝑂(𝐷) candidate 𝐷-isogenies through which 𝜙𝐵 may
factorize, and we need to apply Theorem 4.3 to each of these candidates. Likewise, there
are 𝑂(𝑒3) possibilities to guess the image of 𝜙𝐵 on the 𝑁𝐴𝑒-torsion (and this does not even
take into account the cost of finding the 𝑒𝑁𝐴-torsion which possibly lives in an extension
of 𝔽𝑞). Thus it appears that for the tweaking of parameters, it is preferable to use 𝑒 = 1,
𝐷 = 𝑂(√log𝑁𝐴). So these parameter tweaks will lose a factor 𝑂(𝐷) in the final arithmetic
complexity of the attack.

However, for the dimension 4 attack, we will see that by using Section 6.4 we can actually
set 𝑒 = 𝑁𝐴 without extra cost (asymptotically).

The question remains of the cost of the precomputation of the parameters 𝑎, 𝑏. We can
directly iterate through sum of two squares for 𝑏, but checking if 𝑎 is a sum of two squares
requires its factorisation. Here we can use a trick from [Wes22a]: we restrict to the case 𝑎

16 DAMIEN ROBERT

a prime congruent to 1 modulo 4. This only requires a primality test, hence is much less
expensive. However the probability that 𝑎 is a prime (congruent to 1 modulo 4) will only
be (heuristically) Ω(1/ log𝑁𝐴), so this strategy will require larger parameters 𝑒𝐷. Luckily,
for the dimension 4 attack we can take 𝑒 = 𝑁𝐴 as we have seen, which is more than large
enough.

Reframing the above discussion, we need the following heuristic:

Heuristic 4.4.

• Let𝑁1 > 𝑁2 be two coprime integers, with𝑁2 and𝑁1/𝑁2 sufficiently large.Then if 𝑏
is uniform amongst the numbers 𝑥 < 𝑁1/𝑁2 that are sum of two squares (resp. a sum
of two primitive squares, resp. of the form 𝑢2+4𝑣2), the probability that 𝑎 = 𝑁1−𝑏𝑁2
is a sum of two squares (resp. a sum of two primitive squares, resp. of the form 𝑢2 +4𝑣2)
is Ω(1/√log𝑁1).

• Under the same assumptions, if 𝑏 is uniform amongst the numbers 𝑥 < 𝑁1/𝑁2 that
are sum of two squares (resp. a sum of two primitive squares, resp. of the form 𝑢2+4𝑣2),
the probability that 𝑎 = 𝑁1 −𝑏𝑁2 is prime and a sum of two squares is Ω(1/log𝑁1).

Motivation. The motivation behind this heuristic is that the 𝑎 we get will behave like a
uniform integer between 1 and 𝑁1. The density of sum of two squares (resp. a sum of two
primitive squares, resp. of the form 𝑢2 + 4𝑣2) less than 𝑁1 is equivalent asymptotically to
𝐶/√log𝑁1, where 𝐶 depends on the exact form we want. Likewise, the density of primes
congruent to 1 less than 𝑁1 is equivalent asymptotically to 𝐶/ log𝑁1 by the prime number
theorem [Had96; Val96] and Dirichlet’s theorem on arithmetic progressions [Dir37]. �

This heuristic allows us to derive the following complexity cost of the precomputation
step.

Corollary 4.5. Let 𝑁1 > 𝑁2 be two coprime integers, with 𝑁2 sufficiently large. Then for
𝜖 > 0, there is a constant 𝐶𝜖 such that under Heuristic 4.4, if 𝑁1/𝑁2 > 𝐶𝜖 log

1/2 𝑁1, we
can find with probability > 1 − 𝜀 a decomposition 𝑁1 = 𝑏𝑁2 + 𝑎 where 𝑎, 𝑏 are sum of two
squares (resp. a sum of two primitive squares, resp. of the form 𝑢2 + 4𝑣2). This decomposition
requires in average 𝑂(√log𝑁1) factorisation calls and 𝑂(log2.5 𝑁𝐴) binary operations.

If𝑁1/𝑁2 > 𝐶𝜖 log𝑁1, still under Heuristic 4.4 we can find such a decomposition in average
𝑂(log𝑁1) tests of primality. It will cost on average 𝑂(log3 𝑁1) binary operations.

Proof. By Heuristic 4.4, we need to sample Ω(log1/2 𝑁1) 𝑏 of the form 𝑏2
1 + 𝑏2

2 to find an
𝑎 which is also a sum of two squares, or Ω(log𝑁1) if we also want 𝑎 prime. The same also
holds for the other decomposition, only the constant in the Ω changes.

We first look at the complexity analysis of the second case. Testing the primality of 𝑎
via the Miller-Rabin pseudo-primality test [Mil76; Rab80] costs 𝑂(log2 𝑎), and we have
the same average complexity to find an integer 𝑧 such that 𝑧2 = −1 (mod 𝑎) (this is more
or less equivalent to the Miller-Rabin pseudo-primality test). From 𝑧 and 𝑎, a continued
fraction expansion allows to decompose 𝑎 as a sum of two squares [Her48], so given 𝑧, the
decomposition 𝑎 = 𝑎2

1 + 𝑎2
2 can be done in time 𝑂(log2 𝑎) by Euclide’s algorithm [Εὐκ00]

(it is well known that the complexity can be improved to 𝑂(log 𝑎), see eg [BCG+17, § 6.3])
for a total complexity of 𝑂(log2 𝑎) on average to test the primality of 𝑎 and write it as a sum
of two squares.

For the first case, we need to factorize 𝑎 to see if it can be written as sum of two squares.
Given the prime factors of 𝑎, we can use the method above to find the decomposition of 𝑎

Breaking SIDH in polynomial time 17

into irreducible factors in the Gaussian integers ℤ[𝑖], so we can also decompose 𝑎 as a sum
of two squares in time 𝑂(log2 𝑎). �

Proposition 4.6. Under Heuristic 4.4, the precomputation step of the dimension 4 attack takes
average time 𝑂(log3 𝑁𝐴) binary operations to find a decomposition 𝑁2

𝐴 = (𝑏2
1 + 𝑏2

2)𝑁𝐵 +
𝑎2

1 + 𝑎2
2. Once this decomposition is found, the dimension 4 attack can be done in 𝑂(log𝑁𝐴ℓ4

𝐴)
arithmetic operations.

Proof. By Heuristic 4.4, we can find 𝑒 ∣ 𝑁𝐴 such that 𝑒𝑁𝐴 = (𝑏2
1 + 𝑏2

2)𝑁𝐵 + (𝑎2
1 + 𝑎2

2)
which 𝑏1, 𝑏2 coprime. This precomputation costs 𝑂(log3 𝑁𝐴) by Corollary 4.5. We can now
construct a 𝑒𝑁𝐴-endomorphism 𝐹 ∶ 𝑋 → 𝑋 where 𝑋 = 𝐸2

0 × 𝐸2
𝐵 as in Theorem 4.3. We

only know its action on 𝑋[𝑁𝐴], but by considering ̃𝐹, we can explicitly decompose 𝐹 as
𝐹 = 𝐹2∘𝐹1 where 𝐹1 is a 𝑁𝐴-isogeny and 𝐹2 a 𝑒-isogeny, see Section 6.4.This decomposition
costs 𝑂(log𝑁𝐴 + log 𝑒ℓ4

𝐴) to compute (more precisely: to recover the domain of 𝐹2 and its
kernel), and evaluating 𝐹 via this decomposition costs 𝑂(log𝑁𝐴ℓ4

𝐴). �

5. Dimension 2 attack

We briefly describe how the dimension 2 attacks, due to [CD22; MM22], fit into the
general framework of Section 3.

Write 𝑁𝐴 = 𝑏𝑁𝐵 + 𝑎, to apply Section 3 for 𝑔 = 1, we need to construct a 𝑎-isogeny
𝛼 = 𝛼0 ∶ 𝐸0 → 𝑋0 and a 𝑏-isogeny 𝛽 ∶ 𝐸0 → 𝑌0 (or 𝛽 ∶ 𝐸𝐵 → 𝑌𝐵) to get the push-out
square:

𝑌0 𝐸0 𝐸𝐵

𝑍0 𝑋0 𝑋𝐵

𝛼′
0

𝜙𝐵

𝛼0

𝛽
𝛼𝐵

𝛽′

𝜙′
𝐵

The corresponding isogeny diamond

𝑍0 𝑌0

𝑋𝐵 𝐸𝐵

𝛼′
0

𝜙′
𝐵∘𝛽′ 𝜙𝐵∘𝛽

𝛼𝐵

shows that 𝐹 = (𝛼′
0 𝛽 ∘ 𝜙𝐵

−𝜙′
𝐵 ∘ 𝛽′ 𝛼𝐵

) is a 𝑁𝐴-isogeny 𝐹 ∶ 𝑍0×𝐸𝐵 → 𝑌0×𝑋𝐵 by Lemma 3.4.

If we don’t assume that End(𝐸0) is known, we can only construct a 𝑎-endomorphism
whenever 𝑎 is square: if 𝑎 = 𝑎2

1 we take the 𝑎-endomorphism [𝑎1]. More generally, since it is
also easy to construct isogenies of smooth degree starting from 𝐸0 or 𝐸𝐵 (see Section 6.2),
the framework of Section 3 shows that the attack applies whenever 𝑁𝐴 = 𝑏2

1𝑒𝑁𝐵 +𝑎2
1𝑓 where

𝑒, 𝑓 are sufficiently smooth. This is essentially the attack of [MM22]; in the first version they
only looked at 𝑁𝐴 − 𝑁𝐵 smooth (and tweaking of parameters), but to get a subexponential
complexity they needed to look at the more general 𝑁𝐴 = 𝑒𝑁𝐵 + 𝑓 case, which was already
considered in [CD22] (squares are of negligible density compared to smooth numbers, so
we can forget about them).

As mentioned in Section 1.5, in [CD22], the authors use the matrix 𝐹 as an oracle attack,
which requires many isogeny guesses, compared to the direct isogeny recovery of [MM22].
However, they also use the fact that for the parameters of SIKE submitted to NIST (or the
Microsoft challenge [Cos21]), 𝐸0 has a know endomorphism 𝛾 = 2𝑖, so End(𝐸0) ⊃ ℤ[2𝑖].

18 DAMIEN ROBERT

Hence we can construct an explicit 𝑎-endomorphism 𝛼 on 𝐸0 whenever 𝑎 = 𝑎2
1 + 4𝑎2

2, which
is possible whenever all primes 𝑝 such that 𝑝 ≡ 3 mod 4 or 𝑝 = 2 are of even exponent
in 𝑎 by Remark 4.2. By Section 3, prolonging by isogenies of smooth degrees if necessary,
for this starting curve 𝐸0 the attack holds whenever 𝑁𝐴 = (𝑏2

1 + 4𝑏2
2)𝑒𝑁𝐵 + (𝑎2

1 + 4𝑎2
2)𝑓.

Otherwise, one needs to do some guesses, as in Section 6. In [CD22], the authors only look
at 𝑁𝐴 = 𝑁𝐵 + (𝑎2

1 + 4𝑎2
2)𝑓, but in [POP+22], Oudompheng, inspired by an earlier version

of this paper describing the dimension 4 attack, implemented the more general formula
above. This bumped down the time to solve the SIKEp217 challenge from 9 to 2 seconds and
SIKEp964 instances from 1+h to 30 seconds.

The discussion of Section 4.1 shows:

Proposition 5.1. Under Heuristic 4.4, when 𝐸0 has known endomorphism 𝛾 = 2𝑖, the
dimension 2 attack has, after a precomputation step involving 𝑂(√log𝑁𝐴) factorisations and
𝑂(1) calls to 𝛾, complexity 𝑂(log1.5 𝑁𝐴ℓ2

𝐴) arithmetic operations.
Alternatively, we can dispense with factorisations in the precomputation step at the cost

of increasing the complexity of the attack: still under Heuristic 4.4, after a precomputation
step costing 𝑂(log3 𝑁𝐴) binary operations and 𝑂(1) calls to 𝛾, the dimension 2 attack has
complexity 𝑂(log2 𝑁𝐴ℓ2

𝐴) arithmetic operations.

Proof. We proceed as in the proof of Proposition 4.6. In Corollary 4.5, we require 𝑎, 𝑏 to
decompose as 𝑎 = 𝑎2

1 + 4𝑎2
2 and 𝑏 = 𝑏2

1 + 4𝑏2
2. To find such 𝑎 and 𝑏, we look for relations

𝑁𝐴 = 𝑏𝑁𝐵/𝐷 + 𝑎 where 𝐷 is a divisor of 𝑁𝐵. When we look for 𝑎 a sum of two squares in
Corollary 4.5, we can take 𝐷 = Θ(√log𝑁𝐴), if we require furthermore that 𝑎 is prime to
decrease the precomputation cost, then we need 𝐷 = Θ(log𝑁𝐴)). We assume implicitly
that it is possible to find a divisor of 𝑁𝐵 of this magnitude.

Also, since the endomorphisms 𝛼 and 𝛽 are built from 𝛾, the evaluation cost of these
endomorphisms will depend on the cost of evaluating 𝛾. But we only need to evaluate 𝛼, 𝛽
on points of 𝑁𝐴-torsion, so we may consider that the computation of 𝛾 on a basis of 𝐸0[𝑁𝐴]
is a precomputation (depending on 𝐸0). Evaluating 𝛼 and 𝛽 then takes 𝑂(log𝑁𝐴ℓ1/2

𝐴) by
Lemma 3.3.When 𝐸0 = 𝐸NIST, the evaluation of 𝛾 is done in 𝑂(1), so evaluating 𝛼 and 𝛽
can be done directly in 𝑂(log𝑁𝐴).

Once these precomputations are done, the evaluation of 𝐹 takes time 𝑂(log𝑁𝐴ℓ2
𝐴) arith-

metic operations. We need to multiply this complexity by 𝑂(𝐷), the number of isogenies we
need to guess. �

When 𝐸0 ≠ 𝐸NIST has known endomorphisms, Castryck and Decru use [KLP+14; LB20]
to build a path from 𝐸NIST to 𝐸0. This allows them to pushforward the 𝑎-isogeny 𝛼NIST from
𝐸NIST to an 𝑎-isogeny 𝛼 on 𝐸0 using the methods of [GPS17; DKL+20]. This time, evaluating
𝛼 on rational points can only be done in polynomial time. But since the attack only needs the
action of 𝛼 on the 𝑁𝐴-torsion, it is sufficient to evaluate 𝛼 on a basis of 𝐸0[𝑁𝐴]. This can be
seen as a precomputation, which in this case involves not only the parameters 𝑁𝐴, 𝑁𝐵 but
also the starting curve 𝐸0. The remaining evaluations on points of 𝑁𝐴-torsion can then be
done in 𝑂(log𝑁𝐴ℓ1/2

𝐴) by Lemma 3.3.
Recall also from Section 1.5 that [Wes22b] gives a method to construct an 𝑎-isogeny in

proven polynomial time on any supersingular elliptic curve with known endomorphism
ring. This isogeny can also be evaluated in polynomial time. Applying this to 𝑎 = 𝑁𝐴 − 𝑁𝐵,
computing this 𝑎-endomorphism 𝛼 and its evaluation on a basis 𝐸0[𝑁𝐴] can be seen as a
precomputation, and then we have a direct isogeny recovery without parameter tweaks as in
Section 2, except we only need to compute isogenies in dimension 2 rather than 8.

Breaking SIDH in polynomial time 19

Proposition 5.2 (Wesolowski). If End(𝐸0) is known, after a polynomial time precomputation
to compute an 𝑎-isogeny 𝛼 and its action on the 𝑁𝐴-torsion, the dimension 2 attack has
complexity 𝑂(log𝑁𝐴ℓ2

𝐴) arithmetic operations.

Unfortunately, it is not clear what is the exact bound on the precomputation step of
Wesolowski’s approach.

Finally, wemention that for the isogeny computations in dimension 2, since any principally
polarised surface is either a Jacobian or an elliptic curve, one can also use the Jacobian model
of [CE14] (which can be extended to the case of product of elliptic curves), rather than the
theta model of [LR22].

6. Parameter tweaks

We recall the decomposition of the parameters we need for the different attacks from the
generic framework of Section 3:

• In dimension 8, or in dimension 2 when End(𝐸0) has known endomorphism ring
(using [Wes22b]), no tweaks!

• In dimension 4, we need a decomposition 𝑁𝐴 = 𝑒(𝑏2
1 + 𝑏2

2)𝑁𝐵 + 𝑓 (𝑎2
1 + 𝑎2

2),
𝑒, 𝑓 sufficiently smooth. For the dimension 2 attack of [CD22] where End(𝐸0) has
endomorphism 2𝑖, we need the very similar decomposition 𝑁𝐴 = (𝑏2

1 + 4𝑏2
2)𝑒𝑁𝐵 +

(𝑎2
1 + 4𝑎2

2)𝑓.
• For [MM22], in dimension 2 when End(𝐸0) is not known, we need 𝑁𝐴 = 𝑒𝑁𝐵 + 𝑓

with 𝑒, 𝑓 sufficiently smooth.
These decompositions rely on the fact that we can build isogenies of smooth degree on 𝐸0
and 𝐸𝐵, we detail that complexity in Section 6.2.

We can furthermore tweak the parameters 𝑁𝐴 and 𝑁𝐵 as follow, as in the strategies of
[CD22; MM22]. In the following, we assume that we are in the context of SIDH, so 𝐸0, 𝐸𝐵
are supersingular elliptic curves defined over 𝔽𝑞 with 𝑞 = 𝑝2.

(1) We can replace 𝑁𝐴 by 𝑁′
𝐴 = 𝑁𝐴/𝑑𝐴 where 𝑑𝐴 any divisor of 𝑁𝐴.

(2) We can replace 𝑁𝐵 by 𝑁𝐵/𝑑𝐵, where 𝑑𝐵 is a small divisor of 𝑁𝐵. This requires
guessing the first 𝑑𝐵-isogeny step of Φ𝐵, and we have 𝑂(𝑑𝐵) guesses.

(3) We can replace 𝑁𝐴 by 𝑁′
𝐴 = 𝑒𝑁𝐴 where 𝑒 is a small integer prime to 𝑁𝐵. This

means that we will build 𝐹 a 𝑁′
𝐴 = 𝑒𝑁𝐴 isogeny in dimension 2𝑔, where we only

know its action on the 𝑁𝐴-torsion, and we want to recover 𝐹 (eg its kernel). For a
general 𝑒, we explain possible strategies in Section 6.3, strategies which can be much
improved when 𝑒 ∣ 𝑁𝐴, see Section 6.4.

The rest of this section is devoted to determine the complexity of these tweaks.

6.1. Constructing a basis of the 𝑒-torsion of 𝐸. We look at the complexity of building a
basis of the 𝑒-torsion on 𝐸. By the group structure theorem of supersingular elliptic curves,
since 𝜋𝑞𝑘 = (−𝑝)𝑘, 𝐸(𝔽𝑞𝑘) ≃ ℤ/((−𝑝)𝑘 − 1) ⊕ ℤ/((−𝑝)𝑘 − 1). Hence the smallest
extension of 𝔽𝑞 where the points of 𝑒 torsion of 𝐸 live is of degree 𝑘, the order of −𝑝 modulo
𝑒, so 𝑘 = 𝑂(𝑒). Sampling a 𝑒 basis of 𝐸 can be done by constructing the field 𝔽𝑞𝑘 , sampling

random points in 𝐸(𝔽𝑞𝑘), multiplying by the cofactor (−𝑝)𝑘−1
𝑒 and then checking if we have

a basis using the Weil pairing. The construction of 𝔽𝑞𝑘 costs 𝑂(𝑘2 log 𝑞 + 𝑘 log2 𝑞) using
[Sho94] or 𝑂(𝑘 log5 𝑞) using [CL13]. The dominant cost will be the sampling phase, which
costs 𝑂(𝑘 log 𝑞) arithmetic operations in 𝔽𝑞𝑘. In total we get 𝑂(𝑘2 log2 𝑞) = 𝑂(𝑒2 log2 𝑞)
operations.

20 DAMIEN ROBERT

6.2. Building a smooth isogeny on a supersingular elliptic curve 𝐸/𝔽𝑝2. We want to
build a smooth isogeny of degree 𝑒. We can build it as a composition of 𝑂(log 𝑒) ℓ-isogenies,
for primes ℓ ∣ 𝑒. If ℓ ∣ 𝑁𝐴𝑁𝐵, since we have access to a rational 𝑁𝐴 and 𝑁𝐵 torsion basis, we
can simply use it to sample an element of order 𝑓 in time 𝑂(min(log𝑁𝐴, log𝑁𝐵)) arithmetic
operations, and the isogeny can then be computed in time 𝑂(√ℓ) arithmetic operations
using sqrtVelu[BDL+20].

We now detail the general case. Since 𝜋𝑞 = [−𝑝], all cyclic kernels of order ℓ of 𝐸 are
rational, and their generators live in an extension of degree at most 𝑘 = 𝑂(ℓ), the order of −𝑝
modulo ℓ. We can construct 𝔽𝑞𝑘 then sample a generator (any primitive point 𝑃 of ℓ-torsion)
in 𝑂(𝑘2 log2 𝑞) operations like in Section 6.1, then compute the isogeny using Vélu’s formula
[Vél71] or the sqrtVelu algorithm [BDL+20] in time 𝑂(ℓ𝑘 log 𝑞) (resp. 𝑂(ℓ1/2𝑘 log 𝑞)) for
a total cost of 𝑂(𝑘2 log2 𝑞 + ℓ1/2𝑘 log 𝑞) = 𝑂(ℓ2 log2 𝑞).

An alternative is to compute and factorize the ℓ-division polynomial 𝜓ℓ. It is of degree
𝑂(ℓ2) and can be computed in time 𝑂(ℓ2 log 𝑞) via the recurrence formula. Furthermore,
all points of ℓ-torsion live in the same extension of degree 𝑘. If ℓ is odd and 𝑃 ∈ 𝐸[ℓ], 𝑥𝑃
will live in the same extension as 𝑃 unless 𝑘 is even, in which case 𝜋𝑘/2

𝑞 𝑃 = −𝑃 so 𝑥𝑃 lives
in an extension of degree 𝑘/2. This shows that the factors of 𝜓ℓ are all of the same degree
𝑘 if 𝑘 is odd or 𝑘/2 if 𝑘 is even. We can then skip the distinct degree factorisation phase,
hence compute a factorisation of 𝜓ℓ in time 𝑂(ℓ2 log2 𝑞) by [VS92]. Any factor 𝑄 of 𝜓𝑓 then
gives us a construction of 𝔽𝑞𝑘 and of a point of ℓ-torsion 𝑃 in 𝐸(𝔽𝑞𝑘) via, if 𝐸 ∶ 𝑦2 = ℎ(𝑥),
𝑃 = (𝑥 mod 𝑄(𝑥), 𝑦 mod (𝑦2 − ℎ(𝑥), 𝑄(𝑥))). Note that the polynomial 𝑦2 −ℎ(𝑥) splits
in 𝔽𝑞[𝑥]/𝑄(𝑥) if deg𝑄 = 𝑘, otherwise it is irreducible, deg𝑄 = 𝑘/2 and it allows to
construct 𝔽𝑞𝑘 as a degree 2 tower over 𝔽𝑞𝑘/2 = 𝔽𝑞[𝑥]/𝑄(𝑥). We can then apply Vélu or
sqrtVelu to 𝑃 as above, for a total cost of 𝑂(ℓ2 log2 𝑞).

A third method is to construct an ℓ-isogeny using the ℓ-modular polynomial 𝜙ℓ (and its
derivative), as in the SEA algorithm [Sch95]. We can evaluate this modular polynomial in
time 𝑂(ℓ2 log 𝑞) by an easy adaptation of [Kie20] (see [Rob21, Remark 5.3.9; Rob22c]), then
recover a root in time 𝑂(ℓ log2 𝑞). Recovering the isogeny can then be done in quasi-linear
time by solving a differential equation [BMS+08; Rob21, § 4.7.1]. This reduces the complexity
to 𝑂(ℓ2 log 𝑞 + ℓ log2 𝑞) operations.

6.3. Recovering a𝑁𝐴𝑒-isogeny from its actionon the𝑁𝐴-torsion. Wehave a𝑁𝐴𝑒-isogeny
𝐹 in dimension 2𝑔, that Eve built from the secret isogeny 𝜙𝐵 ∶ 𝐸0 → 𝐸𝐵 and some auxiliary
isogeny she controls. She wants to recover 𝐹 in order to retrieve 𝜙𝐵 from it.

One way to do that is to guess the action of 𝜙𝐵 on the 𝑒𝑁𝐴-torsion of 𝐸0. This requires to
compute a basis of the 𝑒𝑁𝐴-torsion on 𝐸0, as described in Section 6.1, possibly taking an
extension of degree 𝑘, and then guessing the images of Φ𝐵 on the 𝑁𝐴𝑒 torsion. Note that
since the 𝑁𝐴-torsion is rational by assumption, we have 𝑘 = 𝑂(𝑒). Guessing the image of
𝜙𝐵 on this basis involves 𝑂(𝑒3)-tries, using the compatibility of 𝜙𝐵 with the Weil pairing
and the known image of the 𝑁𝐴-torsion.

An alternative strategy, when the codomain 𝑌 of 𝐹 ∶ 𝑋 → 𝑌 is known, is as follow: since
𝐹 is an 𝑁′

𝐴 = 𝑒𝑁𝐴-isogeny, and we know the action of 𝜙𝐵 on the 𝑁𝐴-torsion, we can still
recover Ker𝐹 ∩ 𝑋[𝑁𝐴]. So taking a maximal isotropic subgroup of Ker𝐹 ∩ 𝑋[𝑁𝐴] for
the Weil pairing 𝑒𝑁𝐴

(for the 𝐹 we build in Section 3, this intersection is already maximal
isotropic), we can thus recover 𝐹1 in a decomposition 𝐹 = 𝐹2 ∘ 𝐹1, with 𝐹1 an 𝑁𝐴-isogeny
and 𝐹2 a 𝑒-isogeny. Then we can try to bruteforce 𝐹2 by an 𝑒-isogeny search in dimension 2𝑔.

Breaking SIDH in polynomial time 21

6.4. Recovering a 𝑁2
𝐴-isogeny from its action on the 𝑁𝐴-torsion. When 𝐹 ∶ 𝑋 → 𝑌 is

an 𝑁𝐴𝑒-isogeny with 𝑒 ∣ 𝑁𝐴, and the action of 𝐹 on 𝑋[𝑁𝐴] is known, then by using the
dual ̃𝐹 there is a much better strategy to recover 𝐹 than in Section 6.3. This is the same
strategy used in [QKL+21] when 𝐹 is an endomorphism of elliptic curves. We assume
here for simplicity that Ker𝐹 is of rank 2𝑔, which is the case for our applications: the 𝐹
constructed in Section 3 has this property. So 𝐾 = Ker𝐹 admits a symplectic complement
𝐾′: 𝑋[𝑒𝑁𝐴] = 𝐾 ⊕ 𝐾′, and Ker ̃𝐹 = 𝐹(𝑋[𝑒𝑁𝐴]) = 𝐹(𝐾′). Decompose 𝐹 = 𝐹2 ∘ 𝐹1,
𝐹1 ∶ 𝑋 → 𝑋1, 𝐹2 ∶ 𝑋1 → 𝑌, with Ker𝐹1 = Ker𝐹 ∩ 𝑋[𝑁𝐴] = 𝐾[𝑁𝐴].Then we have
Ker𝐹2 = Im𝐹2 ∣ 𝑋1[𝑒] = Im𝐹 ∣ 𝑋[𝑒] = Ker ̃𝐹 ∩ 𝑌[𝑒] = 𝐹(𝐾′)[𝑒] = 𝐹(𝐾′[𝑒]) (indeed
Im𝐹 ∣ 𝑋[𝑒] ⊂ Im𝐹2 ∣ 𝑋1[𝑒] but they have the same cardinality 𝑒2𝑔 since the kernel is of
rank 2𝑔, so we have equality). So we can build 𝐹1 from 𝑋 through its kernel Ker𝐹 ∩ 𝑋[𝑁𝐴]
(which is maximal isotropic of rank 2𝑔 in 𝑋[𝑁𝐴]), build 𝐹2 from 𝑌 through its kernel
Im𝐹 ∣ 𝑋[𝑒], then compute Ker𝐹2 = Im𝐹2 ∣ 𝑌[𝑒] to recover 𝐹2, hence 𝐹 = 𝐹2 ∘ 𝐹1.

In particular this strategy applies for the attacks in dimension 4 of Section 4 and in
dimension 8 of Section 2.

Let us detail this case: in these examples, the endomorphism 𝐹 of 𝐸𝑔
0 × 𝐸𝑔

𝐵 is always of the

form 𝐹 = (𝛼0 ̃𝛽𝜙𝐵 Id
−𝜙𝐵𝛽 𝛼𝐵

)with 𝛼0 an 𝑎-endomorphism of 𝐸𝑔
0, 𝛽 a 𝑏-endomorphism of

𝐸𝑔
0, and 𝛼𝐵 the 𝑎-endomorphism of 𝐸𝑔

𝐵 making the diagram commute:

𝐸𝑔
0 𝐸𝑔

𝐵

𝐸𝑔
0 𝐸𝑔

𝐵

𝜙𝐵𝛽

𝛼0 𝛼𝐵

𝜙𝐵𝛽

We also have 𝑎, 𝑏, 𝑁𝐴 coprime to each other. In particular, Ker𝐹 = {(𝛼0(𝑃), (𝜙𝐵𝛽)(𝑃)) ∣
𝑃 ∈ 𝐸𝑔

0[𝑒𝑁𝐴]}, and Ker ̃𝐹 = {(𝛼0(𝑃), (−𝜙𝐵𝛽)(𝑃)) ∣ 𝑃 ∈ 𝐸𝑔
0[𝑒𝑁𝐴]} are of rank 𝑔. We

decompose 𝐹 = 𝐹2 ∘ 𝐹1, where Ker𝐹1 = Ker𝐹[𝑁𝐴] = {(𝛼0(𝑃), (𝜙𝐵𝛽)(𝑃)) ∣ 𝑃 ∈
𝐸𝑔

0[𝑁𝐴]}, and Ker𝐹2 = Ker ̃𝐹[𝑒] = {(𝛼0(𝑃), (−𝜙𝐵𝛽)(𝑃)) ∣ 𝑃 ∈ 𝐸𝑔
0[𝑒]}. Since we know

the image of 𝜙𝐵 on a basis of 𝐸0[𝑁𝐴], we know the image of 𝜙𝐵 on a basis of 𝐸0[𝑒] via
𝑂(log(𝑁𝐴/𝑒)) arithmetic operations. So we can recover the image of 𝜙𝐵𝛽 on this basis in
𝑂(log𝑁𝐴ℓ1/2

𝐴) and 𝑂(1) evaluations of 𝛽 by Lemma 3.3. We also need in 𝑂(1) calls to 𝛼0.
In these examples, the endomorphisms 𝛽 and 𝛼0 can be evaluated in time 𝑂(log𝑁𝐴), so

the kernel of 𝐹1 and of 𝐹2 can be computed in time 𝑂(log𝑁𝐴ℓ1/2
𝐴). A linear complement

of Ker𝐹2 is given by 0 × 𝐸𝑔
𝐵[𝑒]. Indeed it is of rank 𝑔 and cardinal 𝑞2𝑔, and if 𝑥 = (0, 𝑄) ∈

Ker𝐹2, 𝑄 = −𝜙𝐵𝛽(𝑃) for a 𝑃 ∈ 𝐸𝑔
0[𝑒] such that 𝛼0𝑃 = 0. But this implies 𝑎𝑃 = 0, hence

𝑃 = 0 since 𝑎 is prime to 𝑒 ∣ 𝑁𝐴, so 𝑄 = 0. So Ker𝐹2 = 𝐹2(0 × 𝐸𝑔
𝐵[𝑒]), can be recovered in

2𝑔 calls to the evaluation of the 𝑒-isogeny 𝐹2.
The total cost to recover the domain of 𝐹2 and a basis of its kernel is thus 𝑂(log𝑁𝐴ℓ1/2

𝐴 +
log 𝑒ℓ2𝑔

𝑒) = 𝑂(log𝑁𝐴ℓ2𝑔
𝐴).

Unfortunately, this strategy does not work for the dimension 2 attack of Section 5, because
(with the notations of this Section), 𝑋𝐵 is constructed as a pushout, and we only obtain it
when we compute the codomain of 𝐹. But this means that if 𝐹 is an 𝑁2

𝐴-isogeny, there is no
easy way to obtain Ker ̃𝐹[𝑁𝐴], hence split 𝐹 as a product of two 𝑁𝐴-isogenies, without first
computing 𝐹 fully.

22 DAMIEN ROBERT

7. Conclusion

By Theorem 1.1 and Remark 1.2, we have a new toolbox for recovering an 𝑁𝐵-isogeny
𝑓 ∶ 𝐴 → 𝐵 given its action on the 𝑁𝐴-torsion as long as 𝑁2

𝐴 ≥ 𝑁𝐵 and 𝑁𝐴 is sufficiently
smooth. This toolbox allows to break SIDH efficiently in all cases. Can it also be used to
build new isogeny based cryptosystems?

References

[BDL+20] D. Bernstein, L. De Feo, A. Leroux, and B. Smith. “Faster computation of
isogenies of large prime degree”. In: Algorithmic Number Theory Symposium.
2020. arXiv: 2003.10118.

[BL04] C. Birkenhake and H. Lange. Complex abelian varieties. Second. Vol. 302.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Berlin: Springer-Verlag, 2004, pp. xii+635. isbn:
3-540-20488-1.

[BCR10] G. Bisson, R. Cosset, and D. Robert. AVIsogenies. Magma package devoted
to the computation of isogenies between abelian varieties. 2010. url: https:
//www.math.u-bordeaux.fr/~damienrobert/avisogenies/. Free software
(LGPLv2+), registered to APP (reference IDDN.FR.001.440011.000.R.P.2010.-
000.10000). Latest version 0.7, released on 2021-03-13.

[BMS+08] A. Bostan, F. Morain, B. Salvy, and E. Schost. “Fast algorithms for computing
isogenies between elliptic curves”. In: Mathematics of Computation 77.263
(2008), pp. 1755–1778.

[BCG+17] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and É. Schost.
Algorithmes efficaces en calcul formel. Published by the authors, 2017.

[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary
version). Cryptology ePrint Archive, Paper 2022/975. 2022. url: https:
//eprint.iacr.org/2022/975.

[CLM+18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. “CSIDH: an
efficient post-quantum commutative group action”. In: International Conference
on the Theory and Application of Cryptology and Information Security. Springer.
2018, pp. 395–427.

[Cos21] C. Costello. “The case for SIKE: a decade of the supersingular isogeny problem”.
In: Cryptology ePrint Archive (2021).

[CLN16] C. Costello, P. Longa, and M. Naehrig. “Efficient algorithms for supersingular
isogeny Diffie-Hellman”. In: Advances in Cryptology. Springer. 2016. url:
https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf.

[CE14] J.-M. Couveignes and T. Ezome. “Computing functions on Jacobians and their
quotients”. In: LMS Journal of Computation and Mathematics 18.1 (2014),
pp. 555–577. arXiv: 1409.0481.

[CL13] J.-M. Couveignes and R. Lercier. “Fast construction of irreducible polynomials
over finite fields”. In: Israel Journal of Mathematics 194.1 (2013), pp. 77–105.

[DDF+21] L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux,
C. Petit, J. Silva, and B. Wesolowski. “Séta: Supersingular encryption from
torsion attacks”. In: International Conference on the Theory and Application of
Cryptology and Information Security. Springer. 2021, pp. 249–278.

[DJP14] L. De Feo, D. Jao, and J. Plût. “Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies”. In: Journal of Mathematical Cryptology
8.3 (2014), pp. 209–247.

https://arxiv.org/abs/2003.10118
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://www.math.u-bordeaux.fr/~damienrobert/avisogenies/
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://ecc2017.cs.ru.nl/slides/ecc2017-costello.pdf
https://arxiv.org/abs/1409.0481

REFERENCES 23

[DKL+20] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. “SQISign: compact
post-quantum signatures from quaternions and isogenies”. In: International
Conference on theTheory andApplication of Cryptology and Information Security.
Springer. 2020, pp. 64–93.

[Dir37] J. P. G. L. Dirichlet. “Beweis eines Satzes über die arithmetische Progression”.
In: Bericht üuber die Verhandlungen der königlich Presussischen Akademie der
Wissenschaften Berlin (1837).

[DD94] J. P. G. L. Dirichlet and R. Dedekind. Vorlesungen über Zahlentheorie. 1894.
[Fer40] P. de Fermat. Correspondence to Mersenne. Dec. 25, 1640.
[FKM+22] T. B. Fouotsa, P. Kutas, S.-P. Merz, and Y. B. Ti. “On the isogeny problem with

torsion point information”. In: IACR International Conference on Public-Key
Cryptography. Springer. 2022, pp. 142–161.

[GPS17] S. D. Galbraith, C. Petit, and J. Silva. “Identification protocols and signature
schemes based on supersingular isogeny problems”. In: International conference
on the theory and application of cryptology and information security. Springer.
2017, pp. 3–33.

[Gau01] C. F. Gauss. Disquisitiones arithmeticae. 1801.
[Gau32] C. F. Gauss. Theoria residuorum biquadraticorum. Commentatio secunda. Typis

Dieterichchianis, 1832.
[Had96] J. Hadamard. “Sur la distribution des zéros de la fonction ζ(s) et ses con-

séquences arithmétiques”. In: Bulletin de la Société Mathématique de France
(1896).

[Ham44] W. R. Hamilton. “On Quaternions; or on a new System of Imaginaries in
Algebra”. In: Philosophical Magazine 25.3 (1844), pp. 489–495.

[Her48] C. Hermite. “Note au sujet de l’article precedent”. In: Journal de Mathématiques
Pures et Appliquées (1848), p. 15.

[JAC+17] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A.
Jalili, B. Koziel, B. LaMacchia, P. Longa, et al. SIKE: Supersingular isogeny key
encapsulation. 2017. url: https://sike.org/.

[JD11] D. Jao and L. De Feo. “Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2011, pp. 19–34.

[Kan97] E. Kani. “The number of curves of genus two with elliptic differentials.” In:
Journal für die reine und angewandte Mathematik 485 (1997), pp. 93–122.

[Kan16] E. Kani. “Themoduli spaces of Jacobians isomorphic to a product of two elliptic
curves”. In: Collectanea mathematica 67.1 (2016), pp. 21–54.

[Kie20] J. Kieffer. “Evaluating modular polynomials in genus 2”. 2020. HAL: hal-
02971326.

[KLP+14] D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. “On the quaternion-isogeny
path problem”. In: LMS Journal of Computation and Mathematics 17.A (2014),
pp. 418–432.

[Lag70] J. L. de Lagrange. “Démonstration d’un théoreme d’arithmétique”. In: Nouv.
Mém. Acad. Roy. Sc. de Berlin (1770), pp. 123–133.

[LeV12] W. J. LeVeque. Topics in NumberTheory, volumes I and II. Courier Corporation,
2012.

[LB20] J. Love and D. Boneh. “Supersingular curves with small noninteger endomor-
phisms”. In: Open Book Series 4.1 (2020), pp. 7–22.

https://sike.org/
http://hal.archives-ouvertes.fr/hal-02971326
http://hal.archives-ouvertes.fr/hal-02971326

24 REFERENCES

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta functions”.
In: ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lecture Notes in
Comput. Sci. 9th International Symposium, Nancy, France, ANTS-IX, July
19-23, 2010, Proceedings. Springer–Verlag, July 2010. doi: 10.1007/978-
3-642-14518-6_21. url: http://www.normalesup.org/~robert/pro/
publications/articles/pairings.pdf. Slides: 2010-07-ANTS-Nancy.pdf
(30min, International Algorithmic Number Theory Symposium (ANTS-IX),
July 2010, Nancy), HAL: hal-00528944.

[LR15] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and applica-
tions to pairing computations on abelian varieties”. In: Journal of Symbolic Com-
putation 67 (Mar. 2015), pp. 68–92. doi: 10.1016/j.jsc.2014.08.001. url:
http://www.normalesup.org/~robert/pro/publications/articles/

optimal.pdf. HAL: hal-00806923, eprint: 2013/192.
[LR22] D. Lubicz and D. Robert. “Fast change of level and applications to isoge-

nies”. Accepted for publication at ANTS XV Conference — Proceedings. Aug.
2022. url: http://www.normalesup.org/~robert/pro/publications/
articles/change_level.pdf.

[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting curve.
Cryptology ePrint Archive, Paper 2022/1026. 2022. url: https://eprint.
iacr.org/2022/1026.

[Mil76] G. L. Miller. “Riemann’s hypothesis and tests for primality”. In: Journal of
computer and system sciences 13.3 (1976), pp. 300–317.

[MGE12] B. Moonen, G. van der Geer, and B. Edixhoven. Abelian varieties. Book
project, 2012. url: https://www.math.ru.nl/~bmoonen/research.html#
bookabvar.

[Mum66] D. Mumford. “On the equations defining abelian varieties. I”. In: Invent. Math.
1 (1966), pp. 287–354.

[Mum70] D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Stud-
ies in Mathematics, No. 5. Published for the Tata Institute of Fundamental
Research, Bombay, 1970, pp. viii+242.

[Oud22] R. Oudompheng. “A note on implementing direct isogeny determination in
the Castryck-Decru SIKE attack”. Aug. 2022.

[Pet17] C. Petit. “Faster algorithms for isogeny problems using torsion point images”.
In: International Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2017, pp. 330–353.

[PH78] S. Pohlig and M. Hellman. “An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance (Corresp.)” In: IEEE Transactions
on information Theory 24.1 (1978), pp. 106–110.

[POP+22] G. Pope, R. Oudompheng, L. Panny, et al. Castryck-Decru Key Recovery Attack
on SIDH. Aug. 2022. url: https://github.com/jack4818/Castryck-Decru-
SageMath.

[QKL+21] V. d. Quehen, P. Kutas, C. Leonardi, C. Martindale, L. Panny, C. Petit, and
K. E. Stange. “Improved torsion-point attacks on SIDH variants”. In: Annual
International Cryptology Conference. Springer. 2021, pp. 432–470.

[Rab80] M. O. Rabin. “Probabilistic algorithm for testing primality”. In: Journal of
number theory 12.1 (1980), pp. 128–138.

[RS86] M. O. Rabin and J. O. Shallit. “Randomized algorithms in number theory”. In:
Communications on Pure and Applied Mathematics 39.S1 (1986), S239–S256.

https://doi.org/10.1007/978-3-642-14518-6_21
https://doi.org/10.1007/978-3-642-14518-6_21
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://ants9.org/
http://hal.archives-ouvertes.fr/hal-00528944
https://doi.org/10.1016/j.jsc.2014.08.001
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://hal.archives-ouvertes.fr/hal-00806923
http://eprint.iacr.org/2013/192
https://people.maths.bris.ac.uk/~jb12407/ANTS-XV/index.html
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://www.math.ru.nl/~bmoonen/research.html#bookabvar
https://www.math.ru.nl/~bmoonen/research.html#bookabvar
https://github.com/jack4818/Castryck-Decru-SageMath
https://github.com/jack4818/Castryck-Decru-SageMath

REFERENCES 25

[Rob21] D. Robert. “Efficient algorithms for abelian varieties and their moduli spaces”.
HDR thesis. Université Bordeaux, June 2021. url: http://www.normalesup.
org/~robert/pro/publications/academic/hdr.pdf. Slides: 2021-06-HDR-
Bordeaux.pdf (1h, Bordeaux).

[Rob22a] D. Robert. “Breaking SIDH in polynomial time”. Aug. 2022. url: http://www.
normalesup.org/~robert/pro/publications/articles/breaking_sidh.

pdf. eprint: 2022/1038.
[Rob22b] D. Robert. “Evaluating isogenies in polylogarithmic time”. Aug. 2022. url:

http://www.normalesup.org/~robert/pro/publications/articles/

polylog_isogenies.pdf. eprint: 2022/1068.
[Rob22c] D. Robert. “Fast evaluation of modular polynomials and compact representa-

tion of isogenies between elliptic curves”. Aug. 2022. In preparation.
[Sch95] R. Schoof. “Counting points on elliptic curves over finite fields”. In: J. Théor.

Nombres Bordeaux 7.1 (1995), pp. 219–254.
[Shi79] T. Shioda. “Supersingular K3 surfaces”. In: Algebraic geometry. Springer, 1979,

pp. 564–591.
[Sho94] V. Shoup. “Fast construction of irreducible polynomials over finite fields”. In:

Journal of Symbolic Computation 17.5 (1994), pp. 371–391.
[Sho09] V. Shoup. A computational introduction to number theory and algebra. Cam-

bridge university press, 2009.
[Som21] A. Somoza. thetAV. Sage package devoted to the computation with abelian

varieties with theta functions, rewrite of the AVIsogeniesmagma package. 2021.
url: https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage.

[Ste25] S. Stevin. l’Arithmétique de Simon Stevin de Bruges. annotated by Albert Girard.
Leyde, 1625.

[Val96] C.-J. de la Vallée Poussin. “Recherches analytiques sur la théorie des nombres
premiers”. In: Annales de la Société scientifique de Bruxelle (1896).

[Vél71] J. Vélu. “Isogénies entre courbes elliptiques”. In: Compte Rendu Académie
Sciences Paris Série A-B 273 (1971), A238–A241.

[VS92] J. Von Zur Gathen and V. Shoup. “Computing Frobenius maps and factoring
polynomials”. In: Computational complexity 2.3 (1992), pp. 187–224.

[Wes22a] B. Wesolowski. “The supersingular isogeny path and endomorphism ring prob-
lems are equivalent”. In: 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2022, pp. 1100–1111.

[Wes22b] B. Wesolowski. “Understanding and improving the Castryck-Decru attack on
SIDH”. Aug. 2022.

[Zar74] J. G. Zarhin. “A remark on endomorphisms of abelian varieties over function
fields of finite characteristic”. In: Mathematics of the USSR-Izvestiya 8.3 (1974),
p. 477.

[Διό50] ὁ. Ἀ. Διόφαντος. Ἀριθμητικά. ≈250.
[Εὐκ00] Εὐκλείδης. Στοιχεία. ≈-300.

INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien.robert@inria.fr
URL: http://www.normalesup.org/~robert/

Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex
FRANCE

http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://eprint.iacr.org/2022/1038
http://www.normalesup.org/~robert/pro/publications/articles/polylog_isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/articles/polylog_isogenies.pdf
http://eprint.iacr.org/2022/1068
https://gitlab.inria.fr/roberdam/avisogenies/-/tree/sage

	1. Introduction
	1.1. Result
	1.2. Outline
	1.3. Context
	1.4. Torsion points attacks
	1.5. Complexities of the different attacks
	1.6. Thanks

	2. Dimension 8 attack
	3. Dimension 2g attack
	3.1. N-isogenies
	3.2. Isogeny diamonds
	3.3. Description of the attack

	4. Dimension 4 attack
	4.1. Parameters selection

	5. Dimension 2 attack
	6. Parameter tweaks
	6.1. Constructing a basis of the e-torsion of E
	6.2. Building a smooth isogeny on a supersingular elliptic curve E/Fp2
	6.3. Recovering a NAe-isogeny from its action on the NA-torsion
	6.4. Recovering a NA2-isogeny from its action on the NA-torsion

	7. Conclusion
	References

