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A theoretical model based on the multiple-scales technique is proposed to study the propagation of an acoustic mode that encounters multiple turning points in a hardwalled duct with slowly varying geometry and in the presence of mean flow. The case where two of such turning points arise in the duct due to radius variations is studied for both cut-off/cut-on/cut-off and cut-on/cut-off/cut-on transitions. The acoustic field through the whole duct is determined by writing the solution for a single transition around each turning point and by matching the two solutions. These two turning points provide a mechanism by which the upstream and downstream travelling waves interact and modify the overall energy balance. For the cut-off/cut-on/cut-off case, one of the possible consequences of such an interaction is that the mode is trapped by these turning points, which can lead to acoustic resonances only controlled by the geometry. As for the cut-on/cutoff/cut-on case, this interaction makes the mode not to vanish at the first transition but to tunnel through the cut-off region. Several test cases, including at least two transitions, are studied to validate the model and understand its limitations with respect to two other propagation models (finite difference and multimodal methods). The agreement between the different methods is excellent in most cases. However, when the modal scattering becomes important, the model starts to show some deviations. Nevertheless, it allows, in a preliminary design of an engine, to provide an estimate of the frequencies where an amplification occurs and thus to avoid creating resonators that can have dire implications on the sound emission.

Introduction

The modelling of the propagation of noise generated by aero-acoustic sources inside a waveguide is a classical problem, and many analytical studies have been conducted on this topic. When this propagation occurs in lined straight ducts of circular or annular cross-sections and with uniform mean flow, the problem is governed by the convected Helmholtz equation, which can be solved analytically [START_REF] Goldstein | Aeroacoustics[END_REF]. The resulting acoustic field is described by a summation of modes written as Fourier-Bessel functions at each frequency.

New methodologies are needed when there is a need to account for ducts of varying radii. In particular, if the acoustic perturbations vary rapidly compared to the duct geometry and flow length scales, a leading order approximation of the exact solution can be found using the Wentzel-Kramers-Brillouin (WKB) method [START_REF] Holmes | Introduction to Perturbation Methods[END_REF][START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers[END_REF] which is a special case of the multiple scales (MS) method. This approach has been applied by Nayfeh & Telionis [START_REF] Nayfeh | Acoustic Propagation in Ducts with Varying Cross Sections[END_REF] and Nayfeh et al. [START_REF] Nayfeh | Transmission of Sound Through Annular Ducts of Varying Cross Sections[END_REF] for modes propagating in lined ducts with slowly varying geometries of rectangular or circular cross-sections. It has been afterward improved in the circular case by Rienstra, who found an adiabatic invariant of the slowly varying mode in the case of an irrotational mean flow [START_REF] Rienstra | Sound transmission in slowly varying circular and annular lined ducts with flow[END_REF]. The flow is solved using a multiple scales (MS) approach while the acoustic field is represented by a summation of WKB modes, whose amplitudes vary slowly and are determined using a solvability condition. This combined MS/WKB method has been extended to more complex flows and geometries, for instance by taking into account swirling flows [START_REF] Cooper | Propagation of unsteady disturbances in a slowly varying duct with mean swirling flow[END_REF], arbitrary crosssections [START_REF] Rienstra | Sound propagation in slowly varying lined flow ducts of arbitrary cross-section[END_REF], strongly curved ducts [START_REF] Brambley | Sound transmission in strongly curved slowly varying cylindrical ducts with flow[END_REF] and sheared flows [START_REF] Rienstra | Slowly varying modes in a two-dimensional duct with shear flow and lined walls[END_REF]. However, one of the drawbacks of this technique is that it is only valid as long as there is no transition inside the duct. These transitions, which occur at the level of the so-called turning points, correspond for hardwalled ducts to a change of mode behaviour from cut-on to cut-off or vice-versa. Where this happens, the incident mode becomes partly transmitted and partly reflected, which is not accounted for in the previous formulations where a singularity appears. A composite solution that accounts for this behaviour and removes the singularity by encompassing the solution valid in the surrounding of the turning point (governed by Airy's equation) with the slowly varying modal solution far from it has been proposed in the case where there is a single turning point [START_REF] Rienstra | Cut-on, cut-off transition of sound in slowly varying flow ducts, contribution to the David Crighton memorial issue of Aerotecnica[END_REF][START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF][START_REF] Ovenden | A uniformly valid multiple scales solution for cut-on cut-off transition of sound in flow ducts[END_REF].

The present paper focuses on the case where two of such turning points appear. This makes the previous solution insufficient since the mode only changes behaviour (cut-on or cut-off) on a reduced axial region. Two types of behaviour are possible: the mode can be either cut-on/cut-off/cut-on or cut-off/cut-on/cut-off.

In the case of a cut-on/cut-off/cut-on wave, the two transitions act as a permeable barrier where energy can leak despite the cut-off region. This phenomenon has already been proven to exist, and a uniformly valid model has been derived in the case of axially symmetric double transition [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF]. In the case of a cutoff/cut-on/cut-off wave, the successive reflections between turning points lead to constructive/destructive interference. This has been shown to occur inside aeroengines between a geometrical turning point in the intake upstream of the fan and the swirling flow downstream of the fan, or between the rotor and the stator [START_REF] Cooper | Trapped acoustic modes in aeroengine intakes with swirling flow[END_REF][START_REF] Cooper | Acoustic resonance in aeroengine intake ducts[END_REF]. Those reflections can lead to important amplifications inside the duct, and even resonances in particular cases, that have been studied numerically in a more general context [START_REF] Pagneux | Multimodal admittance method in waveguides and singularity behavior at high frequencies[END_REF][START_REF] Biggs | Wave trapping in a two-dimensional sound-soft or sound-hard acoustic waveguide of slowly-varying width[END_REF][START_REF] Duan | Complex resonances and trapped modes in ducted domains[END_REF].

The objective of the paper is to derive and validate a simple analytical twopart formulation to study the case of two distant turning points (both cut-on/cutoff/cut-on and cut-off/cut-on/cut-off cases) caused by duct geometrical variations only, without assuming any symmetry. It is derived for a slowly varying duct with irrotational flow and confirms that the presence of the two turning points can have an important effect on acoustic propagation. This computation requires to use local solutions around each turning point and to match them together with connection formulas. An analysis of the reflection/transmission processes is carried out at each turning point to assess the impact of this double transition on the mode propagation. The developed model is validated against two methods in the case of circular and annular ducts: a time-domain three-dimensional (3D) numeric finite difference (FD) method and a multimodal (MM) method. The first one has the advantage of being applicable to almost any type of flow and geometry. However, near-certain specific frequencies, stability problems can emerge, and the code fails to converge. On the other side, the multimodal method applied in this study [START_REF] Pagneux | Multimodal admittance method in waveguides and singularity behavior at high frequencies[END_REF][START_REF] Guennoc | Improved multimodal formulation of the wave propagation in a 3D waveguide with varying cross-section and curvature[END_REF] allows to accurately model phenomena for which the amplitude variation are at substantially different scales, making it particularly suited for studying resonance phenomena. However, it is limited to zero mean flow regions for varying ducts.

The paper is structured as follows. Section 2 recalls the equations governing the flow and acoustic fields which serve as a basis to construct the slowly varying modes using the multiple-scales method, in both the no-transition and single-transition cases. In Section 3, our model for double transition is developed. Section 4 is devoted to the validation of the model against academic cases involving two turning points inside an annular duct, with and without irrotational mean flow, and against a realistic case representing an aeroengine inlet. Conclusions and discussions are finally provided in section 5.

Governing equations and solutions in the no-transition and single-transition cases

Problem formulation

The acoustic propagation inside a duct with an axially slowly varying crosssection for a perfect isentropic gas flow is considered. In addition, the viscous effects are neglected and the flow is assumed to be irrotational and subsonic. In the following, all the parameters are scaled to be dimensionless: the density is normalized by a reference density 𝜌 ∞ , velocities by a reference sound speed 𝑐 ∞ , spatial dimensions by the typical duct radius 𝑅 ∞ , velocity potential by 𝑅 ∞ 𝑐 ∞ , and pressure by 𝜌 ∞ 𝑐 2 ∞ . We begin by considering a cylindrical coordinate system (𝑥, 𝑟, 𝜃), with the associated basis vectors (e 𝑥 , e 𝑟 , e 𝜃 ), and by defining the slowly varying axial coordinate 𝑋 = 𝜖𝑥, where 𝜖 is a small parameter. As the duct geometry varies slowly, the hub and tip radii are written 𝑅 1 (𝑋, 𝜃) and 𝑅 2 (𝑋, 𝜃). The analysis is done in the frequency domain and the characteristic pulsation of the source 𝜔 = 2𝜋 𝑓 is introduced, with 𝑓 the frequency. The velocity vector, the density, the speed of sound and the pressure variables are written: ṽ = V + Re(v e 𝑖𝜔𝑡 ) = (𝑈, 𝑉, 𝑊) +Re((𝑢, 𝑣, 𝑤) e 𝑖𝜔𝑡 ), ρ = 𝐷 +Re(𝜌 e 𝑖𝜔𝑡 ), c = 𝐶 +Re(𝑐 e 𝑖𝜔𝑡 ), p = 𝑃+Re( 𝑝 e 𝑖𝜔𝑡 ) respectively. The capital letters denote the time-averaged values and the lower-case letters represent the unsteady harmonic perturbations. These notations are identical to those used by Rienstra [START_REF] Rienstra | Fundamentals of Duct Acoustics[END_REF].

The steady Euler equations for the mean flow are:

∇ • (𝐷V) = 0, 𝐷 (V • ∇)V = -∇𝑃, 𝐶 2 = 𝛾𝑃 𝐷 = 𝐷 𝛾-1 , (1) 
where 𝛾 is the ratio of specific heats. For the perturbations, the linearized Euler equations (LEE) are written:

𝑖𝜔𝜌 + ∇ • (𝜌V + 𝐷v) = 0, 𝐷 (𝑖𝜔 + V • ∇)v + 𝐷 (v • ∇)V + 𝜌(V • ∇)V = -∇𝑝, 𝑝 = 𝐶 2 𝜌. (2) 
Hardwall boundary conditions are considered at hub and tip, which means that the normal component of the velocity vanishes at the wall. It writes for the mean flow and the perturbations:

V • n = 0, v • n = 0, ( 3 
)
where n is the vector normal to the surface.

Mean flow

As done by Rienstra [START_REF] Rienstra | Sound propagation in slowly varying lined flow ducts of arbitrary cross-section[END_REF], the mean flow equations are solved by assuming that the axial mean flow varies slowly with the axial coordinate 𝑋. Noting that 𝜕 𝐴/𝜕𝑥 = 𝜖 𝜕 𝐴/𝜕 𝑋 + 𝑂 (𝜖 2 ) for 𝐴 any slowly varying variable, a reasoning on orders of magnitude then shows that the flow variables take the form:

V(𝑋, 𝑟, 𝜃; 𝜖) = 𝑈 0 (𝑋)e 𝑥 + 𝜖V ⊥ (𝑋, 𝑟, 𝜃) + 𝑂 (𝜖 2 ), [𝐷, 𝑃, 𝐶] (𝑋, 𝑟; 𝜖) = [𝐷 0 , 𝑃 0 , 𝐶 0 ] (𝑋) + 𝑂 (𝜖 2 ), (4) 
with V ⊥ the cross-wise mean flow velocity. Injecting those expressions into equation (1) gives: 1 2

𝑈 2 0 + 1 𝛾 -1 𝐷 𝛾-1 0 = 𝐸 + 𝑂 (𝜖 2 ), 𝑈 0 = 𝐹 𝐷 0 𝑆 + 𝑂 (𝜖 2 ), 𝑃 0 = 1 𝛾 𝐷 𝛾 0 + 𝑂 (𝜖 2 ), 𝐶 0 = 𝐷 (𝛾-1)/2 0 + 𝑂 (𝜖 2 ), (5) 
where 𝐸 and 𝐹 are two constants (Bernoulli's constant and cross-sectional mass flow, respectively) and 𝑆 is the transverse cross-section. The numerical solving (e.g. with a Newton algorithm) of the leading order of the density allows having access to the variation of all other mean flow variables along the duct axis.

The resulting mean flow always approximates a real possible flow. It allows finding a solvability condition for the acoustic field in the form of an adiabatic invariant of the slowly varying mode [START_REF] Rienstra | Slowly varying modes in a two-dimensional duct with shear flow and lined walls[END_REF]. This would not have been the case if an ad-hoc flow was used like in [START_REF] Nayfeh | Transmission of Sound Through Annular Ducts of Varying Cross Sections[END_REF].

Acoustic field without transition

The WKB solution in the no-transition case has been derived and validated by Rienstra and Rienstra & Eversman [START_REF] Rienstra | A numerical comparison between multiplescales and finite-element solution for sound propagation in lined flow ducts[END_REF][START_REF] Rienstra | Sound propagation in slowly varying lined flow ducts of arbitrary cross-section[END_REF] and is briefly recalled. The analysis is done with the velocity potential 𝜙 defined as v = ∇𝜙 (which implies 𝑝 = -𝐷 (i𝜔+ V•∇)𝜙). It satisfies, from equations ( 2) and (3), the following perturbation equations:

∇ • (𝐷∇𝜙) -𝐷 (i𝜔 + V • ∇) 1 𝐶 2 (i𝜔 + V • ∇)𝜙 = 0, ∇𝜙 • n 𝑖 = 0 at 𝑟 = 𝑅 𝑖 with 𝑖 ∈ ⟦1, 2⟧. (6)
If the modal wavelength is of the order of the duct diameter, 𝑂 (1), then the WKB approximation can be used and yields a solution of the form: 𝜙(𝑥, 𝑟, 𝜃; 𝜖) = Φ(𝑋, 𝑟, 𝜃; 𝜖) exp -i𝜖 -1

∫ 𝑋 𝜇(𝜉)𝑑𝜉 , (7) 
with 𝜇 the axial wavenumber. By assuming Φ(𝑋, 𝑟, 𝜃; 𝜖) = Φ 0 (𝑋, 𝑟, 𝜃) + 𝜖Φ 1 (𝑋, 𝑟, 𝜃) + 𝑂 (𝜖 2 ) and gathering the 𝑂 (1) terms of the perturbations equation [START_REF] Rienstra | Sound transmission in slowly varying circular and annular lined ducts with flow[END_REF], it gives at each axial location 𝑋 an eigenvalue problem for Φ 0 of the form:

-Δ ⊥ Φ 0 = 𝛼 2 Φ 0 , n ⊥ .∇Φ 0 = 0. ( 8 
)
The vector n ⊥ is the component of the vector normal to the surface in the transverse cross-section and 𝛼 2 = (𝑘 0 -𝜇𝑀 0 ) 2 -𝜇 2 is defined as the radial wavenumber with 𝑘 0 = 𝜔/𝐶 0 the free-field wavenumber and 𝑀 0 = 𝑈 0 /𝐶 0 the axial Mach number.

Let us consider the 𝑛 𝑡ℎ eigenvalue 𝛼 𝑛 and the associated eigenmode 𝜓 𝑛 of this eigenproblem, with 𝜓 𝑛 normalized such that:

∬ 𝑆 𝜓 2 𝑛 d𝑆 = 1. (9) 
Then we have Φ 0 = 𝑁 (𝑋)𝜓 𝑛 with 𝑁 a slowly varying modal amplitude. In the following, we drop the 𝑛 subscript for concision reasons (e.g. 𝛼 = 𝛼 𝑛 ). The amplitude 𝑁 is obtained by a development to the second order (𝑂 (𝜖)) of the perturbation equations [START_REF] Rienstra | Sound transmission in slowly varying circular and annular lined ducts with flow[END_REF] to get a solvability condition. It yields:

𝑄 0 𝑁 2 = 𝜔𝜎𝐷 0 𝐶 0 , (10) 
with 𝜎 2 = 1-(𝐶 2 0 -𝑈 2 0 )𝛼 2 /𝜔 2 and 𝑄 0 a constant associated to the source amplitude. The term 𝜎 is the reduced axial wavenumber and is linked to the axial wavenumber by the relation 𝜇 = 𝜔(𝐶 0 𝜎 -𝑈 0 )/(𝐶 2 0 -𝑈 2 0 ). As a result, the acoustic field associated with a single mode 𝑛 is written:

𝜙 = 𝑄 0 √︄ 𝐶 0 𝜔𝐷 0 𝜎 𝜓 exp i 𝜖 ∫ 𝑋 0 𝜔𝑈 0 𝐶 2 0 -𝑈 2 0 d𝑋 D exp -i 𝜖 ∫ 𝑋 0 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 + U exp i 𝜖 ∫ 𝑋 0 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 , (11) 
where D stands for the modal amplitude associated with the mode propagating from the source to the exit, while U is used for the one going in the opposite direction.

Acoustic field in the presence of a transition

The cut-off frequency for a duct of constant radius with uniform mean flow is well defined, and the modes are either cut-on or cut-off. In the case of a varying duct, the situation is more complex because a cut-off mode can become cut-on and vice-versa (see figures 1a and 1b). The evolution of these modes is more difficult to predict because the WKB formulation presented in section 2.3 is no more valid in the vicinity of a turning point as the axial wavenumber does not vary slowly. Several analyses exist to grasp the transition phenomenon, and both a physical explanation and a mathematical expression for modes undergoing such transitions have been proposed [START_REF] Rienstra | Cut-on, cut-off transition of sound in slowly varying flow ducts, contribution to the David Crighton memorial issue of Aerotecnica[END_REF][START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF][START_REF] Ovenden | A uniformly valid multiple scales solution for cut-on cut-off transition of sound in flow ducts[END_REF]. Ovenden dealt with this issue by introducing a uniformly valid solution that can be used both in the neighbourhood of the transition point (inner region of size |𝑋 -𝑋 𝑡 | = 𝑂 (𝜖 2/3 𝜔 -2/3 )1 with 𝑋 𝑡 the location of the transition) and in the region far upstream and far downstream from it (outer region of size |𝑋 -𝑋 𝑡 | = 𝑂 (1)).

The uniformly valid solution derived by Ovenden, valid for an arbitrary crosssection, is based on Airy functions (Ai, Bi) and writes [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF]:

𝜙 = 𝑄 0 √︄ 𝐶 0 𝜔𝐷 0 𝜓 - 3 2𝜖 𝜎 3 ∫ 𝑋 𝑋 𝑡 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 1/6 [𝑎 Ai(𝑠 𝑡 ) + 𝑏 Bi(𝑠 𝑡 )] exp i 𝜖 ∫ 𝑋 𝑋 𝑡 𝜔𝑈 0 𝐶 2 0 -𝑈 2 0 d𝑋 , with 𝑠 𝑡 = 3i 2𝜖 ∫ 𝑋 𝑋 𝑡 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 2/3 , ( 12 
)
where 𝜓 is the normalized transverse mode shape and 𝑎 and 𝑏 are two constants to be determined. The coefficients 𝑎 and 𝑏 are obtained by matching the asymptotic form of the previous uniformly valid formulation [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF] and the slowly varying WKB solution [START_REF] Rienstra | Cut-on, cut-off transition of sound in slowly varying flow ducts, contribution to the David Crighton memorial issue of Aerotecnica[END_REF] far upstream and far downstream of the transition. For a cut-on/cut-off transition, it yields:

𝑎 = 2 √ 𝜋e i𝜋/4 , 𝑏 = 0, (13) 
and for a cut-off/cut-on transition: 

𝑎 = - √ 𝜋e i𝜋/4 , 𝑏 = √ 𝜋e -i𝜋/4 . (14) 

Extension to double transition

Cut-off/cut-on/cut-off transition 3.1.1. Derivation of the solution

Let us now consider a slowly varying duct which presents two turning points, with a mode undergoing a change from cut-off to cut-on and again to cut-off. Figure 1a illustrates the waves associated with such a mode inside a geometry with a local enlargement of the tip radius. The two turning points are denoted 12 and 23 and are seen as boundaries to distinguish the three regions 1, 2 and 3, where the mode is respectively cut-off, cut-on and cut-off. The prime indicates the modal amplitudes after each transition. These coefficients can be used to write the slowly varying solutions in the three regions, provided that the two turning points are not in each other's inner boundary layer in order to have a valid outer solution in region 2 (referred to as distant turning points in the paper). In practice, if |𝑠 𝑡 | > 1 for each turning point, the preceding criterion is respected and the asymptotic behaviour of Airy functions is reasonably recovered [START_REF] Rienstra | Cut-on, cut-off transition of sound in slowly varying flow ducts, contribution to the David Crighton memorial issue of Aerotecnica[END_REF].

Before a transition (𝑋 < 𝑋 𝑡𝑖 ), the slowly varying formulation writes:

𝜙 = 𝑄 0 √︄ 𝐶 0 𝜔𝐷 0 𝜎 𝜓 exp i 𝜖 ∫ 𝑋 𝑋 𝑡𝑖 𝜔𝑈 0 𝐶 2 0 -𝑈 2 0 d𝑋 D 𝑖 exp -i 𝜖 ∫ 𝑋 𝑋 𝑡𝑖 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 + U 𝑖 exp i 𝜖 ∫ 𝑋 𝑋 𝑡𝑖 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 , (15) 
and after a transition (𝑋 > 𝑋 𝑡𝑖 ):

𝜙 = 𝑄 0 √︄ 𝐶 0 𝜔𝐷 0 𝜎 𝜓 exp i 𝜖 ∫ 𝑋 𝑋 𝑡𝑖 𝜔𝑈 0 𝐶 2 0 -𝑈 2 0 d𝑋 D ′ 𝑖 exp - i 𝜖 ∫ 𝑋 𝑋 𝑡𝑖 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 + U ′ 𝑖 exp i 𝜖 ∫ 𝑋 𝑋 𝑡𝑖 𝜔𝐶 0 𝜎 𝐶 2 0 -𝑈 2 0 d𝑋 , (16) 
with 𝑖 ∈ ⟦12, 23⟧ referring to a transition. With the hypothesis of distant transitions, the uniformly valid solution based on Airy functions of equation ( 12) can be written around each turning point with (𝑎 𝑖 , 𝑏 𝑖 ) two unknown coefficients associated to the transition 𝑖. The coefficient D 12 is set equal to 1 without loss of generality, and the coefficient U ′ 23 is set to zero by assuming that there is no reflection at the exit (note that a non-zero value can be prescribed to represent any other outlet condition). As for the single transition case, the asymptotic matching between equations ( 12) and ( 15)-( 16) allows to find relations between the coefficients. Here, we obtain: 

𝑎 12 2 √ 𝜋e -i𝜋/4 =
In the second region, equation ( 16) applied to the first transition and equation ( 15) applied to the second transition give two expressions for 𝜙. Matching these gives:

D ′ 12 = D 23 e i𝜁 , U ′ 12 = U 23 e i(𝜁-2𝜑) , (18) 
with

𝜑 = 1 𝜖 ∫ 𝑋 𝑡23 𝑋 𝑡12 𝜔𝜎𝐶 0 𝐶 2 0 -𝑈 2 0 d𝑋, 𝜁 = - 1 𝜖 ∫ 𝑋 𝑡23 𝑋 𝑡12 𝜔(𝑈 0 -𝜎𝐶 0 ) 𝐶 2 0 -𝑈 2 0 d𝑋. ( 19 
)
The mode is cut-on in the central region so that 𝜎, 𝜑 and 𝜁 are real numbers. By combining the previous equations, all the unknown coefficients can be determined:

𝑎 12 = √ 𝜋e i𝜋/4 1 - 2 1 + e -i2𝜑 , 𝑏 12 = √ 𝜋e -i𝜋/4 , 𝑎 23 = 2 √ 𝜋e i𝜋/4 e -i𝜁 1 + e -i2𝜑 , 𝑏 23 = 0, D 12 = 1, U 12 = i 2 1 - 2 1 + e -i2𝜑 , D 23 = e -i𝜁 1 + e -i2𝜑 , U 23 = ie -i𝜁 1 + e -i2𝜑 , D ′ 23 = e -i𝜁 1 + e -i2𝜑 , U ′ 23 = 0. ( 20 
)
Note: The above solution is based on asymptotic matching between two distinct solutions in the central region. Consequently, a discontinuous potential can be obtained at the junction between the two formulations. To get a continuous solution without increasing the resolution error, a correction can be applied on the coefficients (𝑎 23 , 𝑏 23 ) by performing a match directly on Airy functions in the central region. Therefore the matching is done at the axial location

𝑋 𝑐 defined such that -1/𝜖 ∫ 𝑋 𝑐 𝑋 𝑡12 𝜔𝐶 0 𝜎/(𝐶 2 0 -𝑈 2 0 )d𝑋 = 1/𝜖 ∫ 𝑋 𝑐 𝑋 𝑡23 𝜔𝐶 0 𝜎/(𝐶 2 0 -𝑈 2 0
)d𝑋 = 𝜑/2 and writes:

[𝑎 23 Ai(𝑠 𝑐 ) + 𝑏 23 Bi(𝑠 𝑐 )] = i [𝑎 12 Ai(𝑠 𝑐 ) + 𝑏 12 Bi(𝑠 𝑐 )] e -i(𝜁-𝜑) , (21) 
where

𝑠 𝑐 = 𝑠 𝑡12 = 𝑠 𝑡23 = 3i 2 𝜑/2 2/3
. Note that this correction does not extend the region of validity of the method (applicable when |𝑠 𝑐 | > 1), and another equation is to be solved when the turning points are close (see for example the work of Nielsen and Peake for symmetric turning points [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF]).

Transmission and reflection coefficients

The transmission and reflection coefficients (T 𝑖 , R 𝑖 ) associated with each transition 𝑖 ∈ ⟦12, 23⟧ are defined as follows:

T 𝑖 = D ′ 𝑖 D 𝑖 , R 𝑖 = U 𝑖 D 𝑖 . ( 22 
)
For the second transition, the expressions of a single transition obtained by Ovenden are recovered: T 23 = 1 and R 23 = i [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF]. For the first transition, the following expressions are obtained:

T 12 = 1 1 + e -i2𝜑 , R 12 = i 2 1 - 2 1 + e -i2𝜑 . (23) 
These expressions illustrate that the incident wave can be amplified during its propagation (|T 12 | ≥ 1) when 𝜑 ∈ [𝜋/3, 2𝜋/3] (mod 𝜋). A resonance phenomena can even occur (|T 12 | → +∞) when e -i2𝜑 → -1 i.e. 𝜑 → 𝜋/2 (mod 𝜋). The resonance happens when the incident and the reflected waves overlap to form constructive interference.

Power consideration

Using the expressions given in Appendix A, the power can be evaluated inside each region using the equations ( 15)/( 16). For each region, the power writes:

P 1 ∝ 2Im(D 12 U 12 ) = 2Im sin(2𝜑) | cos(2𝜑) + 1 + i sin(2𝜑)| 2 = 0, P 2 ∝ |D 23 | 2 -|U 23 | 2 = 0, P 3 ∝ 2Im(D ′ 23 U ′ 23 ) = 0. ( 24 
)
The power is conserved in the model and is equal to zero everywhere inside the duct. However, this is because no modal scattering is considered. When added, energy can leak to neighbouring modes, which gives a non-zero acoustic power if one of them is cut-on. This could be significant near resonance phenomena where high amplitudes are involved.

Cut-on/cut-off/cut-on transition 3.2.1. Derivation of the solution

Figure 1b illustrates the waves associated with a double transition mode inside a geometry with a local contraction. The regions are denoted using the same notation as in section 3.1. With the same methodology, it is possible to find the coefficients U 𝑖 , D 𝑖 , U ′ 𝑖 , D ′ 𝑖 , 𝑎 𝑖 , 𝑏 𝑖 for 𝑖 ∈ ⟦12, 23⟧ in the case of cut-on/cut-off/cut-on transition. The results are:

𝑎 12 = 2 √ 𝜋e i𝜋/4 1 + e -i2𝜑 /4 , 𝑏 12 = 2 √ 𝜋e -i𝜋/4 e -i2𝜑 4 + e -i2𝜑 , 𝑎 23 = - √ 𝜋e i𝜋/4 e -i𝜁 1 + e -i2𝜑 /4 , 𝑏 23 = √ 𝜋e -i𝜋/4 e -i𝜁 1 + e -i2𝜑 /4 , D 12 = 1, U 12 = i 1 -e -i2𝜑 /4 1 + e -i2𝜑 /4
,

D 23 = e -i𝜁 1 + e -i2𝜑 /4 , U 23 = - i 2 e -i𝜁 1 + e -i2𝜑 /4 , D ′ 23 = e -i𝜁 1 + e -i2𝜑 /4 , U ′ 23 = 0. ( 25 
)
In the central region, the mode is cut-off so that 𝜎 and 𝜑 are imaginary numbers and 𝜁 is a complex number.

Transmission and reflection coefficients

Here, the transmission and reflection coefficients (T , R) associated with the entire system are defined by:

T = D ′ 23 D 12 = e -i𝜁 1 + e -i2𝜑 /4 , R = U 12 D 12 = i 1 -e -i2𝜑 /4 1 + e -i2𝜑 /4 . ( 26 
)
Since 𝜑 is imaginary here, e -i2𝜑 is a real number. The greater the distance between the transitions, the smaller this value becomes. Therefore, if the two transitions are very far from each other, the coefficients become: T = 0 and R = i. The behaviour of a single cut-on/cut-off transition is recovered: the reflected wave has a phase-shift of 𝜋/2 and no energy leaks towards the exit of the duct [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF]. In the particular case of symmetric transitions, this result had already been found by Nielsen and Peake [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF].

Power consideration

Using the expressions given in Appendix A, the power can again be evaluated inside each region using the equations ( 15)/( 16) for the expression of 𝜙. For each region, the power writes:

P 1 ∝ |D 12 | 2 -|U 12 | 2 = 1 -|R| 2 , P 2 ∝ 2Im(D 23 U 23 ) = |T | 2 , P 3 ∝ |D ′ 23 | 2 -|U ′ 23 | 2 = |T | 2 . ( 27 
)
The conservation of acoustic power is correctly recovered with the present model as |T | 2 + |R| 2 = 1. As no modal scattering is considered, |R| 2 and |T | 2 represent the normalized reflected and transmitted powers respectively.

Validation of the model in the case of annular ducts

Analytical expressions of the transverse functions

In annular ducts (𝑅 1 = 𝑅 1 (𝑋), 𝑅 2 = 𝑅 2 (𝑋)), the solutions of the eigenproblem (8) are known analytically [START_REF] Rienstra | Sound transmission in slowly varying circular and annular lined ducts with flow[END_REF]:

𝜓 𝑚𝑛 = [J 𝑚 (𝛼 𝑚𝑛 𝑟) + ΓY 𝑚 (𝛼 𝑚𝑛 𝑟)] e -i𝑚𝜃 √︄ 𝜋 ∫ 𝑅 2 𝑅 1 [J 𝑚 (𝛼 𝑚𝑛 𝑟) + ΓY 𝑚 (𝛼 𝑚𝑛 𝑟)] 2 𝑟d𝑟 , (28) 
with 𝑚 the azimuthal order, and J 𝑚 and Y 𝑚 the 𝑚 th -order Bessel function of the first kind and second kind respectively. For a given azimuthal order 𝑚, the radial wavenumbers 𝛼 𝑚𝑛 with 𝑛 the radial mode order can be determined using the radial boundary condition:

J ′ 𝑚 (𝛼 𝑚𝑛 𝑅 2 ) Y ′ 𝑚 (𝛼 𝑚𝑛 𝑅 2 ) = J ′ 𝑚 (𝛼 𝑚𝑛 𝑅 1 ) Y ′ 𝑚 (𝛼 𝑚𝑛 𝑅 1 ) = -Γ. (29) 
Finally, the normalization factor can be computed using integral proprieties of Bessel's functions:

∫ 𝑅 2 𝑅 1 [J 𝑚 (𝛼 𝑚𝑛 𝑟) + ΓY 𝑚 (𝛼 𝑚𝑛 𝑟)] 2 𝑟d𝑟 = 1 2 𝑅 2 2 - 𝑚 2 𝛼 2 𝑚𝑛 [J 𝑚 (𝛼 𝑚𝑛 𝑅 2 ) + ΓY 𝑚 (𝛼 𝑚𝑛 𝑅 2 )] 2 - 1 2 𝑅 2 1 - 𝑚 2 𝛼 2 𝑚𝑛 [J 𝑚 (𝛼 𝑚𝑛 𝑅 1 ) + ΓY 𝑚 (𝛼 𝑚𝑛 𝑅 1 )] 2 .
(30)

Validation methodology

The model is assessed by comparison with two other methods described below.

Multimodal method

The main hypothesis of the analytical formulations derived in section 3 is the WKB ansatz, which imposes the shape of the axial variation of the acoustic variables. This hypothesis is responsible for the formulation breakdown in the presence of a transition. To be validated, the formulation should therefore be compared against a method in which the axial integration (at least) is performed numerically. This is why the first validation method considered is the multimodal method [START_REF] Pagneux | A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation[END_REF]. This method consists in rearranging the acoustic problem in a set of coupled one-dimensional equations describing the evolution of the modes, which are solved using a Magnus-Moebius scheme [START_REF] Lu | A fourth-order Magnus scheme for Helmholtz equation[END_REF]. It considers a superposition of modes going forwards and backwards and any reflections due to the duct geometry. Therefore this method is well suited for ducts where reflected waves are important, which is the case with multiple transitions. However, it does not include a mean flow. The equations used in this study are detailed in the papers of Guennoc et al. [START_REF] Guennoc | Improved multimodal formulation of the wave propagation in a 3D waveguide with varying cross-section and curvature[END_REF] and Pagneux et al. [START_REF] Pagneux | Multimodal admittance method in waveguides and singularity behavior at high frequencies[END_REF] and are not recalled here for the sake of concision. The results of this method that will be shown in this paper are obtained with sufficient axial discretization and number of radial modes.

Finite difference method

A fully-numeric approach is also considered for validating the model even in the presence of a mean flow. For this purpose, the ONERA in-house code sAbrinA is used [START_REF] Redonnet | Numerical simulation of propagation of small perturbations interacting with flows and solid bodies[END_REF][START_REF] Redonnet | Computational aeroacoustics of aft fan noises characterizing a realistic coaxial engine[END_REF][START_REF] Redonnet | An advanced hybrid method for the acoustic prediction[END_REF]. It solves through finite differences the linearized Euler perturbation equations in the time domain on a structured multi-block grid. The modes are injected in the source plane using a source model that allows leftrunning waves to cross the source [START_REF] Gabard | Stochastic sources of broadband noise for time-domain simulations of duct acoustics[END_REF]. Concerning the mean flow on which the perturbations are computed, it is the same as the one computed for the analytical model in section 2.2. As for the multimodal method, a mesh convergence analysis was performed to provide accurate results for the comparisons.

Great care needs to be taken for the FD simulation, which lies in the time domain for two general reasons, which are detailed in the paper of Gabard [START_REF] Gabard | Noise sources for duct acoustics simulations: Broadband noise and tones[END_REF], and for an additional one specific to this study. First, the injected mode at the source plane is close to a cut-off frequency where the response of the overall system is very sensitive to parameter changes. As a consequence, even small numerical errors can have a significant impact on the results, and the mesh, therefore, needs to be sufficiently refined. The second difficulty comes from the particularly low group velocity of the mode close to its cut-off frequency, which makes the convergence time very long. Finally, in the central region of our model, there is an infinity of reflections between the two turning points and the time necessary to get a balance between the right-and left-travelling waves can be important. Near expected resonance phenomena, this problem is further increased because the convergence is theoretically reached after infinite successive reflections without energy loss between the two transitions so that the numerical solution might never be converged. However, this problem is limited in frequency due to other dispersion phenomena, which make that the waves lose a small amount of energy at each reflection.

Cut-off/cut-on/cut-off transition 4.3.1. Description of the test case

In order to validate the developed model, the first series of presented test cases are for modes undergoing a cut-off/cut-on/cut-off transition inside the duct. Therefore, a weakly cut-off mode is injected at the duct inlet. This mode encounters a first turning point and becomes cut-on before reaching a second one and returning to its initial state. Since the objective here is to validate the model and to understand its limitations, the frequency is set to ensure a limited modal scattering in the waveguide for the no-flow case. Thus, the model assumptions are reasonably satisfied, and a good agreement is expected. The azimuthal mode order is chosen to be small in order to avoid small mesh cell size when using the FD method. It reduces the calculation time, which is already long for the reasons presented in the section 4.2.2. The radial mode order is then chosen to ensure that there is at least one cut-on mode in the whole duct in order to evaluate the impact of the modal scattering over these modes. A no-flow and a flow case are studied to assess the effect of the flow on the propagation. For the flow case, the azimuthal and radial mode orders and the position of the turning points are kept constant to isolate the impact of the flow. For this purpose, the frequency is adjusted and therefore differs from the no-flow case.

Therefore, we consider a waveguide radius defined by 𝑅 1 = 0, 𝑅 2 = 0.8 + 0.1 cos((𝑥 -2)𝜋/2) for 𝑥 ∈ [0, 4]. The right-running mode (𝑚, 𝑛) = (4, 2) is injected at 𝑥 = 0 for 𝜔 = 12.94 in the zero-flow case and at 𝜔 = 12.71 in the flow case. For both cases, the turning points are located at 𝑋 𝑡12 = 0.38 and 𝑋 𝑡23 = 3.62. The behaviour of this mode is then investigated over a wide range of frequencies.

An estimate of the small parameter 𝜖 can be obtained by the maximum slope of the wall (𝑅 ′ 2 = 𝑂 (𝜖)) and gives 𝜖 ≈ 0.16. This yields an estimate of the boundary layer thickness of 𝜖 -1/3 𝜔 -2/3 ≈ 0.34 for the single frequency cases.

Single frequency -without flow

We first consider the no-flow case for the mode (4, 2) at 𝜔 = 12.94. The pressure amplitude over the meridional plane obtained using our model, the MM method and the FD method are plotted in figure 2.

There is a good qualitative agreement between the different methods. However, a difference is noticeable close to the wall between the MS solution and the other numerical methods. The first one gives vertical pressure isolines near the wall, whereas the other ones give wall normal isolines. This comes from the fact that the derivative of the transverse function is set to zero in the MS method, which introduces an error of order 𝜖 [START_REF] Rienstra | Sound propagation in slowly varying lined flow ducts of arbitrary cross-section[END_REF].

The information brought by the pressure maps comparison is limited because the MS method only computes the axial variation associated with the main mode in the waveguide, whereas the FD and MM codes also compute the scattering on adjacent radial modes. A more detailed comparison is thus performed by projecting the acoustic field over the Bessel functions to separate the amplitude variations of the main mode from the modal scattering it produces. The results of this projection are given in figure 3. For the FD and MM methods, the projection values are limited to the first four radial modes.

There is excellent agreement for the main mode, which can be explained by a limited modal scattering over adjacent modes in addition to few reflections apart from the transitions. However, the ratio of the amplitude associated with the cut-on mode 𝑛 = 1 to the one of the injected mode increases between the inlet and the outlet, and the hypothesis that the injected mode is dominant in the duct turns out to be less accurate near the exit. Otherwise, interaction lobes are observed for the mode 𝑛 = 1, which does not encounter any transition. This is not an expected result since the associated maximum axial pressure variations should be located where the geometry change is more pronounced [START_REF] Pagneux | Multimodal admittance method in waveguides and singularity behavior at high frequencies[END_REF][START_REF] Smith | Flow and geometry induced scattering of high frequency acoustic duct modes[END_REF][START_REF] Guennoc | Improved multimodal formulation of the wave propagation in a 3D waveguide with varying cross-section and curvature[END_REF]. This is due to the fact that both the left-and right-running main modes produce scattered waves propagating in their direction. Therefore cut-on waves associated to the mode 𝑛 = 1 propagate in both directions in the central region.

Even if the agreement looks excellent between all methods for the main mode, small differences in the predicted reflection at the inlet are observed. These are evaluated using the reflection coefficient defined as R 2 = 𝑝 - 2 /𝑝 + 2 with 𝑝 - 2 and 𝑝 + between the MM and FD methods is probably due to numerical issues linked to the difficulty of injecting a mode near its cut-off frequency in a FD simulation [START_REF] Gabard | Noise sources for duct acoustics simulations: Broadband noise and tones[END_REF].

The reflection is overestimated with the MS method when compared to the two other methods that account for the modal scattering, which tends to extract energy from the dominant mode.

Single frequency -with flow

We now consider the same mode but with a normalized frequency of 𝜔 = 12.71 and in the presence of a mean flow such that 𝑀 0 = -0.2 at the inlet plane. The comparison is only made between the MS and FD methods since the MM method does not include any flow. Note that the same potential flow described by equation ( 5) is used for both methods.

The contour maps of pressure amplitude over the meridional plane are given in figure 4. There is again a good qualitative agreement in terms of absolute pressure with regard to the position of the interaction lobes. The model well predicts the multiple reflections that occurred.

As previously, a more quantitative evaluation is obtained by projecting the 

Frequency variation with zero flow -the case of the acoustic resonator

The case of the resonance predicted by the model is now investigated by applying the methods over a wide range of frequencies. As the FD method encounters important stability problems and fails to converge near resonance frequencies, only the MM method is used for validation. As a result, we restrict this study to a case without flow. The MM method allows computing separately the self-evolution of a mode and its interaction with the neighbouring modes. The effect of the modal scattering can therefore be distinguished from the effect of the geometry variation. This is evaluated here by considering a MM method, referred to as MMWS, where no modal scattering is allowed. The amplification inside the duct (𝐴 = 𝑝 max /𝑝 0 with 𝑝 max the maximum pressure inside the duct and 𝑝 0 the pressure at the source plane) is computed at each frequency with the MM, the MMWS and the MS methods. The results are shown in figure 6.

The gray area corresponds to a region where the error caused by the matching assumptions becomes important because |𝑠 𝑐 | < 1. Outside of this region, the agreement between the MMWS and our model is excellent. This means that the transitions are the main cause of reflections that occur inside the duct. However, when modal scattering is accounted for, the modal energy transfer tends to impact the frequencies of the amplification peaks. This difference is minor and would imply only a few Hertz shift on the non-normalized frequencies. This is one of the drawbacks of MS methods that neglect the impact of the modal scattering: they can provide an estimate of the frequency of the amplification peaks but not their exact values.

Cut-on/cut-off/cut-on transition 4.4.1. Description of the test case

We now consider the cut-on/cut-off/cut-on transition case. An incident cuton mode is chosen at the duct inlet in such a way that it will quickly transition into a cut-off mode before returning to its initial state. In the central cut-off region, the wave decreases exponentially. Since this region is of limited length (tunnelling distance), there is a possibility for the wave not to vanish completely. This phenomena is referred to as tunnelling.

We consider a waveguide defined by the radii 𝑅 1 = 0, 𝑅 2 = 0.8 -0.1 cos((𝑥 -2)𝜋/2) for 𝑥 ∈ [0, 4]. The mode (𝑚, 𝑛) = (4, 2) is again injected at 𝑥 = 0 at 𝜔 = 12.94 for the no-flow case and 𝜔 = 12.01 for the flow case. For both cases, the turning points are located at 𝑋 𝑡12 = 1.62 and 𝑋 𝑡23 = 2.38. The behaviour of this mode for a wide range of frequencies is then investigated to study the tunnelling effect. The reasons behind these parameter choices are similar to those detailed in section 4.3.1

As previously, an estimate of the small parameter and the turning point boundary layer thickness can be given by 𝜖 ≈ 0.16 and 𝜖 -1/3 𝜔 -2/3 ≈ 0.34 respectively.

Single frequency -without flow

We first consider the no-flow case for the mode (4, 2) at 𝜔 = 12.94. The pressure amplitude over the meridional plane obtained using the MS, the MM and the FD methods is plotted in figure 7.

There is a good qualitative agreement between the different methods. Most of the observations made for a single cut-on/cut-off transition [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF] remain valid: there are interference pressure lobes before the first transition (interaction between the left-and right-running waves), and there is an increased pressure amplitude at the location of the transition.

As previously, a more quantitative evaluation can be obtained by projecting the acoustic field over the Bessel's functions. The results are shown in figure 8. For the case of a cut-on/cut-off/cut-on transition, the MS formulation appears to be still accurate almost everywhere in the duct. This is due to a limited modal scattering over the adjacent modes. The behaviour of the cut-on mode 𝑛 = 1 in the first cut-on region is similar to what has been obtained for the cut-off/cut-on/cut-off test cases, with interaction lobes between the upstream and downstream scattered waves. To quantify the difference from a single transition model, the amplitude of the reflection coefficient is again introduced as R 2 = 𝑝 - 2 /𝑝 + 2 = R. The amplitude of this coefficient is equal to one in the single-transition case. We obtain here with all the methods |R 2 | = 0.99, which shows that the second transition has only a little effect. Moreover, the good agreement between the methods means that the modal scattering phenomena are of negligible impact. This is caused by attenuated reflected waves in the central region, which makes the first wave the main contributor to the modal scattering.

Single frequency -with flow

We now consider the same mode but at 𝜔 = 12.01 and in the presence of a mean flow such that 𝑀 0 = -0.2 at the inlet plane. The comparison is only made between the MS and FD methods since the MM method does not admit any flow. Note that the potential flow is constructed as previously. The pressure amplitude over the meridional plane obtained using our model and the FD method is plotted in figure 9.

Once more, there is a good qualitative agreement regarding the shape and amplitude of the absolute pressure. The model correctly predicts the multiple reflections that occurred, and most of the no-flow case observations remain valid. As previously, a more quantitative evaluation can be obtained by projecting the acoustic field over Bessel's functions. The results of these projections are shown in figure 10. The two methods are in good agreement on both the shape and the amplitude of the pressure lobes. The reason is, as previously, a limited modal scattering over adjacent modes and a few reflections except from the ones due to transition phenomena. The comparison of the reflection coefficients gives similar conclusions as in the no-flow case, with a perfect match between both methodologies (|R 2 | = 0.98). 

Frequency variation zero flow -Tunneling effect

The two previous test cases were used as validation, and therefore the transitions were set to be distant. They have shown the model ability to evaluate the impact of the tunnelling distance on the propagation. Nevertheless, the results are close to those of an isolated transition, and the interest appears limited. In order to evaluate the model for close transitions, it will be used outside its area of validity (|𝑠 𝑐 | < 1). In particular, we will check if the phenomenon of tunnelling for close transitions is encapsulated, at least partially. For this purpose, the transmission and reflection coefficients of a mode undergoing a double cut-on/cut-off/cut-on transition are computed over a wide range of frequencies. This is done by comparing the results of the MS and the MM methods, which imposes a zero-flow case. The results are plotted in the figure 11.

The gray area corresponds to a region where the error caused by the matching assumptions becomes important because |𝑠 𝑐 | < 1. For the analysis, the frequency plot is separated into three distinct regions. The main mode encounters two distant transitions in the first frequency range (𝜔 < 12.9). In the second one (12.90 < 𝜔 < 13.3), it experiences collapsing transitions. Finally, the main mode is fully cut-on in the last frequency range (𝜔 > 13.3). There is an excellent quantitative agreement in the first region, as expected from the single frequency cases. The modal scattering has a few impact on the propagation. In the second region, the model is outside of its area of validity, but an analysis is still carried out. Where the two transitions merge (𝜔 = 13.3), the coefficients |T | and |R| should be equal to 1/ √ 2 in theory [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF]. This is the case with the MM and the MMWS methods but not with our model. As observed for the amplification phenomena, there seems to be a frequency shift near this region with the model presented. However, this is not related here to the modal scattering. In the last region, the mode is cut-on, and no transition occurs inside the duct so that the reflection coefficient is expected to be equal to 0. It is not the case with the MM and MMWS methods which means that other reflections, not caused by a change of mode behaviour, occur. To solve this issue, the notion of complex turning points should be added to our analysis [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF]. It can be noted that the relation |T | 2 + |R| 2 = 1 is only valid for the MMWS and MS methods, where the single injected mode carries out the overall energy. With the MM method, energy leaks on the adjacent modes and the previous relation is lost (|T | 2 + |R| 2 < 1).

Application to a real engine

The ability of the model to capture both resonance and tunnelling phenomena inside real engine geometries is investigated here. This study is limited to a no-flow case in order to have comparison with the MM method. Indeed, for the presented test case, no convergence was reached with the FD method for the reasons presented in section 4.2.2.

Geometry

The engine used for the study is the CFM56. The spinner and the nacelle radii are described by the following functions [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF]: 

The exit and source planes are reflectionless. Again, the small parameter 𝜖 is defined by the maximum slope of the nacelle radius, which gives 𝜖 ≈ 0.3. This can be considered as strong, but the radius variation is particularly important near the exit and remains limited elsewhere.

Resonance phenomena

The first case considered is very close to the case 7 presented in [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF], with the propagation of a mode (𝑚, 𝑛) = (5, 5). As for the previous test cases, two types of results are presented. First, the pressure maps and the associated projection over Bessel's functions for a single frequency (𝜔 = 21.4) are given. This frequency is set to have distant transitions and to be far from an expected resonance phenomenon (which yields a boundary layer thickness estimate of 𝜖 -1/3 𝜔 -2/3 ≈ 0.20). Then, the amplification is computed for a large frequency spectra where double transitions occur. The associated results are plotted in figure 12.

For the single frequency case, a good qualitative agreement is obtained, even if scatter appears on other radial modes. A difference in the axial amplitude and the position of the lobes for the injected mode between both models is observed. This is explained by an increase of the modal scattering, particularly visible at the duct outlet, where the modal amplitudes of the adjacent cut-on modes are of the same order of magnitude as the injected one. This was an expected result because the spinner variation introduces a new scattering mechanism.

The analysis of the resonance phenomenon leads to the distinction of two amplification regions: 21 < 𝜔 < 21.2 and 21.9 < 𝜔 < 22.1. For the first region, the turning points are really close, and the MMWS and MS methods results differ, with a frequency shift between them. In the second region, the match is excellent because the hypothesis of distant transition is better respected. As for the simplified geometry presented in the section 4.3, there is again a shift between the amplification peaks obtained with the two methods that do not encapsulate the modal scattering phenomenon and the ones obtained with the MM method. However, contrarily to these previous results, the peaks appear very attenuated with the MM method. In order to clarify this aspect, the position of the turning points for the first amplification region computed with the MS method are given: (𝑋 𝑡12 , 𝑋 𝑡23 ) ≈ (0.45, 0.84). Between these positions, where the multiple reflections occur, the spinner slope variation is high and leads to important modal scattering phenomena. Consequently, the multiple reflected waves lose a significant amount of energy by transferring it to the neighbouring modes, which can become dominant. This prevents the resonance from happening, and the impact of double transition is only a finite amplification. This result is of major importance since most of the parametric studies on resonance [START_REF] Cooper | Acoustic resonance in aeroengine intake ducts[END_REF][START_REF] Duan | Complex resonances and trapped modes in ducted domains[END_REF][START_REF] Hein | Trapped modes and Fano resonances in twodimensional acoustical duct-cavity systems[END_REF][START_REF] Biggs | Wave trapping in a two-dimensional sound-soft or sound-hard acoustic waveguide of slowly-varying width[END_REF][START_REF] Gaulter | Acoustic trapped modes in a three-dimensional waveguide of slowly varying cross section[END_REF] are done by neglecting the modal scattering phenomena, which may lead to erroneous conclusions.

Tunnelling phenomena

The second case considered is very similar to the case 3 presented in [START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF] with the propagation of a mode (𝑚, 𝑛) = (51, 2). As for the previous test cases made on a simplified geometry, two types of results are presented: first, the pressure maps and the associated projection over Bessel's functions for a single frequency (𝜔 = 68.5), then the evolution of the transmission and reflection coefficients for a large frequency spectrum. Contrary to the resonance study, the frequency variation is not limited to the double transition range but also includes frequencies where the mode is considered cut-on. This is set to understand impact of other geometric reflection phenomena in non-symmetric geometries. For the single frequency case, 𝜔 is taken to ensure that the transitions are at the limit of validity of the distant hypothesis in order to have a visible impact of the second transition. This yields a boundary layer thickness estimate of 𝜖 -1/3 𝜔 -2/3 ≈ 0.09. The associated results are plotted in figure 13.

The results show a relatively good agreement for the pressure plots and modal projections because the modal scattering is limited. As already observed for the academic test cases (section 4.4), the two modes adjacent to the main one show interaction lobes. However, the results of the reflection and transmission coefficients against frequency appear worsen in this case. The main reason is that the frequency is relatively high, which makes the slowly varying hypothesis of the MS method less respected. As for the simplified geometry, the analysis of the tunnelling graph is divided into three parts based on the location of turning points. In the first frequency range, where the main mode encounters two distant turning points (𝜔 < 68.5), there is an excellent agreement between the MMWS and MS methods. However, the values of the coefficients obtained with the MM method slightly differ with a small impact of the modal scattering. In the central region where the main mode experiences collapsing transitions, the conclusions obtained on the simplified test case remain valid. In the last frequency range, where the main mode is cut-on (𝜔 > 69.1), important differences that were not seen in the simplified test case are observed between the MMWS and MM methods. The notion of complex turning points [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF] would be here of limited interest because of the relatively high frequency that makes the transmission and reflection coefficients significantly impacted by the modal scattering.

Discussion and conclusion

A simple and fast model, based on the multiple-scales (MS) methodology, has been developed to compute the propagation of modes inside a slowly varying duct in the presence of distant double turning points. It is based on the multiple-scales theory and extends the work previously done on transitions [START_REF] Cooper | Trapped acoustic modes in aeroengine intakes with swirling flow[END_REF][START_REF] Rienstra | Cut-on, cut-off transition of sound in slowly varying flow ducts, contribution to the David Crighton memorial issue of Aerotecnica[END_REF][START_REF] Ovenden | Cut-on cut-off transition in flow ducts: comparing multiple-scales and finite-element solutions[END_REF][START_REF] Cooper | Acoustic resonance in aeroengine intake ducts[END_REF][START_REF] Smith | Flow and geometry induced scattering of high frequency acoustic duct modes[END_REF][START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF]. It has been demonstrated in this paper that double turning point can give rise to specific phenomena such as resonance, amplification or tunnelling. In the case of a cut-on/cut-off/cut-on transition, tunnelling appears with an attenuation of the wave between the two turning points. If the mode has a non-zero amplitude at the level of the second transition, there will be a non-zero transmitted power. In the case of a cut-off/cut-on/cut-off transition, the successive multiple reflections between the two turning points form constructive interference for certain distances. Since the mode is cut-on in this region, these successive reflections do not dissipate energy and can lead to resonance phenomena if no modal scattering is considered when the mode is trapped between the transitions. Comparisons with multimodal (MM), multimodal without modal scattering (MMWS) and finite differences (FD) methods have been carried out over a large panel of circular/annular duct shapes, flows and frequencies. For distant transitions, the agreement between the MMWS method and our model is excellent for both cases. However, the comparison with the MM and FD methods highlights the inherent limitations of the MS methods, which neglect the modal scattering. For the cut-off/cut-on/cut-off double transition, this limitation is responsible for (1) a small modification of the axial wavenumber, which causes a shift of the amplification peak frequencies and (2) a transfer of the main mode energy over the neighbouring modes which prevents the theoretical resonance from happening. The amplification can even become negligible if the modal scattering mechanism is strong. Then, when one of the neighbouring modes is cut-on, it can carry a non-negligible acoustic power. As for the cut-on/cut-off/cut-on double transition, the improvement brought by the model is less significant. When it gives good results (distant transitions), the improvement with respect to a single-transition model is marginal. When the cut-off region vanishes, the mode is weakly cut-on throughout the duct, and new geometrical reflections are shown to exist with the MM, MMWS and FD methods. Our model does not predict these reflections, but the notion of complex turning points could allow to mathematically consider them, as done by Nielsen and Peake for symmetric ducts [START_REF] Nielsen | Tunnelling effects for acoustic waves in slowly varying axisymmetric flow ducts[END_REF]. Even if added, the no-scattering limitation can still lead to significant errors in some cases.

The model in this paper could easily be extended to a large number of transitions. The use of hardwalled boundary conditions throughout the whole paper may be seen as an important limitation since most modern engine nacelles are equipped with liners. However, the reflections caused by the so-called near-transitions in the presence of liners are mainly driven by the hardwalled behaviour [START_REF] Ovenden | Near cut-on/cut-off transition in lined ducts with flow[END_REF]. Therefore, we expect an impact of the liner similar to the modal scattering one with, for the cut-off/cut-on/cut-off case, a levelling of the amplification peaks. For a cut-on mode, 𝜎 is real, therefore:

P ∝ |D| 2 -|U| 2 . (A.7)
As for a cut-off mode, 𝜎 is imaginary, and we get:

P ∝ 2 Im DU . (A.8)
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 1 Figure 1: Representation of a double transition configuration, with 𝑋 𝑡12 and 𝑋 𝑡23 the location of the two turning points. The green lines correspond to cut-on waves while the red ones correspond to cut-off ones.

2 the

 2 modal amplitudes associated with the left-running mode and right-running mode 𝑛 = 2 respectively. We obtain |R 2 | = 0.10 with the MS method, |R 2 | = 0.04 with the MM method and |R 2 | = 0.06 with the FD method. The differences are small compared to the modal amplitude of the injected mode. The difference (a) Multiple-scales method (b) Multimodal method (c) Finite difference method
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 23 Figure 2: Maps of absolute pressure associated to the mode (4,2) at 𝜔 = 12.94 and 𝑀 0 = 0. Turning points at 𝑋 𝑡12 = 0.38 and 𝑋 𝑡23 = 3.62.

Figure 4 :

 4 Figure 4: Maps of absolute pressure associated to the mode (4,2) at 𝜔 = 12.71 and 𝑀 0 = -0.2. Turning points at 𝑋 𝑡12 = 0.38 and 𝑋 𝑡23 = 3.62.

Figure 5 :

 5 Figure 5: Projection over the first four Bessel's functions of pressure associated to the injected mode (4,2) at 𝜔 = 12.71 and 𝑀 0 = -0.2. Turning points at 𝑋 𝑡12 = 0.38 and 𝑋 𝑡23 = 3.62.

  (a) Full frequency range (b) Zoom on the resonance phenomena

Figure 6 :

 6 Figure 6: Variation of the amplification with frequency for the mode (4,2). The gray region correspond to a location where the model errors are important.
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 78 Figure 7: Maps of absolute pressure associated to the mode (4,2) at 𝜔 = 12.94 and 𝑀 0 = 0. Turning points at 𝑋 𝑡12 = 1.62 and 𝑋 𝑡23 = 2.38.
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 9 Figure 9: Maps of absolute pressure associated to the mode (4,2) at 𝜔 = 12.01 and 𝑀 0 = -0.2. Turning points at 𝑋 𝑡12 = 1.62 and 𝑋 𝑡23 = 2.38
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 10 Figure 10: Projection over the first four Bessel's functions of pressure associated to the injected mode (4,2) at 𝜔 = 12.01 and 𝑀 0 = -0.2. Turning points at 𝑋 𝑡12 = 1.62 and 𝑋 𝑡23 = 2.38.

  (a) Full frequency range (b) Zoom on the collapsing transitions region

Figure 11 :

 11 Figure 11: Variation of the amplitude of the reflection (dashed line) and transmission (solid line) coefficients with frequency for the mode (4,2). The gray region correspond to a location where the model errors are important.

𝑅 1 ( 11 , 0 ≤

 1110 𝑥) = max 0, 0.64212 -0.04777 + 0.98234𝑦 2 0.5 , 𝑅 2 (𝑥) = 1 -0.18453𝑦 2 + 0.10158 e -11(1-𝑦)e -11 1e -𝑥 ≤ 2, 𝑦 = 𝑥/𝐿 and 𝐿 = 2.

  (a) Maps of absolute pressure, multiple-scales method, turning points at 𝑋 𝑡12 = 0.40 and 𝑋 𝑡23 = 0.93 (b) Maps of absolute pressure, multimodal method, turning points at 𝑋 𝑡12 = 0.40 and 𝑋 𝑡23 = 0.93 (c) Modal amplitudes, multiple-scales method (d) Modal amplitudes, multimodal method (e) Modal amplitudes, comparison for the main mode (f) Variation of the amplification with frequency

Figure 12 :

 12 Figure 12: Computed solutions for a mode (5,5) in the CFM56 geometry. Figures (a) to (e) done at 𝜔 = 21.4.

  (a) Maps of absolute pressure, multiple-scales method, turning points at 𝑋 𝑡12 = 1.62 and 𝑋 𝑡23 = 1.90 (b) Maps of absolute pressure, multimodal method, turning points at 𝑋 𝑡12 = 1.62 and 𝑋 𝑡23 = 1.90 (c) Modal amplitudes, multiple-scales method (d) Modal amplitudes, multimodal method (e) Modal amplitudes, comparison for the main mode (f) of the amplitude of the reflection (dashed line) and transmission (solid line) coefficients with frequency

Figure 13 :

 13 Figure 13: Computed solutions for a mode (51,2) in the CFM56 geometry. Figures (a) to (e) done at 𝜔 = 68.5.

  Developing the expression of the axial component of the time-averaged energy flux to the order 𝜖 gives:⟨I⟩ • e 𝑥 = 𝐷 0

In the literature, the inner boundary layer size is generally defined as |𝑋 -𝑋 𝑡 | = 𝑂 (𝜖

2/3 ), but we prefer here to highlight the frequency scaling.

Acknowledgments

BM and MD carried out these activities in the framework of the ADEC project. This project has received funding from the Clean Sky 2 Joint Undertaking within the European Union's Horizon 2020 research and innovation program, under grant agreement GA ID No. 945583 -LPA IADP 2020-2021. The authors thank T. Le Garrec for his help on the CAA simulations performed with the sAbrinA solver.

Appendix A. Acoustic power

In this Appendix, we derive an expression of the acoustic power depending only on acoustic potential terms. The velocity potential 𝜙 is written for a single mode (𝑚, 𝑛) composed of a left and right running wave:

where the notation of section 2 are used. An exact equation governing the transport of energy associated with disturbances in an arbitrary steady flow is derived in [START_REF] Myers | Transport of energy by disturbances in arbitrary steady flows[END_REF] and writes:

where 𝐸 is the perturbation density of energy, I is the energy flux, and 𝐷 is the dissipation. In the case of a homentropic and irrotational flow, the dissipation term vanishes, and the energy is conserved. In that case, the time-averaged value of the energy flux writes (see also [START_REF] Cantrell | Interaction between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations[END_REF]):

We define the acoustic power for a given transverse section as [START_REF] Goldstein | Aeroacoustics[END_REF]: .4)