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Abstract          

The paper presents a three-dimensional numerical study of the acoustic streaming induced by the 

dissipation of ultrasounds during their propagation in air. The waves are generated by a circular acoustic 

piston positioned at the center of the left wall of a parallelepipedic cavity. The simulations are performed 

with the lattice Boltzmann method associated with the D3Q19 multiple relaxation time model. A 

validation of this model is first performed by comparing the numerical and analytical acoustic intensities 

along the central axis of the acoustic source. The main objective of this study is to use two different 

methods to calculate the acoustic streaming flow. The first method is the direct calculation of the mean 

velocity fields as the mean values of the instantaneous velocities. The second method is an indirect 

technique, which first calculates the acoustic streaming force and then injects this force into the 

numerical code to produce the streaming. A comparison between the results obtained by the two methods 

was carried out and a good agreement was found between them. These different investigations, rather 

new in 3D configurations, have allowed us to discuss the advantages and limitations of the LBM 

approach to simulate real situations of wave propagation and acoustic streaming. 

Keywords:  3D simulation, acoustic streaming, lattice Boltzmann method, ultrasound  

1.  Introduction  

Acoustic or sound waves can be defined as pressure fluctuations that can exist in a compressible fluid. 

Their propagation can give rise to fundamental phenomena such as reflection, interference, and 

refraction. Generally, they are classified according to their vibration frequencies. This classification 

concerns audible waves of medium frequency, infrasound of low frequency, and ultrasound of high 

frequency [1]. The study of their propagation in fluids has been well-developed in the scientific 

community for many years. These waves have also a major interest in fundamental and applied research. 

They are used in important applications in various fields, particularly as ultrasound waves. Among the 

most important applications are their use in medicine for diagnosis and treatments [2–4], the exploitation 

of the flows induced by the dissipation of their energy during their propagation in fluids in engineering, 

for example for the purification of photovoltaic silicon [5] or the separation of species in a mixture [6], 

their use in daily life for cleaning [7]. 
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In view of these applications, the present work is devoted to the simulation of wave propagation with 

the objective of computing the flow caused by their propagation in a fluid medium. This phenomenon 

is known in the literature as acoustic streaming [8]. In general, two types of acoustic streaming flows 

are considered, Eckart streaming [9] and Rayleigh streaming [10]. In Eckart streaming, the fluid motion 

is produced by the dissipation of the energy of the traveling waves during their propagation in the core 

of the viscous fluid. In Rayleigh streaming, the dissipation occurs in the acoustic boundary layers at the 

solid walls. Acoustic streaming has been studied theoretically, numerically, and experimentally for 

many years, in connection with many different applications. Different research teams investigated the 

characteristics of acoustic streaming and the way it is produced  [11–13]. Acoustic streaming was also 

studied as a way to control droplets and bubbles without contact [14,15]. The ability of sound waves to 

remotely induce fluid flows is also of particular interest in the field of microfluidics, where the strong 

confinement makes efficient stirring challenging [16,17], and in industrial processes, such as direct-chill 

casting [18]. Acoustic streaming can also influence heat transfer and convection in heated cavities 

[19,20]. With the recent discovery that standing sound waves generate much higher velocity flows if the 

medium under study is inhomogeneous, Qiu et al. [21] focused on an experimental study of the 

characterization of Rayleigh acoustic streaming in an acoustic resonator with density and 

compressibility gradients. Finally, acoustic streaming was also recently used to mechanically act on cells 

in view of intracellular delivery [22,23]. 

In this paper, the simulation of the 3D acoustic streaming flow is performed with the lattice Boltzmann 

method. This method is an alternative technique to the more conventional CFD methods for the 

simulation of fluid flows. Contrary to the traditional approach based on the Navier-Stokes equations, 

the LBM method consists in discretizing the Boltzmann equation, corresponding to the statistical 

modeling of the dynamics of the fluid particles [24–26]. Through its mesoscopic nature, it has the high 

capacity to integrate the laws of microscopic or mesoscopic physics, allowing the reproduction of 

macroscopic laws at a very reasonable computational cost. As a result, it offers the possibility to simulate 

complex physical phenomena quite easily and is an object of interest for many researchers in numerical 

physics. Moreover, its important parallelization capabilities make it attractive for performing fast 

simulations on parallel computers.  

The lattice Boltzmann approach has been well used to study wave propagation and acoustic streaming 

since the late 1990s. We can mention some of the various works that are more focused on acoustic 

streaming. Stansell and Greated [27] numerically studied the acoustic streaming resulting from the 

interaction of acoustic waves with no-slip boundaries in a 2D pipe using the lattice gas automaton fluid 

modeling method. Haydock and Yeomans [28] performed LBM simulations to determine the Rayleigh 

acoustic streaming produced by the interaction of an acoustic wave with a solid boundary. They also 

showed that LBM simulations can be easily used to obtain the streaming flow induced by the attenuation 

of a traveling wave propagating in the air [29]. Rafat et al. [30] used LBM simulations to study the 

streaming in a simplified thermoacoustic refrigerator. More recently, Tan et al. [31] coupled the lattice 

Boltzmann method with the finite difference technique to study the acoustic streaming driven by surface 

acoustic waves in microchannels and nanochannels. Li et al. [32] used the LBM to study the effect of 

the acoustic streaming flow on heat transfer in a phase change material. Finally, in previous works, our 

team also used the lattice Boltzmann technique based on the MRT model to study 2D acoustic streaming 

induced by ultrasound propagation in water [33,34]. Note that all these studies simulate two-dimensional 

flows. 

In this paper, the LBM approach is applied to simulate Eckart acoustic streaming in 3D. The main goal 

of this simulation is to calculate acoustic streaming directly from the calculation of the average values 
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of the instantaneous velocities and then to compare the results with those obtained from a more classical 

calculation involving the acoustic streaming force. Such studies are rather new in the literature, as we 

did not find previous works using the LBM to produce acoustic streaming in 3D with the acoustic point 

source method. Based on these results and those of our previous works [34,35], a discussion on the 

advantages and limits of the LB method to study acoustic streaming is proposed. 

The paper is organized into five sections. After the introduction, the second section presents the LBM 

method. It details the different mathematical formulations of the LBM model used, provides a summary 

of the wave generation techniques in LBM simulations, explains how a force can be implemented in the 

LBM code, describes the boundary conditions, and finally gives the relations between the physical units 

and the LBM units. The third section is the main section devoted to the presentation of the results. After 

the description of the physical problem and the definition of the acoustic parameters, the ability of our 

numerical code to accurately simulate wave propagation is demonstrated, thanks to the comparison 

between the numerically calculated acoustic intensity on the central axis of the source and the 

corresponding analytical results. The acoustic streaming results, obtained by the two direct and indirect 

methods previously described, are then presented and discussed. The final section gives the general 

conclusions of these numerical studies.  

2.  Numerical method 

Our simulations of steaming flows are performed with the lattice Boltzmann method. This method can 

be associated with three different models: SRT, TRT, and MRT models [24,25]. For the study of acoustic 

waves, the LBM-MRT model presents several advantages over the two other models, first in terms of 

accuracy [24] and then because of the possible use of small viscosity values [34,35]. Thus, the D3Q19-

MRT model will be used in this study to calculate the acoustic density, velocities, pressure, and intensity. 

The mathematical formulation of the model, the different techniques to generate the waves, the 

implementation of the acoustic streaming force, and the link between the physical and LBM units are 

successively discussed in the present section.   

2.1  D3Q19-MRT lattice Boltzmann model 

In this study, the 3D continuous computational domain is discretized according to the D3Q19 model 

with a 19 points cubic lattice. In this lattice, the particles can propagate towards the centers of the side 

planes or the corners of the central planes in 18 possible directions (see Fig. 1). During the propagation, 

collisions can occur. These two phenomena are modeled by the following discrete Boltzmann equation  

[24,36–40]: 

 𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝑡, 𝑡 + 𝑡) = 𝑓𝑖(𝑥𝑖 , 𝑡) +𝑖  .                                              (1) 

In the D3Q19 lattice, particles can take the following 19 LBM velocities 𝑐𝑖 = (

𝑐𝑥,𝑖
𝑐𝑦,𝑖
𝑐𝑧,𝑖
) [35,41]:   
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Fig. 1: Illustration of the D3Q19-LBM lattice. 

LBM models with multiple relaxation times are based on the concept that each physical quantity relaxes 

to equilibrium in its proper relaxation time. This approach leads to define the collision operator as 

[24,25] 

𝑖 = 𝑀
−1𝑆[𝑚𝑖

𝑒𝑞 −𝑚𝑖].                                                         (3) 

The vector 𝑚 of components 𝑚𝑖 is composed of 19 different macroscopic quantities, which are well 

discussed in references [35,41]. However, typically, researchers are only interested in calculating four 

quantities corresponding to the density 𝜌 and the momentums 𝑗𝑥, 𝑗𝑦, and 𝑗𝑧 along the 𝑥, 𝑦, and 𝑧 axes. 

𝑚 can be represented mathematically as 

𝑚 = (𝜌, 𝑒, 𝑒2, 𝑗𝑥 , 𝑞𝑥 , 𝑗𝑦 , 𝑞𝑦 , 𝑗𝑧, 𝑞𝑧, 3𝑝𝑥𝑥 , 3𝜋𝑥𝑥 , 𝑝𝑤𝑤 , 𝜋𝑤𝑤 , 𝑝𝑥𝑦 , 𝑝𝑦𝑧 , 𝑝𝑧𝑥 , 𝑚𝑥, 𝑚𝑦 ,𝑚𝑧 )
𝑇
.           (4) 

The matrix 𝑀−1 can be obtained by calculating the inverse of the transformation matrix 𝑀, which is 

defined as [35,41,42] 
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The equilibrium moment vector 𝑚𝑒𝑞 is related to the equilibrium distribution function 𝑓𝑒𝑞  by 𝑚𝑒𝑞 =

𝑀 𝑓𝑒𝑞 , with 𝑓𝑒𝑞  expressed as [24] 

𝑓𝑖
𝑒𝑞
= 𝑊𝑖 [1 +

1

𝑐𝑙𝑏𝑚
2  𝑐𝑖 . 𝑉⃗⃗ +

1

2𝑐𝑙𝑏𝑚
4  (𝑐𝑖 . 𝑉⃗⃗ )

2
−

1

2𝑐𝑙𝑏𝑚
2 |𝑉⃗⃗ |

2
], with 𝑖 = 0,… , 18                (6) 

where 𝑉⃗⃗ is the velocity vector (𝑉⃗⃗ = (𝑢⃗⃗, 𝑣⃗, 𝑤⃗⃗⃗)) and 𝑊𝑖 represents the discretization weights, which are 

given as:  

𝑊𝑖 =

{
 
 

 
 
1

3
               𝑖 = 0            

1

18
              𝑖 = 1,… , 6   

1

36
              𝑖 = 7,… , 18

                                                 (7) 

The nineteen elements of 𝑚𝑖
𝑒𝑞

 found after performing the calculations can be given in terms of density 

and momentums as follows [41–43]:  

𝑚0
𝑒𝑞 =  
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𝑒𝑞 = −11 + 19
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2
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𝑒𝑞 = 𝑗𝑥 

𝑚4
𝑒𝑞 = −
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3
𝑗𝑥 

𝑚5
𝑒𝑞 = 𝑗𝑦 

𝑚6
𝑒𝑞 = −

2
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𝑗𝑦 

𝑚7
𝑒𝑞 = 𝑗𝑧 

𝑚8
𝑒𝑞 = −

2
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𝑚9
𝑒𝑞
=
2𝑗𝑥
2 − (𝑗𝑦

2 + 𝑗𝑧
2)


0

 

𝑚10
𝑒𝑞
= −

1

2
 
2𝑗𝑥
2 − (𝑗𝑦

2 + 𝑗𝑧
2)


0

                                                       (8) 

𝑚11
𝑒𝑞
=
𝑗𝑦
2 − 𝑗𝑧

2


0

𝑚12
𝑒𝑞
= −

1

2

𝑗𝑦
2 − 𝑗𝑧

2


0

 

𝑚13
𝑒𝑞 =

𝑗𝑥
 𝑗𝑦
 


0

 

𝑚14
𝑒𝑞
=
𝑗𝑦
 𝑗𝑧
 


0

 

𝑚15
𝑒𝑞
=
𝑗𝑥
 𝑗𝑧
 


0

 

𝑚16
𝑒𝑞
= 0 

𝑚17
𝑒𝑞
= 0 

𝑚18
𝑒𝑞
= 0 

The matrix 𝑆 is diagonal. It defines each relaxation time 𝑠𝑖  of the corresponding macroscopic quantities. 

It can be written as a function of the nineteen 𝑠𝑖 as:  

𝑆 = diag(𝑠0, 𝑠1 , 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8 , 𝑠9, 𝑠10, 𝑠11, 𝑠12, 𝑠13, 𝑠14 , 𝑠15, 𝑠16 , 𝑠17, 𝑠18)                  (9)                             

The choice of 𝑠𝑖 values is based in particular on the stability of the D3Q19 model. The values used in 

this study are chosen according to the literature [35,41,44,45]: 

{

𝑠0 = 𝑠3 = 𝑠5 = 𝑠7 = 1.0,     𝑠1 = 1.19,     𝑠2 = 𝑠10 = 𝑠12 = 1.4
s9 = s11 = s13 = s14 = s15 = 1/(3ν + 0.5)

𝑠4 = 𝑠6 = 𝑠8 = 1.2, 𝑠16 = 𝑠17 = 𝑠18 = 1.6
                            (10) 

The solution of the lattice Boltzmann equation allows to determine the distribution function 𝑓𝑖. The 

density and velocities can then be calculated as: 

𝜌 =∑𝑓𝑖
 

18

𝑖=0

, 𝜌 (
𝑢
𝑣
𝑤
)

 

= 𝑗 =∑𝑓𝑖
 

18

𝑖=0

𝑐𝑖 =∑𝑓𝑖
 

18

𝑖=0

(

𝑐𝑥,𝑖
𝑐𝑦,𝑖
𝑐𝑧,𝑖
).                                           (11) 

The acoustic intensity is also an interesting quantity in our study. Its instantaneous value in the 

𝑥 −direction can be expressed as [46] 

𝐼(𝑡) = 𝑢(𝑡) 𝑝(𝑡).                                                                     (12) 

Using the formula 𝑝 =  𝑐𝑙𝑏𝑚
2 , the intensity can then be computed in the LBM units as: 

𝐼(𝑡) = 𝑐𝑙𝑏𝑚
2 ∑𝑓𝑖

 

18

𝑖=0

𝑐𝑥,𝑖  .                                                                     (13) 

We will be particularly interested by the average intensity, which will be used to calculate the acoustic 

streaming force. 
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2.2  Generation of acoustic waves in the LB method 

The literature gives two main methods to generate acoustic waves in LBM simulations. The waves can 

first be produced at the level of the boundary conditions, as proposed by Bouzidi et al. [47]. For a 

transducer considered to vibrate at a certain angular frequency  and with a given velocity amplitude 

𝑢𝑎, the idea is to write   

𝑓𝑖̅
 = 𝑓𝑖

 − 2 𝑊𝑖  𝑐𝑖  𝑐𝑙𝑏𝑚
−2  𝑢𝑎  𝑠𝑖𝑛(𝑡)                                            (14) 

(where 𝑓𝑖̅
  is the distribution function in the opposite direction (𝑖̅ = −𝑖)) at the boundary points on the 

transducer surface.  

The second possibility is to use the acoustic point source method [35,38], which is mainly based on the 

approximation of a linear wave (weak oscillations). Pressure, density, or velocity are considered to 

vibrate around their equilibrium position as a sinusoidal function [35,46]: 

𝑝 = 𝑝0 + 𝑝𝑎  𝑠𝑖𝑛(𝑡),                                                       (15) 

           = 
0
+ 

𝑎
 𝑠𝑖𝑛(𝑡),                                                       (16) 

           𝑢 = 𝑢0 + 𝑢𝑎  𝑠𝑖𝑛(𝑡).                                                       (17) 

where 
0
, 𝑝0 and 𝑢0 are the density, pressure, and velocity (𝑢0 = 0) at steady state, respectively. 

In the case of a single-point source, the application of the condition on the density through Eq. (16) is 

appropriate to generate the waves, as the waves will travel isotropically in all directions, i.e. with 3D 

spherical symmetry. In contrast, for a vibrating surface, our previous work [35] has shown that the 

application of the fluctuation condition on the velocity gives acoustic results closer to the analytical data. 

In this case, the use of Eq. (17) is appropriate. This condition will then be used in the present study to 

model the waves generated by a circular acoustic source. 

2.3   Implementation of a body force in the LB method 

In the LB method, different models can be used to implement a body force such as the acoustic streaming 

force [48]. The most popular models reported in the literature are that of Shan and Chen [49,50] and that 

suggested by Luo [51]. In the first model, the force is added to the momentum defined with the 

distribution function, so that we have 𝑗 expressed as 

𝑗(𝑥, 𝑦, 𝑧) = ∑𝑓𝑖  𝑐𝑖 +
𝑡 𝐹𝑎𝑐

2
 .                                                     (18) 

In the second model, the external force is discretized and added to the lattice Boltzmann equation (Eq. 

(1)). The force is then expressed as [24,34] 

𝐹𝑖 = 𝑊𝑖  𝑐𝑖 𝐹𝑎𝑐  𝑐𝑙𝑏𝑚
−2 ,                                                          (19) 

and Eq. (1) becomes [37] 

𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝑡, 𝑡 + 𝑡) − 𝑓𝑖(𝑥𝑖 , 𝑡) = 𝑀
−1𝑆[𝑚𝑖

𝑒𝑞
−𝑚𝑖] + 𝑡 𝑊𝑖  𝑐𝑖 𝐹𝑎𝑐  𝑐𝑙𝑏𝑚

−2 .                (20) 
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The model proposed by Luo is used to implement the acoustic streaming force into our LBM numerical 

code.   

2.4  Boundary conditions 

In the case of the lattice Boltzmann method, the boundary conditions are not based on velocity or 

pressure for example, but rather on the distribution function. In this work, only two types of conditions 

will be discussed. It concerns the bounce-back (BBC) and non-reflecting (NRBC) boundary conditions. 

The bounce-back boundary conditions are mainly used to model stationary solid walls (homogeneous 

Dirichlet boundary conditions). As the name implies, when a particle reaches the boundary, it bounces 

in the opposite direction to its arrival. No flow crosses the wall (impermeable wall). Mathematically, 

these conditions can be implemented as [24–26] 

𝑓𝑖
 (𝑥𝐵 , 𝑡) = 𝑓𝑖̅

 (𝑥𝐵, 𝑡),                                                         (21) 

where 𝑓𝑖
 (𝑥𝐵, 𝑡) is the unknown distribution function at the boundary node (𝑥𝐵), which comes from 

outside into the study domain, and 𝑓𝑖̅
 (𝑥𝐵, 𝑡) is the known distribution function in the opposite direction 

(𝑖̅ = −𝑖), which comes from the simulation domain towards the outside. 

The BBC conditions are the most commonly used for inputs and outputs in LBM simulations. However, 

these conditions are far from ideal for flows containing acoustic waves, as they will reflect the acoustic 

waves into the study domain. In our work, we consider situations where an absorber is disposed at the 

wall opposite to the source in order to avoid the production of standing waves in the cavity. Non-

reflecting boundary conditions (NRBC) are then needed and there are two main approaches in LBM 

simulations [25]. The first approach is based on characteristic boundary conditions (CBC) [52–54]: the 

fluid equations are decomposed at the boundary nodes in order to cancel the travel velocity of the 

reflected waves. The second approach is based on absorbing layers (AL) [55,56] which are added 

beyond the boundary where reflection is to be avoided. 

Both approaches have their drawback. The use of CBC conditions requires the solution of some 

mathematical differential equations at the boundary and the use of AL conditions implies the increase 

of the grid size, and these changes can become costly in terms of computational time, especially when 

it concerns 3D simulations. For the purpose of simplicity, other boundary conditions are used in this 

work to attenuate the waves. These are the modified bounce-back conditions, where the emitted wave 

arriving at the non-reflecting wall is subtracted from the distribution function at this wall [29]: 

𝑓𝑖̅
 = 𝑓𝑖

 − 3  𝑊𝑖  𝑐𝑖  𝑢𝑎 𝑠𝑖𝑛(𝑡 − 𝑘𝐿𝑥) 𝑒
− 𝐿𝑥                                       (22) 

where 𝐿𝑥  (the length of the cavity along 𝑥) is the distance between the source and the absorbing wall. 

The mathematical expression of the coefficient  is given in the next section. 

2.5  Link between the physical and LBM units 

Simulations by LBM lead to results at the mesoscopic scale and expressed in LBM units. It is therefore 

necessary to clarify the passage from the LBM units to the physical units at the macroscopic scale. The 

best-known methods in the literature for unit conversion processes between mesoscopic and 

macroscopic scales are the Buckingham  theorem and the principle of corresponding states [57,58]. 

The Buckingham   theorem generally consists in mapping dimensionless parameters such as the 
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Reynolds number, Prandtl number, Rayleigh number, and Mach number, to geometric similarities, such 

as the aspect ratio [58]. Some examples of the application of this theorem in LBM simulations can be 

found in the references [57,59]. In some cases, the use of the Buckingham  theorem to perform unit 

conversion becomes difficult, in particular in nonlinear problems studies [57]. Concerning the principle 

of corresponding states, it consists in exploiting dimensionless reduced numbers to establish 

proportional relations between physical and LBM units. Finally, more recently, Baakeem et al. [58] 

propose a dimensional analysis approach to systematically make conversions. 

The different conversion techniques mentioned above can be applied to study different physical 

problems, such as fluid flows and heat and mass transfers. However, for acoustic problems, which 

involve wave propagation, other conversion techniques have been proposed. The most well-known 

procedure [35,60–62] is that which allows direct relationships between the LBM and physical acoustic 

quantities by means of the space step ∆𝑥 (𝑚) and the time step ∆𝑡 (𝑠), which represent the physical 

distance between the LBM lattice nodes and the physical time needed by a particle to pass from one 

node to another, respectively. 

The physical quantities, most commonly used in acoustics problems, are the speed of sound, the 

frequency or period of the wave, the wavelength, and the viscosity, responsible for the wave attenuation. 

For each quantity, it is possible to find a mathematical expression involving Δ𝑥 and Δ𝑡, which can 

connect their values in the two-unit spaces. For example, the physical speed of sound and viscosity can 

be related to their LBM counterparts by: 

𝑐𝑝ℎ =
∆𝑥

∆𝑡
𝑐𝑙𝑏𝑚 ,                                                                      (23) 

𝑝ℎ =
∆𝑥2

∆𝑡
𝑙𝑏𝑚 .                                                                     (24) 

The 𝑝ℎ  and 𝑙𝑏𝑚 indices are used to refer to the quantities calculated in the physical scale and the 

LBM units, respectively. 

The quantities 𝑐𝑝ℎ, 𝑐𝑙𝑏𝑚, 𝑝ℎ expressed in Eqs. (23) and (24) are known. For air and the D3Q19 model, 

their values are given in Tables 1 and 2. Concerning the viscosity 𝑙𝑏𝑚, the choice of its value generally 

depends on the problem studied and the LBM model used. It is therefore adjustable. For the SRT model, 

viscosities higher than 0.1 must be used to stabilize the calculations [24]. In contrast, for the MRT model, 

it was shown in [35] that small values of 𝑙𝑏𝑚  can be used without affecting the stability of the 

calculations. Once the value of 𝑙𝑏𝑚 is chosen, Eqs. (23) and (24) can be used to obtain ∆𝑥 and ∆𝑡: 

∆𝑥 =
𝑝ℎ

𝑙𝑏𝑚
 
𝑐𝑙𝑏𝑚
𝑐𝑝ℎ

,                                                                   (25) 

∆𝑡 =
𝑝ℎ

𝑙𝑏𝑚
 (
𝑐𝑙𝑏𝑚
𝑐𝑝ℎ

)

2

.                                                             (26) 

Using the values of ∆𝑥 and ∆𝑡, the other quantities such as the physical period (𝑇𝑝ℎ) and wavelength 

(λ𝑝ℎ) can be easily calculated from those found by the LBM simulations: 

𝑇𝑝ℎ = ∆𝑡 𝑇𝑙𝑏𝑚 and λ𝑝ℎ = ∆𝑥 λ𝑙𝑏𝑚 .                                                 (27) 
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Details on the determination of the parameters used in this work will be given in section 4.                                  

Table 1: LBM parameters used in the simulations of acoustic waves propagation in air. 

𝑥𝑙𝑏𝑚 𝑡𝑙𝑏𝑚 𝑇𝑙𝑏𝑚 𝜆𝑙𝑏𝑚 𝑐𝑙𝑏𝑚 𝑙𝑏𝑚 
𝑙𝑏𝑚

 𝑢𝑎 

1 1 34.64 20 1/√3 0.015 1 0.01 − 0.1 

 

Table 2: Physical characteristics associated with the LBM simulations of acoustic waves propagation 

in air and properties of air considered (at 200C). 

Physical characteristics Properties of air 

𝑥 (𝑚) 𝑡(𝑛𝑠) 𝑓𝑝ℎ (MHz) 𝜆𝑝ℎ(𝑚) 𝑐𝑝ℎ(m/s) 𝑝ℎ(𝑚2/s) 
𝑝ℎ

(kg/𝑚3) 

1.698 2.883 10.011 33.961 340 1.5 10−5 1.204  

3.  Results and Discussion 

The acoustic results obtained by the LBM simulations are presented in this section. We first describe 

the physical problem, then study the propagation of the waves, and finally calculate the acoustic 

streaming. We also give the advantages and limitations of the LBM approach for the study of acoustic 

waves and streaming.   

3.1  Description of the physical problem and definition of the acoustic parameters 

We consider a parallelepiped cavity filled with air (see Fig.2). A circular acoustic source is positioned 

at the center of the left vertical wall (𝑥 = 0) in order to produce acoustic waves. The spatial dimensions 

of the cavity are L𝑥, L𝑦, and L𝑧 corresponding to length, width, and height, respectively (L𝑦 = L𝑧). The 

size of the acoustic source is characterized by its diameter which is defined by 𝑑 = L𝑧/3. The aspect 

ratio of the cavity is L𝑥/L𝑧 =  4/3. The right vertical wall opposite the source is generally assumed to 

be absorbing, whereas the other walls are considered reflective, with a usual bounce-back boundary 

condition. 

To ensure that the waves are well represented in the LBM grid, it is necessary to choose LBM 

wavelengths that are defined over a fairly large number of grid nodes. For example, to deal with acoustic 

streaming in 2D, Haydock and Yeomans [29] chose a wavelength defined by 50 nodes (𝑙𝑏𝑚 = 50). 

They also used a large size mesh to discretize their 2D domain (2000 × 400 intervals). This choice is 

possible in 2D studies, but rather smaller size meshes are used in 3D studies, due to the limited 

capabilities of the computers. In our previous work on 3D wave simulation [35], we chose 𝑙𝑏𝑚 =

23.12 and a mesh size of 320 × 240 × 240 intervals, and the computations were performed on short 

times (small number of iterations). In this work, however, as we will see later, it is necessary to use a 

very large number of iterations to directly simulate acoustic streaming. Thus, we decided to keep meshes 

of similar size and to use a wavelength 𝑙𝑏𝑚 = 20 . This choice leads to a LBM period 𝑇𝑙𝑏𝑚 =

𝑙𝑏𝑚/𝑐𝑙𝑏𝑚 =  34.64. 

To find the physical characteristics associated with our simulations in air, we used the direct conversion 

described in section 2. The properties of air, sound speed 𝑐𝑝ℎ, kinematic viscosity 𝜈𝑝ℎ , density 𝜌𝑝ℎ, are 

given in Table 2. The physical values of ∆𝑥 and ∆𝑡, which can be obtained from Eqs. (23) and (24), then 

only depend on the LBM viscosity. If we note that the ratio  𝑐𝑙𝑏𝑚/𝑐𝑝ℎ  is small and the kinematic 

viscosity 𝜈𝑝ℎ  is a small quantity (Tables 1 and 2), the only way to get a not too small ∆𝑥 from Eq. (23) 

is to take the smallest possible value of 𝑙𝑏𝑚. In this study, we chose to fix 𝑙𝑏𝑚 at 0.015, a value 
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allowed by our MRT model, but not too small to avoid instability problems. This value is used to define 

the relaxation times s9, s11, s13, s14 and s15, as expressed in Eq. (10). This choice will be discussed and 

justified in more detail below. Using 𝑙𝑏𝑚 = 0.015, we get ∆𝑥 = 1.698 𝑚 and ∆𝑡 = 2.883 𝑛𝑠, and 

Eq. (25) then gives a physical frequency of 10.011 MHz and a wavelength 𝜆𝑝ℎ =  33.961 𝑚.  

The choice of the acoustic wave amplitude is constrained by two limitations of the LB method. The first 

limitation is the compressibility of the fluid, which is quantified by the Mach number 𝑀𝑎 = 𝑢𝑎/𝑐𝑙𝑏𝑚. 

The LBM approach is more stable for simulations in incompressible or weakly compressible mediums 

[24,25]. Therefore, for stability reasons, it is generally recommended to use values of 𝑀𝑎 < 0.3 [63,64], 

which gives values of LBM velocity amplitude 𝑢𝑎 lower than 0.173. The second limitation is the linear 

wave assumption of the acoustic model described in Eqs. (15-17). Indeed, this model is only valid for 

cases of weak oscillations, i.e. oscillations with an amplitude that is small compared to the equilibrium 

value of the forced quantity. For example, in the case of density used to produce the waves (Eq. (16)), 

Viggen [60] recommends a value of 
𝑎

 less than twice 
0
. In our study where the waves are generated 

by the fluctuation of the velocity around its equilibrium value (Eq. (17)), 𝑢𝑎 = 0.1 is chosen as the 

maximum velocity amplitude. Using 𝑢𝑎 = 
𝑎
 𝑐𝑙𝑏𝑚 [35], we can also deduce the corresponding density 

amplitude  
𝑎

. We have then 
𝑎
= 0.173 ≪  

0
= 1, which validates our choice. The physical velocity 

amplitude values can be determined from the reference velocity 𝑉𝑟𝑒𝑓 = ∆𝑥/∆𝑡 = 588.89 𝑚/𝑠. We 

obtain 58.88 𝑚/𝑠 and 5.88 𝑚/𝑠 for 𝑢𝑎 = 0.1 and 0.01, respectively.  

 
Fig. 2: Geometry of the physical problem studied. 

 

3.2  Waves generated by a circular acoustic source in a cavity 

In the cavity filled with air presented in Fig. 2, we first study the propagation of the waves generated by 

a circular acoustic source at the left vertical wall. We consider two different meshes with 240 × 180 ×

180 and 560 × 420 × 420 nodes. If the physical grid space is fixed at the value of 𝑥 presented in 

Table 2, the two meshes will correspond to cavities and sound sources of different sizes. This will give 

two test cases with the following characteristics: 
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Case 1: L𝑥,𝑝ℎ = 407.541 𝑚 = 12 𝜆𝑝ℎ , L𝑦,𝑝ℎ = L𝑧,𝑝ℎ = 305.656 𝑚 = 9 𝜆𝑝ℎ , 𝑑𝑝ℎ =
L𝑧,𝑝ℎ

3
=

101.885 𝑚. 

Case 2: L𝑥,𝑝ℎ = 950.92 𝑚 = 28 𝜆𝑝ℎ , L𝑦,𝑝ℎ = L𝑧,𝑝ℎ = 713.19 𝑚 = 21 𝜆𝑝ℎ , 𝑑𝑝ℎ =
L𝑧,𝑝ℎ

3
=

237.73 𝑚. 

In the two test cases, the acoustic source vibrates at a frequency of 10.011 MHz. The amplitude 𝑢𝑎 of 

the emitted acoustic velocity wave is fixed at 0.01  and the wall opposite the source is considered 

absorbing. 

Fig. 3 shows the instantaneous acoustic velocity field obtained in case 1 after 1400 iterations, which 

corresponds to a physical time 𝑡𝑝ℎ = 1400 𝑡 =  4.037𝑠. Fig. 3(A) gives a 3D view, whereas Fig. 

3(B) gives a vertical cross-section at y =  Ly/2. Each point source of the discretized source (with 61 

points along the diameter) emits spherical waves. The resulting waves in the cavity take the shape of 

discs, rather flat, with curvatures on the sides, in the near field, and slightly curved in the far field. The 

3D view in Fig. 3(A) shows that the velocity field is not perfectly axisymmetric around the central 𝑥-

axis (the symmetry axis of the source). This can be explained by the discretization of the source which 

is not axisymmetric and by the square section of the cavity. As about 420 iterations are necessary for 

the wave to reach the end wall, opposite to the source, the wave can be considered as already well-

established in the cavity. As expected, we observe 12 oscillations along the horizontal direction. These 

waves are quite intense close to the source, but their intensity strongly decreases when they move 

towards the end wall. The absorbing condition applied at this wall is efficient, as no reflection of the 

wave is observed. The reflection at the side walls also appears very weak, justifying that absorbing 

conditions were not needed at these walls. 

The instantaneous acoustic velocity field obtained in case 2 after 2000 iterations (𝑡𝑝ℎ =  5.767𝑠) is 

presented in Fig. 4. The cavity is larger in this case and the circular source has 141 points along the 

diameter. The waves travel towards the end wall, but, due to the longer propagation distance along 𝑥 

(Lx = 28 𝜆), they are strongly attenuated in the right end zone. Moreover, the change of the source 

diameter changes the characteristics of the beam, in particular the transverse position of the maximum 

and minimum acoustic velocities. 

Fig. 5 shows the longitudinal velocity profiles plotted along the axis of the transducer (longitudinal 

centerline of the cavity) for both cases 1 and 2. We see that the waves fluctuate differently in the two 

cases. This is first due to the change in source diameter, which also implies a change in the Fresnel 

length (generally given by 𝐿𝐹 = 𝑑
2/(4 𝜆)), the limit between the acoustic near field and far field: 

𝐿𝐹,𝑙𝑏𝑚 = 45 in case 1 and 𝐿𝐹,𝑙𝑏𝑚 = 245 in case 2. For case 1, Fig. 5(A) shows that the amplitude of the 

wave starts with a value of 0.005, reaches a maximum value of 0.0062 at the third fluctuation, at about 

the Fresnel length, and then decreases exponentially with distance. The wave presents 12 oscillations 

before reaching the wall opposite the source where it is absorbed. In case 2, the wave amplitude 

evolution along the 28 successive oscillations is more complex. After the initial amplitude of 0.0041, 

the wave keeps a rather strong amplitude during 4 oscillations, then strongly decreases, before a last 

increase and the final exponential decrease in the far field zone. Note that the last amplitude maximum 

occurs clearly before the Fresnel length in this case. From these results, it can be noted that the wave 

attenuation is very large in both test cases. This is explained by the high value of the vibration frequency 

because the attenuation coefficient is proportional to the square of this frequency. 
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Fig. 3: Longitudinal acoustic velocity field 𝑢 produced after 4.037𝑠 (1400 iterations) by a circular 

acoustic source vibrating at 10.011 MHz with an amplitude 𝑢𝑎 = 0.01 in the microcavity defined in 

case 1: (A) 3D representation; (B) 2D view in the vertical section at 𝑦 = L𝑦/2. 

 
Fig. 4: Longitudinal acoustic velocity field 𝑢 produced after 5.767𝑠 (2000 iterations) by a circular 

acoustic source vibrating at 10.011 MHz with an amplitude 𝑢𝑎 = 0.01 in the microcavity defined in 

case 2: (A) 3D representation; (B) 2D view in the vertical section at 𝑦 = L𝑦/2. 
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Fig. 5: Profiles along the central 𝑥-axis for the longitudinal acoustic velocity 𝑢 produced by a circular 

source vibrating at 10.011 MHz with an amplitude 𝑢𝑎 = 0.01 in two microcavities of different sizes: 

(A) case 1, as in Fig. 3; (B) case 2, as in Fig. 4.  

To validate our numerical calculations, we propose to compute the acoustic intensity and compare it 

with analytical results. As the direction of wave propagation is along the 𝑥-axis, only the acoustic 

intensity along this direction is calculated. At an instant 𝑡, it is defined as the product of the velocity 

𝑢(𝑡) and the acoustic pressure 𝑝(𝑡) (Eq. (12)) and calculated with the LBM approach according to Eq. 

(13). The average acoustic intensity 𝐼𝑎𝑐 = 〈𝐼(𝑡)〉 is then obtained by averaging 𝐼(𝑡) over a large number 

of iterations, 400 in case 1 (iteration 1000 to 1400) and 600 in case 2 (iteration 1400 to 2000). For 

reasons of symmetry and better visualization, this intensity is plotted in Fig. 6 with a 3D view in only 

half of the cavity. In the two cases, the intensity structure is complex, with minima and maxima 

alternating in both longitudinal and transverse directions ahead of the acoustic source. The complexity 

is increased in case 2, when the diameter of the source is larger. 
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Fig. 6: 3D view of the acoustic intensity field 𝐼𝑎𝑐 produced by a circular source vibrating at a 

frequency of 10.011 MHz with an amplitude 𝑢𝑎 = 0.01. Intensity is averaged over 400 iterations in 

case 1 (A) and 600 iterations in case 2 (B). 

To validate the acoustic intensity presented in Fig. 6, we will compare it to the analytical intensity 

defined on the central 𝑥-axis of a circular acoustic source. We first recall that, without attenuation, the 

acoustic pressure 𝑝(𝑥) on this central axis [35,46] can be expressed as:  

𝑝(𝑥) =  𝑝𝑚𝑎𝑥 |𝑠𝑖𝑛

(

 
1

2
𝑘𝑥 (√1 + (

𝑑

2𝑥
)
2

− 1)

)

 |.                                       (28) 

In (28), 𝑝𝑚𝑎𝑥 is the maximum pressure without attenuation, 𝑥 refers to the distance along the centerline 

of the transducer, 𝛼  is the acoustic attenuation coefficient, and 𝑘  is the wave vector. 𝑝𝑚𝑎𝑥  can be 

expressed in LBM units as a function of the equilibrium density 
0
, sound speed 𝑐𝑙𝑏𝑚, and velocity 

amplitude 𝑢𝑎. The general expression, given for a baffled acoustic source, is 𝑝𝑚𝑎𝑥 = 20𝑐𝑙𝑏𝑚𝑢𝑎. Factor 

2 takes into account the fact that, with a baffled source, the radiation is restricted to a half-space, ahead 

of the source, and is then doubled [65]. In a previous work [35], we have shown that in our case where 

the radiation comes from point sources on the boundary, the amplitude of the waves is not doubled and, 

therefore, factor 2 must be removed. 𝑝𝑚𝑎𝑥 is then given by: 

𝑝𝑚𝑎𝑥 = 
0
𝑐𝑙𝑏𝑚𝑢𝑎 .                                                                    (29) 
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To find an expression of the pressure in the case of attenuation, it is better to adapt the mathematical 

expression for the complex and unattenuated acoustic pressure radiated by a baffled piston on its central 

𝑥-axis given in [46] to account for acoustic losses. We obtain  

𝑝̅ = −
𝑗 𝑝𝑚𝑎𝑥

 


 (+ 𝑗𝑘)

𝑒𝑗(𝑡) [𝑒
−( +𝑗𝑘)√𝑥2+

𝑑2

4 − 𝑒−( +𝑗𝑘)𝑥].                                    (30) 

Concerning the acoustic intensity, it is obtained in the general case as 

𝐼𝑎𝑐 = 〈𝑝(𝑡)𝑢(𝑡)〉 = 𝑅𝑒{  𝑝̅ × 𝑢̅
∗}/2,                                                               (31) 

or in the often-used plane wave approximation [46,66] as 

𝐼𝑎𝑐 = 
〈 𝑝(𝑡)2〉


0
𝑐𝑙𝑏𝑚
 =

𝑅𝑒{  𝑝̅ × 𝑝̅∗} 

2
0
𝑐𝑙𝑏𝑚
 ,                                                                 (32) 

where superscript * refers to the complex conjugate operator and 𝑅𝑒 denotes the real part. To get the 

acoustic velocity involved in (31), we use the linear Euler equation [46]: 


0

𝜕𝑢(𝑡)

𝜕𝑡
= −

𝜕𝑝(𝑡)

𝜕𝑥
.                                                                    (33) 

Using the complex notation for signals varying in time as 𝑒𝑗(𝑡), the velocity 𝑢̅ can then be written as 

𝑢̅ =
𝑗


0


𝜕𝑝̅

𝜕𝑥
,                                                                               (34) 

and the intensity given by (31) can then be expressed as a function of the complex pressure as 

𝐼𝑎𝑐 =
1

2
0

𝑅𝑒 {  𝑝̅ × (𝑗

𝜕𝑝̅

𝜕𝑥
)
∗

}.                                                             (35) 

The expression (30) of 𝑝̅ can be introduced in either Eq. (35) or Eq. (32) to get the acoustic intensity 

along the 𝑥-axis. We obtain the general expression 

𝐼𝑎𝑐 = 𝐼𝑚

[
 
 
 


𝑘

(

 
𝑥

√𝑥2 +
𝑑2

4

− 1

)

 𝑒
−(𝑥+√𝑥2+

𝑑2

4
)
sin(𝑘(√𝑥2 +

𝑑2

4
− 𝑥))

− 

(

 
𝑥

√𝑥2 +
𝑑2

4

+ 1

)

 𝑒
−(𝑥+√𝑥2+

𝑑2

4
)
 cos (𝑘(√𝑥2 +

𝑑2

4
− 𝑥))

+ 𝑒−2𝛼𝑥 + 
𝑥

√𝑥2 +
𝑑2

4

 𝑒
−2√𝑥2+

𝑑2

4

]
 
 
 

                                                                           (36) 

and a simpler expression in the plane wave approximation 
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𝐼𝑎𝑐 = 𝐼𝑚 (𝑒
−2𝛼𝑥 + 𝑒

−2√𝑥2+
𝑑2

4 − 2 𝑒
−(𝑥+√𝑥2+

𝑑2

4
)
cos(𝑘(√𝑥2 +

𝑑2

4
− 𝑥)))                (37) 

with 

𝐼𝑚 =
𝑝𝑚𝑎𝑥
2

8
0
𝑐𝑙𝑏𝑚

.                                                                    (38) 

Note that these expressions use the hypothesis that the attenuation length, related to 𝛼, is large compared 

with the wavelength 𝜆, more precisely that 𝛼𝜆/𝜋 ≪ 1. 

To calculate 𝐼𝑎𝑐 given by Eqs. (36) and (37), an estimation of the acoustic attenuation coefficient 𝛼 is 

needed. Typically, the attenuation of an acoustic wave is due to two physical effects: geometric 

spreading and dissipation [62,67]. The first effect results from the fact that, as the sound moves away 

from the source, due to the spreading of the acoustic beam by diffraction, the area covered by the 

acoustic energy increases, and thus the intensity of the sound decreases. The second effect, related to 

dissipation, can be explained by three mechanisms: the viscous effects, the thermal effects, and the 

effects associated with internal molecular processes (rotational and vibrational relaxation effects of the 

molecules constituting the fluid) [8,46,67]. In the case of waves in gases such as air, the different 

dissipation effects are taken into account through the following attenuation coefficient [68,69]:  

𝛼 = 
2

2
0
𝑐𝑙𝑏𝑚
3  (

4

3
+

(− 1)2

 𝑅𝑔𝑎𝑠
+ 

𝐵
)                                                   (39) 

where 𝛾 is the ratio of specific heats, 𝐾 is the thermal conductivity, 𝑅𝑔𝑎𝑠 is the specific gas constant, 

and 
𝐵

 is the bulk dynamic viscosity. 

The estimation of the two last terms that appear in Eq. (39) remains difficult. The bulk viscosity is 

sometimes obtained from experimental measurements, but they are few. It is often expressed as a 

function of the viscosity of the fluid used. For the case of water, different studies take this bulk viscosity 

as 
𝐵
= 3 [5,46]. Concerning thermal effects, they are typically neglected when simulating wave 

propagation in water [5], as they are considered small compared to the viscous effects. In contrast, in 

the case of liquid metals, these effects have an important contribution to the attenuation of waves and 

cannot be neglected. 

In the present study, where the LBM method is used to simulate ultrasound propagation in air, 

attenuation is involved through the different relaxation times. A discussion on these relaxation times 

and their effects on wave propagation was proposed in our previous work [35]. Here, in our calculations, 

the value 𝑙𝑏𝑚 = 0.015 (related to 𝑝ℎ of air by Eqs. (23) and (24)) is introduced in the relaxation times 

s9, s11, s13, s14 and s15, as mentioned in the previous section. The thermal effects are not taken into 

account in our LBM method and then cannot be considered in our calculations. Finally, the bulk 

kinematic viscosity (𝐵 = 
𝐵
/) is involved in the relaxation time 𝑠1 defined as 𝑠1 = 2/(9 𝜈𝐵,𝑙𝑏𝑚 +

1). To stabilize the MRT-D3Q19 model, it is recommended to set 𝑠1 to 1.19 [41]. Using this value leads 

to a bulk kinematic viscosity 𝜈𝐵,𝑙𝑏𝑚 = 7.563 10−2. 
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Using Eq. (39) in LBM units with 𝑙𝑏𝑚 = 0.015 and 𝐵,𝑙𝑏𝑚 = 0.07563 and without thermal effects, 

we obtain 𝛼𝑙𝑏𝑚 =  8.173 10−3 . It is this value of the attenuation coefficient which is used in the 

comparisons of our numerical results with the analytical expressions (37) and (36) (for such value, 

𝛼𝜆/𝜋 ≈ 0.05). These comparisons are shown in Fig. 7 with the plots of the longitudinal profiles of the 

acoustic intensity along the central 𝑥-axis, which is the axis of the source. In case 1 (Fig. 7(A)), the 

acoustic intensity obtained numerically starts with a peak value of 1.25 10−5, drops to about 0 and then 

increases towards the last peak with a maximum value of about 1.26 10−5 . Beyond this peak, the 

intensity rapidly decreases with distance in the far field zone. In case 2 (Fig. 7(B)), the situation is quite 

different as three peaks are now found in the near field zone before the last peak and the final decrease 

in the far field zone. The intensity starts with a peak value of about 1.1 10−5 and has then three peaks 

with decreasing amplitudes, the last peak being rather weak. The comparison with the analytical data 

shows that, in the two cases, the different peaks found numerically are well those predicted by the 

analytical expressions, with practically the same position. The amplitude of the peaks, however, is 

differently predicted by the two analytical expressions, expression (37) involving the plane wave 

approximation giving larger amplitudes. The interesting result is that it is the more accurate analytical 

expression (36) which compares rather well with the numerical intensity profiles, at the peaks and more 

globally all along the 𝑥-axis. The comparison is particularly striking in case 2 with the four intensity 

peaks. These comparisons show that our LBM code is well adapted to study the propagation of 

ultrasound acoustic waves and that the plane wave approximation is not appropriate for accurately 

describing the waves in the near field zone. 

Some comments can be done on the intensity profiles shown in Fig. 7. As we will discuss the number 

of peaks and their positions (and not their amplitudes), we will refer to the plane wave approximation. 

We have first quoted the different number of peaks between case 1 and case 2. In fact, according to the 

simple expression without attenuation (28), the number of peaks in the near field zone is given by 𝑁 =

𝐸𝑛𝑡(
𝑑

2 𝜆
−
1

2
), with 𝐸𝑛𝑡 the entire part, and there is also the last peak which marks the transition to the 

far field zone. In LBM units, the wavelength 𝜆 is 20 and the source diameter 𝑑 is 60 in case 1 and 140 

in case 2. We then obtain 𝑁 = 1 in case 1 and 𝑁 = 3 in case 2, which corresponds well to what is shown 

in Fig. 7, the first peak being exactly at 𝑥 = 0 in the two cases. Concerning the last peak, its position 

without attenuation is usually given by the Fresnel length 𝐿𝐹 = 𝑑
2/(4 𝜆) , or 𝐿𝐹 =

𝑑2

4 𝜆
−
𝜆

4
 if the 

wavelength is not assumed small compared to the source diameter. These two expressions give 𝐿𝐹 = 45 

and 40 in case 1 and 𝐿𝐹 = 245 and 240 in case 2, values which do not fit well with the results shown 

in Fig. 7, particularly in case 2. In fact, we have to take into account the acoustic attenuation which will 

decrease the intensity of the peaks, but also displace them towards smaller 𝑥. This effect will particularly 

affect the last peak. Its position in case of attenuation cannot be expressed analytically, but can be 

calculated, from the intensity expression (37) for example, by a Newton method. In this case, we get 

𝐿𝐹 = 34.65 and 170.85 in cases 1 and 2, respectively. These values now fit rather well with the position 

of the last peaks in Fig. 7. 

It is interesting to calculate the physical value of the attenuation coefficient to see if it is appropriate for 

ultrasound waves in the air. This value 𝛼𝑝ℎ can be obtained as 𝛼𝑝ℎ = 𝛼𝑙𝑏𝑚/∆𝑥. With a space step ∆𝑥 =

1.698 𝑚  obtained in our case with 𝜈𝑝ℎ  of air and 𝜈𝑙𝑏𝑚 = 0.015  (Tables 1 and 2), we get 𝛼𝑝ℎ ≈

4800 𝑚−1. This value of the acoustic attenuation coefficient seems quite large, but it is of the same 

order of magnitude as the theoretical values that can be extrapolated from the results of Lin et al. [69] 

for 𝑓𝑝ℎ = 10 MHz. Finally, despite the neglect of the thermal effects in our LBM approach, the choice 
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of a bulk viscosity defined from 𝑠1 = 1.19 allows to get a reasonable estimate of the acoustic attenuation 

in the air in our microcavities. 

 
Fig. 7:  Profiles of acoustic intensity 𝐼𝑎𝑐 along the central 𝑥-axis of the cavity for a circular source 

vibrating at a frequency of 10.011 MHz with an amplitude 𝑢𝑎 = 0.01: case 1 (A) and case 2 (B). The 

numerical profiles are compared with the analytical expressions (37) involving plane wave 

approximation and (36) derived with more general hypotheses. The usual position of the last peak at 

the Fresnel length 𝐿𝐹 = 𝑑
2/(4 𝜆) (orange vertical line) is compared to its position taking into account 

attenuation and obtained from (37) (black vertical line). 

3.3 Discussion on the choice of the LBM viscosity 

As shown before, the MRT model allows flexibility in the choice of the LBM viscosity. In the present 

calculations, we have chosen a value 𝜈𝑙𝑏𝑚 = 0.015, but it could be interesting to discuss the possible 

choice of values greater or smaller. 

For a larger value of the LBM viscosity, the space step ∆𝑥 and time step ∆𝑡 will decrease, in the same 

way, according to Eqs. (27) and (28). For example, the choice of 𝑙𝑏𝑚 = 0.033, the value used by 

Haydock and Yeomans [29], gives ∆𝑥 = 0.772 𝑚  and ∆𝑡 = 1.31 𝑛𝑠. For a given LBM period, it 

would also decrease the physical period and increase the physical frequency, giving a frequency 𝑓𝑝ℎ ≈

22 MHz. Using 𝑙𝑏𝑚 = 0.1 will still increase these effects leading, for example, to 𝑓𝑝ℎ ≈  66.7 MHz 

and ∆𝑥 = 0.254 𝑚. Thus, the use of large values of LBM viscosity leads to simulations figuring very 

high frequency waves in very small geometries. This is particularly interesting because the consideration 

of high-frequency ultrasound (frequencies ranging from 50 MHz to a few GHz) in microgeometries is 

a new topic in the literature, connected with important applications of the acoustic streaming flows 

generated by such ultrasounds. Among these applications, we can find intracellular delivery [70], 

micromixing [71], and microscale particle [72] and nanoscale particle [73] manipulation. 

Decreasing the LBM viscosity to some extent is also a possibility for the MRT model. For example, 

using  𝑙𝑏𝑚 = 0.001 gives a relatively larger space step (∆𝑥 = 25.47 𝑚) and a fairly low frequency 
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(𝑓𝑝ℎ = 0.66 MHz) compared to the previous cases. Thus, decreasing the viscosity would allow to deal 

with waves at a smaller frequency in geometries of increasing size. However, the treatment of 

configurations with a decimetric size as in the case of reference [66] remains difficult. For example, for 

a cavity with a characteristic length of 25 𝑐𝑚 and with the space step just given, about 106 nodes would 

be required in each space direction, which is beyond the present computing possibilities.  

Similar difficulties were found by Salomons et al. [62] for the simulation of sound propagation in air. 

In their simulation with 2000 nodes in the propagation direction, if, as they propose, a lattice spacing 

∆𝑥 = 0.1 𝑚  is chosen, the time step is ∆𝑡 = 1.7 10−4 𝑠 , and, for a period 𝑇𝑙𝑏𝑚 = 40 , the wave 

frequency is then 𝑓𝑝ℎ = 147.2 Hz. Such simulation is performed with  𝑙𝑏𝑚 = 0.06 (limitations due to 

the SRT model used) and corresponds then to  𝑝ℎ = 3.5 𝑚
2/𝑠, whereas the real value of the viscosity 

for air is about 1.5 10−5 𝑚2/𝑠. In this case, the interpretation of the LBM simulation as a real size 

experiment leads to a non-realistic value of the physical viscosity and so to a bad prediction of the wave 

attenuation and the streaming induced by this attenuation. This confirms the difficulties for the LBM 

approach to accurately simulate the propagation of low and medium-frequency waves in realistic fluids. 

The present calculations with 𝜈𝑙𝑏𝑚 = 0.015 could also be interpreted as an experiment in water. The 

choice of a bulk kinematic viscosity 𝜈𝐵,𝑙𝑏𝑚 = 7.563 10−2 is a little too high, as previous studies rather 

take this bulk viscosity as 
𝐵
= 3 [5,46] and thermal effects are negligible [5], so that wave attenuation 

will be a little increased. Nevertheless, using the values 𝑐𝑝ℎ = 1480 𝑚/𝑠, 𝜈𝑝ℎ = 10
−6 𝑚2/𝑠 for water, 

we get ∆𝑥 ≈ 26 𝑛𝑚, ∆𝑡 ≈ 10−11 𝑠, and, for a wavelength 𝜆𝑙𝑏𝑚 = 20, the wave frequency is then 𝑓𝑝ℎ =

2.845 GHz. It will then correspond to the propagation of a gigahertz ultrasound wave in a micrometric 

cavity, a configuration typically in the microgeometries issue just mentioned. 

3.4  Acoustic streaming produced by a circular acoustic source in a cavity 

After validation of the wave calculation, the LBM method is now used to calculate streaming. As they 

could be very costly in terms of computing time, the streaming calculations are performed in case 1, 

using the smallest mesh with 240 × 180 × 180  nodes. The characteristics are then those given 

previously in case 1, with in particular the acoustic period 𝑇𝑙𝑏𝑚 = 34.64. Two different methods will 

be used. The direct method is based on the long time evolution of the waves until a stabilized oscillatory 

state is reached, and the streaming velocities (denoted with capital letters, e.g. 𝑈 in the 𝑥 direction) are 

then obtained by averaging the instantaneous velocities over a large number of acoustic periods. The 

indirect method is based on the calculation of the acoustic streaming force from the acoustic intensity 

𝐼𝑎𝑐 [5,66]:  

       𝐹𝑎𝑐  = 2𝛼
𝐼𝑎𝑐

𝑐𝑙𝑏𝑚
  ,                                                                (40) 

which, according to (13), can be written as: 

𝐹𝑎𝑐 = 2𝛼 𝑐𝑙𝑏𝑚 〈∑𝑓𝑖

18

𝑖=0

𝑐𝑥,𝑖  〉 ,                                                                (41) 

the average being taken over 400 iterations, as indicated for 𝐼𝑎𝑐 in case 1 in the previous subsection. The 

force is then introduced in the LBM code to produce the streaming. 

Two cases will be considered. The first case corresponds to a rather small wave amplitude 𝑢𝑎 = 0.01 

and the second case to a larger amplitude 𝑢𝑎 = 0.1. 
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3.4.1  Vibration amplitude 𝒖𝒂 = 𝟎.𝟎𝟏 

a) Direct method 

In order to estimate the time evolution of the waves necessary to get a stabilized oscillatory state for 

𝑢𝑎 = 0.01, we plot the time variation of the instantaneous acoustic velocity 𝑢 in two different points 

along the central 𝑥-axis in Fig. 8. For the point at mid-length (𝑥 = L𝑥/2), we observe that the 

oscillations, first centered on zero, progressively evolve around a non-zero value, which eventually 

stabilizes, giving the streaming velocity at this point (Fig. 8(A)). From this plot, we see that 80 000 

to 100 000 iterations are needed to have a stabilized oscillatory state. For the second point at 𝑥 =

9L𝑥/10 (Fig. 8(B)), the long-time variation is weaker, indicating a smaller streaming velocity at 

this point. From these observations, we decided to calculate the streaming velocities by averaging 

the instantaneous velocities over 40 000 iterations, from iteration 100 000 to 140 000. 

 
Fig. 8: Time variation of the acoustic velocity 𝑢 at different positions along the central 𝑥-axis for a 

circular acoustic source vibrating with an amplitude 𝑢𝑎 = 0.01: 𝑥 = L𝑥/2 (A) and 𝑥 = 9L𝑥/10 (B). 

The streaming velocity field thus obtained is presented by different 2D views in Figs. 9 and 10. The 

longitudinal component 𝑈 of the streaming is plotted in the longitudinal plane at 𝑦 = L𝑦/2 and the 

transverse plane at 𝑥 = L𝑥/2 in Fig. 9, whereas velocity vector plots and streamlines in the plane at 𝑦 =

L𝑦/2 are shown in Fig. 10. We see that, for 𝑢𝑎 = 0.01, the strongest velocities are located in a kind of 

jet close to the source. They determine a main toroidal roll centered in the first half of the cavity. 

Streamlines can penetrate farther inside the cavity, but they are associated with smaller velocities and 

will correspond to slow trajectories. Note that, due to the square transverse section of the cavity, the 

return flow occurs preferentially in the four corners, where confinement is less than in the center of the 

edges, but the return flow velocities remain weak compared to the jet velocities. 
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Fig. 9: 2D views of the streaming velocity 𝑈 generated by a circular acoustic source vibrating with an 

amplitude 𝑢𝑎 = 0.01: (A) longitudinal section at 𝑦 = L𝑦/2 and (B) transverse section at 𝑥 = L𝑥/2. 

Fig. 10: Velocity vectors (A) and streamlines (B) in the central plane at 𝑦 = L𝑦/2 for the streaming 

velocity generated by a circular acoustic source vibrating with an amplitude 𝑢𝑎 = 0.01. 

b) Indirect method for validation 

The acoustic force 𝐹𝑎𝑐, which is injected in the LBM code in this case, is obtained by averaging the 

wave propagation from iteration 1000 to 1400. The 3D acoustic force field is presented in Fig. 11. The 

force is maximum along the central 𝑥-axis, close to the source, and the intensity of the force strongly 

decreases for larger 𝑥 and outside the acoustic beam. The time variation of the streaming velocity 𝑈 in 

two different points along the central 𝑥-axis is shown in Fig. 12. For the two points, the time to reach a 

steady state is similar to the time necessary to get a stabilized oscillatory state in the direct method (Fig. 

8). The streaming velocity field created by this force field inside the cavity is almost identical to the 

streaming presented in Figs. 9 and 10, which was obtained as a result of the direct calculation. We then 

only show some comparisons between the streaming fields obtained by the two methods through 

characteristic profiles in Fig. 13. For the longitudinal profile of 𝑈 along the central 𝑥-axis as well as its 

transverse profile along the central 𝑦-axis, the comparison is very good, with differences not exceeding 

a few percent. Fig. 13(A) shows that the maximum velocity along the central 𝑥-axis is reached quite 
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quickly, at only a quarter of the cavity. Fig. 13(B) points out the weakness of the return flow compared 

to the central flow. 

 
Fig. 11: 3D view of the acoustic force field 𝐹𝑎𝑐 produced by a circular source vibrating with an 

amplitude 𝑢𝑎 = 0.01. The force is averaged over 400 iterations.  
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Fig. 12: Time variation of the streaming velocity 𝑈 obtained by the LBM code with an imposed 

acoustic streaming force calculated for a source velocity amplitude 𝑢𝑎 = 0.01. The force is depicted in 

Fig. 11. The streaming velocity is given at two positions along the central 𝑥-axis: 𝑥 = L𝑥/2 (A) and 

𝑥 = 9L𝑥/10 (B). 

 
Fig. 13:  Longitudinal profile along the central 𝑥-axis (A) and transverse profile along the central 𝑦-

axis (B) for the streaming velocity 𝑈 generated by a circular acoustic source vibrating with an 

amplitude 𝑢𝑎 = 0.01. Comparison between the results obtained by an indirect method involving the 

calculation of the acoustic force and by a direct method based on the long-time evolution of the 

acoustic waves. 
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3.4.2  Vibration amplitude 𝒖𝒂 = 𝟎.𝟏  

a) Direct method 

For this larger velocity vibration amplitude 𝑢𝑎 = 0.1, the time variation of the instantaneous acoustic 

velocity 𝑢 in two different points along the central 𝑥-axis is plotted in Fig. 14. We see that for both 

points (at 𝑥 = L𝑥/2 and 𝑥 = 9L𝑥/10), the time evolution of the waves necessary to get a stabilized 

oscillatory state is strongly reduced compared with the case at 𝑢𝑎 = 0.01. Only 20 000 iterations are 

now needed, and this time is even less for regions with higher velocities as at 𝑥 = L𝑥/2. In both cases, 

the oscillations first decrease in amplitude while almost centered on zero, and are then very suddenly 

shifted towards the streaming velocity around which the oscillation amplitude eventually settles. The 

final oscillation amplitude appears smaller than the initial amplitude. Finally, to get the streaming 

velocities, we chose to average the instantaneous velocities over 40 000 iterations, from iteration 60000 

to 100000. 

The streaming velocity field thus obtained is presented by different 2D views in the longitudinal plane 

at 𝑦 = L𝑦/2 and the transverse plane at 𝑥 = L𝑥/2 in Figs. 15 and 16. For 𝑢𝑎 = 0.1, the flow in the 

cavity appears quite different from that obtained previously for a smaller oscillation amplitude 𝑢𝑎 =

0.01 . The longitudinal component 𝑈  of the streaming has now strong values up to the end wall, 

indicating the presence of a jet all along the 𝑥-axis (Fig. 15). The jet spreads on this end wall, creating 

transverse velocities, and then returns towards the left wall with decreasing longitudinal velocities (Fig. 

16). The streaming flow in the cavity is a large toroidal roll with a center of rotation close to the end 

wall. Here also, due to the square transverse section of the cavity, the return flow occurs preferentially 

in the four corners. 

 
Fig. 14: Time variation of the acoustic velocity 𝑢 at different positions along the central 𝑥-axis for 

a circular acoustic source vibrating with an amplitude 𝑢𝑎 = 0.1: 𝑥 = L𝑥/2 (A) and 𝑥 = 9L𝑥/10 

(B). 
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Fig. 15: 2D views of the streaming velocity 𝑈 generated by a circular acoustic source vibrating with 

an amplitude 𝑢𝑎 = 0.1: (A) longitudinal section at 𝑦 = L𝑦/2 and (B) transverse section at 𝑥 = L𝑥/2. 

 
Fig. 16: Velocity vectors (A) and streamlines (B) in the central plane at 𝑦 = L𝑦/2 for the streaming 

velocity generated by a circular acoustic source vibrating with an amplitude 𝑢𝑎 = 0.1. 

b) Indirect method for validation 

The acoustic force 𝐹𝑎𝑐, which is injected in the LBM code in this case, is the same as that calculated for 

𝑢𝑎 = 0.01 and presented in Fig. 11. Only its intensity has to be multiplied by 100 (see Fig.17). The time 

variation of the streaming velocity 𝑈 in two different points along the central 𝑥-axis is shown in Fig. 18. 

Here also, for the two points, the time to reach a steady state is similar to the time necessary to get a 

stabilized oscillatory state in the direct method (Fig. 14). The streaming velocity field created by the 

force field inside the cavity is almost identical to the streaming presented in Figs. 15 and 16 and obtained 

as a result of the direct calculation. The comparisons between the streaming fields obtained by the two 

methods are shown in Fig. 19. For 𝑢𝑎 = 0.1, the comparisons are still very good, with differences not 

exceeding a few percent. 
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Fig. 17: 3D view of the acoustic force field 𝐹𝑎𝑐 produced by a circular source vibrating with an 

amplitude 𝑢𝑎 = 0.1. The force is averaged over 400 iterations.  
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Fig. 18: Time variation of the streaming velocity 𝑈 obtained by the LBM code with an imposed 

acoustic streaming force calculated for a source velocity amplitude 𝑢𝑎 = 0.1. The force is depicted in 

Fig. 17. The streaming velocity is given at two positions along the central 𝑥-axis: 𝑥 = L𝑥/2 (A) and 

𝑥 = 9L𝑥/10 (B).  

 
Fig. 19: Longitudinal profile along the central 𝑥-axis (A) and transverse profile along the central 𝑦-

axis (B) for the streaming velocity 𝑈 generated by a circular acoustic source vibrating with an 

amplitude 𝑢𝑎 = 0.1. Comparison between the results obtained by an indirect method involving the 

calculation of the acoustic force and by a direct method based on the long-time evolution of the 

acoustic waves. 
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3.4.3  Discussion  

The simulations presented in the previous subsections gave the streaming flow structure obtained for 

two values of the velocity oscillation amplitude 𝑢𝑎. They also indicate the intensity of the streaming 

flow, which, according to Figs. 9 and 15, has maximum values around 𝑢𝑙𝑏𝑚,𝑚𝑎𝑥 = 1.5 10
−3 and 4 10−2 

for 𝑢𝑎 = 0.01 and 0.1, respectively. Using the reference velocity given by 𝑐𝑝ℎ/𝑐𝑙𝑏𝑚, indications on the 

physical streaming velocities thus created can be obtained. 

 If we consider the experiment in air, 𝑐𝑝ℎ/𝑐𝑙𝑏𝑚 ≈ 589 𝑚/𝑠, and the maximum physical velocities will 

be 𝑢𝑝ℎ,𝑚𝑎𝑥 = 0.88 and 3.84 𝑚/𝑠 for 𝑢𝑎 = 0.01 and 0.1, respectively. In the case of an experiment in 

water, 𝑐𝑝ℎ/𝑐𝑙𝑏𝑚 ≈ 2563 𝑚/𝑠, and the maximum physical velocities will then be 𝑢𝑝ℎ,𝑚𝑎𝑥 = 23.56 and 

102.5 𝑚/𝑠 for 𝑢𝑎 = 0.01 and 0.1, respectively. We then see that the experiments in water with high 

wave frequencies and in micrometric geometries will generate stronger streaming flows than the 

experiments in the air with smaller wave frequencies and in, still small, but larger geometries. 

 

4. Conclusion 

This paper was devoted to the simulation of ultrasound waves propagation and the study of the acoustic 

streaming flow produced by the dissipation of the acoustic energy of these waves during their 

propagation in a parallelepiped cavity filled with air. The waves are generated by a circular acoustic 

piston, which vibrates at about 10 MHz. The numerical approach used is the lattice Boltzmann method 

(LBM) based on the D3Q19 multiple relaxation time model. The ability of this model to simulate wave 

propagation was shown by comparing the numerical and analytical acoustic intensities along the central 

axis of the acoustic source. A very good comparison is obtained when the analytical model does not use 

the plane wave approximation and involves the right viscosities responsible for the attenuation. In 

particular, the simulations were thus shown to be able to reproduce the different peaks of the acoustic 

intensity profiles, with the right positions and amplitudes.   

The LBM technique has then been used to study the acoustic streaming induced by the waves in the 3D 

cavity. The acoustic streaming was simulated using two different methods. The first method is based on 

the direct computation of the mean velocity fields obtained as the mean values of the instantaneous 

acoustic velocities. The second method is an indirect technique, which has been used in previous 

simulations with conventional CFD methods, as in [66]. In this method, the acoustic force is first 

calculated (analytically or, as here, by a wave propagation simulation) and is then injected into the 

numerical code to produce the acoustic streaming flow. Both methods need a very large number of 

iterations due to the very small time step, necessary for wave propagation simulation, compared with 

the relatively long time needed for acoustic streaming establishment. A comparison between the results 

obtained by the two methods was carried out and a good agreement was found between them. The 

acoustic streaming flows thus obtained correspond to a toroidal roll, with the fluid moving in the wave 

propagation direction around the transducer axis and returning along the side walls, preferentially in the 

corners. Depending on the velocity vibration amplitude 𝑢𝑎 , the toroidal roll is rather developed close to 

the transducer (small 𝑢𝑎) or in the whole cavity, with the main central jet spreading on the end wall 

(larger 𝑢𝑎). 

These different investigations have allowed us to discuss the advantages and limitations of the LBM 

approach to simulate real situations of wave propagation and acoustic streaming. The LBM simulations 

are performed in a non-dimensional approach and they have then to be interpreted in real dimensions to 

see the concrete situations they represent. If our interest in the wave propagation simulations is the good 

estimate of the streaming flow intensities, it is important to consider the real values of the fluid 
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viscosities that are involved in the streaming generation. The fact that these values are small for usual 

fluids such as air or water and that 𝑙𝑏𝑚 cannot be chosen very small leads to small values of the space 

and time steps ∆𝑥 and ∆𝑡 (Eqs. (25-26)). As a consequence, the LBM is mainly able to simulate the 

propagation of ultrasound and the streaming generation at very high frequencies (MHz-GHz) and in 

microgeometries. The simulations in geometries of relatively large sizes (cm to dm) would require the 

discretization of the domain into millions of points, and this would exceed the capacity of the best 

computers, particularly in 3D situations. Similarly, the consideration of low and medium-frequency 

waves is difficult as this would require many time steps in a period and many space steps in a 

wavelength. The progress of LBM to simulate wave propagation and acoustic streaming seems then to 

be strongly connected with the improvement of computer capacities.   
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