1 The Lepton manual
1.1 Tutorial

To write a “hello world” manuscript, we use the hello.nw file as an example of the ETEX-like
syntax:
Code chunk 1: «hello.nw»

\documentclass [paper=a7]{scrartcl}
\usepackage [width=7cm,height=10cm] {geometry}

\usepackage{float} \newfloat{leptonfloat}{H}{lol}

\begin{document}

The code below sends "hello world" instructions to the \verb ocaml interpreter.
<<hello_world -exec ocaml -chunk ocaml>>=

let msg = "Hello world.";;

print_string(msg); print_newline();;

@

\end{document}

The code below sends "hello world” in-
structions to the ocaml interpreter.

let msg = "Hello world.";;
print_string(msg); print_newline();;

Interpret with ocaml

The Lepton executable splits the file into documentation and source code, executes instructions| val msg : string = "Hello world."
where specified, and embeds the results. Lepton turns hello.nw into a legitimate KTEX }_Ieflzn"i'irid&)

document hello.tex. When processing a file, Lepton outputs the name of each encountered

code snippet and how it deals with it. leptonfloat 1: hello_world
Code chunk 2: «hello.tex»

./lepton.bin -format_with tex hello.nw -o hello.tex
Interpret with shell

This is the Lepton/Lex implementation.
hello_world (part 1): chunk as ocaml, exec with ocaml, output as text,

The hello.tex file is compiled with pdflatex. The resulting PDF file is displayed on the right.

Code chunk 3: «hello.pdf»

pdflatex -interaction=batchmode hello.tex
Interpret with shell

This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex)
restricted \writel8 enabled.
entering extended mode

1.2 Usage and command-line options

lepton [-format_with formatter] [filename] [-o output]

By default, Lepton reads from stdin, writes to stdout and formats chunks in I¥TEX format with the minted package for
pretty-printing (see for details). Provided options are set in appearing order, with the following effects :
e filename sets the input file name.
e -0 output sets the name of the generated documentation file.
e -format_ with formatter sets the formatter for embedding chunk contents and the output of executable instructions in the
documentation file.

1.3 Syntax

In the spirit of literate programming [2], Lepton files are written in a documentation format such as BTEX, HTML or Wiki markup
with special blocks called code chunks.

Similar to Noweb files [4], code chunks start with a chunk header of the form <<header>>= at the beginning of the line, and end
with @ at the beginning of the line. Lepton parses the chunk header as a blank separated command line, and the first word is treated
as the chunk name. The following words are interpreted as chunk options. These control the output and interpretation of the chunk
contents. See Section [[.4] for further details.

Code chunks contain any type of textual bits and pieces, including source code, input data, executable instructions and nested
code chunks. This allows embedding Lepton files inside other Lepton files, such as the hello.nw example. Inside a code chunk, @@
at the beginning of a line is replaced by a single @, but not for nested chunks.

Lepton does not alter the contents of the input file, except for the following directives :

e The chunk header is formatted into the selected documentation format.

e A series of blanks followed by <<chunkname>> inside a code chunk represents a chunk reference, and is expanded to the contents
of the code chunk chunkname.

e \Linput{filename} at the beginning of a line outside a code chunk is replaced by the contents of the file. This is performed before
interpretation, so everything defined in filename is available ; code chunks can be executed and can be referenced.

e \Lexpr{interpreter}{code} outside a code chunk is used to directly embed the results of sending the code as commands to
the interpreter. This can be used to include the value of variables or results in the text.

Code chunks can be divided into small meaningful entities that are easy to document. Code chunks can be written in several parts.
Options defined in the chunk header are propagated to the following parts.

Chunk references are replaced by the concatenation of all chunks with the same name, including the recursive references. The amount
of whitespace before the chunk reference is used to set the indentation level: it is prepended to all lines when expanding the reference.

N.B. Characters appearing on the same line after a chunk header, a chunk end, a chunk reference, a \Linput are ignored and can
be used for comments.

1.4 Interpretation of code snippets

The contents of code chunks are interpreted as specified by the options in the chunk header:

e -write -nowrite : write the chunk contents to disk and use the chunk name as file name. Default: -nowrite,

e —expand -noexpand : expand chunk references in the documentation. Default: -noexpand,

e —exec interpreter : execute the chunk contents in an external interpreter. Default: none, i.e. do not execute,

e -chunk format -output format : indicate the format of chunk contents and chunk output for pretty-printing (see Section .

Lepton interprets the source file sequentially. For each chunk, the references are recursively expanded, then the chunk contents
are optionally written to disk, and the chunk contents are optionally sent to the external interpreter. In particular, written files and
definitions sent to an interpreter are available for the subsequent code chunks. When launched in a terminal, Lepton displays the
chunk names, and the options used to process them.

When writing to disk, relative paths and full paths can be used for the file name. However, Lepton does not create the parent
directories when absent.

The interpreter specified with —exec or \Linput is a session / process name. If it corresponds to a process already open by
Lepton, the process will be reused. Otherwise, the interpreter name is matched (by prefix) to a list of known intepreters and a new
instance is launched. Lepton currently supports the UNIX shell, OCaml, Python, and R. Several sessions of the same process can
be open concurrently, e.g. shelll, shell2, shellbis. Note that Lepton catches the input and output of interpreters, so programs
cannot be used interactively (programs launched by Lepton cannot wait for user input).

Other programming languages, notably compiled languages such as C/C++, can be used in Lepton by writing the source code
to disk and using the shell interpreter to compile and execute the programs. To use a makefile, put the text into a chunk, write
the chunk to disk and execute with shell.

Options that are set for a code chunk are propagated to the following chunks of the same name. lepton_options is a reserved
chunk name for setting default options, the chunk contents are ignored. For example, <<lepton_options -write -chunk ocaml>>=
sets the default behavior to writing all chunk contents to disk, and formatting the chunk contents as OCaml code.

1.5 Formatting

The formatter is responsible for presenting the contents of code chunks and their results in a format compatible with the documentation
format. For instance, it packs source code in a verbatim environment for XTEX or inside <pre></pre> tags for HTML. Chunk contents
and chunk output are independently formatted according to their respective options.

A formatter is implemented as a function that receives the chunk name, options, the chunk contents and the output and produces
some text to be included in the documentation file. Lepton includes the latex_minted formatter for inclusion in BIEX and code
pretty-printing with Pygments, the tex formatter for inclusion in EIEX and inclusion of code in a verbatim environment, as well
as the html and creole formatters for HTML and Wiki markup.

The predefined formatters recognize special values of the output format: verb (the output is already formatted and intended for
direct inclusion) and hide (the output is not included). For pretty-printing in TEX, we use the minted package in combination with
the Python Pygments beautifier [I] to provide colorful syntax highlighting for many languages. The latex_minted formatter wraps
the chunk contents and its output in a leptonfloat environment, which is based on the float package (see below). Additionally,
e a caption is automatically included based on the chunk name,

e labels and indexes are automatically defined, the hyperref package can be used to link to chunk definitions,

e for each chunk reference, Lepton automatically adds a hyperlink to the corresponding chunk definition.

A list of all code chunks can be generated with \lelistoflistings and an index of code chunks with makeidx. These additions
to IMTEX are defined in the lepton.sty file.

This is the IXTEX code produced by the tex formatter from the hello_world chunk in the tutorial.

\begin{leptonfloat}

\caption{hello_world}
\label{hello_world}\vspace*{-\leptonlb}\footnotesize{\texttt{}}\vspace*{-\leptonlc}
\begin{verbatim}

let msg =_,"Hello world.";;

print_string(msg) ; print_newline();;

\end{verbatim}
\vspace*{-\leptonld}Interpret with \texttt{ocaml}\vspace*{-\leptonle}
\begin{verbatim}

val msg: string = ,"Hello world."

Hello world.

—uigunit =,0

\end{verbatim}

\end{leptonfloat}

1.6 Current implementation and availability

Lepton can be downloaded from Zenodo [3], and can be compiled with Ocaml. Note that some command interpreters may not work
on all platforms, as they require functionality from Ocaml’s Unix library which may be unavailable. The software repository is on
Github, please report issues there.

https://doi.org/10.5281/zenodo.1311587
https://github.com/slithiaote/lepton

References

[1] Georg Brandl, Tim Hatch, and Armin Ronacher. Pygments. URL http://pygments.org/.

[2] D. E. Knuth. Literate Programming. The Computer Journal, 27(2):97-111, 01 1984. ISSN 0010-4620. doi: 10.1093/comjnl/27.2.97.
URL https://doi.org/10.1093/comjnl/27.2.97.

[3] Sébastien Li-Thiao-Té. lepton: v1.0, July 2018. URL https://doi.org/10.5281/zenodo.1311588.

[4] Norman Ramsey. Literate programming simplified. IEEE Softw., 11(5):97-105, September 1994. ISSN 0740-7459. doi:
10.1109/52.311070. URL https://doi.org/10.1109/52.311070.

http://pygments.org/
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.5281/zenodo.1311588
https://doi.org/10.1109/52.311070

	The Lepton manual
	Tutorial
	Usage and command-line options
	Syntax
	Interpretation of code snippets
	Formatting
	Current implementation and availability

