Lepton implementation details
Li-Thiao-Té Sébastien
October 16, 2019

One Ring to rule them all,
One Ring to find them,

One Ring to bring them all
and in the darkness bind them

The Lord of the Rings, JRR Tolkien

1 Introduction

1.1 Overview

Lepton is an automaton for the literate execution of programs. As in the literate programming paradigm, Lepton makes it
possible to reorganize source code in the form of meaningful chunks, regardless of the constraints of the programming language.
In addition, Lepton files are executable programs which can:
o generate the complete hierarchy of source files in a software project,
e configure the environment, compile the source code and produce binary executables,
¢ execute the compiled programs and communicate with command interpreters to process data and produce figures,
o generate full-featured documentation for source code and executable instructions.

This manuscript contains the implementation details of Lepton, documented as a Lepton file, with many helpful comments
on the programming techniques used in the source code. In addition, the program specifications included in this document are
used to produce the standalone PDF manual and a tutorial. The software is published under the CeCILL-2.1 license.

Code chunk 1: «boilerplate»

(*

Copyright Li-Thiao-Té Sébastien (2018)
lithiao@math.univ-parisi3.fr

This file was generated from lepton.nw by lepton.bin

This software is a computer program whose purpose is to facilitate the
creation and distribution of literate executable papers. It processes
files containing source code and documentation, and can execute commands
to produce (scientific) reports.

This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".

As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.

In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*)

1.2 Document structure

This document is structured as a standard I¥TEX file — with sections, subsections, etc. — with embedded chunks that may

contain any type of textual data, including source code and executable instructions. Lepton processes the file in linear order;

in particular, chunks that contain source code are written to disk, and instructions are executed where they are defined.
Think of this as a self-contained executable script intended to produce the Lepton executable program. The script follows

these steps:

1. clean the current directory,

Code chunk 2: «clean»

Remove pre-existing files, output is empty on success
rm *.ml *.bin *.pdf *.mll *.cmi *.cmo
rm lepton_manual.* hello.*

Interpret with shell

2. write the source code (Section E)
3. compile the source code and run some tests (Section E)
4. assemble the specifications into a standalone manual and compile it to PDF (Section H)

2 Implementation

The implementation published in this document is written in the OCaml programming language [3] using only the standard

library, d into several modules:

e the

e thellep luld contains type definitions and useful functions,

e thelle defines the syntax of Lepton files and the functions to process it with the ocamllex lexical analyzer,

e the finterpreters moduld handles communication with external interpreters,
e and the [formatters modulq prepares the contents of chunks and the output of command interpreters for inclusion in the
documentation.

2.1 Main function
Specification

lepton [-format_with formatter] [filename] [-o output]

By default, Lepton reads from stdin, writes to stdout and formats chunks in KTEX format with the minted package for

pretty-printing (see for details). Provided options are set in appearing order, with the following effects :

o filename sets the input file name.

e -0 output sets the name of the generated documentation file.

o -format_ with formatter sets the formatter for embedding chunk contents and the output of executable instructions in
the documentation file.

The main function is responsible for
o parsing the command line options via the Arg library,

Code chunk 3: «main.ml»

oilerplat

<<boilerplate>>

print_endline "This is the Lepton/Lex implementation.";;
open Lepton;; (* Load common definitions *)

open Interpreters;; (* Load the default set of interpreters *)

let option_spec = ("-0", Arg.String (fun s -> lepton_oc := open_out s), "name of the output file (default is stdout)") ::
("-format_with", Arg.String Formatters.set, "set the formatter (default is LaTeX/minted") :: [] in

let anon_spec = fun s -> lepton_ic := open_in s; in (* anonymous arguments are interpreted as input filename *)

Arg.parse option_spec anon_spec "usage: lepton [-format_with formatter] [filename] [-o output]";;

¢ calling the lexical analyzer and interpreting the chunk contents.

Code chunk 4: «main.ml (part 2)»

let chunks = Lexer.shabang (Lexing.from_channel !lepton_ic);;
let interpreter = function

| Code (args, _) when args.(0) = "lepton_options" -> ignore(parse_chunklabel args); (* special chunk *)
| Code (args, s) —-> let option = parse_chunklabel args in
let plain, expanded = Lexer.expand "" "" (Lexing.from_string s) in

if option.write then send_to_file expanded args. (0);
let output = send_to_interpreter expanded option.interpreter in
if option.expand then !formatter args.(0) option [] expanded output
else !formatter args.(0) option (Lexer.chunkref_list (Lexing.from_string s)) plain output;
| Doc s -> Lexer.lexpr (Lexing.from_string s);
in Queue.iter interpreter chunks;;

2.2 Lepton module

The Lepton module implements the common interfaces for all the other modules. It contains
e the type definitions,

o the type of options and related functions,

o the storage mechanism based on hash tables,

e communication channels with files and processes,

o variables for inter-module communication.

The lexical analyzer divides the Lepton file in a series of blocks of type chunk. These are either Doc blocks that contain
documentation, or Code blocks that contain the chunk header as a string array and the source code.

Code chunk 5: «lepton.ml»

oilerplat
<<boilerplate>>
type chunk = Doc of string | Code of string array * string;;

We define the option type as well as two helper functions.

Code chunk 6: «lepton.ml (part 2)»

type option = {
mutable part_number : int;
mutable write : bool; mutable expand : bool;
mutable chunk_format: string; mutable output_format: string;
mutable interpreter : string;
}5s
let option_copy o = {o with part_number = 0};; (* independent copy of the object *)
let option_print name o =
Printf.printf "%s (part %i%s’%s):\t" name o.part_number (if o.expand then " expand" else "") (if o.write then " write" else "");
Printf.printf "chunk as %s, " o.chunk_format;
if o.interpreter <> "none" then Printf.printf "exec with %s, output as %s, " o.interpreter o.output_format;
Printf.printf "\nj!";;

make_get_item is a generic storage function based on hash tables. make_get_item creates a hidden vault, initially populated
with initial (key,value) pairs. make_get_item returns a function for accessing the elements in the vault. When the requested
an item from the vault is not found, a new item is added via the fnew function.

Code chunk 7: «lepton.ml (part 3)»

let make_get_item initial fnew = let open Hashtbl in
let storage = create 30 in List.iter (fun (key,value) -> add storage key value) initial;
fun key -> try find storage key with Not_found -> (add storage key (fnew key); find storage key);;

Lepton uses vaults created by make_get_item for
o associating chunk names with the concatenated chunk contents. These are stored as extensible buffers; the lexical analyzer
appends chunk contents to these buffers,

Code chunk 8: «lepton.ml (part 4)»

let get_chunk = make_get_item [] (fun (s:string) -> Buffer.create 100);; ‘

¢ associating chunk names with their options. The function is itself hidden in the parse_chunklabel function defined in @,
¢ associating chunk names with output channels when writing to disk,

Code chunk 9: «lepton.ml (part 5)»

let send_to_file = let get_file = make_get_item [] open_out in
fun msg file_name -> let oc = (get_file file_name) in output_string oc msg; flush oc;;

« associating process names with a process (see chunk @)

The following functions are responsible for transforming the chunk header into a value of type option. This happens in

two stages. During lexical analysis, the chunk header is transformed into a string array by the split_header function. In
particular, this extracts the chunk name as first element of this array.
The parse_chunklabel function is called during chunk interpretation. For each chunk, the option vault is queried for a previous
chunk with the same name, or the current default options. These options are then modified and stored in the option vault
according to the current chunk header. Global default options are implemented as the special chunk name lepton_options
and can be modified with a chunk of that name.

Code chunk 10: «lepton.ml (part 6)»

let split_header = fun s -> Array.of_list (Str.split (Str.regexp "[\tl+") s);;
let parse_chunklabel = (* Parse the chunk label into name, option structure *)
let defaults = { part_number=0; write=false; expand=false; chunk_format="text"; output_format="hide"; interpreter="none"; } in
let get_option = make_get_item [("lepton_options",defaults)] (fun _ -> option_copy defaults) in
function args —>
let o = get_option args.(0) in o.part_number <- o.part_number + 1;
let option_spec =

("-write", Arg.Unit (fun _ -> o.write <- true) , "write chunk to disk") ::

("-nowrite", Arg.Unit (fun _ -> o.write <- false) , "do not write chunk to disk (default)")

("-expand", Arg.Unit (fun _ -> o.expand <- true) , "expand chunk in documentation")

("-noexpand", Arg.Unit (fun _ -> o.expand <- false) , "do not expand chunk in documentation (default)")

("-chunk", Arg.String (fun s -> o.chunk_format <- s), "chunk type for pretty-printing")

("-output", Arg.String (fun s -> o.output_format <- s), "output type for pretty-printing")

("-exec", Arg.String (fun s -> o.interpreter <- s; o.output_format <- "text"), "send chunk to external interpreter") :: [] in
Arg.parse_argv ~current: (ref 0) args option_spec (fun _ -> ()) "Wrong option in chunk header.\nusage : "; option_print args. (0

The mechanism for external interpretation works as follows. The send_to_interpreter function hides a process vaults
which contains functions that execute code and return the output as a string. When the process name is not found in the vault,

o5

o5

a new process / instance must be created. The process name is matched by pr to a list of process creators. We provide a
make_process_creator function for convenience. It is documented in Section R.4. Note that the function make_get_item is
not used for the list of process creators because matching happens by prefix.

Code chunk 11: «lepton.ml (part 7)»

égke process_creator
let process_creators = ref [("none",fun () -> (fun (s:string) -> ""))]1;;
let register_process_creator name f = process_creators := (name,f) :: !process_creators;;
let send_to_interpreter = (* return output of external chunk interpretation *)
let rec assoc_prefix name = function
| (key,value)::_ when String.length name >= String.length key && key = String.sub name O (String.length key) -> value
| a :: b ->assoc_prefix name b | [] -> failwith ("send_to_interpreter : cannot find " ~ name) in
let get_process = make_get_item [] (fun process_name -> (assoc_prefix process_name !process_creators) ()) in
fun msg process_name -> (get_process process_name) msg;;
<<make_process_creator>>

Finally, we define the following variables that are used for communicating between the main functions and the modules. In
particular, formatter is populated at runtime depending on the command-line option.

Code chunk 12: «lepton.ml (part 8)»

let lepton_ic = ref stdin;;
let lepton_oc = ref stdout;;
let formatter = ref (fun (name:string) o (l:string list) (chunk:string) (output:string) -> ignore(o.write));;

2.3 Lexing equals syntax

Specification

In the spirit of literate programming [2], Lepton files are written in a documentation format such as IWTEX, HTML or Wiki

markup with special blocks called code chunks.

Similar to Noweb files [B], code chunks start with a chunk header of the form <<header>>= at the beginning of the line, and end

with @ at the beginning of the line. Lepton parses the chunk header as a blank separated command line, and the first word is

treated as the chunk name. The following words are interpreted as chunk options. These control the output and interpretation

of the chunk contents. See Section for further details.

Code chunks contain any type of textual bits and pieces, including source code, input data, executable instructions and nested

code chunks. This allows embedding Lepton files inside other Lepton files, such as the hello.nw example. Inside a code chunk,

@@ at the beginning of a line is replaced by a single @, but not for nested chunks.

Lepton does not alter the contents of the input file, except for the following directives :

e The chunk header is formatted into the selected documentation format.

e A series of blanks followed by <<chunkname>> inside a code chunk represents a chunk reference, and is expanded to the
contents of the code chunk chunkname.

e \Linput{filename} at the beginning of a line outside a code chunk is replaced by the contents of the file. This is performed
before interpretation, so everything defined in filename is available ; code chunks can be executed and can be referenced.

e \Lexpr{interpreter}{code} outside a code chunk is used to directly embed the results of sending the code as commands
to the interpreter. This can be used to include the value of variables or results in the text.

Code chunks can be divided into small meaningful entities that are easy to document. Code chunks can be written in several

parts. Options defined in the chunk header are propagated to the following parts.

Chunk references are replaced by the concatenation of all chunks with the same name, including the recursive references. The

amount of whitespace before the chunk reference is used to set the indentation level: it is prepended to all lines when expanding

the reference.

N.B. Characters appearing on the same line after a chunk header, a chunk end, a chunk reference, a \Linput are ignored and

can be used for comments.

The lexical analyzer is responsible for transforming a stream of characters (from the Lepton file) into a series of chunks. We
first define variables and regular expressions.

Code chunk 13: «lexer.mll»
oilerplat
<<boilerplate>>
{ open Hashtbl;; open Buffer;; open Lepton;;

let accu = Queue.create ();; let buffer = create 100;;

}

let char = [T '\n']

let blank = [' ' '"\t']

let chunk_start = "<<" (char* as h) ">>=" char* "\n"? as s

let linput = "\\Li" "nput{" (char* as file) "}" char* "\n"? as s
let lexp = "\\L" "expr{" ([~ '}' '\n'l* as process) "}{" ([T '}' '\n'l]* as code) "}"
let chunk_ref = (blank* as b) "<<" (char* as h) ">>" char* "\n"? as s

The lexical analysis of a Lepton file is composed of two main rules. The lexer rule is used when lexing documentation. In
this state, only the 1input directive is recognized. The chunk_start lexeme opens a chunk block.
The gobble rule reads the character stream until the end of code chunk; it uses the integer variable level to track the nesting
level of code chunks. This rule ignores @@ at the beginning of a line in the first pass to preserve the nesting structure.
Lexing a file starts with the shabang rule that ignores the first line when it starts with #!, starts lexing in documentation mode,
and adds any trailing content.

Code chunk 14: «lexer.mll (part 2)»

rule shabang = parse | ("#!" char* "\n")? { lexer lexbuf; Queue.add (Doc (contents buffer)) accu; accu}l
and lexer = parse
| chunk_start { Queue.add (Doc (contents buffer)) accu; clear buffer;
let a = split_header h in ignore(gobble 1 lexbuf); add_buffer (get_chunk a.(0)) buffer;
Queue.add (Code (a,contents buffer)) accu; clear buffer; lexer lexbuf }
| 1linput { lexer (Lexing.from_channel (open_in file)); lexer lexbuf }
| char* "\n"? as s { add_string buffer s; lexer lexbuf } | eof {}
and gobble level = parse
| chunk_start { add_string buffer s; gobble (level+l) lexbuf }
| "@@" char* "\n"? as s { add_string buffer s; gobble level lexbuf }
| "@" charx "\n"? as s { if (level > 1) then (add_string buffer s; gobble (level-1) lexbuf) else s;}
| char* "\n"? as s { add_string buffer s; gobble level lexbuf }
| eof { failwith "Lexing : eof not permitted in gobble mode";}

To keep all the syntax elements in the same file, we define the lexpr and expand rules that respectively interpret the contents
of documentation chunks and code chunks. lexpr enables embedded code in documentation blocks and replaces 1exp with the
code output. expand performs recursive expansion of references in code chunks.

The expand rule uses two temporary strings for storing the plain version (with @@ replaced by @) and the expanded versions
of chunk contents. The gobble rule is used in expand to determine the limits of a nested chunk. Unlike in the documentation
case, the chunk start and the chunk end lines must appear in bplain and bexp.

Code chunk 15: «lexer.mll (part 3)»

and lexpr = parse
| lexp { output_string !lepton_oc (send_to_interpreter (code”"\n") process); lexpr lexbuf;}
| _ as ¢ { output_char !lepton_oc c; lexpr lexbuf; } | eof { flush !lepton_oc; }
and expand bplain bexp = parse
| chunk_start { clear buffer; let 1 = gobble 1 lexbuf in
expand (bplain~s” (contents buffer) 1) (bexp~s” (contents buffer)~1) lexbuf; }
| chunk_ref { let h_contents = contents (get_chunk h) in
if String.length h_contents = 0 then Printf.printf "WARNING: ref <<Ys>> is empty or missing.\nJ!" h;
let _,expanded = expand "" "" (Lexing.from_string h_contents) in
let indented = String.concat "" (List.map (fun s -> b”s™"\n") (Str.split (Str.regexp_string "\n") expanded)) in
expand (bplain”s) (bexp indented) lexbuf; }
| "@@" (char* "\n"? as s) { expand (bplain™"@""s) (bexp "@""s) lexbuf; }
| char* "\n"? as s { expand (bplain”s) (bexp~s) lexbuf; } | eof {bplain,bexp}
and chunkref_list = parse
| chunk_start { gobble 1 lexbuf; chunkref_list lexbuf; }
| chunk_ref { h :: chunkref_list lexbuf; }
| char* "\n"? { chunkref_list lexbuf; } | eof { [] }

lexer.mll does not contain legitimate OCaml code. It must be processed by ocamllex to produce the actual lexer in the
file lexer.ml(see SectionE). The actual lexer is implemented as a Deterministic Finite Automaton for efficiency.

N.B. Lexical analyzers can only take into account the past context; you need a syntax analyzer or parser to look at the
downstream context.

2.4 External interpreters
Specification

The contents of code chunks are interpreted as specified by the options in the chunk header:

e -write -nowrite : write the chunk contents to disk and use the chunk name as file name. Default: -nowrite,

e -expand -noexpand : expand chunk references in the documentation. Default: -noexpand,

e —exec interpreter : execute the chunk contents in an external interpreter. Default: none, i.e. do not execute,

. @'xunk format -output format : indicate the format of chunk contents and chunk output for pretty-printing (see Section
).

Lepton interprets the source file sequentially. For each chunk, the references are recursively expanded, then the chunk contents

are optionally written to disk, and the chunk contents are optionally sent to the external interpreter. In particular, written

files and definitions sent to an interpreter are available for the subsequent code chunks. When launched in a terminal, Lepton

displays the chunk names, and the options used to process them.

When writing to disk, relative paths and full paths can be used for the file name. However, Lepton does not create the parent

directories when absent.

The interpreter specified with —exec or \Linput is a session / process name. If it corresponds to a process already open

by Lepton, the process will be reused. Otherwise, the interpreter name is matched (by prefix) to a list of known intepreters

and a new instance is launched. Lepton currently supports the UNIX shell, OCaml, Python, and R. Several sessions of the

same process can be open concurrently, e.g. shelll, shell2, shellbis. Note that Lepton catches the input and output of

interpreters, so programs cannot be used interactively (programs launched by Lepton cannot wait for user input).

Other programming languages, notably compiled languages such as C/C++, can be used in Lepton by writing the source code

to disk and using the shell interpreter to compile and execute the programs. To use a makefile, put the text into a chunk,

write the chunk to disk and execute with shell.

Options that are set for a code chunk are propagated to the following chunks of the same name. lepton_options

is a reserved chunk name for setting default options, the chunk contents are ignored. For example,

<<lepton_options -write -chunk ocaml>>= sets the default behavior to writing all chunk contents to disk, and for-

matting the chunk contents as OCaml code.

The interpreters.ml file contains the definition of all recognized external interpreters. More precisely, it contains process
creators, i.e. functions for creating a new instance of a given interpreter. Each process creator must be registered in the

process_creators list (see E)

Most process creators can be created by the following function. We first launch the new instance of the process with
open_process, and retrieve the input and output channels. We then create a function that sends data to the input channel
and reads from the output channel.

The main difficulty is that we let a process run in the background so that further instructions can be executed in the same
environment. Consequently, the output channel is not closed, and reading from this channel results in a deadlock. To escape
from this situation, and continue to interpret the Lepton file, we send a question to the interpreter after the chunk contents,
and read from the output channel until we get the expected answer.

In the current implementation, reading from the output channel happens line by line. The answer is a string. Everything that
follows the answer is ignored.

Code chunk 16: «make_process_creator»

let make_process_creator open_process question answer = fun () —>
let (oc_in,oc_out) = open_process () and 1 = ref "" and b = Buffer.create 10 in
let rexp_answer = Str.regexp ("\\(.*\\)" answer) in
fun msg -> Printf.fprintf oc_out "Ys%s%!" msg question; (¥ Printf.printf "Jsisj!" msg question; *)
Buffer.clear b; while (1 := input_line oc_in;not (Str.string _match rexp_answer !1 0))
do Buffer.add_string b (!1 =~ "\n") done; Buffer.contents b ~ Str.matched_group 1 !1;;

The process creators for the UNIX shell, Python and R interpreters are easily defined. Note that most interpreters require
a newline character to terminate the question.

Code chunk 17: «interpreters.ml»
oilerplat
<<boilerplate>>
open Lepton;;
let str = string_of_float (Random.float 1.);;

register_process_creator "shell" (make_process_creator (fun _ -> Unix.open_process "sh") ("echo \"" ~ str ~ "\"\n") str) ;
register_process_creator "python" (make_process_creator (fun _ -> Unix.open_process "python -i") ("print \"" = str =~ "\"\n") str)];
register_process_creator "R" (make_process_creator (fun _ -> Unix.open_process "R --slave") ("cat(\"" ~ str =~ "\\n\")\n") str);;

The OCaml process creator is more complex. We must set the TERM environment variable to empty, otherwise the interpreter
assumes a full-fledged UNIX terminal and outputs color codes. Additionally, we suppress the first two lines that correspond to
the OCaml version.

Code chunk 18: «interpreters.ml (part 2)»

let ocaml_creator =
let open_proc = fun _ ->
(let oc_in,oc_out,oc_err = Unix.open_process_full "ocaml -noprompt" [|"TERM="|] in
ignore(input_line oc_in); ignore(input_line oc_in); oc_in, oc_out) in
make_process_creator open_proc ("print_float " ~ str = ";;\n") (str™"- : unit = O")
in register_process_creator "ocaml" ocaml_creator;;

This is the Scilab interpreter. Communication with Scilab requires non-blocking pipes.

Code chunk 19: «interpreters.ml (part 3)»

let scilab_open = fun _ ->
let entrypipe_r, entrypipe_w = Unix.pipe() and exitpipe_r, exitpipe_w = Unix.pipe() in Unix.set_nonblock entrypipe_r;
let oc_in = Unix.in_channel_of_descr exitpipe_r and oc_out = Unix.out_channel_of_descr entrypipe_w in
ignore(Unix.create_process_env "scilab-cli" [| "scilab-cli" |] [|"SCIHOME=/tmp"|] entrypipe_r exitpipe_w exitpipe_w) ;
oc_in,oc_out;;

register_process_creator "scilab" (make_process_creator scilab_open ("disp(\"325\");\n") ("325"));;

2.5 Documentation formatters
Specification

The formatter is responsible for presenting the contents of code chunks and their results in a format compatible with the
documentation format. For instance, it packs source code in a verbatim environment for INTEX or inside <pre></pre> tags for
HTML. Chunk contents and chunk output are independently formatted according to their respective options.

A formatter is implemented as a function that receives the chunk name, options, the chunk contents and the output and
produces some text to be included in the documentation file. Lepton includes the latex_minted formatter for inclusion in
IATEX and code pretty-printing with Pygments, the tex formatter for inclusion in IATEX and inclusion of code in a verbatim
environment, as well as the html and creole formatters for HTML and Wiki markup.

The predefined formatters recognize special values of the output format: verb (the output is already formatted and intended
for direct inclusion) and hide (the output is not included). For pretty-printing in I4TEX, we use the minted package in
combination with the Python Pygments beautifier [[] to provide colorful syntax highlighting for many languages. The
latex_minted formatter wraps the chunk contents and its output in a leptonfloat environment, which is based on the float
package (see below). Additionally,

e a caption is automatically included based on the chunk name,

¢ labels and indexes are automatically defined, the hyperref package can be used to link to chunk definitions,

o for each chunk reference, Lepton automatically adds a hyperlink to the corresponding chunk definition.

A list of all code chunks can be generated with \lelistoflistings and an index of code chunks with makeidx. These
additions to IATEX are defined in the lepton.sty file.

Note that current formatters are not aware of nesting, and may insert incorrect links and references.

Code chunk 20: «formatters.ml»
oilerplat

<<boilerplate>>
open Printf;; open Lepton;;
let tex = let r = Str.regexp_string "_" in fun s -> Str.global_replace r "_" s ;;
let send_to_latex_minted = fun name o reflist chunk output ->
let plain s = fprintf !lepton_oc "/s/!" s
and leptonchunk s = function | "hide" -> () | "verb" -> fprintf !lepton_oc "/s%!" s;
| format -> fprintf !lepton_oc "\\b\10lgin{minted} [frame=single,fontsize=\\footnotesize]{%s}\n%s\\\101ind{minted}\n’%!" format
and leptonfloat_begin () =
fprintf !lepton_oc "\\b\10igin{leptonfloat}\n\\caption{%s%s}\\label{%s}\n%!"
(tex name) (if o.part_number = 1 then "" else sprintf " (part %i)" o.part_number)
(if o.part_number = 1 then name else name ~ string_of _int o.part_number) ;
fprintf !lepton_oc "\\vspace*{-\\leptonlb}\\footnotesize{\\texttt{%s}}\\vspace*{-\\leptonlc}\n%!"
(String.concat "\\, " (List.map (fun d -> Printf.sprintf "\\index{%s}\\hyperref [}s]{%s}" (tex d) d (tex d)) reflist));
and leptonfloat_end () = fprintf !lepton_oc "\\\10ind{leptonfloat}\nj!"; in
match o.chunk_format with
| "hide" | "verb" -> if o.chunk_format = "verb" then plain chunk;
if o.interpreter <> "none" then leptonchunk output o.output_format
| £1 -> leptonfloat_begin (); leptonchunk chunk f1;
match o.interpreter,o.output_format with
| "none",_ | _, "hide" -> leptonfloat_end () ;
| _, "verb" -> leptonfloat_end (); plain output;
| _, £2 -> plain ("\\vspace*{-\\leptonld}Interpret with \\texttt{" ~ tex o.interpreter ~ "}\\vspace*{-\\leptonle}\n");
leptonchunk output f2; leptonfloat_end ();

Here is an example of a chunk formatted by latex_minted.

\begin{leptonfloat}

\caption{clean}\label{clean}
\vspace*{\leptonlb}\footnotesize{\texttt{}}\vspace*{-\leptonlc}
\begin{minted} [frame=single,fontsize=\footnotesize] {sh}

Remove pre-existing files, output is empty on success

rm *.ml *.bin *.pdf *.mll *.cmi *.cmo

rm lepton_manual.* hello.*

\end{minted}

\vspace*{-\leptonld}Interpret with \texttt{shell}\vspace*{-\leptonle}
\begin{minted} [frame=single,fontsize=\footnotesize]{text}
\end{minted}

\end{leptonfloat}

Code chunk 21: «formatters.ml (part 2)»

let substitute_split s rexp ftext fdelim = let open Str in
String.concat ""
(List.map (function | Text m -> ftext m | Delim m -> ignore (string_match rexp m 0); fdelim m) (full_split rexp s))
let rexp_ref = Str.regexp "“\\([\tI*\\)<\060\\(.*\\)>>\n";;
let send_to_tex name o reflist chunk output = (* echo to documentation, in plain TeX format *)
let plain s = Printf.fprintf !lepton_oc "Ys%!" s
and leptonchunk s = function | "hide" -> () | "verb" -> Printf.fprintf !lepton_oc "%s/%!" s;
| format -> Printf.fprintf !lepton_oc "\\b\10igin{verbatim}\n%s\\\10ind{verbatim}\n%!" s
and leptonfloat_begin () =
Printf.fprintf !lepton_oc "\\b\10lgin{leptonfloat}\n\\caption{/ss}\n\\label{/s}"
(tex name) (if o.part_number = 1 then "" else Printf.sprintf " (part %i)" o.part_number)
(if o.part_number = 1 then name else name ~ string_of_int o.part_number) ;
Printf.fprintf !lepton_oc "\\vspace*{-\\leptonlb}\\footnotesize{\\texttt{%s}}\\vspace*{-\\leptonlc}\n"
(substitute_split chunk rexp_ref (fun _ -> "") (fun dO -> let d = Str.matched_group 2 d0 in Printf.sprintf "\\index{%s}\\hypey
and leptonfloat_end () = Printf.fprintf !lepton_oc "\\\10ind{leptonfloat}\nJ!"; in
match o.chunk_format with
| "hide" | "verb" -> if o.chunk_format = "verb" then plain chunk;
if o.interpreter <> "none" then leptonchunk output o.output_format
| £1 -> leptonfloat_begin (); leptonchunk chunk f1;
match o.interpreter,o.output_format with
| "none",_ | _, "hide" -> leptonfloat_end ();
| _, "verb" -> leptonfloat_end (); plain output;
| _, £2 -> plain ("\\vspace*{-\\leptonld}Interpret with \\texttt{" ~ tex o.interpreter ~ "}\\vspacex{-\\leptonle}\n");
leptonchunk output f2; leptonfloat_end ();

Code chunk 22: «formatters.ml (part 3)»

let send_to_html name o reflist chunk output =
begin match o.chunk_format with
| "hide" -> ()
| _ => Printf.fprintf !lepton_oc "\n<pre id=leptonchunk>\n%s</pre>\nj!" chunk ; end;
begin match o.output_format with
| "hide" -> ()
| _ => Printf.fprintf !lepton_oc "\n<pre id=leptonoutput>\n%s</pre>\nj!" output ; end;

rref [/s

Code chunk 23: «formatters.ml (part 4)»

let send_to_creole name o reflist chunk output =
begin match o.chunk_format with
| "hide" -> ()
| _ => Printf.fprintf !lepton_oc "\n{{{\n%s}}}\nJ!" chunk ; end;
begin match o.output_format with
| "hide" -> O
| _ -> Printf.fprintf !lepton_oc "\n{{{\n%s}}}\n%!" output ; end;

The default formatter is set to latex_minted. The set function is used for parsing the command-line.

Code chunk 24: «formatters.ml (part 5)»

Lepton.formatter := send_to_latex_minted;;

let set = function
"latex_minted" -> Lepton.formatter :

send_to_latex_minted

| "tex" -> Lepton.formatter := send_to_tex

| "creole" -> Lepton.formatter := send_to_creole
p

| "html" -> Lepton.formatter := send_to_html

|

_ —> failwith "unknown selected formatter";;

3 Obtaining the software

Specification B

Lepton can be downloaded from Zenodd [4], and can be compiled with Ocaml. Note that some command interpreters may
not work on all platforms, as they require functionality from Ocaml’s Unix library which may be unavailable. The software
repository is on Github, please report issues there.

Everything in the Lepton distribution is intended to be generated from the lepton.nw file by the Lepton executable. To initiate
this bootstrapping process, the archive contains OCaml source files as well as the following script to compile them. This will
produce a standalone binary. A standard installation of Ocaml is sufficient for this step. Lepton is written using only the
standard library. Running make.sh outputs warnings (unused variables in pattern matching in the lexer) and generates the
executable lepton.bin.

Code chunk 25: «make.sh»

ocamllex lexer.mll 2>&1 # redirect stderr to stdout for inclusion in lepton.pdf
ocamlopt -o lepton.bin str.cmxa unix.cmxa lepton.ml lexer.ml interpreters.ml formatters.ml main.ml 2>&1

Interpret with shell

101 states, 393 transitions, table size 2178 bytes
1974 additional bytes used for bindings

File "lexer.mll", line 73, characters 20-35:

Warning 10:
File "lexer.
Warning 26:
File "lexer.
Warning 26:
File "lexer.
Warning 26:
File "lexer.
Warning 26:
File "lexer.
Warning 26:
File "lexer.
Warning 26:
File "lexer.
Warning 26:
File "lexer.
Warning 26:

this expression should have type unit.
mll", line 42, characters 57-58:
unused variable s.

mll", line 43, characters 63-64:
unused variable s.

mll", line 42, characters 33-34:
unused variable h.

mll", line 42, characters 33-34:
unused variable h.

mll", line 42, characters 33-34:
unused variable h.

mll", line 42, characters 57-58:
unused variable s.

mll", line 45, characters 27-28:
unused variable b.

mll", line 45, characters 68-69:
unused variable s.

Before bootstrapping, the existing Lepton executable should be renamed, e.g. mv lepton.bin lepton. Running the com-
mand ./lepton lepton.nw -o lepton.tex will:
1. extract the source files from the code chunks, and deal with chunk references (such as make_process_creator @),
2. run the compilation commands in make. sh to produce an executable
3. run the PDF compilation commands in Section Y to produce the lepton_manual.pdf and the tutorial. This step makes a
call to lepton.bin which was just generated by make. sh.
The rendered lepton. pdf is the intended way to read the Lepton source code. It can be generated by IATEX with the following
commands. You will need the Pygments Python library and the accompanying minted IXTEX package for syntax highlighting.
These commands cannot be run by Lepton because lepton.tex is generated by Lepton.

Code chunk 26: «shell_not_executed»

xelatex -shell-escape -8bit lepton.tex

bibtex lepton.aux

xelatex -shell-escape -8bit lepton.tex

xelatex -shell-escape -8bit lepton.tex # LaTeX needs to execute twice to resolve references

https://doi.org/10.5281/zenodo.1311587
https://github.com/slithiaote/lepton

4 The Lepton manual

4.1 Manual structure

The manual is embedded in this document in such a way that

o the program specifications appears near its implementation,

o the specification appears both inside this document and a standalone manual.
e only one instance appears in the lepton.nw file,

To that end, the manual is in fact composed of a series of chunks that describe the specification in INTEX syntax. Each of
these fragments appears in the lepton.nw source file next to the corresponding implementation. The output is constructed by
assembling the corresponding chunks:

« the specification appears by using the chunk option -chunk verb for direct inclusion in the ITEX output.
« we produce a standalone manual by writing a complete IXTEX file. (see below)
Let us first define the XTEX header.

Code chunk 27: «lepton_manual.nw»

\documentclass [adpaper, 10pt]{scrartcl}
\usepackage [T1]{fontenc}
\usepackage{lmodern}
\usepackage [english] {babel}
\usepackage{graphicx}
\usepackage [bindingoffset=0cm,width=19cm,height=28cm] {geometry}
\usepackage [sections=normal,bibliography=normal]{savetrees}
\usepackage [numbers] {natbib}
\newcommand{\lepton}{Lepton}
\usepackage{float}
\usepackage{hyperref}
\newlength{\leptonla} \newlength{\leptonlb} \newlength{\leptonlc}
\newlength{\leptonld} \newlength{\leptonle} \newlength{\leptonlf}
\setlength{\leptonla}{lex} \setlength{\leptonlb}{lex} \setlength{\leptonlc}{lex}
\setlength{\leptonld}{ilex} \setlength{\leptonle}{lex} \setlength{\leptonlf}{lex}
\makeatletter
\renewcommand\floatc@ruled[2]{{\bfseries #1:} \texttt{\flgq\relax#2\frqq}\par}
\renewcommand\fs@plaintop{\fs@plain
\let\@fs@capt\floatc@ruled
\def\@fs@pre{\relax\vspacex{-\leptonla}}/
\def\@fs@mid{\relax}/
\def\@fs@post{\relax\vspace*{-\leptonlb}}/
\let\@fs@iftopcapt\iftrue}
\floatname{leptonfloat}{Code chunk}
\makeatother
\floatstyle{plaintop}
\newfloat{leptonfloat}{H}{lol}

\begin{document}
\section{The \lepton\ manual} \label{sec:manual}

We provide a tutorial as the first section of the manual.

Code chunk 28: «lepton_manual.nw (part 2)»

\subsection{Tutorial} \label{sec:tutorial}

\begin{minipage}{0.7\linewidth}

To write a ~“hello world'' manuscript, we use the \verb hello.nw file as an example of the \LaTeX-like syntax:
<<hello.nw -write -chunk tex>>=

\documentclass [paper=a7]{scrartcl}

\usepackage [width=7cm,height=10cm] {geometry}

\usepackage{float} \newfloat{leptonfloat}{H}{lol}

\begin{document}

The code below sends "hello world" instructions to the \verb ocaml interpreter.
<<hello_world -exec ocaml -chunk ocaml>>=

let msg = "Hello world.";;

print_string(msg); print_newline();;

e

\end{document}

Q

The \lepton\ executable splits the file into documentation and source code, executes instructions where specified,
and embeds the results. \lepton\ turns \verb hello.nw into a legitimate \LaTeX\ document \verb hello.tex .

When processing a file, \lepton\ outputs the name of each encountered code snippet and how it deals with it.
<<hello.tex -exec shell>>=

./lepton.bin -format_with tex hello.nw -o hello.tex

e

The \verb hello.tex file is compiled with \verb pdflatex . The resulting
PDF file is displayed on the right.
<<hello.pdf -exec shell>>=
pdflatex -interaction=batchmode hello.tex
@
\end{minipage}
\begin{minipage}{0.3\1linewidth}
\centering \fbox{\includegraphics[width=\linewidth]{hello.pdf}}
\end{minipage}

We then assemble the specification chunks from Section E

Code chunk 29: «lepton_manual.nw (part 3)»
Egec commandling Epec syntax spec_interpretation kpec formatting kpec availability

\subsection{Usage and command-line options}
<<spec_commandline>>

\subsection{Syntax}
<<spec_syntax>>

\subsection{Interpretation of code snippets}
<<spec_interpretation>>

\subsection{Formatting}
<<spec_formatting>>

This is the \LaTeX\ code produced by the \verb tex formatter from the \verb hello_world chunk in the tutorial.
\vspace*{-2mm}

\begin{verbatim*}

<<tex_output -exec shell -chunk hide -output verb>>=

head hello.tex -n 19 | tail -n 14

Q

\end{verbatim*}

\subsection{Current implementation and availability}
<<spec_availability>>

\bibliographystyle{plainnat}
\bibliography{biblio_lepton}
\end{document}

Code chunk 30: «compile_manual»

./lepton.bin -format_with tex lepton_manual.nw -o lepton_manual.tex

pdflatex lepton_manual.tex

bibtex lepton_manual.aux

pdflatex lepton_manual.tex

pdflatex lepton_manual.tex # LaTeX needs to ezecute twice to resolve references

References

[1] Georg Brandl, Tim Hatch, and Armin Ronacher. Pygments. URL http://pygments.org/.

S

D. E. Knuth. Literate Programming. The Computer Journal, 27(2):97-111, 01 1984. ISSN 0010-4620. doi:
10.1093/comjnl/27.2.97. URL https://doi.org/10.1093/comjnl/27.2.97.

[3] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérdéme Vouillon. The OCaml system
(release 3.12): Documentation and user’s manual. Institut National de Recherche en Informatique et en Automatique,
July 2011. URL http://caml.inria.fr/distrib/ocaml-3.12/ocaml-3.12-refman.pdf.

o

Sébastien Li-Thiao-Té. lepton: v1.0, July 2018. URL https://doi.org/10.5281/zenodo.1311588.

<

Norman Ramsey. Literate programming simplified. IEEE Softw., 11(5):97-105, September 1994. ISSN 0740-7459. doi:
10.1109/52.311070. URL https://doi.org/10.1109/52.311070.

http://pygments.org/
https://doi.org/10.1093/comjnl/27.2.97
http://caml.inria.fr/distrib/ocaml-3.12/ocaml-3.12-refman.pdf
https://doi.org/10.5281/zenodo.1311588
https://doi.org/10.1109/52.311070

	Introduction
	Overview
	Document structure

	Implementation
	Main function
	Lepton module
	Lexing equals syntax
	External interpreters
	Documentation formatters

	Obtaining the software
	The Lepton manual
	Manual structure

