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analysis exploiting a priori and a posteriori error estimators
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1 Nantes Université, École Centrale Nantes, CNRS, GeM, UMR 6183, F-44000 Nantes, France

Abstract

This paper presents two approaches to tackle the issue of discretization error in the reliability assessment of structures.

The first method (AGSK-MCS for Adaptive Guaranteed State Kriging Monte Carlo Sampling) uses discretization

error bounds to guarantee the state safe or failed of the points used to build the Kriging metamodel of the limit state

function. Two kriging metamodels interpolating lower and upper bounds can be constructed. These metamodels

allow to compute discretization error bounds on the probability of failure through Monte Carlo sampling, which can

then be used to validate the choice of the mesh. However, discretization error bounds are not available for any solver

and any mechanical problem. In that case, a Mesh Size parameterized Kriging (MSK) metamodel can be used to

check mesh convergence of the probability of failure. First, finite element simulations are spread on different mesh

sizes. Second, the metamodel is used to compute the probability of failure for a given set of mesh sizes using Monte

Carlo estimation. The mesh convergence of the probability of failure can be checked and may guide the user toward

remeshing. These two strategies are illustrated on two 2-D mechanical problems.

Keywords: Reliability, Kriging, Finite Element Method, Discretization Error

1. Introduction1

In structural engineering, both geometry and solicitations are usually complex. Modelling such structure leads to2

a mechanical problem whose solution may only be approximated using discretized methods such as the finite element3

method. The discretization error may be reduced by choosing a fine discretization which increases computational4

cost. A compromise between precision and cost has to be found. Moreover, lack of knowledge (epistemic uncertainty)5

and inherent variability (intrinsic uncertainty) of structural model parameters often make deterministic frameworks6

impractical. Indeed, the variability of model parameters has to be propagated.7

Reliability analysis consists in studying the lifetime of the structure in a stochastic framework. The scenario of8

failure is defined through a limit state function delimiting failure from safety for negative values. The probability9

of failure is one of the outputs of the reliability study. Estimating this probability with precision is no trivial task10

and another estimate called reliability index has been developed. First, approximation methods such as FORM [26],11

SORM [11] are relatively cheap to compute but do not allow to fully control the approximation. Also, these methods12

may require the calculation of gradients of the limit state function. Secondly, stochastic Finite Elements [52] give13

the structural response for any value of the random variable but may be intrusive, which makes them impractical for14

complex problems. Finally, sampling techniques such as the Monte Carlo method are fully non-intrusive but require15

many calls to the limit state function to compute the probability of failure with precision [39]. Several variance16
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reduction techniques may be used to reduce the number of calls to the solver [4, 10]. Among them, multilevel Monte17

Carlo [24] is a multifidelity method exploiting different levels of fidelity of the limit state function to estimate the18

probability of failure. Reliability-based mesh convergence analysis using adjusted control variates [23] is a variance19

reduction technique based on multilevel Monte Carlo. It allows to check mesh convergence on the probability of failure20

and validate mesh choice by computing the probability of failure at different mesh sizes. Yet, variance reduction21

techniques still require many calls to the limit state function and can be costly.22

In order to reduce the computational cost, a surrogate model can be built from a few evaluations of the original23

model and is cheaper to evaluate. Three families of surrogates to be used together with sampling techniques may be24

encountered. First, reduced basis methods aims at approximating the structural response for any input parameter25

with reduced cost. Controlling the approximation due to the use of the reduced basis is a difficult task but methods26

do exist to obtain bounds allowing to control it [19]. Second, it is possible to use classifiers such as Support Vector27

Machines [55] as the reliability problem may be seen as a classification problem between safe and failed sampling points28

[41]. However, using such techniques does not benefit from the knowledge of the value of the limit state function at29

each evaluation. Finally, metamodels that aims at approximating the limit state function are of particular interest.30

Classical metamodels that are used in the reliability context are polynomial functions [12], generalized response31

function [48], kriging [16], splines [49] and neural networks [49]. Among these techniques, kriging [27] is a flexible32

metamodel with interpolating properties. Thanks to its stochastic formulation, kriging provides an estimation of the33

variance at any unexplored point of the metamodel. This estimation allows to enrich the metamodel with new points34

in unexplored areas : the surrogate then becomes an adaptative metamodel [16].35

Exploiting different levels of fidelity in a multifidelity framework is an efficient way to reduce computational36

cost but also to control the discretization error introduced by the mesh. To this day, the use of multifidelity in37

metamodel-based estimation of the probability of failure is limited. A response surface built with the mesh size as an38

input variable was used in [3] for the purpose of response surface methodogy. The adaptation of kriging to correlated39

discrete levels of fidelity, called multifidelity co-kriging was used with FORM in [40]. The multifidelity cokriging40

metamodel was also used with crude Monte Carlo simulations in [33] but no adaptive enrichment of the metamodel41

was used. It was only until recently [59] that this metamodel was used in an adaptative framework to reduce the42

computational burden. Choosing a sufficiently converged mesh (that is to say the highest fidelity level) is usually43

done prior to the computation of the probability of failure. However, it is shown in [38, 22] that a small error on44

the value of the performance function may lead to a large error on the probability of failure. Several recent works45

propose to estimate and control the discretization error on the probability of failure. First, the knowledge on the46

mesh convergence of the limit state function may be used to estimate a converged probability of failure. Richardson47

extrapolation is used in [3] with a polynomial metamodel to compute the value of the probability of failure when48

mesh size tends to zero. In [36], the same Richardson extrapolation is used with FORM to compute a converged49

probability of failure. However, neither of them allow to control the degree of approximation introduced by the use50

of Richardson extrapolation. Second, it is possible to estimate the discretization error estimators introduced by the51

mesh on the value of the limit state function [31, 1, 6, 61]. Among these techniques, the error bounds based on the52

error in constitutive relation [31] provide guaranteed error bounds. In [18], this discretization error estimator is used53

with FORM to compute bounds on the probability of failure. In [38], a kriging metamodel is built using points that54
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are guaranteed to be rightly classified by the discretization error bounds. Bounds on the probability of failure are55

also obtained when the performance function is monotonic against random variables on a numerical example with a56

unique random variable.57

The objective of this paper is to propose adaptive numerical strategies to control the discretization error during58

the estimation of the probability of failure thanks to multi-fidelity kriging-based metamodels. The first method in59

this paper is developed for users having access to a discretization error estimator. Note that, it may not be the case60

for non-linear mechanics, non-linear quantities of interest and/or with industrial finite element softwares in which61

the error estimators is not available. This method is an adaptation of the method presented in [38]. The novelties to62

this method presented in this paper are the extension to multiple random variables and the derivation of bounds on63

the probability of failure. The second method developed in this paper consists in building a mesh size parameterized64

kriging metamodel to be able to compute the probability of failure for any mesh size. This property will allow to65

check a posteriori the convergence of the probability of failure. This method does not require any discretization error66

estimator and is only based on a priori convergence properties and evaluations of the solution on different meshes.67

The structure of this paper is the following. In Section 2, mechanical and reliability formulations are presented.68

Then, classical kriging-based computation of the probability of failure is explained in Section 3. In Subsection 4.1,69

guaranteed state kriging as introduced in [38] is presented together with its extension to multiple variables. In70

Subsection 4.2, mesh size-parameterized kriging is presented. Finally, both techniques are tested on two numerical71

problems in Section 5.72

2. Mechanical and reliability formulation73

In order to define the reliability problem, the deterministic continuous mechanical problem is presented in this74

section. Then, the stochastic reliability problem is given: random variables and the limit state function are defined.75

Finally, the estimation of the probability of failure is presented.76

2.1. Continuous mechanical problem77

First, the structure is defined as occupying an open domain Γ Ă Rd, where Rd represents the physical space.78

Let us consider the static equilibrium of this (polyhedral) structure subject to a given body force f within Γ, to79

a given traction force F on BFΓ and to a given displacement field ud on the complementary part BuΓ ‰ H. Let80

us make the hypothesis that the structure undergoes small perturbations and that the material has linear elastic81

properties, characterized by Hooke’s elasticity fourth order tensor H. Let u be the unknown displacement field, ε puq82

the symmetric part of the gradient of u, σ the Cauchy stress tensor.83

We first introduce two affine subspaces and a positive form :84

• The affine subspace of kinematically admissible fields (KA-fields)

CA “

!

u P
`

H1pΓq
˘d

, u “ ud on BuΓ
)

(1)

where H1 designates the space of square-integrable with its derivative also being square-integrable. Let us note85

CA0 the associated vectorial space.86
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• Affine subspace of statically admissible fields (SA-fields)

SA “

#

τ P
`

L2pΓq
˘dˆd

sym ; @v P CA0,

ż

Γ

τ : ε pvq dΓ “

ż

Γ

f ¨ vdΓ `

ż

BFΓ

F ¨ vdS

+

(2)

Where L2 represents the set of square-integrable fields.87

• Error in constitutive equation

eCRΓ
pu, σq “ }σ ´ H : ε puq }H´1,Γ (3)

where }.}H´1,Γ “

d

ż

Γ

`

. : H´1 : .
˘

dΓ88

The continuous problems is:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Find a displacement field u and a stress field σ such that

u “ ud on BΓ
č

BuΓ and ε puq “
1

2
pgradpuq ` gradT puqq on Γ

divpσq ` f “ 0 on Γ and σn “ F on BFΓ

σ “ H : ε puq on Γ

(4)

The solution to this problem exists and is unique according to the Kirchhoff uniqueness theorem. This solution89

is a couple of exact displacement field and exact stress field denoted as
´

uex, σex

¯

.90

2.2. Definition of the probability of failure of structures91

Let us define a performance function defining the domain of failure and of safety. This performance function is also92

called limit state function and is usually written as a margin between a resistance R and a solicitation Sex “ S puexq:93

gex “ R ´ Sex “ R ´ S puexq (5)

The structure is considered as failed if gex ď 0 and safe if gex ą 0.94

Let us consider that the uncertainties on the mechanical problem (geometry, loading, ...) are modeled by random

variables. Let us gather the n random variables of the mechanical problem in X P Ω with joint probability density

fXpxq. Therefore, the quantities uex, S puexq or even R are also random. The exact probability of failure Pf reads :

Pf “

ż

gexpXqď0

fXpxqdx1 . . . dxn (6)

Usually, the exact values uex and Sex are unknown. Therefore, a discretization technique is employed to solve95

the mechanical problem, which introduces a discretization error. In this paper, we consider that the finite element96

(FE) method is used. In the next subsection, we detail the discrete mechanical problem for reliability assessment.97
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2.3. Discrete mechanical problem for reliability assessment98

Let Γh be a tessellation of Γ̄ by triangles. The subscript h denotes the mesh size chosen as an input for meshing

the structure. The finite element method consists in searching for a displacement field in the finite subspace CAh of

CA where CAh reads:

CAh “

!

u P
`

H1pΓq
˘d

, u “ ud on BuΓh

)

(7)

CA0
h is the associated vectorial space.99

The discrete problem can be formulated as:

Find uh P CAh such that

σ
H

“ H : ε puhq
ż

Γh

σ
H

: ε pvhq dΓ “

ż

Γh

f ¨ vhdΓ `

ż

BFΓh

F ¨ vhdS,@vh P CA0
h

(8)

The solution of this discrete problem exists and is unique according to the Lax-Milgram theorem. The discrete

solution uh usually does not coincide with the exact solution uex. Let note gh the limit state function computed

from the finite element solution uh and defined by:

gh “ R ´ Sh “ R ´ S puhq (9)

It is possible to use gh to compute an estimation of the probability of failure:

Pf,h “

ż

ghpXqď0

fXpxqdx1 . . . dxn (10)

Because of the discretization error, Pf ‰ Pf,h.100

2.4. Estimation of the discretization error for structural reliability assessment101

The finite element method introduces a discretization error as the discrete displacement field uh differs from the102

exact solution uex. A priori estimation of this error is made possible by exploiting the convergence rate of the FE103

problem. Theoretically, the rate of convergence γ against mesh size is known to follow [5]:104

}uex ´ uh}L2pΓq
ď Ch´γ (11)

If the quantity of interest S is a linear form of the displacement field, then :105

|S puexq ´ S puhq| ď
“

Ch´γ
‰2

“ C2h´2γ (12)

γ depends on the regularity of the problem and the degree of interpolation of the finite element shape functions.

Note that this inequality involves constants that are not computable. A posteriori estimation of the discretization

error is also possible. Such techniques rely on a post-process of the finite element solution [2]. In this paper, estimators

based on the error in constitutive relation (3) are chosen as they provide guaranteed error bounds [31]. First, let us

define the energy norm of the displacement ~.~Γ:

~v~Γ “
›

›ε pvq
›

›

H,Γ
(13)
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These estimators of the discretization error are based on the fundamental Pythagore theorem applied to this106

norm:107

@pû, σ̂q P CA ˆ SA,

›

›ε puexq ´ ε pûq
›

›

2

H,Γ
`

›

›

›
σ
ex

´ σ̂
›

›

›

2

H´1,Γ
“ e2CRΓ

pû, σ̂q

(14)

Choosing û “ uh P CA allows to obtain the following upper bound for the error ediscr “ uex ´ uh:

ediscr :“ ~ediscr~Γ ď eCRΓ
puh, σ̂q (15)

While being a complex task, several methods have been developed to compute a statically admissible stress field108

σ̂ P SA (see [30], [42], [44] and [46]).109

By using extractors [7] in the context of goal-oriented error estimation, it is possible to obtain guaranteed bounds110

on the discretization error on the quantity of interest |S puexq ´ S puhq |. Note that specific methods to calculate111

guaranteed bounds exist for non linear quantities of interest [51, 47]. If not, the quantity of interest would have to be112

linearized at the cost of the loss of guaranteed bounding. Goal-oriented error estimation requires to solve an adjoint113

problem defined by :114

Find
´

ruex, rσ
ex

¯

P CA0
pΓq ˆ ĂSApΓq such that eCRΓ

pruex, rσ
ex

q “ 0 (16)

where

ĂSApΓq “

#

τ P
`

L2pΓq
˘dˆd

sym ; @v P CA0
pΓq,

ż

Γ

τ : ε pvq dΓ “ Spvq

+

(17)

The adjoint problem is usually solved using the finite element method with a mesh of size rh whose output is ru
rh.115

The mesh does not need to be the same as for the forward problem, however, in this paper, the same mesh is used116

(rh “ h) as it saves computational time in stiffness matrix factorization. Solving the finite element problem is in117

fact simplified to a multiple (double) right-hand side linear system resolution. Let us note r̂σh a statically admissible118

stress field built from ruh thanks to [30], [42], [44] or [46].119

Exploiting the results from [28, 29], it is possible to derive guaranteed bounds on the exact value of the limit120

state function:121

g´ ď gex ď g` (18)

where
g` “ gh ´

1

2

ż

Γ

pr̂σh ` H : ε pruhqq : H´1 : pσ̂
h

´ H : ε puhqqdΓ `
1

2
eCRΓpuh, σ̂h

qeCRΓpruh, r̂σhq

g´ “ gh ´
1

2

ż

Γ

pr̂σh ` H : ε pruhqq : H´1 : pσ̂
h

´ H : ε puhqqdΓ ´
1

2
eCRΓ

puh, σ̂h
qeCRΓ

pruh, r̂σhq

(19)

Let us note that gh is not guaranteed to lie within the interval defined in (18). The middle of these bounds gm “
g`

`g´

2122

was found to be a much better approximation of the true value gex than gh in [37].123
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2.5. Computation of the probability of failure thanks to the Monte Carlo method124

Computing the probability of failure Pf,h from equation (10) is not a trivial task. Indeed, the limit state function125

gh is not known explicitly but only implicitly as it requires to call the FE solver. Therefore, sampling techniques126

such as the Monte Carlo method are usually used and the probability of failure is approximated as:127

Pf,h,MC “
1

nMC

nMC
ÿ

i“1

indghă0 pxiq (20)

It requires the generation of nMC realizations of the random variable X. Those realizations are gathered in a128

set denoted PMC which is the Monte Carlo population. The Monte Carlo method introduces an estimation error129

as Pf,h,MC ‰ Pf,h. It is possible to calculate a posteriori the coefficient of variation on the probability of failure130

and check if the size of the Monte Carlo population is sufficient to compute a converged probability of failure. This131

criterion reads:132

COVPf,h,MC
“

d

Pf,h,MC

nMC p1 ´ Pf,h,MCq
ă COVPf,h,MC ,target (21)

If this criterion is not satisfied, the Monte Carlo population has to be enriched with new points to satisfy (21).133

Unfortunately, the Monte Carlo method is known for having a slow convergence rate. Thus, computing the probability134

of failure of the structure through crude Monte Carlo sampling is too expensive computationally as it would require too135

many expensive calls to the FE solver. This is the reason why metamodels are often used to reduce the computational136

burden. Kriging-based metamodels are very briefly presented in the next Section.137

3. Adaptive kriging for computing a probability of failure138

3.1. General presentation139

Classical metamodels used to compute a probability of failure with Monte Carlo estimation are polynomial chaos140

[12], generalized response surfaces [48], neural networks [49], splines [49], kriging [16] and evofusion [38]. Using a141

meta-model built from FE computations combined with Monte Carlo sampling to compute the probability of failure142

introduces 5 sources of error:143

• The statistical error due to the limited statistics for identifying the joint probability density function of X144

• The model error due to the model choice of the mechanical problem145

• The discretization error due to the choice of the mesh size146

• The approximation error or meta-modelling error due to the metamodel147

• The estimation error due to the Monte Carlo population being finite148

The statistical error may be reduced by increasing the database for variables selected from the sensitivity analysis.149

The model error may be evaluated by checking each individual hypotheses of the mechanical model and by doing150

experiments for example [53]. Both statistical and model errors are outside the scope of this paper. Conducting151

the convergence study and choosing a mesh guaranteeing a small discretization error on the limit state function152
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may lead to a large error on the probability of failure as shown in [38, 22]. However, expert knowledge or standard153

and recommended practices may guide mesh choice a priori. The estimation error may be controlled by using the154

coefficient of variation of the Monte Carlo estimator to verify that the Monte Carlo population is large enough. The155

metamodeling error may be reduced or even negated by the use of a learning function and criterion (adaptive kriging).156

Kriging-based metamodels are appealing meta-models as they offer an estimation of uncertainty together with the157

estimation of the quantity of interest at any input location. In the rest of the paper, as the exact mechanical solution158

is unknown and as the observations can only be obtained from FE simulations, the subscript h will be omitted.159

The following subsections aim at briefly explaining the principle of kriging and how it is used for estimating a160

probability of failure.161

3.2. Kriging meta-model162

The objective of kriging is to build a meta-model ĝ : x Ñ ĝpxq from nobs observations pgpxjqqj“1..nobs
by assuming163

that ĝ is the realization of a stationary Gaussian process G [27]. In this paper, we use ordinary kriging, which means164

that the mean of the stationnary process is an unknown constant. This constant is estimated during the construction165

of the meta-model. Moreover, it is necessary to postulate the form of the correlation of G. Here, a gaussian correlation166

function is selected as it was observed to give the best approximation between most standard correlation functions on167

several test cases [35]. In order to determine the variance of the gaussian process, we used the maximum likelihood168

estimation as it is considered for its asymptotical optimality [58, p. 124]. Note that a good initial guess may be169

obtained through mean square estimation [13]. Once that the variance is determined, ĝ is searched as the best linear170

unbiased predictor which leads to the solving of an optimization problem. In addition to the estimator of the mean171

ĝ, the kriging metamodel provides the variance σĝ. Intereted readers on the implementation of kriging can refer to172

[14].173

3.3. Learning function174

In order to reduce the metamodeling error by adding new points to the metamodel ĝ, one needs a learning function175

that identifies uncertain points within the Monte Carlo population and a learning criterion to identify whether the176

metamodel is sufficiently converged or not.177

The first learning function that was introduced is the Expected Feasibility Function (EFF) in [9]. It measures178

the expectation that the stationary gaussian process belongs to r´ϵ,`ϵs, where ϵ is chosen as proportional to σĝ.179

The next learning point is chosen as the point within the Monte Carlo population PMC maximizing the EFF. For180

multifidelity cokriging and to select both the next learning point and the level of fidelity on which the point will be181

calculated, only the EFF has been adapted [59].182

Since then, several learning functions have been introduced [60, 8, 45, 9, 43] but the U function [16] remains

a reference in reliability analysis [34]. The next learning point xnext is chosen as the point in the Monte Carlo

population maximizing the probability of predicting the wrong sign for ĝpxnextq:

xnext “ argmin
xPPMC

U pxq “
|ĝ|

σĝ
(22)

The U learning function was used with guaranteed state kriging in [38] and will be used in this paper as well.183

8



3.4. Approximation error and learning criterion184

In [16], it is considered that the learning process can stop when Upxnextq ą 2. However this criterion is known to185

be too conservative as new points keep being added while the estimation of the probability of failure has converged186

[21, 54]. A possibility introduced in [59] is to propagate the probability of wrong sign to the estimation of the187

approximation error :188

eapprox “

ˇ

ˇ

ˇ
Nf ´ N̂f

ˇ

ˇ

ˇ

Nf
(23)

with Nf “ card ptx P PMC |gpxq ď 0uq and N̂f “ card ptx P PMC |ĝpxq ď 0uq. The estimated number of false negative189

points N̂r is an approximated upper bound for
ˇ

ˇ

ˇ
Nf ´ N̂f

ˇ

ˇ

ˇ
which represents the error on the number of points in190

the failure domain, as some false positives might compensate for the false negatives. Note that other estimates of191

the approximation error are available in the literature [60, 56, 57]. They all rely on the construction of confidence192

intervals. It is possible to estimate N̂r by assuming that points with wrong sign are uncorrelated :193

N̂r “

nMC
ÿ

i“1

Indĝď0 pxiq ˆ Φ p´U pxiqq (24)

Inserting (24) into (23) gives an approximate upper bound on the approximation error :

eapprox Æ
N̂r

ˇ

ˇ

ˇ
N̂f ´ N̂r

ˇ

ˇ

ˇ

“ ẽapprox (25)

The learning criterion may be written as a maximal approximation error. In this paper, this maximal approxi-194

mation error is taken as 1%:195

ẽapprox ă 1% (26)

Finally, the probability of failure is estimated using Monte Carlo method on the meta-model:196

P̂f,MC “
1

nMC

ÿ

xPPMC

Indĝď0 pxq (27)

3.5. Articulation of both criteria197

In AK-MCS [16], the learning criterion is the first criterion to be satisfied on the Monte Carlo population. The198

estimation error is controlled by enriching the Monte Carlo population only when the learning criterion is already199

satisfied. Indeed, if the approximation error is not sufficiently controlled and the probability of failure is found too200

low, it might entail enriching the Monte Carlo population too much. It would result in unnecessary calls to the201

metamodel ĝ but also to g as a large number of points would have to satisfy the learning criterion.202

3.6. Initialization of the metamodel203

Twelve calls to the FEM solver are used for initialization in [16]. However, this number should be dependent204

on the number of random variables n and their correlation while being greater than n ` 1 in order to allow the205

construction of the kriging hypersurface ĝ. In this paper, twelve calls are used for initialization as the two problems206
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have two random variables. The method to select these input points should be designed in order to spread them207

and obtain a good first approximation of the limit state g “ 0. The selection of these points may be done by expert208

judgement or by using available simulations. More systematically, Latin Hypercube Sampling (LHS) may be used209

to pick these points according to the random variables distributions while guaranteeing spread as done in [16]. For210

bounded random variables, a factorial experiment may also be used in order to explore the whole domain Ω.211

4. New adaptive multi-fidelity kriging strategies212

In this section, two methods are presented to perform multi-fidelity adaptive kriging in order to compute the213

probability of failure. A first method based on [38] can be employed by users having access to a finite element214

discretization error estimator. This method is based on the bounding (18). It enables to compute bounds on the215

exact probability of failure. In the second subsection, a method to compute the probability of failure thanks to a216

mesh size-parameterized kriging meta-model is presented. This method does not require error estimators. It enables217

to compute the value of the probability of failure for any mesh size.218

4.1. Guaranteed state kriging using discretization error estimator219

4.1.1. General principle from [38]220

Guaranteed state kriging (GSK) consists in building a kriging meta-model from calls to different levels of fidelity,221

here different mesh sizes. First, a set of possible meshes ranked from coarsest to finest is generated. The idea is to222

build a kriging metamodel using points which the discretization error bounds enables to guarantee its state (failed223

or safe). If it is not the case, the FE simulation is computed on the next finer mesh until the finest mesh is reached.224

The subroutine that selects this mesh size is presented in Algorithm 1. The advantage of this method is that coarse225

mesh can be used for points far from the limit state as long as their state is certain, which results in computational226

time reduction.227

Algorithm 1: Mesh selection with guaranteed state kriging
Input : xnext : Point selected by the learning criterion or by the initialization

hvec “ rhmin, ..., hmaxs : Possible mesh sizes on which to compute xnext

Mesh Choice:

hnext “ hmax

i “ 1

Compute gm pxnext, hnextq, g` pxnext, hnextq, g´ pxnext, hnextq using (19);

while g´ pxnext, hnextq ˆ g` pxnext, hnextq ă 0 & hnext ą hmin do
i “ i ` 1

hnext “ hvecpiq

Compute gm pxnext, hnextq, g` pxnext, hnextq, g´ pxnext, hnextq

end

Result: gm pxnext, hnextq, g´ pxnext, hnextq and g` pxnext, hnextq

In this paper, only two levels of fidelity are used. Indeed, it was shown in [38] that it is a good compromise between228

using a single level of fidelity or intermediate meshes between coarse and fine meshes. On the one hand, using a single229
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level of fidelity would result in always calling the FEM solver on a costly fine mesh (standard monofidelity approach).230

On the other hand, using too many levels of fidelity would result in calling the FEM solver on too many useless231

intermediate mesh sizes which would increase the computational cost. Figure 1 shows an artificial example of kriging232

metamodel built with the above remeshing strategy, with g “ gm the middle of discretization error bounds and one233

random variable x. To build the meta-model, 9 calls to the FE solver were done for the seven points : x “ 1.4,234

x “ 1.5, x “ 2.11, x “ 3.2, x “ 3.53, x “ 4.63 and x “ 4.69 (for two points, 2 FE simulations were done: one on235

the coarse mesh, one on the fine mesh). The notations g´ and g` denote respectively lower and upper discretization236

error bounds on gex. We can observe that close to the limit state ĝ “ 0, ĝ is built from computations on the fine237

mesh.238

Figure 1: Example of guaranteed state kriging metamodel

4.1.2. Estimating discretization error bounds on the probability of failure239

In [38], bounds were propagated on the probability of failure by assuming the monotonicity of the limit state240

function against the value of the random variable. Let refer to Figure 1. For x` “ 3.53, gexpx`q is strictly negative241

since it lies between the upper and lower bounds computed on the fine mesh that are strictly negative. Therefore,242

the point x` is in the failure domain. Adding the hypothesis of monotonicity allows to guarantee the state of any243

realization of the random variable greater than x`. Using FX , the cumulative distribution function of X, allows to244

compute a lower bound on the probability of failure:245

P̂´
f “ FXpx`q; (28)

It is also possible to compute an upper bound on the probability of failure. Indeed, for x´ “ 2.15, gexpx´q is246

strictly positive since it lies between the upper and lower bounds that are strictly postive. Therefore, the point x´
247
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is in the safe domain.248

P̂`
f “ 1 ´ FXpx´q (29)

The bounds may also be computed in 2D using a similar methods as developped in [15]. Such method provides249

strict error bounds only relying on the hypotheses that the limit state function is monotonic. Note that under the250

hypothesis of linear quasi-static mechanical problem, the limit state function is monotonic if it is defined from a251

classical mechanical failure scenario corresponding to the difference between resistance and sollicitation. For time-252

dependant mechanical problems, it is possible to define scenario of failure leading to non monotonic limite state253

function.254

In this paper, we propose an approach to the estimation of the discretization error bounds on the probability of255

failure not relying on the monotonicity hypothesis. To do so, two kriging metamodels ĝ` and ĝ´ may be constructed256

using respectively gobs
`

“ rg` px1q , g` px2q . . . g`
`

xnobs

˘

s and gobs
´

“ rg´ px1q , g´ px2q . . . g´
`

xnobs

˘

s. Finally,257

bounds on Pf are computed using the same Monte Carlo population as for the initial adaptive strategy. It is not258

necessary to use an adaptive strategy to compute P´
f and P`

f precisely as it is possible to estimate the approximation259

error due to the use of non-converged metamodels ĝ` and ĝ´. It is also possible to take advantage of the property260

ĝ` ą ĝ ą ĝ´. Let us partition PMC into two subpopulations P`
MC and P´

MC :261

P`
MC “ tx P PMC , ĝ pxq ą 0u

P´
MC “ PMC ´ P`

MC “ tx P PMC , ĝ pxq ď 0u
(30)

It eases the computation of the following bounds on the probability of failure:

P̂`
f,MC “ 1

nMC

ř

xPP`
MC

Indĝ`ď0 pxq

P̂´
f,MC “ 1

nMC

»

–

ř

xPP´
MC

Indĝ´ď0 pxq `
ř

xPPMC

Indĝď0 pxq

fi

fl

(31)

It is also possible to estimate the approximation error by rewriting (25):262

ẽ`
approx ď

N̂`
r

|N̂`
f ´N̂`

r |

ẽ´
approx ď

N̂´
r `N̂r

|N̂´
f `N̂r´N̂´

r ´N̂r|

(32)

Where the notations N̂`
r , N̂`

f , N̂´
f and N̂´

r are straightforwardly adapted from (28).263

This strategy is illustrated in section 5.2.264

4.1.3. Algorithm265

Algorithm 2 presents the implementation of Adaptive Guaranteed State Kriging with Monte Carlo Simulations266

(AGSK-MCS).267

4.2. Mesh size-parameterized kriging meta-model268

It is not always possible to compute discretization error bounds as it may be intrusive to industrial finite element269

codes. To this end, a novel approach is presented that only requires calls to FE solver with different mesh sizes and270

exploits the convergence rate of the FE method.271

12



Algorithm 2: Adaptive Guaranteed State Kriging with Monte Carlo Simulations (AGSK-MCS)
Input :

COVtarget: Target value of the coefficient of variation;

nMC : Initial size of the Monte Carlo population;

hvec “ Jhmax, . . . , hminK: possible mesh sizes;

Initialization :

Generate xobs to initialize the metamodel ;

Use the remeshing strategy from Algorithm 1 for each point in xobs;

Build the metamodel ĝ and compute it for the whole Monte Carlo population PMC ;

Compute P̂f,MC , ẽapprox and COVP̂f,MC
;

Enrichment :

while ẽapprox ą 1% and COVP̂f,MC
ą COVtarget do

if ẽapprox ą 1% then

Find xnext P PMC , , such that U pxnextq “ min pU pPMCqq;

Append xobs with xnext

Compute the remeshing strategy from Algorithm 1 for xnext and hvec to obtain gm pxnext, hnextq,

g´ pxnext, hnextq and g` pxnext, hnextq

Append gobs with gm pxnext, hnextq, gobs
´ with g´ pxnext, hnextq and gobs

` with g` pxnext, hnextq

Build the metamodel ĝ
else

Compute nMC “
1´P̂f,MC

P̂f,MCCOV 2
target

Enrich the Monte Carlo population so that: size pPMCq “ nMC

end

Compute the metamodel ĝ on the whole Monte Carlo population PMC ;

Estimate P̂f,MC , COVP̂f,MC
, ẽapprox and U pPMCq

end

Post-processing: Separate PMC into two subpopulations P`
MC and P´

MC using (30);

Build ĝ` and ĝ´ respectively with gobs
` and gobs

´

Compute P̂`
f,MC and P̂´

f,MC using (31) together with COVP̂`
f,MC

and COVP̂´
f,MC

;

Compute ẽ`
approx and ẽ´

approx using (32);

Result:

P̂f,MC , ẽapprox, COVP̂f,MC

P̂´
f,MC , ẽ´

approx, COVP̂´
f,MC

P̂`
f,MC , ẽ`

approx, COVP̂`
f,MC
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4.2.1. General presentation272

Here an extended kriging metamodel is developed and called mesh size-parameterized kriging (MSK). The input273

variables of this metamodel are x and the mesh size of the numerical simulation:274

ĝ : rx, hs Ñ ĝ px, hq

Ω ˆ R`˚ Ñ R
(33)

The key ingredient is to take advantage from the known convergence rate of gh as shown in (12):275

D rα, γs P R` ˆ R such that γ ą α, and that @x P Ω, gexpxq ´ ghpxq “ β1h
α ` Ophγq (34)

to build a universal kriging process defined as:276

gpx, hq “ β0 ` β1h
α ` Zpx, hq (35)

The parameter α has to be computed prior to the construction of the kriging metamodel. The parameters β0277

and β1 are found during the construction of the meta-model. One will notice that Z still depends on h to account278

for spatial correlation that depends on h.279

The great advantage of this method is that once the meta-model is built, it can be used to compute the probability280

of failure for any mesh size with crude Monte Carlo sampling since evaluations of the meta-model are cheap.281

4.2.2. Augmented U learning function282

As the mesh size is now a parameter of the kriging meta-model, we propose to adapt the U learning function in283

order to obtain the next point to evaluate and the optimal mesh size on which it will be evaluated.284

First, the next observation point xnext is defined as285

xnext “ argmin
xPPMC

|ĝ0 px, hminq|

σĝ0 px, hminq
(36)

where ĝ0 denotes the metamodel before the addition of a new point. Indeed, our objective is that the learning286

criterion should be fulfilled on the fine mesh hmin.287

Then, the mechanical problem is solved for x “ xnext on the coarsest mesh h “ hmax, which allows to obtain288

information at low computationnal cost for x “ xnext. The metamodel is updated thanks to this new observation.289

We note ĝ1 the obtained metamodel.290

Finally, the mesh size hnext is sought as:291

hnext P rhmin, hmaxs , such that
|ĝhnext

pxnext, hminq|

σĝhnext
pxnext, hminq

“ Utarget (37)

where ĝhnext
is the meta-model obtained after the update at the learning point xnext thanks to the call to the FE code

at the mesh size hnext. Note that σĝhnext
is the associated variance estimator. The previous equation is equivalent

to:

hnext “ argmin
hPrhmin,...,hmaxs

ˇ

ˇ

ˇ

ˇ

ĝh
σĝh

´ Utarget

ˇ

ˇ

ˇ

ˇ

(38)
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In this paper, the value Utarget “ 2 is used as it was seen to be sufficiently demanding in [21]. The method to select292

the mesh size hnext is summarised in Algorithm 4. This Algorithm relies on a function f that is defined in Algorithm293

3. Minimizing (38) can be done with any standard minimization algorithm. This learning process is more expensive294

than standard learning process as it requires to build a kriging metamodel at each step of the minimization process295

as shown in Algorithm 4. Finally, the algorithm enforces that hmin ď hnext ď hmax. Indeed, if the minimization296

of f over h is done with a standard minimization algorithm, it is possible that a standard minimization algorithm297

finds a minimum for h ă hmin. However, hmin is the smallest mesh size on which we accept to do finite element298

computations. Therefore, if the minimization leads to h ă hmin, we set hnext “ hmin. On the contrary, it is possible299

that adding the y0 to the meta-model is already sufficient to reach the learning objective so that the minimization on300

f leads to hnext ą hmax. Therefore, we set hnext “ hmax and in this particular case, the construction of the updated301

meta-model has already been realized on the third step of Algorithm 4.302

Algorithm 3: Definition of f function

Function f(h):
Compute gnext “ ĝ1 pxnext, hq

Construct ĝh by adding rxnext, hnexts with value gnext to the metamodel ĝ1.

Compute obj “

ˇ

ˇ

ˇ

ĝh
σĝh

´ Utarget

ˇ

ˇ

ˇ

Result: obj

return

Algorithm 4: Selection of the new learning point and mesh size using mesh size parameterized kriging
Input : Utarget : Fixed to 2 in this paper

Select xnext “ argmin
xPPMC

|ĝ0px,hminq|

σĝ0
px,hminq

Call the mechanical solver to compute y0 “ g pxnext, hmaxq

Construct ĝ1 by adding rxnext, hmaxs with value y0 to the metamodel ĝ0.

Obtain hnext by minimizing f over h with starting point h “ hmin

if hnext ą hmax then
hnext “ hmax

end

if hnext ă hmin then
hnext “ hmin

end

Result: xnext and hnext

4.2.3. Initialization of the mesh size parameterized kriging metamodel303

When choosing the points rxobs, hobss to initialize the mesh size parameterized kriging metamodel, it is necessary

to select points distributed on different mesh sizes for two reasons : to be able to calculate a correlation length in

the direction of h and to allow the computation of α, the mesh convergence rate. In order to compute α, we choose

to do these computations at a given point x˚ but for different h. To this end, a vector of five different mesh sizes is
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defined with a factor of two between each mesh size:

hvec “ rhmin, 2hmin, 4hmin, 16hmins (39)

First, a set of m observations of g are computed on the coarse mesh of size 16hmin. The selection of these points304

is problem dependent but follows the same idea as in 3.6. Second, the point x˚ is defined:305

x˚ “ argminp|gpxq|q
xPxobs

(40)

The FE solver is called for the realization x˚ on all the mesh sizes in hvec except hmin. The factor of two between306

each mesh size allows to compute the mesh convergence rate :307

α “

log

ˆ

gpx˚,4hminq´gpx˚,8hminq
gpx˚,2hminq´gpx˚,4hminq

˙

logp2q
(41)

4.2.4. Algorithm308

Algorithm 5 presents the methods developed throughout this section 4.2. The input of this algorithm are :309

COVtarget the target value of the coefficient of variation, nMC the initial size of the Monte Carlo population, m the310

number of calls to the coarse mesh at initialisation (updated during enrichment), hvec “ rhmin, 2hmin, 4hmin, 16hmins311

the vector of mesh sizes used for initialization, hprob the vector gathering the nprob mesh sizes on which the probability312

of failure is extrapolated. hvecpiq denotes the ith value of the vector hvec. hprobpiq denotes the ith value of the vector313

hprob.314

5. Numerical assessments315

In this section, we apply the two new methods on two mechanical examples: the so-called Gamma-shaped structure316

(GSS) and the cracked plate (CP). Both mechanical problem rely on the same hypotheses listed in Section 2 and317

are presented in the first subsection. All numerical illustration were done on Dell laptop with Intel Core processor318

(2.20GHzˆ12) and RAM of 8.1Go.319

All metamodels were built using the OODace toolbox [14] with a gaussian kernel. Guaranteed state kriging uses320

ordinary kriging while the mesh size parameterized kriging metamodel uses universal kriging. Default parameters of321

the kriging metamodel are defined in Table 1 where var
`

xobs
1

˘

denotes the variance estimated on the observations322

at initialization for the first variable x1 and var
`

xobs
2

˘

for x2. The correlation length is chosen as different for each323

direction in x (anisotropic kriging). The initial value of that hyperparameter is updated after each construction of324

the kriging metamodel: the value found at a given construction of the metamodel is used as the initial one for the325

next construction. The learning criterion is fixed to ẽapprox ă 1%. While the number of initial points in PMC is326

dependent on the problem itself (50, 000 for the gamma shaped structure, 5, 000 for the cracked plate problem), the327

target coefficient of variation on the probability is fixed to 2ˆ10´2 for both problems. To attest about the robustness328

of each approach, they were all tested on 5 different Monte Carlo populations for each problem.329
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Algorithm 5: Adaptive mesh size parameterized kriging with Monte Carlo Simulations (AMsK-MCS)
Input :

COVtarget: Target value of the coefficient of variation;

nMC : Initial size of the Monte Carlo population ;

m: Number of calls to the coarse mesh at initialisation (updated during enrichment);

hvec “ rhmin, 2hmin, 4hmin, 16hmins : Vector of mesh sizes used for initialization;

hprob: The vector of size nprob on which the probability of failure is extrapolated.

Initialization :

Generate xobs the points used to initialize the metamodel by any of the methods described in 3.6;

Call the FE solver with the coarse mesh (mesh size: hmax) for each points in xobs: gobs “ g
`

xobs
1 , hmax

˘

;

Compute x˚ using (40);

for i=2:4 do

Call the mechanical solver with the mesh size hvecpiq for x˚ and append gobs with it;

end

Build a first mesh size parameterized kriging metamodel ĝ.

Compute α using (41).

Compute the metamodel on the whole Monte Carlo population and for the fine mesh: ĝ pPMC , hminq ;

Enrichment :

while ẽapprox ą 1% and COVP̂f
ą COVtarget do

if ẽapprox ą 1% then
Use Algorithm 4 to select the new learning point xnext and mesh size hnext.

Obtain gnext by calling the mechanical solver with the mesh size hnext for xnext.

Append xobs with xnext, gobs with gnext and hobs with hnext;

Compute the metamodel on the whole Monte Carlo population and for the fine mesh: ĝ pPMC , hminq ;

else

nMC “
1´P̂f phminq

P̂f,MCphminqCOV 2
target

Enrich the Monte Carlo population so that: size pPMCq “ nMC

Compute the metamodel ĝ on the whole Monte Carlo population PMC ;

Estimate P̂f,MC phminq and COVP̂f,MC
phminq.

end

end

Post-processing:

for i “ 1 : nprob do
Compute ĝ pPMC , hprob piqq

Compute P̂f,MC phprob piqq and ẽapprox phprob piqq

end

Result: P̂f,MC

`

hprob

˘

, ẽapprox
`

hprob

˘

and COVP̂f,MC

`

hprob

˘
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Hyperparameter Initial Minimal Maximal

Correlation length x1 var
`

xobs
1

˘

0 var
`

xobs
1

˘

Correlation length x2 var
`

xobs
2

˘

0 var
`

xobs
2

˘

Correlation length h var
`

hobs
˘

0 var
`

hobs
˘

(for mesh size kriging only)

Table 1: Default value of kriging hyperparameters

.
0.4m

0.4m
P p1.6m, 8.2mq

10m

2m

8m

6m

θ

F⃗ “ F pcospθqx⃗ ` sinpθqy⃗q

e⃗1

e⃗2

Figure 2: Gamma structure layout Figure 3: Mesh for mesh size fixed to 0.3m

5.1. Definition of the problems330

5.1.1. First example: gamma shaped structure331

The gamma shaped structure layout is described in Figure 2: it is blocked on its base and subjected to a constant332

force ÝÑ
F on the right-upper part of its boundary. The Young’s modulus is E “ 210GPa and the Poisson’s ratio is333

ν “ 0.3. Plane strain hypothesis is made. The quantity of interest defining the limit state function of this problem334

is:335

g “ σres ´ σ11 (42)

with σres “ 53Pa that leads to a probability of failure around 10´2 or σres “ 95Pa that leads to a probability of

failure around 10´5 and where σ11 is the stress component in the e⃗1 direction computed on a square zone ω of size

0.4m ˆ 0.4m as depicted on 2:

σ11 “
1

mespωq

ż

ω

σ11 pe1, e2q de1de2 (43)

Where e1 and e2 are the spatial coordinates of a point on the borders of the square ω. As depicted on Figure 3, the336

mesh is chosen as homogenous using T6 elements.337

The random variables of this problem are chosen as x1 “ F and x2 “ θ defined as both the modulus and the338

angle of the force applied to the structure. Their distribution are described in Table 2 and their joint probability339

density function is plotted in Figure 6.340
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Random variable Distribution Type Low. Bound Upp. Bound

θ Uniform 0 rad π
4 rad

Random variable Distribution Type Mean Variance

F Log normal 10.2 Pa.m 2.2 Pa2.m2

Table 2: Distributions of random variable for the gamma shaped structure

1m

1.5m

1Pa

1Pa

7m

8m

8m

a

θ

e⃗1

e⃗2

Figure 4: Cracked plate layout Figure 5: Mesh for mesh size fixed to 0.7m

5.1.2. Second example: crack propagation341

The cracked plate layout is presented in Figure 4: the plate is solicited in both traction and shear. The Young’s342

modulus is E “ 1Pa and the Poisson’s ratio is ν “ 0.3. Plane strain hypothesis is done.343

The scenario of failure is crack propagation based on the Griffith criterion [25]:344

g “ KI,res ´ KI (44)

Where KI,res “ 22Pa
?

m is the critical stress intensity factor of the material and KI is the stress intensity factor345

for the first mode of propagation. The stress intensity factor and discretization error bounds are computed using an346

integral defined on the crown shown in 4 as introduced in [50, 20]. As depicted on Figure 5, the mesh is chosen as347

homogenous using T3 elements. The two random variables were chosen as the crack length x1 “ a and the angle of348

the force x2 “ θ. The random variables are bounded by the beta distributions as described in Table 3.349

Figure 6 shows the value of the probability density function against the value of the random variable for both the350

gamma shaped structure problem and the cracked plate.351

5.1.3. Computation of the probability of failure using a standard monofidelity approach352

Let the standard monofidelity approach be the AK-MCS algorithm from [16] with the learning criterion changed353

from U ą 2 to ẽapprox ă 1%. The standard monofidelity approach is applied to both problems to obtain reference354
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Random variable Distribution type Low. Bound Upp. Bound Shape par. 1 Shape par. 2

a Beta 2 m 5 m 2 2

Random variable Distribution type Low. Bound Upp. Bound Shape par. 1 Shape par. 2

θ Beta ´π
2 rad π

2 rad2 3 2

Table 3: Distributions of random variable for the cracked plate

Figure 6: Colour map of the probability density function for each problem (same color bar for both color maps)

monofidelity results that are gathered in Tables 4, 5 and 6. Let tAlgo measure the time spent building the metamodel,355

evaluating it and computing the probability of failure. Let tFEM measure the time spent building and solving the356

FE problem. As 5 different Monte Carlo populations were tested for each problem, each line in these tables represent357

a different population PMC . The limit-state was plotted on Figures 7, 8 and 9 for each first line of the Tables 4, 5358

and 6. In this figure, the zone for which the sign of the meta-model is not the same sign as the exact limit state359

function was plotted. As the exact limit state function is unknown, an overkill metamodel was built with a much360

more demanding learning criterion : ẽapprox ă 0.01% (to be compared to ẽapprox ă 1% in the rest of the paper).361

P̂f,MCphq Nb. calls tFEM tAlgo

(ˆ10´2) h “ 0.01m (s) (s)

3.54 31 1653 <1

3.83 35 1795 <1

4.04 38 1911 <1

3.72 40 2022 <1

3.75 34 1851 <1

Table 4: GSS problem with σres “ 53Pa - Results with standard monofidelity approach

We can observe that the probability of failure is about P̂f,MC “ 4.10´2 for the gamma shaped structure with362
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P̂f,MCphq Nb. calls tFEM tAlgo

(ˆ10´5) h “ 0.01m (s) (s)

1.69 27 1460 55.4

1.75 23 1196 50.9

1.86 25 1338 57.7

1.73 25 1329 53.7

1.77 29 1627 71.2

Table 5: GSS problem with σres “ 95Pa - Results with standard monofidelity approach

P̂f,MCphq Nb. calls tFEM tAlgo

(ˆ10´3) h “ 0.03m (s) (s)

5.75 19 382 1

5.49 19 375 1

5.60 19 370 1

5.38 20 439 1

5.61 20 388 1

Table 6: Crack problem - Results with standard monofidelity approach

σres “ 53Pa, P̂f,MC “ 1.7 10´5 for the gamma shaped structure with σres “ 95Pa and P̂f,MC “ 5.10´3 for the363

cracked plate. Looking at Figures 7 and 8, the limit state for the gamma shaped structure seems to present a large364

zone with wrong sign. Note that the objective of the standard monofidelity approach is not to compute the best365

meta-model of the limit state function but to obtain an estimation of the probability of failure. The learning function366

does not trigger the computation of observations in zones where the probability density function is small, which is367

the case for the zone with wrong sign.368

Figure 7: GSS problem with σres “ 53Pa - Limit state using a standard monofidelity approach - results correspond to the first Monte

Carlo population

Calls to the FE code represent the main part of the total computational cost: it is found around 1840s for the369
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Figure 8: GSS problem with σres “ 95Pa - Limit state using a standard monofidelity approach - results correspond to the first Monte

Carlo population

Figure 9: Crack problem - Limit state using a standard monofidelity approach - results correspond to the first Monte Carlo population

gamma shaped structure whereas 390s for the cracked plate. Note that for the GSS problem, the number of FE370

calls is slightly smaller for σres “ 95Pa. This could be explained by the fact that the limit state is located in a371

zone in which the Monte Carlo population is less dense so that the learning process is less triggered by the learning372

criterion. For the GSS problem with σres “ 95Pa, the algorithm cost is much higher du to the very large Monte Carlo373

population required for the computation of a statistically converged probability of failure as the required memory to374

store the Monte Carlo population is of the same order of magnitude as the RAM memory. We observe that this cost375

is almost fully due to the calls to the FEM solver (around 35 calls for the gamma shaped structure whereas 20 calls376

for the cracked plate). Therefore, the use of multifidelity observations is an opportunity to reduce computational377

cost.378

5.2. Application of the AGSK-MCS algorithm379

In this subsection, the method AGSK-MCS presented in Section 4.1 is used to compute the probability of failure380

P̂f,MC . The algorithm 2 is used with the coarse and fine mesh chosen as r0.16m, 0.04ms for the gamma shaped381
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structure and as r0.5m, 0.1ms for the cracked plate. The results are presented in Tables 7, 8 and 9. Let terror382

measure the computational time required to compute the discretization error bounds on the limit state function.383

Figure 10: GSS problem with σres “ 53Pa - Limit state using AGSK-MCS algorithm - results correspond to the first Monte Carlo

population

Figure 11: GSS problem with σres “ 95Pa - Limit state using AGSK-MCS algorithm - results correspond to the first Monte Carlo

population
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Figure 12: Crack problem - Limit state using AGSK-MCS algorithm - results correspond to the first Monte Carlo population

Nb. calls

P̂´
f,MC P̂f,MC P̂`

f,MC Mesh size (m) tFEM terror tAlgo

ˆ10´2 ˆ10´2 ˆ10´2 0.16 0.04 (s) (s) (s)

1.63 4.06 17.09 32 25 111 4329 0.1

1.85 4.08 14.62 33 27 124 4509 0.1

2.05 4.30 7.71 36 30 132 4832 0.1

1.88 4.20 7.47 37 32 141 5105 0.1

1.90 4.30 8.46 34 29 123 4560 0.1

Table 7: GSS problem with σres “ 53Pa - Results with AGSK-MCS, two levels of fidelity

For each problem, the converged limit state on the first Monte Carlo population is plotted in Figures 10, 11384

and 12. For the gamma shaped structure, with σres “ 53Pa, we observe that the upper bound is very large only385

for the first two Monte Carlo populations PMC . Looking at Figure 10, it seems that the limit state giving P̂`
f,MC386

is disrupted around rF “ 7 N/m, θ “ 0.7 rads and rF “ 10 N/m, θ “ 0.3 rads. These failed points being situated in387

densely populated zones of PMC according to Figure 6, they increase drastically the value of P̂`
f,MC . However, the388

estimation of the approximation error is very high, if the value of the upper bound on P̂f,MC was important for389

reliability analysis, it would be necessary to continue the enrichment strategy until convergence on the limit-state of390

P̂`
f,MC as a post-process of the one on P̂f,MC . For the case where σres “ 95Pa, we observe the same behaviour for391

all Monte Carlo populations except the second one. We can observe that the limit state giving P̂`
f,MC is quite far392

from the reference limit state at the vicinity of rF “ 17 N/m, θ “ 0.7 rads. The limit-states for the cracked plate393

problem seem to behave better than for the gamma shaped structure. It results in lower, middle and upper bounds394
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Nb. calls

P̂´
f,MC P̂f,MC P̂`

f,MC Mesh size (m) tFEM terror tAlgo

ˆ10´5 ˆ10´5 ˆ10´5 0.5 0.1 (s) (s) (s)

0.43 2.25 492.26 28 16 149 4429 41.9

0.49 2.26 8.37 25 14 431 13004 42.1

0.32 2.36 975.8 23 19 163 4772 54.8

0.43 2.21 371.73 25 13 97 3180 43.9

0.36 2.29 818.51 27 15 147 3960 48

Table 8: GSS problem with σres “ 95Pa - Results with AGSK-MCS, two levels of fidelity

Nb. calls

P̂´
f,MC P̂f,MC P̂`

f,MC Mesh size (m) tFEM terror tAlgo

ˆ10´3 ˆ10´3 ˆ10´3 0.5 0.1 (s) (s) (s)

4.17 6.99 10.47 21 10 40 1034 0.7

4.14 6.90 10.31 19 8 33 786 0.7

4.22 7.04 10.50 20 9 34 898 0.7

3.96 6.70 10.46 20 9 56 1625 0.7

3.93 6.74 10.29 19 8 33 897 0.7

Table 9: Crack problem - Results with AGSK-MCS, two levels of fidelity

on P̂f,MC being very close between each population in Table 9.395

Let us now look at the spatial distribution of the learning points and the value of the mesh size. For the gamma396

shaped structure, with σres “ 53Pa, the transition between calls done on the coarse mesh and calls done on the fine397

mesh is far from the limit state for P̂f,MC . It suggests that a third level of fidelity may be added between the current398

coarse and fine meshes to reduce computational cost. On the contrary, for σres “ 95Pa, the two levels of fidelity399

are satisfactory as the finer mesh is only used close to the limit state. The reader must not be surprised that some400

observations are guaranteed for the case σres “ 95Pa and not for the case σres “ 53Pa. Indeed, the resistance is401

different and the discretization error interval rg´; g`s has not a constant measure on the domain of random variables.402

For the cracked plate, this transition is close to the limit state, which is more satisfactory: the computational effort403

is made where it is relevant.404

Compared to the monofidelity approach, the computational cost is very high around 4500s for the gamma shaped405

structure and 900s for the cracked plate due to the expensive computation of error bounds. However, using the middle406

of bounds gm instead of the the FEM solution gh provides further precision on P̂f,MC compared to a monofidelity407
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approach with an even finer mesh. In fact, the value of P̂f,MC for the cracked plate using AGSK-MCS seems to be408

close to the one with AMSK-MCS for mesh size extrapolated to zero in Figure 15. This emphasizes that the middle409

of bounds is a more precise output than the FEM solution. Finally, one will see that error bounds on the probability410

of failure allow to know the order of magnitude of Pf . If thiner error bounds are desired for reliability analysis, one411

could reduce the size of the finer mesh or increase the polynomial degree of the basis function in the FEM problem.412

5.3. Application of the AMSK-MCS algorithm413

To start with, the state-of-the-art multifidelity approach from [59] exploiting multifidelity cokriging is computed414

to provide reference results. As prescribed in [59], the initialization uses 25 ą 10ˆn calls to the coarse mesh (selected415

by LHS for the gamma shaped structure and by factorial experiment 5 ˆ 5 for the cracked plate) and 6 calls to the416

fine mesh selected by the exchange algorithm from [17]. Results are shown in Tables 10 and 11.417

P̂f,MC Nb. calls - h : tFEM tAlgo

(ˆ10´2) 0.16m 0.01m (s) (s)

4.03 25 6 329 <1

3.87 25 6 333 <1

3.98 25 6 343 <1

3.70 25 6 340 <1

3.93 26 7 438 <1

Table 10: GSS problem with σres “ 53Pa - multifidelity cokriging

P̂f,MC Nb. calls - h : tFEM tAlgo

(ˆ10´3) 0.64m 0.03m (s) (s)

5.67 27 8 181 2

5.66 29 10 213 2

5.63 27 8 174 2

5.37 28 9 195 2

5.82 27 8 177 2

Table 11: Crack propagation problem - multifidelity cokriging

This strategy shows a great reduction in computational time: around 80% for the gamma shaped structure and418

50% for the cracked plate.419

Then, the mesh size parameterized kriging strategy is used for both structures. First, the fine mesh size hmin is420

chosen as the mesh size used with the monofidelity approach in 5.1.3. Three of them are plotted on Figures 16, 17421

and 18 together with the distribution of calls to several mesh sizes. The probability of failure can also be computed422

for any mesh size.423

First, for all problems, the algorithm converges to a probability of failure very close to the one obtained with424

the monofidelity approach. Furthermore, the wrongly classified zone is drastically shrinked using the mesh size425

parametrized kriging strategy compared to monofidelity approach. Let tpost represent computational time due to426

the computation of probability for each of 15 mesh sizes plotted on Figures 13, 14 and 15. As depicted on those427

three Figures, the extrapolation of the probability of failure for h “ 0m provides similar results independently of the428

Monte Carlo population PMC . Regarding the computational cost, compared to the monofidelity and the multifidelity429

cokriging approaches, tpost concerns an additional output of the reliability analysis. Therefore, it should not be part430

of the comparison of CPU time with monofidelity and multifidelity cokriging approaches. Algorithm AMSK-MCS431

succeeds in reducing computational time by around 75% for the GSS with σres “ 53Pa, 50% for the GSS with432

σres “ 95Pa and 70% for the CP compared to the monofidelity approach. This reduction is approximately equivalent433

to the CPU time reduction obtained with multifidelity cokriging for the GSS with σres “ 53Pa but 20% higher for434

the CP.435
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Figure 13: GSS problem with σres “ 53Pa -results using AMSK-MCS with h “ r0.16; 0.08; 0.04; 0.02; 0.01s

Figure 14: GSS problem with σres “ 95Pa -results using AMSK-MCS with h “ r0.16; 0.08; 0.04; 0.02; 0.01s

To highlight the extrapolation capacity of the MSK metamodel, the fine mesh hmin was increased by a factor of436

two and the AMSK-MCS method was applied again on the GSS problem with σres “ 53Pa and on the CP problem.437

Results are shown in Figure 19. For the GSS, the probability of failure at h “ 0m is very similar to the ones in438

Figure 13 except for the third Monte Carlo population PMC . For this particular simulation, the large error bounds439

are sufficient to judge that the probability of failure is miscalculated. For the CP, the probability of failure at h “ 0m440

is less clustered than in Figure 15. In Figure 19, the approximation error bounds are larger for h “ 0m for the GSS441

than in Figure 13.442

Finally, one can realize that choosing hmax to compute the probability of failure is expected to underestimate443
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Figure 15: Crack problem - results using AMSK-MCS with h “ r0.48; 0.24; 0.12; 0.06; 0.03s

Figure 16: GSS problem with σres “ 53Pa - Limit state for different mesh sizes using AMSK-MCS

the probability of failure by a factor of 2.3 for the GSS and 17.0 for the CP according to Figure 15. This underpins444

the main advantage of the AMSK-MCS method compared to a monofidelity approach for which the mesh size may445

be badly chosen. AMSK-MCS allows to check a posteriori if the meshes are well chosen. If the extrapolation is446

found uncertain, then the user should select a suitably converged mesh in terms of probability of failure. Then, the447

AMSK-MCS method could be computed a second time using already computed points to initialize the metamodel.448

It is a useful guide to treat new problems for which the sensitivity to mesh size is unknown.449

Conclusion450

In this paper, we proposed two methods to build multifidelity kriging-based meta-models to compute the proba-451
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Figure 17: GSS problem with σres “ 95Pa -Limit state for different mesh sizes using AMSK-MCS

Figure 18: CP problem - Limit state for different mesh sizes using AMSK-MCS

bility of failure while controlling the discretization error introduced by the use of a finite element code. The method452

AGSK-MCS uses a posteriori discretization error bounds that are available as a post-process of the finite element453

simulations to guarantee the state of points used to build the kriging metamodel. The points far from the limit state454

are computed on a coarse mesh while reserving the fine mesh for evaluations of points close to the limit state. Two455

additional kriging metamodels interpolating upper and lower discretization error bounds can be built. It allows to456

compute discretization error bounds on the probability of failure which helps validate the choice of the finer mesh457

size and guide enrichment of the kriging metamodel to improve the estimation of the probability of failure. However,458
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P̂f,MCphq
`

ˆ10´2
˘

Nb tFEM tAlgo tpost

0m 0.01m hmin calls (s) (s) (s)

4.43 4.15 3.82 62 167 69 16

4.17 3.97 3.78 62 154 71 17

14.47 5.49 3.88 96 359 143 31

4.26 3.93 3.61 64 153 71 18

4.20 3.99 3.75 60 152 66 15

GSS problem with σres “ 53Pa - h “ r0.16; 0.08; 0.04; 0.02s

P̂f,MCphq
`

ˆ10´3
˘

Nb tFEM tAlgo tpost

0m 0.03m hmin calls (s) (s) (s)

7.44 6.65 4.98 44 57 40 99

9.00 7.60 5.08 42 65 37 94

6.40 5.92 4.93 48 61 44 112

8.74 7.36 4.91 38 44 26 83

8.76 7.09 4.93 100 153 166 252

Crack problem - h “ r0.48; 0.24; 0.12; 0.06; 0.03s

Figure 19: Summary of results using AMSK-MCS and a fine mesh that is twice coarser as previously

a posteriori error estimators are not always available, especially in commercial codes. Therefore, a second strategy459

called AMSK-MCS is proposed in this paper to tackle this issue. By including the mesh size as a parameter of the460

kriging metamodel, it is possible to compute the limit state at any mesh size. The enrichment of the meta-model461

is done at points close to the limit state and for the optimal mesh size required to fulfill the learning criterion.462

This strategy allows to drastically reduce computational time compared to a monofidelity approach. In addition, it463

enables to compute the probability of failure at any mesh size. This property allows to check a posteriori the mesh464

convergence of the probability of failure and either validate mesh choice or guide remeshing.465

466

For mechanical problems for which it would not be possible to parametrize the mesh with a unique mesh size,467

only the AGSK-MCS method can still be used. Indeed, mesh splitting could be a way to answer this issue as long as468

it is possible to defined a coarsest mesh and a finest mesh on which we consider running finite element simulations.469

For instance, the finest mesh could be the result of the coarse mesh that has been refined by splitting it three times.470

This operation can be done easily by mesh generators from an initial connectivity. Note that unrefinement is more471

complicated. AMSK-MCS is not applicable if the mesh cannot be described by a unique scalar mesh size.472

473
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The two algorithms are derived regardless the number of random variables. Therefore their application on474

problems with more random variables is straightforward. However, it is well-known that computing the kriging475

meta-model is challenging when the number of random variables is larger than 12. Therefore, the methods we pro-476

pose inherit this drawback and are therefore limited to a small number of random variables.477

478

Complex limit states usually arise from time-dependant reliability problems or system reliability which are not479

in the scope of our paper. A posteriori error estimators do exist for non-linear problems (see [32] for more details).480

The construction of guaranted error bounds on gpxiq for a realization xi of the random variables is more expensive481

due to the time-dependency but still possible. Note that for time-reliability methods using estimation of stationnary482

probability of failure, the methods we proposed could be easily adapted. However, the use of a priori estimator (that483

is to say convergence rate) for time-dependant problem seems not possible as the multiplicative constant depends on484

the time discretization. Finally, we highlight that the time discretization introduces an additional source of error.485
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