
HAL Id: hal-03943425
https://hal.science/hal-03943425

Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Joint beamforming and user association with reduced
CSI signaling in mobile environments: A Deep

Q-learning approach
Ha Duc Thang, Lila Boukhatem, Megumi Kaneko, Nhan Nguyen-Thanh

To cite this version:
Ha Duc Thang, Lila Boukhatem, Megumi Kaneko, Nhan Nguyen-Thanh. Joint beamforming and
user association with reduced CSI signaling in mobile environments: A Deep Q-learning approach.
Computer Networks, 2021, 197, pp.108291. �10.1016/j.comnet.2021.108291�. �hal-03943425�

https://hal.science/hal-03943425
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1

Joint Beamforming and User association with
Reduced CSI Signaling in Mobile Environments: a

Deep Q-Learning Approach
Ha Duc Thang*, Lila Boukhatem*, Megumi Kaneko2, Nhan Nguyen-Thanh *

LRI Laboratory, CNRS/Univ. Paris Saclay, Orsay, France*

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, 101-8430 Tokyo, Japan 2

Abstract—Heterogeneous Cloud Radio Access Network (H-
CRAN) is considered as a cost-efficient network solution to meet
5G data traffic requirements. In this paper, we consider the
problem of beamforming and user clustering (user-to-Remote
Radio Head (RRH) association) in the downlink of a H-CRAN
where users have heterogeneous mobility profiles. Given the
rapidly time-varying nature of the mobile wireless environment,
it is challenging to offer an optimal beamforming and user associ-
ation performance during a long-term allocation process without
incurring large Channel State Information (CSI) and signaling
overheads. For that purpose, we proposed in [1] an Adaptive
Beamforming and User Clustering (ABUC) algorithm which
resolves the joint beamforming and user clustering problem when
considering CSI cost and imperfectness under user mobility
assumptions. In this paper, we design a deep reinforcement-
learning framework which enables the proposed ABUC algorithm
to select on-the-fly its best scheduling parameters, namely the
period and type of CSI feedback, given each user mobility profile.
The proposed ABUC-DQL approach can overcome the scalability
limitation of the Q-learning approach [1] and better handle the
problem when formulated using a POMDP (Partially Observable
Markov Decision Process) model. The simulation results show
that the convergence time is mainly impacted by the number
of users in the network, and the online-learning ability of the
framework can quickly adapt to the changes of users mobility.

Index Terms—H-CRAN, beamforming, user-to-RRH associa-
tion, deep Q-learning

I. INTRODUCTION

The fifth generation (5G) of wireless communication sys-
tems is expected to embrace the unremitting exponential
growth of mobile data traffic and the stringent QoS (Quality of
Service) demands of a large panel of new emerging services
and applications. 5G is also envisioned to overcome several
challenges such as the heterogeneous deployment of cells
(macro and small cells), and the ultra-dense users environ-
ments with varying mobility profiles and behaviours [2].

To achieve higher efficiency, 5G systems rely on a combina-
tion of advanced technologies such as millimetre wave, cloud
computing, network slicing and small cells, etc. By taking
full advantage of the cloud computing and heterogeneous and
small cells deployments [3], [4], the Heterogeneous Cloud
Radio Access Network (H-CRAN) is considered as one of
the most promising architectures to support 5G and beyond
[3] (Fig. 1). In H-CRAN, the macrocells and small cells
(picocells, microcells, femtocells) are densely deployed low

Fig. 1: H-CRAN system model

power Remote Radio Heads (RRHs) forming Macro-RRHs or
Pico-RRHs. The baseband signals of users are relayed through
the capacity-limited fronthaul links to be processed by the
centralized Baseband Unit (BBU) Pool.

To guarantee optimal spectrum reuse across all RRHs,
the system requires advanced radio resource management
mechanisms such as intercell interference coordination, Co-
ordinated Multi-Point (CoMP) in Mutiple Input Multiple Out-
put (MIMO), Beamforming (BF) and optimal user clustering
(user-to-RRH association). Several research works have ad-
dressed the interference mitigation problem in MIMO channels
when considering the weighted sumrate optimization [5], [6],
[7]. Other works tackled the same problem under fronthaul
constraint considerations [8], [9], [10]. Some studies have
focused on either the sum-rate, Spectral Efficiency (SE), or
Energy Efficiency (EE) maximization problems by proposing
the joint optimization of beamforming and user clustering [11],
[12], [13], [14].

More recent efforts have used reinforcement learning ap-
proaches and more particularly Deep Reinforcement Learning
(DRL). DRL has been applied in advanced radio environments
of future 6G systems such as the reconfigurable intelligent
surface (RIS) to further improve the massive MIMO trans-
missions. The authors in [15] investigated the joint design of
transmit beamforming matrix at the base station and the phase
shift matrix at the RIS to maximize the sum rate of multiuser
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downlink MISO (multiple input single output) systems by uti-
lizing DRL. In [16], a DRL-based hybrid beamforming scheme
for multi-hop RIS-assisted communications is proposed to
improve the coverage range at TeraHertz band frequencies.
The DRL method proved its effectiveness in solving the non-
convex joint design problem of the digital beamforming at the
base station and analog beamforming matrices at the RISs.

Other research works, have focused on Resource Allo-
cation (RA) problems. The authors in [17] addressed RA
and interference management problems and proposed cache
enabled opportunistic interference alignment (IA) in which the
caching avoided the CSI exchange and hence alleviated the
burden of signalling on the backhaul. In [18], DRL was used
to propose a reduced-complexity joint optimization of radio
resources, caching and computing resources. The DRL-based
approach has also been used for different purposes in several
works: to propose a resource management algorithm for Fog
Radio Access Networks (FRAN) in [19], develop a dynamic
resource allocation for CRANs in [20], and in [21], to design
a distributed dynamic power allocation scheme for weighted
sum-rate maximization.

However, these solutions suffer from high computational
complexity and generally rely on perfect Channel State In-
formation (CSI) knowledge, thereby requiring a large amount
of control signaling and CSI overhead. Furthermore, most of
these works did not consider the influence of user mobility and
the resulting time-varying wireless environment over the long-
term scheduling performance. To overcome these limitations
which are magnified under high mobility scenarios, we have
proposed in [1] a mobility-aware Adaptive Beamforming and
User Clustering (ABUC) algorithm based on a Q-Learning
(QL) approach. The proposed learning algorithm allows to
wisely tune the various solution parameters acting on the
global network performance, for instance CSI feedback param-
eters (periodicity and type). However, this preliminary solution
is only applicable in a small network scenario with a limited
number of users. This is because Q-learning is not appropriate
for solving problems with large spaces of actions and states.

In this work, we propose an optimized radio resource
allocation framework in downlink H-CRAN which, unlike
other traditional reference solutions, is able to alleviate the
control and signaling costs while coping with heterogeneous
users mobility. To do so, we address the joint beamforming
and user clustering optimization problem. More precisely, we
formulate this as a weighted sum-rate maximization problem
under fronthaul capacity and maximum power budget con-
straints over each RRH. Moreover, our proposed framework
is based on an optimization approach exploiting Deep Q-
Learning (DQL) technique which is amenable to the dynamics
and the complex features of real systems [22]. Extensive
simulation results show that our DQL framework is able to
adapt the CSI feedback parameters to the changes of users
velocity. The achieved performance in terms of sum-rate,
signaling costs, complexity, online learning, and convergence
speed prove the efficiency of the proposed DQL framework in
both homogeneous and heterogeneous mobility scenarios.

The rest of this paper is organized as follows: Section
II describes the system model, the problem formulation and

our reference ABUC algorithm. Section III introduces some
backgrounds on Deep Q-Learning and Partially Observable
Markov Decision Process (POMDP) model. We detail our
proposed ABUC Deep Q-learning algorithm when assuming
a POMDP problem in section IV and present the simulation
results in section V. Finally, section VI concludes the paper.

II. SYSTEM MODEL, PROBLEM FORMULATION AND
REFERENCE ABUC SCHEME

A. H-CRAN System Model

We consider the H-CRAN model in [12] which consists of a
BBU Pool, L macro and pico RRHs and K users. Each RRH
and user are equipped with M and N antennas, respectively,
and users are randomly located in the network area.

Let L = {1, 2, ..., L} and K = {1, 2, ...,K} be the sets
of RRHs and of users, respectively. The propagation channel
from RRHs to the kth user is denoted as Hk ∈ CN×ML,∀k ∈
K which includes the path loss and Rayleigh fading effects.

In this paper, we focus on the downlink transmission
with linear beamforming technique. Firstly, we assume that
the channels are correlated between consecutive scheduling
frames. We denote by Hk the downlink channel array from
all RRHs to user k,

Hk =
[
h1k, · · · , hlk, · · · , hLk

]H
,

where hlk is the channel gain from RRH l to user k.
Let wk ∈ CML×1 be the transmit beamforming vector from

all RRHs to the kth user,

wk =
[
wH

1k, · · · ,wH
lk , · · · ,wH

Lk

]H
,

where wlk ∈ CM×1.
Let sk ∈ C be the encoded information symbol for user k

with E
[
|sk|2

]
= 1. The received signal at user k, yk ∈ CN×1,

is expressed as

yk = Hkwksk + Hk

K∑
j=1,j 6=k

wjsj + nk,

where nk ∼ CN (0, σ2
kIN ) is the additive white Gaussian noise

and IN is the identity matrix of size N ×N .
The Signal-to-Interference-plus-Noise Ratio (SINR) at user

k can be expressed as

γk =
‖uH

k Hkwk‖
2

K∑
j=1,j 6=k

‖uH
k Hjwj‖

2
+ σ2

k‖uk‖22

, (1)

where uk ∈ CN×1 is the receive beamforming vector of user
k.

Assuming Minimum Mean Square Error (MMSE) decoding,
the achievable rate of user k is given by

rk = log2(1+wH
k HH

k (

K∑
j=1,j 6=k

Hkwjw
H
j HH

k +σ2
kIN )−1Hkwk).

(2)
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To model the effects of imperfect CSI knowledge at the
cloud caused by user mobility, we make use of the following
CSI estimation model based on [23]. Let us denote the
estimated CSI matrix by Ĥk ∈ CN×ML, ∀k ∈ K and by
ĥnq , its (n, q)-th element, where q = (l − 1)M + m. Hence,
ĥnq is the estimated channel gain between the m-th antenna
of the l-th RRH and the n-th antenna of user k, expressed as

ĥnq = λkhnq + (
√

1− λ2k)vnq. (3)

In (3), vnq ∼ CN (0, Flk) where Flk is the large-scale fading
gain of the downlink channel from RRH l to user k, and λk
is the correlation coefficient between ĥnq and hnq which is
expressed as

λk = J0(2πfd,lkTdl), (4)

where J0(.) is the zero-th order Bessel function, Tdl is the
fronthaul delay of RRH l and fd,lk is the maximum Doppler
frequency of the channel between RRH l and user k. If
user k moves at speed vk (m/s), then the maximum Doppler
frequency is calculated as fd,lk = vkfc

c , where fc is the carrier
frequency in Hertz and c is the speed of light. Therefore, we
can express λk as function of vk,

λk = J0

(
2πfcTdl

c
vk

)
. (5)

B. Problem Formulation

We focus on the following Weighted Sum-Rate (WSR)
optimization problem [13], whereby the WSR of all users is
maximized under the fronthaul link capacity constraints and
individual RRH power constraints. This problem is formulated
as follows,

max
{wlk,l∈L,k∈K}

∑K
k=1 αkrk (1)

s.t. Pl =

K∑
k=1

‖wlk‖22 ≤ Pmax
l (1a)

K∑
k=1

1{‖wlk‖22}rk ≤ Cmax
l (1b)

(P1)

where αk is the scheduling priority weight associated with
user k. The first constraint (1a) corresponds to the transmit
power constraint of RRH l, i.e., Pl should be smaller than
the maximum transmit power Pmax

l . The second constraint
(1b) expresses that the sum-rate of users connected to RRH l
should be smaller than its fronthaul link capacity Cmax

l .
Problem (P1) is a non-convex mixed-integer non-linear

programming (MINLP) proven to be NP-hard [13], and hence
cannot be solved in polynomial time. Given its intractability,
previous works [12], [13] had proposed different methods
based on mathematical optimization for solving (P1). How-
ever, these methods rely on perfect CSI knowledge at the
cloud, thereby incurring heavy signaling and CSI feedback
costs. In the sequel, we describe our previously proposed
ABUC algorithm, for sake of clarity.

C. Reference ABUC Algorithm

We have proposed in [24] the ABUC algorithm, a hybrid
user clustering and beamforming scheme aiming at WSR
maximization while alleviating the problem of control sig-
naling and CSI overhead costs. ABUC is able to leverage
the advantages of both dynamic and static user clusterings in
H-CRAN [12], [11], where the dynamic clustering performs
optimally at the expense of heavy signaling overhead, while
static clustering drastically reduces the required overhead, at
the expense of lower performance. However, no user mobility
issues had been considered in [24], unlike our present work.

1) Dynamic Clustering Algorithm: The dynamic clustering
algorithm solves the conventional WSR maximization based
on a weighted minimum mean square error (WMMSE) ap-
proach that had been used in several previous works [12],
[11]. The main idea is to reformulate problem (P1) into the
following equivalent WMMSE problem (P2),

min
{wlk,l∈L,k∈K}

∑
k w

H
k (
∑

j αjρjH
H
j uju

H
j Hj)wk

−2
∑

k αkρkRe{uH
k Hkwk} (2)

s.t.
K∑

k=1

‖wlk‖22 ≤ Pmax
l (2a)

K∑
k=1

βlkr̂k‖wlk‖22 ≤ Cmax
l , (2b)

(P2)
where r̂k denotes the rate achieved in the previous iteration.
Reference [13] shows that Algorithm 1 below, referred to as
the Dynamic Clustering Algorithm, enables to find a stationary
point to (P2). In the reformulated constraint (2b), βlk is a
constant weight associated to RRH l and user k and is updated
according to

βlk =
1

‖wlk‖22 + τ
,∀k, l, (6)

where τ is a small constant regularization factor and ‖wlk‖22
is taken from the previous iteration. The corresponding Mean
Square Error (MSE) is denoted as ek,

ek = uH
k (

K∑
j=1,j 6=k

Hkwjw
H
j HH

k +σ2
kIN )uk−2Re{uH

k Hkwk}+1,

(7)
and ρk is the MSE weight for user k,

ρk = e−1k . (8)

The optimal received beamforming vector uk is obtained under
fixed wk and ρk,

uk = (

K∑
j=1,j 6=k

Hkwjw
H
j HH

k + σ2
kIN )−1Hkwk. (9)
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Algorithm 1: Dynamic Clustering Algorithm

initialize βlk, r̂k,wk,∀(l, k)
repeat

1) Fix wk and compute the corresponding MSE ek
and the MMSE receiver uk according to (7) and (9)

2) Update MSE weight ρk according to (8)
3) Compute the optimal transmit beamformer wk

under fixed uk and ρk, by solving (P2)
4) Compute the achievable rate rk
5) Update r̂k = rk and βkl according to (6)

until convergence

2) Static Clustering Algorithm: Unlike the dynamic algo-
rithm, in static scheduling, only a fixed subset of RRHs Lk

serving each user k is considered. Likewise, Kl is defined as
the subset of users associated with RRH l. Problem (P1) can
be hence simplified as

max
{wlk,l∈Lk,k∈K}

∑K
k=1 αkrk (3)

s.t. Pl =
∑
k∈Kl

‖wlk‖22 ≤ Pmax
l (3a)∑

k∈Kl

rk ≤ Cmax
l , (3b)

(P3)

where constraints (3a) and (3b) involve smaller sets of users
Kl. Hence, problem (P3) can be resolved by Algorithm 2
given below, where variables HLk

k and wLk

k denote the channel
matrix and the serving beamforming vector to user k from its
RRH cluster Lk, respectively.

Algorithm 2: Static Clustering Algorithm

initialize Lk, βk, r̂k,wk,∀k
repeat

1) Compute (7), (8), (9) by replacing wk and Hk by
wLk

k and HLk

k , respectively
2) Fix Lk during the whole process
3) Call Dynamic Clustering Algorithm to solve (P3)

under fixed Lk

until convergence

3) ABUC algorithm: In ABUC, we apply the dynamic and
static clustering algorithms in a periodic manner as shown in
Fig. 2: in the first frame of each period T referred to as a
dynamic frame, the dynamic Algorithm 1 is applied, while
in the remaining frames (second to T -th) referred as static
frames, the static Algorithm 2 is applied under the cluster
subsets fixed by the solution of the previous dynamic frame.
The advantage of this approach is to consider the temporal
dimension of the allocation process, while being aware of the
practical feasibility of the solution in terms of complexity
and signaling costs. In particular, Reference ABUC takes
into account the following CSI feedback strategies during the
scheduling process:

• Full CSI knowledge: perfect and full CSIs of all users
are available at the cloud for every scheduling frame.

Fig. 2: Reference ABUC scheme with T = 3

• Partial CSI knowledge: perfect and full CSIs are only
available at dynamic frames (every period T ), and new
updated CSIs are not available for static frames, i.e., they
are assumed to be equal to the CSIs received in the
previous dynamic frame (although the real channel states
vary on a frame-by-frame basis, owing to random fading
and user mobility).

• Estimated CSI knowledge: perfect and full CSIs are only
available at dynamic frames (every period T ), while for
static frames, the CSI estimation model Eq. (3) will be
applied.

Combining the periodicity T and the CSI feedback strate-
gies results into different variants of the reference ABUC
algorithm: parameters (T , fk) means that dynamic clustering
is performed every T frames and the type of CSI feedback
fk ∈ {f, p, e} is applied, where f refers to Full CSI, p to
Partial CSI and e to Estimated CSI, respectively.

Finally, the reference ABUC algorithm is described in
Algorithm 3.

Algorithm 3: Reference ABUC Scheme with fixed param-
eters (T , fk), ∀k
initialize frame t = 0, user velocity v
repeat

if t mod T = 0 then
Get perfect CSI Hk(t) for all users k
Call Dynamic Clustering Algorithm

else
if Full CSI then

Get perfect CSI Hk(t) for all users k
else if Partial CSI then

Use imperfect CSI Ĥk(t) = Hk(t−
mod (t, T )), for all users k

else
Estimate CSI Ĥk(t) following (3) for all
users k

Call Static Clustering Algorithm
Set clustering solution as the initial clusters for frame
t+1

Move to next frame
until convergence

In [25], we showed that ABUC algorithm was able to
balance the performance-cost trade-off under various mobility
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profiles. However, the CSI feedback parameters, i.e., period
T and CSI feedback type, were chosen empirically based
on extensive simulations. To overcome this shortcoming, we
proposed in [1] a Q-learning based algorithm to optimize
its scheduling parameters on-the-fly, which is only applica-
ble to a small network due to its high complexity and is
unable to follow the rapid fluctuations of realistic wireless
networks, in particular under the high mobility scenarios in
consideration. Therefore, in this work, we design a novel and
scalable framework by using a Deep Q-learning approach,
presented in the sequel. Note that, instead of solving both
the beamforming and user association optimization problem
(P1) directly through DRL, we deliberately make use of
mathematical optimization to solve (P1) and DRL to optimize
the scheduling parameters of ABUC algorithm. This is because
the beamforming solution of (P1) is very sensitive to CSI
accuracy and hence mathematical optimization provides the
best achievable solution, given (imperfect) CSI knowledge,
which is available by default. That is, resolving problem
(P1) through DRL would still require near-instantaneous CSI
knowledge, obtained through an extremely fine granularity
of CSI quantization. This would entail a prohibitively large
state-space dimension, making the problem intractable. On
the contrary, if the state-space dimension were limited to a
tractable size through a coarser CSI quantization level, the
performance of the DRL-based beamforming would suffer
tremendous degradation. The rationale and originality of our
proposed method is hence to ideally combine the advantages
of those two approaches: mathematical optimization for fully
exploiting the available CSI for beamforming and user associ-
ation, and DRL for optimizing the meta-parameters of ABUC
scheduling.

III. BASICS ON DEEP Q-LEARNING FOR PARTIAL
OBSERVED MARKOV DECISION PROCESS (POMDP)

A. Background on reinforcement learning

Reinforcement learning is a major branch of machine learn-
ing, where an agent interacts with the environment in order
to select optimal actions given its current state, in order to
maximize its own reward function. The task of RL can usually
be modeled as a Markov decision process (MDP), however,
explicit transition probabilities and reward functions are not
always available [26].

Q-learning is a basic reinforcement learning technique that
does not require a model of the environment and that can
handle problems with stochastic transitions and rewards. Each
learning agent maximizes its accumulated future reward by
adding the maximum value achieved from the next states to
the reward of its current state, therefore successfully affecting
the current action by the potential future reward. This potential
function is a weighted sum of the expected values of all future
steps beginning from the actual state.

In the Q-Learning (QL) algorithm, the agent decides to
choose an action in each decision epoch and observes the
results from this one. Each pair of action-state produces a
Q-value that is updated in a Q-table in which the columns
represent the possible actions and the rows describe states.

The Q-value Q∗(st, at) is updated by the Bellman function as
follows [26]:

Q∗(st, at) = Q(st, at) + α
[
Γt(st, at)+

ηmax
st+1

Qt+1(st+1, at+1)−Q(st, at)
]
, (10)

where the Q-value Q(st, at) is received when executing action
at at state st and Γt is the system reward in time slot t.
Parameters α and η are the learning rate and discount rate
of the future expected reward, respectively. After updating the
Q-table, in the next decision epoch, the agent is in a new
state st+1 and selects either the action corresponding to the
higher Q-value Q(st+1, at+1) for exploitation, or a random
action for exploration, as successful RL heavily relies on the
exploitation-exploration trade-off. This algorithm is referred
as the ε-greedy QL algorithm.

B. Background on POMDP

In our problem, each user feeds back its current CSI state,
which consists of either full, partial or estimated instantaneous
CSI values, as detailed in Section II-C3. These instantaneous
values can be directly used to obtain the optimized beamform-
ing and user association solutions through ABUC algorithm.
However, to make use of DRL, the corresponding SINR levels
need to be quantized in order to define a tractabe system state
space with reasonable dimensions. Additionally, these SINR
values at the DRL input are different from the real SINR states
due to other effects: the feedback delay causing outdated CSI
knowledge, and the feedback strategy of our ABUC algorithm
which uses partial or estimated CSI (especially for Tk > 1).

By contrast to ideal MDP modeling, the full state of the
system is often undetermined in realistic wireless networks as
in our system. Therefore, we propose to use POMDP in place
of conventional MDP for modeling our system, which better
suits our targeted problem. POMDP models the lack of knowl-
edge of the true underlying state by a probability distribution
over the set of possible states, as introduced in [27]. Generally,
a POMDP is described as a 6-tuple (S,A,P,R,O,Ω) where
S,A,P , andR are the states, actions, transitions, and rewards,
defined similarly as for an MDP. The difference now is the
introduction of the observation space O and its probability
distribution Ω. The agent, instead of having the true system
state s, receives an observation o ∈ O according to the
probability distribution o ∼ Ω(s).

Note that the considered process can be assumed Markovian
as the next SINR state of each user - known at the cloud
scheduler - only depends on the SINR state in the previous
scheduling frame (owing to channel correlation), and the
previous action of that user, namely, the CSI feedback period
and scheme.

As we cannot observe the full SINR states in our problem,
it should be modeled as a POMDP. Indeed, as represented in
the SINR formula in section II, the value of SINR of user k,
γk, is a function of channel Hk. Hence, the quantized state of
γk depends completely on the CSI feedback strategy chosen
at each time slot.
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IV. ABUC’S DEEP Q-LEARNING FRAMEWORK

In this section, we detail the proposed DQL framework
which enables to optimize the scheduling parameters of ABUC
algorithm on-the-fly in the case of a network with a large
number of users having different mobility profiles.

As we model our problem as a POMDP, we firstly define the
system observation state, the action space and reward function
for our DQL model.

1) System Observation State: The system observation state
ot is composed of the observed states of all K users. We
partition and quantize the range of the perceived SINR γk
into N levels. Each level corresponds to an observed state of
the user SINR, i.e., each user k’s observed state is defined as
the quantized SINR level ntk, where 1 ≤ ntk ≤ N,nt

k ∈ N,
which is fed back to the cloud centralized scheduler so as
to monitor the effect of the previous scheduling parameters’
choices. Note that this feedback is additional to the underlying
CSI feedback itself, which may be Full, Partial or Estimated,
as explained in Section II-C. The system observed state at time
slot t is hence defined as,

ot = {nt1, nt2, . . . , nt
k}.

Note that the real system state st = {st1, st2, . . . , stk} is
given by the real SINR values experienced by each user, but
unknown at the cloud centralized scheduler.

2) System Action: In the system, the central scheduler has
to decide the feedback parameters to be selected. Let T and
F denote the set of possible values of T and CSI feedback
schemes, namely

T = {T1, . . . , Tp, . . . , TP }
F = {f1, . . . , fq, . . . , fQ},

where P ∈ N and Q ∈ N represent the number of all possible
values of period T and of types of CSI feedback schemes,
respectively.

The current composite action at is denoted by

at = {at1, at2, . . . , atk}

where atk = (T t
k, f

t
k) represents the feedback parameters of

user k at time slot t, where period T t
k ∈ T and CSI feedback

type f tk ∈ F .
3) Reward Function: The system reward needs to represent

the optimization objective, that is to simultaneously reduce the
system cost and satisfy the sum-rate demands. Here, we define
the overall system reward at observed state ot and action at
as

Γt(ot, at) = ρ1

K∑
k=1

rk(otk, a
t
k)− ρ2

K∑
k=1

Ck(otk, a
t
k), (11)

where the first term is the achieved system sum-rate, where
the rate rk of user k at the observed state otk is given by Eq.
(2) in which the beamforming vector wk has been optimized
based on the CSI feedback according to previous action at−1k .
The second term denotes the CSI signaling overhead induced
by action atk, at observed state otk. Weighting parameters
ρ1, ρ2 ∈ [0, 1]2 represent the trade-off between sum-rate and
cost, where ρ1 + ρ2 = 1.

The CSI overhead cost Ck(otk, a
t
k = {Tk, fk}) of each user

k is computed over Tk frames and can be expressed as follows
[25]:

- If Full CSI, fk = f :

Ck(otk, a
t
k = {Tk, f}) =

1

Tk

[[
L+ (Tk − 1)Lk

]
MN

]
, (12)

- If Partial fk = p or Estimated CSI fk = e:

Ck(otk, a
t
k = {Tk, p}) = Ck(otk, a

t
k = {Tk, e}) =

LMN

Tk
.

(13)

Deep Q-learning algorithm uses an ε-greedy strategy [28] in
which the amount of exploration is controlled by the parameter
ε. The agent selects a random action with a given probability ε,
0 ≤ ε ≤ 1. At first, this rate must be initialized to a sufficiently
high value, i.e, ε = 1, and then be decayed progressively after
getting more knowledge about the environment.

We also define a super-frame composed of F0 successive
scheduling frames in which the same action is executed. The
obtained reward for the corresponding action is averaged over
every single frame in a super-frame.

Different to Q-learning approach, the agent does not have
the global knowledge about the expected reward value for each
state-action pair, but it is learned by experience over subsets
of state-action pairs. A method that trains the neural network
with experiences in the memory is called Experience Replay.
In this method, each experience (consisting of the current
state, action, reward, and next state) obtained by the agent is
stored in the experience replay memory. Instead of training the
neural network based on the agents’ actual observations, past
experiences are sampled from this replay memory by means
of the minibatch method.

By using the replay, the experiences used to train the Deep
Q-network (DQN) come from many different points in time,
thereby smoothing out learning and avoiding severe failures.

In addition, to maintain the experiences’ history, we make
use of a memory-based layer in the neural network, namely
the Long short-term memory (LSTM) [27]. LSTM method
appears to be well-suited as it manages to keep the contextual
information of the neural network’s inputs allowing informa-
tion to flow from one step to the next, thereby resulting into
learning improvement of the neural network.

The general framework of our proposed ABUC’s DQL
is presented in Fig. 3a. From the wireless environment, the
system state and the user CSI are fed back to the cloud
where ABUC scheduler and Deep Q-learning network are
implemented. ABUC scheduler takes as inputs the action given
by the DQN in each decision phase and solves the optimal
beamforming and user clustering. This allows to calculate the
new reward that is returned to the DQN. The decision is also
fed back to the wireless environment such that each user can
update its feedback method for the next frames.

In Fig. 3b, we present the structure of the Deep Neural
Network used in our framework. The input and output layers
have the size of observed state space and action space, respec-
tively. The LSTM layers are inserted after the input layer and
a number of hidden dense layers improve the computational
capabilities of the Neural network.
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(a) ABUC’s DQL framework (b) DNN design

Fig. 3: Proposed Deep Q-learning framework

The details of the proposed ABUC’s Deep Q-learning
framework are given in Algorithm 4. In the first super-frame
i = 1, we initialize the exploration rate by ε ← 1. Then,
during each super-frame, we generate a random probability η
and compare its value to ε to decide how an action is selected.
Once a decision is made, we execute the ABUC algorithm
(as shown in Algorithm 1) during F0 internal frames and
compute the necessary parameters such as sum-rate, CSI cost
and reward according to (11). At the end of each decision, the
transition tuple (oi, ai, oi+1) is saved such that we can do the
replay when the memory has sufficient elements for training.
Finally, we reduce progressively ε and exploration decay ξ.

The complexity of our DQL algorithm is function of the
state and action space sizes which can be large for a high
number of users. However, it is known that the DQL approach
based on DQNs is more efficient to deal with large state
action spaces and highly dynamic environments [21]. As to the
intrinsic complexity of ABUC algorithm, the reader may refer
to our previous works in [24], [25]. Under our architectural
assumptions, the complexity burden induced by the DQL-
based ABUC algorithm can reasonably be handled by the large
cloud processing capacity.

V. SIMULATION RESULTS

In this section, we present the performance results of the
proposed ABUC’s Deep Q-learning framework in a H-CRAN
network. We consider a two-tier H-CRAN which consists
of a single macro-RRH and 3 pico-RRHs equally separated
in space. Up to 12 mobile users are uniformly distributed
over the macro cell. We assume a Random Waypoint model
to represent users’ movements. The fronthaul constraints for
macro-RRH and pico-RRH are 683.1 Mbps and 106.5 Mbps,
respectively [13]. All channels undergo Rayleigh small scale
fading and log-normal shadowing. The other parameter set-
tings can be found in Table I.

The wireless environment and ABUC algorithm are im-
plemented in Matlab, while Deep Q-Network program is
developed in Python. The neural network and LSTM layer are
based on Keras. The convergence of an action is determined
if it is maintained during at least 30 consecutive super-frames.
The number of single frames in each super-frame is set to 10.

Algorithm 4: Proposed ABUC’s Deep Q-learning frame-
work
initialization initialize replay memory
Fmax: number of super-frames
F0: number of frames for each super-frame
ε: exploration rate, ε 1
ξ : exploration decay
minibatch : number of randomly sampled elements of
the memory for replay

for super-frame i = 1: Fmax do
if i = 1 then

With probability ε, randomly select an action
else

Randomly generate a probability ξ
if ξ ≤ ε then

randomly select an action
else

choose action ai = argmaxQ(oi, ai)
end

end
for frame t=1:F0 do

Execute ABUC with aki parameter
Obtain beamforming and clustering solutions for
each frame t

Compute average sum-rate of super-frame i over
all F0 frames

end
Compute the reward Γi using (11) and observe the
new state oi+1 = {nki }

Store transition (oi, ai, oi+1) in replay memory.
Get minibatch samples from memory for training
the neural network

Call replay function
Reduce exploration rate ε = ε× ξ

end
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Simulation parameters
Cellular layout Hexagonal two-tier H-CRAN
Channel bandwidth 10MHz
Intercell distance 0.8km
TX power for macro/pico RRH (43, 30) dBm
Antenna gain 15 dBi
Background noise -169 dBm/Hz
Path-loss from macro RRH to user 128.1 + 37.6 log10(d)
Path-loss from pico RRH to user 140.7 + 36.7 log10(d)
Log-normal shadowing 8 dB
CSI error variance -20 dB
Scheduling frame 10 ms
User priority weights αk 1 ∀k

TABLE I: Parameter settings for simulations

To evaluate the algorithm’s behavior with regard to user
mobility, we consider different mobility profiles represented
by the parameter λv which is a function of velocity. We set
the carrier frequency fc and the fronthaul delay Tdl for all
RRHs l as 900 MHz and 2 ms [29], respectively.

The agent in the cloud will learn over super-frames for
an observed state space of 6K states, corresponding to the
6 quantized SINR levels of each user. The action space for
each user consists of 7 actions, giving the action space size of
7K : T = 1 with Full CSI (1, f); T = 2 with Full CSI (2, f);
T = 3 with Full CSI (3, f); T = 2 with Estimated CSI (2, e);
T = 3 with Estimated CSI (3, e); T = 2 with Partial CSI.

We consider two scenarios: homogeneous and heteroge-
neous scenarios in terms of user velocity. In the first one, all
users have the same velocity while in the second, each user
has its own individual velocity.

A. DQL performance in homogeneous mobility scenario

Firstly, we evaluate the proposed algorithm in a H-CRAN
network where 9 users undergo the same velocity which is
varied over the three mobility profiles, namely: low, medium
and high mobilities corresponding respectively to 5 km/h, 40
km/h and 80 km/h. We vary the value of weights (ρ1, ρ2)
in five cases: (0.1, 0.9) (0.3, 0.7), (0.5, 0.5), (0.7, 0.3) and
(0.9, 0.1) representing different trade-offs between sum-rate
(expressed in Mbit/s) and CSI feedback costs.

Fig. 4 shows the convergence behavior of the average
system reward over super-frames for each weight pair. First
of all, we can see that the system reward increases with the
weight ρ1 as the value of the sum-rate is dominant over the
cost. We observe that when ρ1 approaches 0, e.g, ρ1 = 0.1 in
Fig. 4a, the sum-rate factor is much less prevalent than that
of CSI cost, hence users choose the action that minimizes
their cost by using the maximum period value of T = 3
and avoiding Full CSI feedback. In this case, as the channel
estimation has good quality for low and medium mobility,
i.e., (3, e) is chosen as optimal action. While in case of
high mobility, (3, p) is used instead because CSI estimation
worsens. Inversely, when ρ1 approaches 1, e.g, ρ1 = 0.9 in
Fig. 4e, the reward tends towards the sum-rate, hence all users
actions with any velocity converge to Full CSI feedback with
T = 1 as it provides the best sum-rate performance.

For the other values of ρ1, the converged actions provide an
optimized trade-off between sum-rate and CSI feedback cost.

Mobility ρ1 = 0.1 ρ1 = 0.3 ρ1 = 0.5 ρ1 = 0.7 ρ1 = 0.9
Low (3, e) (3, e) (3, e) (2, e) (1, f)

Medium (3, e) (3, e) (3, f) (2, f) (1, f)
High (3, p) (3, p) (3, f) (2, f) (1, f)

TABLE II: Synopsis of optimal actions

In Fig. 4b, although the users maintain the same converged
actions as in Fig. 4a as ρ1 is still low, the reward gap between
low mobility and the two others mobility profiles is enlarged.
We can observe the biggest difference between the reward
of low mobility compared to medium and high mobility in
Fig. 4c, which is mainly due to the actions adopted by the
users in this case. When low mobility users still use Estimated
CSI, the rest have to apply Full CSI to avoid the sum-rate
degradation, but suffer a much higher CSI overhead. In Fig.
4d, as the sum-rate begins to overcome CSI cost in weight,
i.e, as (ρ1, ρ2) = (0.7, 0.3), all users tend to guarantee a better
sum-rate by reducing their period to T = 2.

To conclude, regarding the action and the reward, we can
observe that low velocity users can afford to perform CSI
estimation rather than using partial or full knowledge of CSI
(except for ρ1 = 0.9). The reason is that the channel quality
is expected to be more stable in low velocity case and the CSI
estimation performs with accurate precision according to Eq.
(3). By contrast, in case of higher velocity, the CSI estimation
is no longer accurate and the sum-rate performance degrades
significantly. Then, for a given mobility profile, when the sum-
rate weight ρ1 increases, users tend to switch from Estimated
and Partial CSI to Full CSI to get a better sum-rate, and
to reduce their period T to limit performance loss in static
frames. The optimal actions are summarized in Table II.

B. DQL performance in heterogeneous mobility scenario

In this scenario, we also consider the same H-CRAN
network including 9 users displaying three different mobility
profiles. Users 1-2-3 have low velocity, users 4-5-6 have
medium velocity and the rest of users have high velocity. The
sum-rate coefficient ρ1 is varied over three values: 0.1, 0.5
and 0.9.

In Fig. 5, we present the convergence of individual reward,
rate and CSI cost for ρ1 = 0.1. As for the homogeneous
scenario, we can see that the users converge to the same
optimal action based on their own individual profile. The
group of low mobility users always obtains the highest values
of reward thanks to the most accurate and stable quality of
CSI feedback. Meanwhile, the groups of higher velocity often
suffer more degradation in terms of sum-rate and also pay
higher CSI cost to get more accurate information from Partial
CSI and Full CSI feedback.

The other results of converged reward, rate and action of
individual user for ρ1 = 0.5 and ρ1 = 0.9 are given in Tables
III and IV. Again, we observe the same tendency in terms of
converged action as in homogeneous scenario.

According to the logged positions derived during the exper-
iments, as the low mobility users did not move much, we can
observe in Fig. 5b that the initial position may somewhat have
influence on the individual rate performance. For example,
user 2 has clearly a better rate than that of users 1 and 3
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User 1 2 3 4 5 6 7 8 9
Reward 7.5 7.6 6.8 5.4 4.8 5.3 5.1 5.0 5.7
Sum-rate 21.0 22.3 21.2 22.2 21.8 21.5 22.0 21.1 22.9
Action (3, e) (3, e) (3, e) (3, f) (3, f) (3, f) (3, f) (3, f) (3, f)

TABLE III: Converged individual reward, rate and action per user for ρ1 = 0.5

User 1 2 3 4 5 6 7 8 9
Reward 21.7 22.3 21.0 20.8 20.2 20.0 21.0 20.5 22.9
Sum-rate 26.4 27.1 25.6 25.4 24.7 24.5 25.6 25.0 27.7
Action (1, f) (1, f) (1, f) (1, f) (1, f) (1, f) (1, f) (1, f) (1, f)

TABLE IV: Converged individual reward, rate and action per user for ρ1 = 0.9

thanks to a more favorable position over the scheduling time,
as users with the best channel conditions are more likely to be
served more often by the sum-rate maximization scheduler. In
Fig. 5c, all users converge to the same CSI cost value as both
actions (3, e) and (3, p) induce the same cost.

In Fig. 6, we present the convergence of the individual CSI
overhead cost obtained for two other values of ρ1. In Fig
6a, the users from 4 to 9 who adopt action (3, f) naturally
converge all to a higher cost value than that of low mobility
users, as action (3, e) generates less CSI feedback owing to
the CSI estimation strategy. In Fig 6b, once again all users
converge to same value of CSI cost as all of them undertake
the same action (1, f) at convergence.

C. Optimal action and convergence time against different
number of users

To examine whether and how the number of users may
influence the converged action and the convergence time, we
carried this set of experiments by varying the number of users
from 6, 9 to 12 users in a heterogeneous mobility case with
ρ1 = 0.1. The results are presented in Fig. 7.

Table V summarizes additional results concerning the con-
vergence time, optimal action and total user rate per mobility
profile as function of the number of users. We can see from
Table V and Fig. 5 that the convergence time increases with the
number of users, as the observed state space and action space
grow exponentially as a function of the number of users K.
Hence, the algorithm takes more time to explore all possible
actions to finally converge to the optimal ones. However, it is
important to notice that whatever the value of K, the optimal
actions remain the same for each mobility profile.

D. Distribution of selected actions

In order to analyze how each action is picked during the
whole scheduling process until convergence, we plot in Fig. 8
the distribution of the selected actions before convergence is
reached, for each type of user mobility.

In these figures, we can observe that the optimal action in
each case is always the most selected. In addition, looking
at the most frequently selected action, we can notice that the
choices are coherent with the sum-rate-CSI trade-off, i.e., the
values of (ρ1, ρ2). For example, when observing the results for
ρ1 = 0.1 (blue bars), the two best actions are always (3, e)
and (3, p) regardless of the velocity. This is because at the
lowest value of ρ1, the users prefer the largest period T = 3

with Estimated CSI and Partial CSI. Therefore, every option
with Full CSI, i.e., {1, 2, 3} or {(1, f), (2, f), (3, f)} must be
quickly eliminated from the candidate action set.

In Fig. 8a, for ρ1 = 0.5 (green bars), the most frequent
actions for low mobility users are still that of Estimated CSI
and Partial CSI, but in this case, the two best ones are (2, e)
and (3, e) because they offer the better sum-rate at low velocity
compared to Partial CSI. For the same weight in Fig. 8b, (2, f)
and (3, f) are the most selected actions since the estimation
of CSI becomes less accurate.

For ρ1 = 0.9 (yellow bars), as the sum-rate almost domi-
nates over the total reward function, (1, f) is always the best
choice for all mobility profiles. Somehow, we can see that
Estimated CSI is still competitive in Fig. 8a at low mobility
thanks to a good estimation quality. This action is much less
selected in case of higher velocities as shown in Fig. 8b.

The convergence times of individual users are summarized
in Table VI. We observe almost similar convergence time
intervals that are around 5000-6000 super-frames even with
different initial positions and user velocities. Such observa-
tion consolidates the conclusion that the convergence time is
mainly impacted by the number of users K rather than by the
individual characteristics of users.

E. Adaptability of the online-learning in dynamic environ-
ments

In real networks, the user mobility can vary in real-time and
the current agent’s knowledge about the environment cannot be
applicable anymore in solving the optimal action. Therefore,
it is necessary for the system to adapt to the environment’s
changes and rapidly re-learn the optimal policy. In Fig. 9,
we present the short moving average of total reward in a
network of 3 users having different velocities (5,40,80) km/h at
the beginning of the experiment. The current scenario setting
achieves a convergence after 443 super-frames with optimal
actions (3e, 3e, 3p). At super-frame 800, user 1 who has low
mobility (5 km/h) switches its velocity to 80 km/h. This
sudden change makes an important degradation on the total
reward because the CSI estimation quality is deteriorated as
user 1 is selecting an action (T = 3, e) which is no more
appropriate to the real experienced channels.

At super-frame 851, the agent detects the change of mobility
by recognizing a drop of 5% of the moving average of
converged reward (phase 1). At this point, the exploration rate
ε is reset to allow the agent start learning the new behavior
of users. As we can see in the figure, the new convergence
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Mobility 6 9 12
CV action SR CV action SR CV action SR

Low 2958 (3, e) 46.96 5862 (3, e) 63.83 11866 (3, e) 101.48
Medium 2901 (3, e) 34.09 6198 (3, e) 47.44 12152 (3, e) 72.97

High 2954 (3, p) 21.83 6264 (3, p) 37.81 11625 (3, p) 44.17

TABLE V: Convergence per mobility profile, CV = convergence time, SR = sum-rate

User 1 2 3 4 5 6 7 8 9
ρ1 = 0.1 5860 5862 4342 5188 5664 6198 5190 5334 6264
ρ1 = 0.5 5837 5244 6004 5837 6018 5658 5922 5905 5242
ρ1 = 0.9 5497 4884 5634 5982 5837 5188 5922 5982 5712

TABLE VI: Synopsis of convergence time (expressed in number of super-frames) in case of heterogeneous mobility users

is established at super-frame 1225 with new optimal actions
(3p, 3e, 3p), that better adapt to the individual change of user
1.

This result shows a good behavior of the online-learning of
our framework to adapt in real-time network operation. The
time of adaptation can be adjusted by acting on the parameter
of detection (e.g., reward drop ≤ 5%) for a better reactivity.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we designed a deep reinforcement learning
framework which enables our previously proposed ABUC
algorithm to optimize its scheduling parameters on-the-fly,
given each user mobility profile. We proposed a deep Q-
learning algorithm based on an POMDP model to better tackle
the scalability issue of our targeted problem.

More specifically, we have shown that our proposed DQL
framework can achieve attractive results in terms of converged
action and obtained reward in both homogeneous and hetero-
geneous mobility scenarios. The experiments prove that the
convergence time is mainly impacted by the number of users
in the network. They also demonstrated the online-learning
ability of the framework to rapidly adapt to the changes of
users mobility.

As a future work direction, it would be interesting to
enhance the proposed framework by further investigating the
users fairness parameter αk. Another interesting direction
would be to couple this parameter with the heterogeneous
users QoS requirements in view of the upcoming Beyond 5G
and 6G applications. A particular attention should be devoted
to emerging technologies such as RIS and holographic MIMO
surfaces [30] whose integration would further improve the
performance of heterogeneous networks. Finally, as energy
efficiency will become a major key performance indicator
in future 6G networks, it is essential to adapt our proposed
methods to handle such energy-related issues [31], [32].
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(a) (ρ1, ρ2) = (0.1, 0.9) (b) (ρ1, ρ2) = (0.3, 0.7)

(c) (ρ1, ρ2) = (0.5, 0.5) (d) (ρ1, ρ2) = (0.7, 0.3)

(e) (ρ1, ρ2) = (0.9, 0.1)

Fig. 4: Total reward convergence in homogeneous mobility scenario
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(a) Individual reward

(b) Individual rate (Mbit/s)

(c) Individual CSI cost (feedback/frame)

Fig. 5: Individual convergence of reward, rate and CSI cost in
heterogeneous mobility scenario, ρ1 = 0.1

(a) (ρ1, ρ2) = (0.5, 0.5)

(b) (ρ1, ρ2) = (0.9, 0.1)

Fig. 6: Individual CSI cost convergence in heterogeneous
mobility scenario
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(a) 6 users

(b) 9 users

(c) 12 users

Fig. 7: Reward convergence per mobility profile in heteroge-
neous mobility scenario

(a) Low mobility users 1-3

(b) High mobility users 7-9

Fig. 8: Distribution of selected actions for different mobility
profiles

Fig. 9: Reward convergence in case of online-learning




