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Nantes Université, École Centrale Nantes,

CNRS, LS2N, UMR 6004
F-44000 Nantes, France

surname.lastname@univ-nantes.fr

Abstract—Multiple Constant Multiplication (MCM) is a ubiq-
uitous problem for numerous computation-intensive applications.
One efficient approach is to replace generic multipliers by
multiplierless architectures based on bit-shifts and additions.
The adder graphs describing the multiplierless circuits can be
optimized according to various metrics. In this paper, we optimize
for throughput and improve the state-of-the-art for the design
of pipelined adder graphs. In contrast to existing approaches,
which pipeline a posteriori or use heuristics, our solution is to
optimally solve the pipelined adder graph design problem using
Mixed-Integer Linear Programming (MILP). We first model the
pipelining and its cost, and then incorporate it into the state-of-
the-art ILP model for the MCM design. Fusing the MCM design
with pipelining into a single global optimization problem exactly
solved by powerful MILP solvers demonstrated clear benefits on
numerous benchmarks. Moreover, mathematical modeling allows
for an easily extendable tool which can adapt to evolving hardware
models/metrics.

Index Terms—Adder graph, optimal design, multiplierless hard-
ware, integer linear programming

I. INTRODUCTION

Many numerical algorithms and applications involve mul-
tiplications by integer constants. Fixed-Point (FxP) numbers,
which can be assimilated to integers, are the preferred choice
for algorithms targeting embedded systems such as Field-
Programmable Gate Arrays (FPGAs). In particular, the eval-
uation of FIR filters [1, Chapter 6.4], Fast Fourier Transform
[2] or parallel neural network controllers [3] require to multiply
integer variables with tens to thousands of constants.

While generic multipliers perfectly handle these multipli-
cations by constants, their cost largely exceeds multiplierless
architectures that benefit from the knowledge of constants’
values [4]. The shift-and-add approach is hence the privileged
method to reduce hardware cost. It consists in replacing mul-
tiplications by bit-shifts, additions and subtractions where bit-
shifts are multiplications by a power of two, that can be hard-
wired for a negligible cost. For example, multiplying an integer
variable x by the constant 7 can be rewritten as 7x = 23x−x,
reducing the cost to a single bit-shift by three positions to the
left and a subtraction, instead of a multiplication.

The Multiple Constant Multiplication (MCM) problem con-
sists in finding the implementation with the lowest cost that
achieves the multiplication by a given set of target constants
to multiply with. The ultimate goal would be to search for the
lowest cost by considering the final hardware metrics. Yet, all
the information required to compute the final hardware cost is

Fig. 1: Our tools takes target constants and multiple options to
optimize for different MCM problem flavors

not disclosed and the typical way is to use proxy metrics, such
as the number of adders, to estimate the synthesized hardware
cost [5]–[10].

The hardware cost is actually manifold and while most
higher-level metrics try to target those as a whole, in this
work we put a specific focus on delay and throughput by
considering adder pipelining. A direct solution is to simply
pipeline the optimal solutions to the MCM problem [11], but
this is not as efficient as adding registers into the design
approach and searching directly for the best multiplierless
topologies minimizing the number of registers [8]. With this
work, we propose a new Integer Linear Programming (ILP)
based model that solves the Pipelined MCM problem (PMCM).
This new model is incorporated into the jMCM tool providing
solutions to different flavors of the MCM problem. In particular,
we explore, for the first time, pipelining in the MCM targeting
the low-level hardware metric that counts the number of one-bit
adders.

The easy-to-use and open-source tool in Fig. 1 generates
MCM solutions as adder graphs, and can be used to automati-
cally generate the VHDL code. We demonstrate, on a large set
of benchmarks, that our optimal approach generates solutions
that demand 17.57% fewer adders and registers, on average,
than the state-of-the-art heuristic RPAG [8].

II. STATE OF THE ART

The MCM problem has been studied for decades and first
solutions [12], [13] were based on the Canonical Signed
Digit (CSD) representation. This consists in rewriting of the
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number using a signed digit representation using {−1, 0, 1}
in a Non-Adjacent Form (NAF), i. e., nonzero bits are not
adjacent. For example, 23x = 0010 1001CSD × x replaces
the multiplication by 2 additions, as illustrated by an adder
graph in Fig. 2a. In an adder graph, numbers inside nodes
represented with rectangles are called fundamentals and denote
the constants by which the input is multiplied with, and labels
on edges denote either the negation, or an integer power
of two the signal is multiplied with. However, CSD does
not always provide optimal results and does not give any
guarantee on optimality. Moreover, since CSD is applied on
each constant separately, resource sharing should be explored
by additional algorithms.

Many heuristics enhance the results obtained with the CSD
method for the MCM problem [5], [14]–[17], and more recently
optimal approaches have been developed [6], [7], [9], [10], [18].

The first optimal methods were based on dedicated algo-
rithms relying on hypergraphs [6] or branch-and-bound [7].
Both methods were not easily extensible and an ILP based
model [9] which could solve either the MCM or PMCM
problems has been proposed to benefit from the versatility of
mathematical modeling. A simpler model [10], which did not
rely on heavy precomputations, was used more recently and
has been adapted [19] to find solutions for the single constant
multiplication using SAT/SMT solvers.

All these methods have in common a focus on the number
of adders, solving what we call the MCM-Adders problem.
Finer-grain metrics, such as the number of one-bit adders,
the adder depth or the glitch path count, have first been
tackled heuristically [5], [8]. The recent ILP-based optimal
approach [18] proposes a new MCM model that efficiently
encodes the adder graph topology and various metrics as ILP
constraints, such that no precomputations are required and the
model is easily extensible for different optimization criteria.
In particular, [18] proposes a new model that minimizes the
number of one-bit adders, i. e. solving the, as we shall call it,
MCM-Bits problem.

In order to obtain a higher throughput, designers often con-
sider pipelined adder graphs, i. e., adder graphs with registers
before each stage [8], [9], [11], [20]. In particular, we assume
that all outputs should be available at the same clock cycle.
Pipelining of a fixed adder graph, for example coming from
the MCM-Adders or MCM-Bits, can be obtained by performing
cut-set retiming (CSR) [21]. For example, to pipeline the stages
of the optimal adder graph for 23x, shown in Fig. 2a, one must
put a register at the input, one register after each adder and one
register for the fundamental 1 on Stage 1, as shown in Fig. 2b.
When implementing on FPGAs, we will consider that registers
that follow adders basically come for free. It is worth to mention
that pipelining the individual adders instead of the adder stage
is possible and efficient for ASICs design [22], but we leave
this option out of the scope of our paper.

As it was shown in [11], adapting the adder graph topology
specifically for pipelined implementation yields designs with
a lower cost. The RPAG tool [8] provides heuristic solutions
to the problem and [9] gives first optimal ILP-based approach
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Fig. 2: Pipelining adder stages

for PMCM. The idea of Kumm [9] is to solve a satisfaction
problem, given a bound on the number of adders and on the
adder depth, in which a full enumeration of the design space
is performed to construct the ILP problem. Pipelining is then
ensured by a constraint that the adder’s inputs on stage n
should come exclusively from the preceding stage n − 1, and
not from earlier stages. The drawback of this approach is a
strong limitation in the number of possible stages, due to heavy
precomputations. Moreover, the ILP models by Kumm cannot
be easily combined/updated with other metrics and constraints.

Instead, in the following we will use the versatile framework
proposed in [18] and extend it to solve the PMCM problem. In
the following we present a few sets of variables and constraints
which permit to take the register cost into account.

III. PIPELINED MULTIPLE CONSTANT MULTIPLICATION

In [18], two main models are used: MCM-Adders, optimizing
for the adder count, and the MCM-Bits optimizing the number
of one-bit adders. In this section, we add pipelining as a
constraint to both of them.

Unique adders. Let us first make the following observation.
The solution of the MCM-Adders problem is guided by the
number of adders, and naturally, each fundamental (the constant
associated with the adder) should be unique in the adder graph.
However, when incorporating the pipelining, it is the length of
the connection between an adder and the maximum stage it
interacts with, which is guiding the topology. Hence, it might
sometimes be beneficial to compute the same fundamental
twice, as it saves registers. For example, consider the adder
graph in Fig. 3a, computing 5x, 69x, 553x and 2483x. To
pipeline this adder graph, we need 8 registers in addition to
the 5 adders, as illustrated in Fig. 3b. However, there exists
an adder graph, represented in Fig. 4, which only requires 6
registers and 6 adders but computes the same fundamental (5)
twice: on Stage 1, and then on Stage 4. This permits to avoid
propagating the fundamental 5 through all the stages and to
recompute it when needed, which reduced the overall cost.

With this observation we first modified the base model for
MCM-Adders and MCM-Bits to allow for multiple occurrences
of the same fundamental, if they are computed on differ-
ent stages.
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Fig. 3: Adding register to pipeline a fixed adder graph
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Fig. 4: Increasing the number of adders to reduce the pipelined
adder graph overall cost

Register cost. Now, our overall idea is to avoid modeling the
registers explicitly, as entities similar to adders, but to compute
the register cost for each adder in the following way. For each
adder a ∈ {a0, a1, . . . , aNA

}, where a0 is the input and NA is
the upper bound on the number of used adders, we can extract
the stage when they are computed, sa, and the maximum stage
they interact with as a direct input, sa. For example, in Fig. 4,
for the initial input the stage sa0 = 0 and the maximum stage
it interacts with is sa0 = 4 (to compute the fundamental 553).

Then, the cost ra of each adder a in terms of registers is
directly computed as

ra = sa − sa. (1)

Hence, for the input in Fig. 4, the register cost is ra0
= 4− 0.

With these observations, we can expect that the optimal
PMCM might have more adders than the solutions by MCM-
Adders and MCM-Bits. In Section IV, we illustrate that it
indeed occurs.

We use as basis the ILP models from [18] and below report
only the modifications to them.

A. PMCM-Adders

The ILP from [18], given the target coefficients, first com-
putes the upper bound on the minimum number of adders NA.
Then, the solver searches the fundamentals associated with each
adder a ∈ {a0, a1, . . . , aNA

}, such that the topology abides to
the rules of adder graphs and computes the target coefficients,
such that the cost function is minimized.

Denote sa ∈ N to be the stage, on which the adder a is
computed. Then, for all adders a and stages s we add the binary
variable sa,s, such that sa,s = 1 if adder a is used as an input
of stage s. The maximum number of stages can be computed
a priori using the bound NA on the adder count. Then, in order
to compute the maximum stage with which the adder a interacts
with, sa ∈ N, we add the constraints

sa ≥ s× sa,s, ∀a, s, (2)

Then we simply introduce the equation (1) to count the register
cost of each adder.

To minimize the number of registers, the objective function
should be adjusted accordingly. In the original models, the
objective function minimizes the sum of actually used adders,
which are indicated by binary variables ua, that are true if the
adder a is used. We use this objective function as a basis and
add the register cost into the weighted sum representing the
total PMCM cost:

min costa

NA∑
a=1

ua + costr

NA∑
a=1

ra, (3)

where costa and costr are the weights of the adder and register
costs, respectively. This objective function with the original
MCM-Adders model and the new variables and constraints
permits to solve the PMCM-Adders problem.

B. PMCM-Bits

When the input data word length is a priori known, solving
the MCM-Bits problem leads to hardware with lower cost [18]
than MCM-Adders, which should hold for the PMCM-Bits
model we present below. Indeed, counting the one-bit adders
presents a finer-grained metric.

In the original MCM-Bits model, the most significant bit
(MSB) propagation of the data is already encoded by integer
variables for MSB propagation while the least significant bit
(LSB) is fixed to zero. For simplicity, we consider the integer
variable wla corresponding to the data word length after adder
a. Then, the number of one-bit registers, rba, required for each
adder is

rba = wla × ra. (4)



TABLE I: Comparison of our results to RPAG [8]. Here #A, #Ab, #R and #Rb denote the number of adders, one-bit adders,
registers, and one-bit registers, respectively. C = #A + #R and Cb = #Ab + #Rb. Numbers in bold indicate best results.

Bench RPAG PMCM-Adders PMCM-Bits

#A #R C #Ab #Rb Cb #A #R C #Ab #Rb Cb #A #R C #Ab #Rb Cb

G.3 4 2 6 43 25 68 4 1 5 43 15 58 4 1 5 43 15 58
G.5 6 2 8 69 34 103 6 2 8 69 34 103 6 2 8 69 34 103
HP5 4 4 8 42 45 87 4 2 6 42 24 66 4 2 6 42 24 66
HP9 5 4 9 50 49 99 5 2 7 50 27 77 5 2 7 50 27 77
HP15 12 7 19 122 104 226 12 3 15 122 56 178 12 3 15 122 56 178
L.3 4 2 6 45 24 69 4 1 5 45 16 61 5 0 5 58 3 61
LP5 7 2 9 75 40 115 7 1 8 68 30 98 8 1 9 85 25 110
LP9 13 6 19 152 102 254 15 3 18 167 68 235 13 4 17 145 81 226
LP15 27 26 53 306 434 740 27 9 36 304 191 495 27 10 37 306 201 507
U.3-1 4 2 6 32 34 66 4 1 5 38 18 56 4 1 5 35 21 56
U.3-2 6 3 9 62 50 112 5 2 7 60 33 93 5 2 7 59 32 91

Total: 92 60 152 998 941 1939 93 27 121 1025 508 1533 93 29 123 1029 517 1546

(a) One-bit adder outputs,
carry outputs and go-through
outputs are all BLEs.

(b) One-bit adders and flip-
flops are independent.

Fig. 5: Counting resources on (a) FPGA and (b) ASICS

This leads to a finer-grain objective function:

min costb

NA∑
a=1

ba + costrb

NA∑
a=1

rba, (5)

where ba is the number of one-bit adders of adder a, and costb
and costrb are the cost of one-bit adders and one-bit registers,
respectively.

In details, each basic logic element (BLE) used in modern
FPGAs consists of at least one one-bit adder and two optional
flip-flops (FF). Thus, not the whole adder output comes with
associated registers but only the output bits computed by a
one-bit adder as illustrated in Fig. 5a. The carry outputs or
the go-through output bits will have to be computed using the
BLEs as well. As a consequence, we assume that the one-
bit adders come for free in (5), i. e. costb = 0, and focus on
counting register bits. If the FF and one-bit adders were on
separated BLEs, as illustrated in Fig. 5b for ASICs, it would
be straightforward to adjust our model by modifying the costs
of in the objective function.

Previous works [10], [18] have shown that the adder depth
and/or the glitch path count can be considered with bounds
and/or as a second objective. Yet, pipelining makes both metrics
of less interest and the critical path would be a better high-level
metric to consider. The critical path of the pipelined adder graph
is determined by the adder with the largest number of one-bit

TABLE II: A posteriori pipelining of MCM-Bits solution vs.
one-step optimization with PMCM-Bits. Cb = #Ab + #Rb.

Bench MCM-Bits PMCM-Bits

#Ab #Rb Cb #Ab #Rb Cb

G.3 40 28 68 43 15 58
G.5 57 55 112 84 32 116
HP5 39 77 116 42 24 66
HP9 47 41 88 50 27 77
HP15 105 230 335 122 56 178
L.3 31 59 90 58 3 61
LP5 60 89 149 85 25 110
LP9 137 218 355 145 81 226
LP15 250 688 938 306 201 507
U.3-1 32 34 66 35 21 56
U.3-2 49 85 134 59 32 91

Total: 847 1604 2451 1029 517 1546

adders. Using ILP modeling, it is straightforward to store this
value into Bmax, an integer variable,

Bmax ≥ ba, ∀a ∈ [[1;NA]]. (6)

Then, the objective function can be modified as follows to
minimize the critical path as a second objective,

min M ×

costb

NA∑
a=1

ba + costrb

NA∑
a=1

rba

+Bmax, (7)

where the integer parameter M is fixed to a known upper bound
of Bmax such as the maximum data word length in the adder
graph, in order to ensure that the first term of the cost function
is optimized first, and Bmax second.

IV. TOOL AND EXPERIMENT RESULTS

A. Optimization results

The flow of the jMCM tool is summarized in Fig. 1 and can
be easily extended to include more high-level options similarly
to our approach with the critical path. This tool is implemented
in julia using the modeling language JuMP [23], so any generic



MILP solver supported by JuMP can be used for the solving
process as backend. The tool is open-source and freely available
on git1.

With jMCM, embedded system designers can provide target
coefficients together with a just few high-level options, such as
the input/output word length. Then, an ILP model, adjusted
accordingly to the options, will be automatically generated
and solved. This generates adder graphs that can be used to
generate the VHDL code, for example using the FloPoCo [24]
code generator or with our own VHDL generation tool for
adder graphs.

We applied our tool to benchmarks from image process-
ing (11 instances) [25] and from the whole FIRsuite project
(75 instances) [26], which is a collection of finite impulse
response digital filters. Generated models were solved with
Gurobi [27], with a time limit of 30 minutes and 4 threads from
2.1 GHz CPUs. When solving the PMCM-Bits problem, input
word length is fixed at 8 bits as it is a logical choice for the
image-processing benchmarks. Detailed results are given only
for the image processing benchmark while statistics integrate
all 86 benchmarks.

PMCM. In [8] it was shown that solutions obtained with the
RPAG heuristic require, on average, a lower number of adders
plus registers than pipelining fixed adder graphs. In TABLE I,
the state-of-the-art RPAG results are compared with our optimal
approach for the PMCM-Adders. With our tool, we can observe
a 17.57% reduction of the number of adders plus registers, on
average and across all 86 benchmarks, compared to RPAG.
In details, the number of adders is on average increased by
1.86% allowing to reduce the number of registers that are not
associated to an adder by 49.26%. With this trade-off between
the number of adders and the number of registers, for PMCM
we discourage using tight bounds on the initial bound on the
maximum number of adders, which is otherwise advised for
MCM-Adders. For instance, in our experiments we arbitrarily
increased by two every (initially tight) bound on the number
of adders for each benchmark. For 11 instances out of 86, the
larger upper bound permitted to obtain lower cost adder graphs.

PMCM-Bits. The state-of-the-art RPAG heuristic demon-
strated [8] that solving the PMCM as one step is better, w. r. t.
the number of adders and registers, than a posteriori pipelining
an optimal adder graph. The results presented in TABLE II
show that this principle holds for the fine-grained metric of
counting one-bit adders and one-bit registers. By solving the
PMCM-Bits problem, instead of pipelining a posteriori the
MCM-Bits solution, we achieve a 33.15% cost reduction in
terms of number of one-bit registers, on average.

However, the PMCM-Bits solutions, on average, demonstrate
no improvement over the PMCM-Adders solutions. Moreover,
we observed that solving PMCM-Bits is more challenging for
the solver, which translates into obtaining, in rare cases, worse
solutions than PMCM-Adders. Our hypothesis is that, for hard
instances, solving the PMCM-Adders problem leads to an adder
and register reduction that is not reached by solving the PMCM-
Bits within the available time. On the other hand, this might be

1https://github.com/remi-garcia/jMCM
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Fig. 6: Postprocessing replaces unnecessary adders with same-
cost registers

explained in the following way: the interest of MCM-Bits is to
count the number of one-bit adders and look for corner cases
that permit to avoid using them, but it is somewhat leveled
by the register bit count, which always depends on the word
length of the adder output. Though we did observe one case,
benchmark U.3-2, where PMCM-Bits found a better adder
graph than PMCM-Adders.

Post-processing. We observed that sometimes the solver
provides solutions in which adders could have been replaced
by registers such as in Fig. 6a. When targeting FPGA, this has
the same cost as the register used in Fig. 6b since the adder
comes for free in the model. Hence, the solver will not differ-
entiate between these solutions. Hardware costs, such as power
consumption, would however differ. These unnecessary adders
can be replaced by registers with a trivial post-processing that
jMCM supports.

B. Hardware results

Our tool has a module for the VHDL code generation, which
we then synthesized for FPGA using Vivado v2018.2 for the
xc7v585tffg1761-3 Kintex 7 device. Similarly to optimization
results, although we only provide details for the image process-
ing benchmarks, we give the statistics on all 86 benchmarks.

In TABLE IV, we compare the critical path delay of five
different approaches: RPAG, MCM-Adders (no pipelining),
PMCM-Adders, PMCM-Bits and PMCM-Bits minimizing the
critical path as a second objective. As expected, pipelining
leads to smaller critical path which permits to increase the
frequency and the throughput of the final hardware. Interest-
ingly, minimizing the critical path as a second objective was
not as efficient as we expected: on average, the critical path
delay was reduced by just 0.37% and simply solving PMCM-
Bits was even better on multiple instances, in the allocated
solving time. The main objective of PMCM-Bits CP was to
minimize resources, and the critical path was secondary, hence
we think that modifying the cost function and allowing for a
small increase in resource objective could improve the delay.

The TABLE I and II demonstrated the advantages of the
proposed approach over the state-of-the-art heuristic RPAG
on the a priori metrics, i. e. number of adders and registers.

https://github.com/remi-garcia/jMCM


TABLE III: Comparison of adder graphs obtained with different high- and low-level models, including pipelining or applied on a
fixed adder graph. Registers are also added on the I/Os. We report the number of LUTs and FF and the power consumption (mW)
after place and route. Numbers in bold indicate best results. GM stands for geometric mean.

Bench
Two-step vs one-step counting adders Two-step vs one-step counting one-bit adders

RPAG MCM-Adders + P. PMCM-Adders MCM-Bits + P. PMCM-Bits

#LUTs #FF power #LUTs #FF power #LUTs #FF power #LUTs #FF power #LUTs #FF power

G.3 43 75 116 42 76 114 42 65 114 39 74 112 42 65 114
G.5 69 109 170 58 148 174 68 108 170 57 138 180 68 108 170
HP5 42 93 127 41 92 126 41 73 125 37 118 134 41 73 125
HP9 50 105 163 48 104 156 48 84 156 44 94 161 48 84 156
HP15 121 226 408 119 225 400 118 184 398 100 315 413 118 184 398
L.3 45 75 121 34 95 122 44 68 126 31 93 118 44 68 126
LP5 76 115 213 66 157 218 77 111 221 59 142 212 70 104 207
LP9 149 250 483 143 354 510 179 229 510 139 396 545 153 229 507
LP15 303 691 1181 302 690 1175 311 487 1181 330 791 1219 296 498 1204
U.3-1 32 73 109 30 72 103 35 63 106 30 72 103 35 63 106
U.3-2 62 117 179 59 97 174 116 126 197 51 139 178 61 116 178

GM: 71 133 217 66 146 215 77 117 218 62 158 219 70 116 215

TABLE IV: Critical path delay (ns) for each method.

Bench. MCMA RPAG PMCM-A PMCM-B PMCM-BCP

G.3 2.643 1.452 1.494 1.494 1.494
G.5 4.608 1.792 1.772 1.772 1.772
HP5 2.629 1.887 1.566 1.566 1.566
HP9 2.731 1.698 1.712 1.712 1.712
HP15 5.142 2.791 3.423 3.423 3.423
L.3 3.926 1.497 1.502 1.502 1.502
LP5 3.687 1.931 1.705 1.662 1.824
LP9 7.458 3.079 2.875 3.304 3.099
LP15 13.147 5.897 7.586 5.178 5.415
U.3-1 2.535 1.641 1.630 1.630 1.547
U.3-2 4.020 1.547 1.623 1.409 1.409

In TABLE III, we recap the synthesis results for the RPAG,
the two-step process consisting in solving MCM-Adders (re-
spectively, MCM-Bits) first and pipelining second, and our
optimal approach. Interestingly, the RPAG heuristic is not
better than the two-step approaches, but this can be explained
by significant improvements to the underlying MCM model
that are incorporated into the MCM-Adders and MCM-Bits
from [18] that we used as back-end. We see the clear advantage
of our optimal solutions with respect to the number of FFs,
which are almost everywhere significantly reduced by both
PMCM-Adders and PMCM-Bits. However, synthesis results
confirm our observation that PMCM-Bits in general has shown
no advantage to PMCM-Adders in the allocated time. Finally,
the gains in results of number of LUTs and power are more
erratic and the one-step process does not lead to a clear cost re-
duction compared to a posteriori pipelining. This inconclusive
is nevertheless not discouraging since all these values are close.

V. CONCLUSION AND PERSPECTIVES

With this work, we proposed an optimal approach to incor-
porating pipelining into the ILP-based design of multiplierless
MCM. Our results, evaluated on a large set of benchmarks,
demonstrate the superiority of optimal approach compared to

the state-of-the-art heuristic RPAG. In contrast to previous
approaches, we also incorporate the pipelining into a model that
targets a low-level metric, based on counting one-bit adders.
Our experiments confirm that optimizing in one step, i. e.
PMCM-Bits, is better than a posteriori pipelining of MCM-Bits
solutions, following the same trend as with counting adders.
However, in the allocated time, PMCM-Bits design exploration
is rarely revealing better results than the high-level metric-based
PMCM-Adders.

With this work we demonstrate the versatility and power of
the ILP-based approach: one can rely on the jMCM tool and, by
simple modification of constraints/cost function, automatically
design multiplierless constant multiplication circuits that target
different metrics. This new design automation tool permits to
alleviate time and effort embedded system designers put into the
data path optimization and fine-tuning, and lets them focus on
more high-level tasks related to their implemented algorithm.

In future, we plan to search for high-level metrics that
could be correlated with the delay and power consumption
and to incorporate these into the objective function. We also
plan on to tackle truncated pipelined adder graphs, modifying
the constraints from [18]. Finally, we plan to automate the
(pipelined) MCM design in presence of a certain budget of
DSP blocks.
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