
HAL Id: hal-03943273
https://hal.science/hal-03943273

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple Constant Multiplication: From Target
Constants to Optimized Pipelined Adder Graphs

Rémi Garcia, Anastasia Volkova

To cite this version:
Rémi Garcia, Anastasia Volkova. Multiple Constant Multiplication: From Target Constants to Op-
timized Pipelined Adder Graphs. 2023 33rd International Conference on Field-Programmable Logic
and Applications (FPL), Sep 2023, Gothenburg, France. pp.137-143, �10.1109/FPL60245.2023.00027�.
�hal-03943273�

https://hal.science/hal-03943273
https://hal.archives-ouvertes.fr


Multiple Constant Multiplication: From Target
Constants to Optimized Pipelined Adder Graphs

Garcia Rémi and Volkova Anastasia
Nantes Université, École Centrale Nantes,

CNRS, LS2N, UMR 6004
F-44000 Nantes, France

surname.lastname@univ-nantes.fr

Abstract—Multiple Constant Multiplication (MCM) is a ubiq-
uitous problem for numerous computation-intensive applications.
A standard and efficient approach is to replace generic multipliers
by multiplierless architectures based on bit-shifts and additions.
The adder graphs describing the multiplierless circuits can be
optimized according to various metrics, in particular improving
throughput by pipelining. In this paper, we improve the state-of-
the-art for the design of pipelined adder graphs by searching for
an optimal solution directly from target coefficients. In contrast
to existing approaches, which are based on fixed adder graphs or
heuristics, our solution is to describe the complete design space
with Mixed-Integer Linear Programming (MILP). This results
in an optimization model that can be solved to find optimal
adder graphs and prove the optimality of the solutions thanks to
the efficiency of modern MILP solvers. Mathematical modeling
allows for an easily extendable tool which can target FPGAs
and ASICs and adapt to evolving hardware models/metrics. With
this work, we provide a modular framework to automate the
design of adder graph-based circuits with exact optimization. The
experiments demonstrate efficiency of our approach which fuses
multiple design steps into a single problem.

Index Terms—Adder graph, optimal design, multiplierless hard-
ware, integer linear programming

I. INTRODUCTION

Many numerical algorithms and applications involve mul-
tiplications by integer constants. Fixed-Point (FxP) numbers,
which can be assimilated to integers, are the preferred choice
for algorithms targeting embedded systems such as Field-
Programmable Gate Arrays (FPGAs).

While generic multipliers perfectly handle these multipli-
cations by constants, their cost largely exceeds multiplierless
architectures that benefit from the knowledge of constants’
values [1]. The shift-and-add approach is hence the privileged
method to reduce hardware cost. It consists in replacing mul-
tiplications by bit-shifts, additions and subtractions where bit-
shifts are multiplications by a power of two, that can be hard-
wired for a negligible cost. For example, multiplying an integer
variable x by the constant 7 can be rewritten as 7x = 23x−x,
reducing the cost to a single bit-shift by three positions to the
left and a subtraction, instead of a multiplication.

The Multiple Constant Multiplication (MCM) problem con-
sists in finding the implementation with the lowest cost that
achieves the multiplication by a given set of target constants
to multiply with. The ultimate goal would be to search for the
lowest cost by considering the final hardware metrics. Yet, it is
currently unrealistic and the typical way is to use proxy metrics,

Fig. 1: Our tools takes target constants and multiple options to
optimize for different MCM problem flavors

such as the number of adders, to estimate the synthesized
hardware cost [2]–[7].

The hardware cost is actually manifold and while most
higher-level metrics try to target those as a whole, in this work
we put a specific focus on delay and throughput by considering
pipelining. While one can simply pipeline the optimal solutions
to the MCM problem [8], this is not as efficient as adding
registers into the design approach and searching directly for
the best multiplierless topologies minimizing the number of
registers [5]. With this work, we propose a new Integer Linear
Programming (ILP) based model that solves the Pipelined
MCM problem (PMCM). This new model is incorporated into
the jMCM tool providing solutions to different flavors of the
MCM problem. In particular, we explore, for the first time,
pipelining in the MCM targetting the low-level hardware metric
that counts the number of one-bit adders.

The easy-to-use and open-source tool in Fig. 1 generates
MCM solutions as adder graphs, and can be used to automat-
ically generate the VHDL code. We demonstrate, on a large
set of benchmarks, that our optimal approach provides solution
that need 17.57% less adders and registers, on average, than
the state-of-the-art heuristic RPAG [5].

II. STATE OF THE ART

The MCM problem has been studied for decades and first
solutions [9], [10] are based on the Canonical Signed Digit
(CSD) representation. This consists in the rewriting of the
number using a signed digit representation in a Non-Adjacent
Form (NAF), e. g., 23x = 0010 1001CSD × x replaces the

https://orcid.org/0000-0001-6704-759X
https://orcid.org/0000-0002-0702-5652


multiplication by 2 additions, as illustrated by an adder graph
in Fig. 2a. In an adder graph, the number in nodes is called
a fundamental and denotes a constant the input is multiplied
with, and labels on edges denote either the negation, or an
integer power of two the signal is multiplied with. However,
CSD does not always provide optimal results and does not give
any guarantee on optimality. Moreover, since CSD is applied on
each constant separately, resource sharing should be explored
by additional algorithms.

Many heuristics enhance the results obtained with the CSD
method for the MCM problem [2], [11]–[14], and more recently
optimal approaches have been developed [3], [4], [6], [7], [15].

The first optimal methods were based on dedicated algo-
rithms relying on hypergraphs [3] or branch-and-bound [4].
Both methods were not easily extensible and an ILP based
model [6] which could solve either the MCM or PMCM
problems has been proposed to benefit from the versatility of
mathematical modeling. A simpler model [7], which did not
rely on heavy precomputations, was used more recently and
has been adapted [16] to find solutions for the single constant
multiplication using SAT/SMT solvers.

All these methods have in common a focus on the number
of adders. Finer-grain metrics, such as the number of one-bit
adders, the adder depth or the glitch path count, have first been
tackled heuristically [2], [5]. The recent ILP-based optimal
approach [15] proposes a new MCM model that efficiently
encodes the adder graph topology and various metrics as ILP
constraints, such that no precomputations are required and the
model is easily extensible for different optimization criteria.
In particular, [15] proposes a new model that minimizes the
number of one-bit adders, i. e. solving the, as we shall call it,
MCM-Bits problem. A useful functionality is the minimization
of the number of cascaded adders, called the adder depth
(AD), as a secondary objective to the minimization of the main
adder/one-bit adder metric.

In order to obtain a higher throughput, designers often con-
sider pipelined adder graphs, i. e., adder graphs with registers
before each stage [5], [6], [8], [17]. Pipelining of a fixed
adder graph, for example coming from the MCM-Adders or
MCM-Bits, can be obtained by performing cut-set retiming
(CSR) [18]. For example, to pipeline the stages of the optimal
adder graph for 23x, shown in Fig. 2a, one must put a
register at the input, one register after each adder and one
register for the fundamental 1 on stage 1, as shown in Fig. 2b.
When implementing on FPGAs, the registers that follow adders
basically come for free, since LUTs have a register. It is worth
to mention that pipelining the adders instead of the adder stage
is possible and efficient for ASICs design [19], but we leave
this option out of the scope of our paper.

As it was shown in [8], adapting the adder graph topology
specifically for pipelined implementation yields designs with
a lower cost. The RPAG tool [5] provides heuristic solutions
to the problem and [6] gives first optimal ILP-based approach
for PMCM. The idea of Kumm [6] is to solve a satisfaction
problem, given a bound on the number of adders and on the
adder depth, in which a full enumeration of the design space

3

5

(−)

1

9

23

23

(a) Before pipelining (b) With registers

Fig. 2: Pipelining adder stages

2

6

(−)

32

5

1

5

69

553275

5

69

553

2483

2483

(a) Adder graph before
pipelining

2

6

(−)

6(−) 3 5

2

1

1 5

5 69553 2483

1 69

1 275

5535

69

69 2483

(b) Pipelined adder graph with two
adders computing the same value

Fig. 3: Increasing the number of adders to reduce the pipelined
adder graph overall cost

is performed to construct the ILP problem. Pipelining is then
ensured by a constraint that the adder’s inputs on stage n
should come exclusively from the preceding stage n − 1, and
not from earlier stages. The drawback of this approach is a
strong limitation in the number of possible stages, due to heavy
precomputations. Moreover, the ILP models by Kumm do not
support easily combined metrics and constraints.

Hence, in the following we will use the versatile framework
proposed in [15] and extend it to solve the PMCM problem.
Our goal is to present a few sets of variables and constraints
which permit to take the register cost into account.

III. PIPELINED MULTIPLE CONSTANT MULTIPLICATION

In this section, we propose to extend the ILP-based models
presented in [15] which permit to solve the MCM-Adders,
optimizing for the adder count, and the MCM-Bits optimizing
the number of one-bit adders, and add pipelining as a constraint.

Let us first make the following observation. The solution of
the MCM-Adders problem is guided by the number of adders,



and naturally, each fundamental (the constant associated with
the adder) should be unique in the adder graph. However, when
incorporating the pipelining, it is the length of the connection
between an adder and the maximum stage it interacts with,
which is guiding the topology. Hence, it sometimes might be
beneficial to compute the same fundamental twice, as it saves
registers. Consider the adder graph in Fig. 3, computing 5x,
69x, 553x and 2483x. Here, we need to add four registers after
the adder computing 5x (if the adder graph is implemented
in FPGAs, the register right after the adder comes for free).
However, with the tool that we present below, we can find the
adder graph in Fig. 3b, which computes 5x on stage 1, and then
on stage 4. This permits to reduce the cost to 2 adders and 2
registers (or simply 2 adders, when implementing on FPGA).

Hence, we are first modifying the base model for MCM-
Adders and MCM-Bits to allow for multiple occurrences of the
same fundamental, if they are computed on different stages.

Now, our overall idea is to avoid modeling the registers
explicitly, as entities similar to adders, but to compute the
register cost for each adder in the following way. For each
adder a ∈ {a0, a1, . . . , aNA

}, where a0 is the input and NA is
the bound on the number of used adders, we can extract the
stage when they are computed, sa, and the maximum stage they
interact with as a direct input, sa. For example, in Fig. 3b, for
the initial input the stage sa0 = 0 and the maximum stage it
interacts with is sa0

= 4.
Then, the cost ra of each adder a in terms of registers is

directly computed as

ra = sa − sa. (1)

Hence, for the input in Fig. 3b, the register cost is ra0
= 4−0.

With these observations, we can expect that the optimal
PMCM might have more adders than the solutions by MCM-
Adders and MCM-Bits. In Section IV, we illustrate that it
indeed occurs.

We use as basis the ILP models from [15] and below report
only the modifications to them.

A. PMCM-Adders

The ILP from [15], given the target coefficients, first com-
putes the upper bound on the minimum number of adders NA.
Then, the solver searches the fundamentals associated with each
adder a ∈ {a0, a1, . . . , aNA

}, such that the topology abides to
the rules of adder graphs and computes the target coefficients,
such that the cost function is minimized.

Denote sa ∈ N to be the stage, on which the adder a is
computed. Then, for all adders a and stages s we add the binary
variable sa,s, such that sa,s = 1 if adder a is used as an input
of stage s. The maximum number of stages can be computed a
priori using the bound NA on the adder count. Then, in order to
compute the maximum stage with which the adder a interacts
with, sa ∈ N, we add the constraints

sa ≥ s× sa,s, ∀a, s, (2)

Then we simply introduce the equation (1) to count the register
cost of each adder.

(a) One-bit adder outputs,
carry outputs and go-through
outputs are all BLEs.

(b) One-bit adders and flip-
flops are independent.

Fig. 4: Counting resources on (a) FPGA and (b) ASICS

To minimize the number of registers, the objective function
should be adjusted accordingly. In the original models, the
objective function minimizes the sum of actually used adders,
which are indicated by binary variables ua, that are true if the
adder a is used. We use this objective function as a basis and
add the register cost into the weighted sum representing the
total PMCM cost:

min costa

NA∑
a=1

ua + costr

NA∑
a=1

ra, (3)

where costa and costr are the weights of the adder and register
costs, respectively.

When targeting FPGAs, we will consider that adders come
with a free register, hence we have costa = 0. On ASICs, we
can roughly estimate that the cost of registers is the same as the
cost of adders. This objective function with the original MCM-
Adders model and the new variables and constraints permits to
solve the PMCM-Adders problem.

B. PMCM-Bits

When the input data word length is a priori known, targeting
the MCM-Bits problem leads to hardware with lower cost [15].
We propose to solve the PMCM-Bits problem by building upon
the existing model for MCM-Bits.

In the original model, the most significant bit (MSB) prop-
agation of the data is already encoded by integer variables for
MSB propagation while the least significant bit (LSB) is fixed
to zero. For simplicity, we consider the integer variable wla
corresponding to the data word length after adder a. Then, the
number of one-bit registers, rba, required for each adder is

rba = wla × ra. (4)

This leads to a finer-grain objective function:

min costb

NA∑
a=1

ba + costrb

NA∑
a=1

rba, (5)

where ba is the number of one-bit adders of adder a, and costb
and costrb are the cost of one-bit adders and one-bit registers,
respectively. On ASICs, one-bit adders could be specifically
half or full adders with a slightly different cost but [15] did
not provide different counts for these one-bit adders.



TABLE I: Comparison of our results to RPAG [5]. Here #A, #B, #R and #Rb denote the number of adders, one-bit adders,
registers, and one-bit registers, respectively. C1 =#A+#R and C2 =#B + #Rb. Numbers in bold indicate best results.

Bench RPAG PMCM-Adders PMCM-Bits

#A #R C1 #B #Rb C2 #A #R C1 #B #Rb C2 #A #R C1 #B #Rb C2

G.3 4 2 6 43 25 68 4 1 5 43 15 58 4 1 5 43 15 58
G.5 6 2 8 69 34 103 6 2 8 69 34 103 6 2 8 69 34 103
HP15 12 7 19 122 104 226 12 3 15 122 56 178 12 3 15 122 56 178
HP5 4 4 8 42 45 87 4 2 6 42 24 66 4 2 6 42 24 66
HP9 5 4 9 50 49 99 5 2 7 50 27 77 5 2 7 50 27 77
L.3 4 2 6 45 24 69 4 1 5 45 16 61 5 0 5 58 3 61
LP15 27 26 53 306 434 740 27 9 36 304 191 495 27 10 37 306 201 507
LP5 7 2 9 75 40 115 7 1 8 68 30 98 8 1 9 85 25 110
LP9 13 6 19 152 102 254 15 3 18 167 68 235 13 4 17 145 81 226
U.3-1 4 2 6 32 34 66 4 1 5 38 18 56 4 1 5 35 21 56
U.3-2 6 3 9 62 50 112 5 2 7 60 33 93 5 2 7 59 32 91

Total: 92 60 152 998 941 1939 94 27 121 1025 508 1533 94 29 123 1029 517 1546

In details, each basic logic element (BLE) used in modern
FPGAs consists of at least one one-bit adder and an optional
output register. Thus, not the whole adder output comes with
free registers but only the output bits computed by a one-bit
adder as illustrated in Fig. 4a. The carry outputs or the go-
through output bits will have to be computed using the BLEs as
well, hence the cost improvement that we obtain with PMCM-
Bits might not be as interesting as for MCM-Bits whose goal is
to save one-bit adders. As a consequence, we assume that the
one-bit adders come for free in (5), i. e. costb = 0, and focus
on counting register bits.

When targeting ASICs, each one-bit adder and flip-flop (FF)
are independent. No register comes for free but one-bit adders
do not have the same cost as BLEs, as they do not possess
an integrated FF. Fig. 4b illustrates elements to consider when
computing the total circuit cost. On ASICs, we will roughly
estimate that the cost of registers is the same as the cost of
one-bit adders.

Previous works [7], [15] have shown that the adder depth
and/or the glitch path count can be considered with bounds
and/or as a second objective. Yet, pipelining makes both metrics
of less interest and the critical path would be a better high-level
metric to consider. The critical path of the pipelined adder graph
is determined by the adder with the largest number of one-bit
adders. Using ILP modeling, it is straightforward to store this
value into Bmax, an integer variable,

Bmax ≥ ba, ∀a ∈ [[1;NA]]. (6)

Then, the objective function can be modified as follows to
minimize the critical path as a second objective,

min M ×

costb

NA∑
a=1

ba + costrb

NA∑
a=1

rba

+Bmax, (7)

where M is fixed to a known upper bound of Bmax such as
the maximum data word length in the adder graph, in order to
ensure that the first term of the cost function is optimized first,
and Bmax second.

TABLE II: A posteriori pipelining of MCM-Bits solution vs.
one-step optimization with PMCM-Bits

Bench MCM-Bits PMCM-Bits

#B #Rb #B + #Rb #B #Rb #B + #Rb

G.3 40 28 68 43 15 58
G.5 57 55 112 84 32 116
HP15 105 230 335 122 56 178
HP5 39 77 116 42 24 66
HP9 47 41 88 50 27 77
L.3 31 59 90 58 3 61
LP15 250 688 938 306 201 507
LP5 60 89 149 85 25 110
LP9 137 218 355 145 81 226
U.3-1 32 34 66 35 21 56
U.3-2 49 85 134 59 32 91

Total: 847 1604 2451 1029 517 1546

IV. TOOL AND EXPERIMENT RESULTS

The flow of the jMCM tool is summarized in Fig. 1 and can
be easily extended to include more high-level options similarly
to our approach with the critical path. This tool is implemented
in julia using the modeling language JuMP [20], so any generic
MILP solver supported by JuMP can be used for the solving
process as backend. The tool is open-source and freely available
on git1.

With our tool, embedded system designers can provide target
coefficients together with a just few high-level options, such as
the input/output word length. Then, an ILP model, adjusted
accordingly to the options, will be automatically generated
and solved. This generates adder graphs that can be used to
generate the VHDL code, for example using the FloPoCo [21]
code generator.

We applied our tool to benchmarks from image process-
ing (11 instances) [22] and from the whole FIRsuite project
(75 instances) [23], which is a collection of finite impulse
response digital filters. Generated models were solved with

1https://github.com/remi-garcia/jMCM

https://github.com/remi-garcia/jMCM


Gurobi [24], with a time limit of 30 minutes and 4 threads from
2.1 GHz CPUs. When solving the PMCM-Bits problem, input
word length is fixed at 8 bits as it is a logical choice for the
image-processing benchmarks. Detailed results are given only
for the image processing benchmark while statistics integrate
all 86 benchmarks.

In [5] it was shown that solutions obtained with the RPAG
heuristic require, on average, a lower number of adders plus
registers than pipelining fixed adder graphs. In TABLE I, the
state-of-the-art RPAG results are compared with our optimal
approach for the PMCM-Adders problem showing that jMCM
leads to adder graphs with a lower high-level cost than RPAG,
by 17.57% on average. In details, the number of adders is
increased by 1.86% allowing to reduce the number of registers
that are not associated to an adder by 49.26%.

We observed a trade-off between the number of adders and
the number of registers which discourages using tight bounds
on the number of adders when solving the PMCM problem.
We solved the PMCM-Adders problem with the smallest upper
bound on the number of adders we could obtain and with this
upper bound arbitrarily increased by two. For 11 instances, the
larger upper bound permitted to obtain lower cost adder graphs.

On average, compared to solving the PMCM-Adders prob-
lem, no cost reduction is achieved by solving the PMCM-
Bits problem. We observed that solving PMCM-Bits is more
challenging for the solver, which translates into obtaining, in
rare cases, worse solutions than PMCM-Adders. Our hypothesis
is that, for hard instances, solving the PMCM-Adders problem
leads to an adder and register reduction that is not reached
by solving the PMCM-Bits within the available time. On the
other hand, this might be explained in the following way: the
interest of MCM-Bits is to count the number of one-bit adders
and look for corner cases that permit to avoid using them, but
it is somewhat leveled by the register bit count, which always
depends on the word length of the adder output. Though we
did observe one case, benchmark U.3-2, where PMCM-Bits
found a better adder graph than PMCM-Adders.

The state-of-the-art RPAG heuristic demonstrated [5] that
solving the PMCM as one step is better, w.r.t. the number of
adders and registers, than a posteriori pipelining an optimal
adder graph. The results presented in TABLE II show that
this principle holds for the fine-grained metric of counting
one-bit adders and one-bit registers. By solving the PMCM-
Bits problem, instead of pipelining a posteriori the MCM-
Bits solution, we achieve a 33.15% cost reduction in terms
of number of one-bit registers, on average.

We observed that sometimes the solver provides solutions
in which adders could have been replaced by registers such
as in Fig. 5a. When targeting FPGA, this has the same cost
as the register used in Fig. 5b since the adder comes for free.
Hence, the solver will not differentiate between these solutions.
Hardware costs, such as power consumption, would however
differ. These unnecessary adders can be replaced by registers
with a trivial postprocessing that jMCM supports.

2 3(−)

(−)1 (−) 4 2(−)

1

5 7

5 21107

1075 21

(a) Adder is used instead of a
register

2 3(−)

(−) 4 2(−)

1

5 7

5 21107

1075 21

(b) Register can be used

Fig. 5: Postprocessing replaces unnecessary adders with same-
cost registers

V. CONCLUSION AND PERSPECTIVES

With this work, we proposed an optimal approach to incor-
porating pipelining into the ILP-based design of multiplierless
MCM. Our results, evaluated on a large set of benchmarks,
demonstrate the superiority of optimal approach compared to
the state-of-the-art heuristic RPAG. In contrast to previous
approaches, we also incorporate the pipelining into a model that
targets a low-level metric, based on counting one-bit adders.
Our investigation reveals that an optimizing in one step, i. e.
PMCM-Bits, is better than a posteriori pipelining of MCM-Bits
solutions, confirming the same trend as with counting adders.
However, in the allocated time, PMCM-Bits design exploration
is rarely revealing better results than the high-level metric-based
PMCM-Adders.

With this work we demonstrate the versatility and power of
the ILP-based approach: one can rely on the jMCM tool and, by
simple modification of constraints/cost function, automatically
design multiplierless constant multiplication circuits that target
different metrics. This new design automation tool permits to
alleviate time and effort embedded system designers put into
the low-level data path optimization and fine-tuning, and let
them focus on more high-level tasks related to their imple-
mented algorithm.

In future work, we plan to either provide a custom VHDL
code-generator for the target MCM/PMCM circuits, or extend
the FloPoCo tool. We also plan on making the last adjustments
to permit to tackle truncated pipelined adder graphs. More
extensions to the jMCM tool are awaited, in particular by
including DSPs into solving the MCM problem when targeting
FPGAs. In particular, we plan to automate the (pipelined) MCM
design in presence of a certain budget of DSP blocks.

REFERENCES

[1] K. Wiatr and E. Jamro, “Constant coefficient multiplication in FPGA
structures,” in Proceedings of the 26th Euromicro Conference. EUROMI-
CRO 2000. Informatics: Inventing the Future. IEEE Comput. Soc, Sep.
2000.

[2] A. G. Dempster and M. D. Macleod, “Constant integer multiplication us-
ing minimum adders,” IEE Proceedings - Circuits, Devices and Systems,
vol. 141, no. 5, pp. 407–413, Oct. 1994.

[3] O. Gustafsson, “Towards optimal multiple constant multiplication: A
hypergraph approach,” in 2008 42nd Asilomar Conference on Signals,
Systems and Computers, Oct. 2008, pp. 1805–1809.



[4] L. Aksoy, E. O. Güneş, and P. Flores, “Search algorithms for the multiple
constant multiplications problem: Exact and approximate,” Microproces-
sors and Microsystems, vol. 34, no. 5, pp. 151–162, Aug. 2010.

[5] M. Kumm, P. Zipf, M. Faust, and C.-H. Chang, “Pipelined adder graph
optimization for high speed multiple constant multiplication,” in 2012
IEEE International Symposium on Circuits and Systems. IEEE, May
2012.

[6] M. Kumm, Multiple Constant Multiplication Optimizations for Field Pro-
grammable Gate Arrays. Wiesbaden: Springer Fachmedien Wiesbaden,
2016.

[7] ——, “Optimal Constant Multiplication Using Integer Linear Program-
ming,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 65, no. 5, pp. 567–571, May 2018.

[8] M. Kumm and P. Zipf, “High speed low complexity FPGA-based FIR
filters using pipelined adder graphs,” in 2011 International Conference
on Field-Programmable Technology. IEEE, Dec. 2011.

[9] A. D. Booth, “A Signed Binary Multiplication Technique,” The Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 1951.

[10] R. Bernstein, “Multiplication by integer constants,” Software: Practice
and Experience, vol. 16, no. 7, pp. 641–652, Jul. 1986.

[11] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple
constant multiplications: efficient and versatile framework and algorithms
for exploring common subexpression elimination,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2,
pp. 151–165, Feb. 1996.

[12] V. Lefèvre, “Multiplication by an Integer Constant,” INRIA, Research
Report RR-4192, May 2001. [Online]. Available: https://hal.inria.fr/
inria-00072430

[13] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-
plication,” ACM Transactions on Algorithms, vol. 3, no. 2, p. 11, May

2007.
[14] J. Thong and N. Nicolici, “Combined optimal and heuristic approaches for

multiple constant multiplication,” in 2010 IEEE International Conference
on Computer Design, Oct. 2010, pp. 266–273.

[15] R. Garcia and A. Volkova, “Towards the Multiple Constant Multiplication
at Minimal Hardware Cost,” Sep. 2022, working paper or preprint.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-03784625

[16] V. Lagoon and A. Metodi, “Deriving Optimal Multiplication-by-Constant
Circuits With A SAT-based Constraint Engine,” ModRef 2020 – The 19th
workshop on Constraint Modelling and Reformulation, Sep. 2020.

[17] U. Meyer-Baese, J. Chen, C. H. Chang, and A. G. Dempster, “A
Comparison of Pipelined RAG-n and DA FPGA-based Multiplierless
Filters,” in APCCAS 2006 - 2006 IEEE Asia Pacific Conference on
Circuits and Systems. IEEE, dec 2006.

[18] K. K. Parhi, VLSI digital signal processing systems. Wiley, 1999.
[19] X. Lou, P. K. Meher, and Y. J. Yu, “Fine-grained pipelining for multiple

constant multiplications,” in 2015 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, May 2015.

[20] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A Modeling Language for
Mathematical Optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320,
May 2017.

[21] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths
with FloPoCo,” IEEE Design and Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[22] M. Kumm, D. Fanghänel, K. Möller, P. Zipf, and U. Meyer-Baese, “FIR
filter optimization for video processing on FPGAs,” EURASIP Journal
On Advances in Signal Processing, vol. 2013, no. 1, May 2013.

[23] FIRsuite, “Suite of Constant Coefficient FIR Filters,” 2021, Accessed:
Jan., 2022. [Online]. Available: http://www.firsuite.net

[24] Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2020.
[Online]. Available: https://www.gurobi.com/

https://hal.inria.fr/inria-00072430
https://hal.inria.fr/inria-00072430
https://hal.archives-ouvertes.fr/hal-03784625
http://www.firsuite.net
https://www.gurobi.com/

	Introduction
	State of the art
	Pipelined Multiple Constant Multiplication
	PMCM-Adders
	PMCM-Bits

	Tool and experiment results
	Conclusion and Perspectives
	References

