Garcia Rémi

Volkova Anastasia

Multiple Constant Multiplication: From Target Constants to Optimized Pipelined Adder Graphs

Keywords: Adder graph, optimal design, multiplierless hardware, integer linear programming

Multiple Constant Multiplication (MCM) is a ubiquitous problem for numerous computation-intensive applications. A standard and efficient approach is to replace generic multipliers by multiplierless architectures based on bit-shifts and additions. The adder graphs describing the multiplierless circuits can be optimized according to various metrics, in particular improving throughput by pipelining. In this paper, we improve the state-ofthe-art for the design of pipelined adder graphs by searching for an optimal solution directly from target coefficients. In contrast to existing approaches, which are based on fixed adder graphs or heuristics, our solution is to describe the complete design space with Mixed-Integer Linear Programming (MILP). This results in an optimization model that can be solved to find optimal adder graphs and prove the optimality of the solutions thanks to the efficiency of modern MILP solvers. Mathematical modeling allows for an easily extendable tool which can target FPGAs and ASICs and adapt to evolving hardware models/metrics. With this work, we provide a modular framework to automate the design of adder graph-based circuits with exact optimization. The experiments demonstrate efficiency of our approach which fuses multiple design steps into a single problem.

I. INTRODUCTION

Many numerical algorithms and applications involve multiplications by integer constants. Fixed-Point (FxP) numbers, which can be assimilated to integers, are the preferred choice for algorithms targeting embedded systems such as Field-Programmable Gate Arrays (FPGAs).

While generic multipliers perfectly handle these multiplications by constants, their cost largely exceeds multiplierless architectures that benefit from the knowledge of constants' values [START_REF] Wiatr | Constant coefficient multiplication in FPGA structures[END_REF]. The shift-and-add approach is hence the privileged method to reduce hardware cost. It consists in replacing multiplications by bit-shifts, additions and subtractions where bitshifts are multiplications by a power of two, that can be hardwired for a negligible cost. For example, multiplying an integer variable x by the constant 7 can be rewritten as 7x = 2 3 x -x, reducing the cost to a single bit-shift by three positions to the left and a subtraction, instead of a multiplication.

The Multiple Constant Multiplication (MCM) problem consists in finding the implementation with the lowest cost that achieves the multiplication by a given set of target constants to multiply with. The ultimate goal would be to search for the lowest cost by considering the final hardware metrics. Yet, it is currently unrealistic and the typical way is to use proxy metrics, Fig. 1: Our tools takes target constants and multiple options to optimize for different MCM problem flavors such as the number of adders, to estimate the synthesized hardware cost [START_REF] Dempster | Constant integer multiplication using minimum adders[END_REF]- [START_REF]Optimal Constant Multiplication Using Integer Linear Programming[END_REF].

The hardware cost is actually manifold and while most higher-level metrics try to target those as a whole, in this work we put a specific focus on delay and throughput by considering pipelining. While one can simply pipeline the optimal solutions to the MCM problem [START_REF] Kumm | High speed low complexity FPGA-based FIR filters using pipelined adder graphs[END_REF], this is not as efficient as adding registers into the design approach and searching directly for the best multiplierless topologies minimizing the number of registers [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF]. With this work, we propose a new Integer Linear Programming (ILP) based model that solves the Pipelined MCM problem (PMCM). This new model is incorporated into the jMCM tool providing solutions to different flavors of the MCM problem. In particular, we explore, for the first time, pipelining in the MCM targetting the low-level hardware metric that counts the number of one-bit adders.

The easy-to-use and open-source tool in Fig. 1 generates MCM solutions as adder graphs, and can be used to automatically generate the VHDL code. We demonstrate, on a large set of benchmarks, that our optimal approach provides solution that need 17.57% less adders and registers, on average, than the state-of-the-art heuristic RPAG [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF].

II. STATE OF THE ART

The MCM problem has been studied for decades and first solutions [START_REF] Booth | A Signed Binary Multiplication Technique[END_REF], [START_REF] Bernstein | Multiplication by integer constants[END_REF] are based on the Canonical Signed Digit (CSD) representation. This consists in the rewriting of the number using a signed digit representation in a Non-Adjacent Form (NAF), e. g., 23x = 0010 1001 CSD × x replaces the multiplication by 2 additions, as illustrated by an adder graph in Fig. 2a. In an adder graph, the number in nodes is called a fundamental and denotes a constant the input is multiplied with, and labels on edges denote either the negation, or an integer power of two the signal is multiplied with. However, CSD does not always provide optimal results and does not give any guarantee on optimality. Moreover, since CSD is applied on each constant separately, resource sharing should be explored by additional algorithms.

Many heuristics enhance the results obtained with the CSD method for the MCM problem [START_REF] Dempster | Constant integer multiplication using minimum adders[END_REF], [START_REF] Potkonjak | Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination[END_REF]- [START_REF] Thong | Combined optimal and heuristic approaches for multiple constant multiplication[END_REF], and more recently optimal approaches have been developed [START_REF] Gustafsson | Towards optimal multiple constant multiplication: A hypergraph approach[END_REF], [START_REF] Aksoy | Search algorithms for the multiple constant multiplications problem: Exact and approximate[END_REF], [START_REF] Kumm | Multiple Constant Multiplication Optimizations for Field Programmable Gate Arrays[END_REF], [START_REF]Optimal Constant Multiplication Using Integer Linear Programming[END_REF], [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF].

The first optimal methods were based on dedicated algorithms relying on hypergraphs [START_REF] Gustafsson | Towards optimal multiple constant multiplication: A hypergraph approach[END_REF] or branch-and-bound [START_REF] Aksoy | Search algorithms for the multiple constant multiplications problem: Exact and approximate[END_REF]. Both methods were not easily extensible and an ILP based model [START_REF] Kumm | Multiple Constant Multiplication Optimizations for Field Programmable Gate Arrays[END_REF] which could solve either the MCM or PMCM problems has been proposed to benefit from the versatility of mathematical modeling. A simpler model [START_REF]Optimal Constant Multiplication Using Integer Linear Programming[END_REF], which did not rely on heavy precomputations, was used more recently and has been adapted [START_REF] Lagoon | Deriving Optimal Multiplication-by-Constant Circuits With A SAT-based Constraint Engine[END_REF] to find solutions for the single constant multiplication using SAT/SMT solvers.

All these methods have in common a focus on the number of adders. Finer-grain metrics, such as the number of one-bit adders, the adder depth or the glitch path count, have first been tackled heuristically [START_REF] Dempster | Constant integer multiplication using minimum adders[END_REF], [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF]. The recent ILP-based optimal approach [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] proposes a new MCM model that efficiently encodes the adder graph topology and various metrics as ILP constraints, such that no precomputations are required and the model is easily extensible for different optimization criteria. In particular, [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] proposes a new model that minimizes the number of one-bit adders, i. e. solving the, as we shall call it, MCM-Bits problem. A useful functionality is the minimization of the number of cascaded adders, called the adder depth (AD), as a secondary objective to the minimization of the main adder/one-bit adder metric.

In order to obtain a higher throughput, designers often consider pipelined adder graphs, i. e., adder graphs with registers before each stage [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF], [START_REF] Kumm | Multiple Constant Multiplication Optimizations for Field Programmable Gate Arrays[END_REF], [START_REF] Kumm | High speed low complexity FPGA-based FIR filters using pipelined adder graphs[END_REF], [START_REF] Meyer-Baese | A Comparison of Pipelined RAG-n and DA FPGA-based Multiplierless Filters[END_REF]. Pipelining of a fixed adder graph, for example coming from the MCM-Adders or MCM-Bits, can be obtained by performing cut-set retiming (CSR) [START_REF] Parhi | VLSI digital signal processing systems[END_REF]. For example, to pipeline the stages of the optimal adder graph for 23x, shown in Fig. 2a, one must put a register at the input, one register after each adder and one register for the fundamental 1 on stage 1, as shown in Fig. 2b. When implementing on FPGAs, the registers that follow adders basically come for free, since LUTs have a register. It is worth to mention that pipelining the adders instead of the adder stage is possible and efficient for ASICs design [START_REF] Lou | Fine-grained pipelining for multiple constant multiplications[END_REF], but we leave this option out of the scope of our paper.

As it was shown in [START_REF] Kumm | High speed low complexity FPGA-based FIR filters using pipelined adder graphs[END_REF], adapting the adder graph topology specifically for pipelined implementation yields designs with a lower cost. The RPAG tool [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF] provides heuristic solutions to the problem and [START_REF] Kumm | Multiple Constant Multiplication Optimizations for Field Programmable Gate Arrays[END_REF] gives first optimal ILP-based approach for PMCM. The idea of Kumm [START_REF] Kumm | Multiple Constant Multiplication Optimizations for Field Programmable Gate Arrays[END_REF] is to solve a satisfaction problem, given a bound on the number of adders and on the adder depth, in which a full enumeration of the design space is performed to construct the ILP problem. Pipelining is then ensured by a constraint that the adder's inputs on stage n should come exclusively from the preceding stage n -1, and not from earlier stages. The drawback of this approach is a strong limitation in the number of possible stages, due to heavy precomputations. Moreover, the ILP models by Kumm do not support easily combined metrics and constraints. Hence, in the following we will use the versatile framework proposed in [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] and extend it to solve the PMCM problem. Our goal is to present a few sets of variables and constraints which permit to take the register cost into account.

III. PIPELINED MULTIPLE CONSTANT MULTIPLICATION

In this section, we propose to extend the ILP-based models presented in [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] which permit to solve the MCM-Adders, optimizing for the adder count, and the MCM-Bits optimizing the number of one-bit adders, and add pipelining as a constraint.

Let us first make the following observation. The solution of the MCM-Adders problem is guided by the number of adders, and naturally, each fundamental (the constant associated with the adder) should be unique in the adder graph. However, when incorporating the pipelining, it is the length of the connection between an adder and the maximum stage it interacts with, which is guiding the topology. Hence, it sometimes might be beneficial to compute the same fundamental twice, as it saves registers. Consider the adder graph in Fig. 3, computing 5x, 69x, 553x and 2483x. Here, we need to add four registers after the adder computing 5x (if the adder graph is implemented in FPGAs, the register right after the adder comes for free). However, with the tool that we present below, we can find the adder graph in Fig. 3b, which computes 5x on stage 1, and then on stage 4. This permits to reduce the cost to 2 adders and 2 registers (or simply 2 adders, when implementing on FPGA).

Hence, we are first modifying the base model for MCM-Adders and MCM-Bits to allow for multiple occurrences of the same fundamental, if they are computed on different stages. Now, our overall idea is to avoid modeling the registers explicitly, as entities similar to adders, but to compute the register cost for each adder in the following way. For each adder a ∈ {a 0 , a 1 , . . . , a N A }, where a 0 is the input and N A is the bound on the number of used adders, we can extract the stage when they are computed, s a , and the maximum stage they interact with as a direct input, s a . For example, in Fig. 3b, for the initial input the stage s a0 = 0 and the maximum stage it interacts with is s a0 = 4.

Then, the cost r a of each adder a in terms of registers is directly computed as

r a = s a -s a . (1)
Hence, for the input in Fig. 3b, the register cost is r a0 = 4 -0.

With these observations, we can expect that the optimal PMCM might have more adders than the solutions by MCM-Adders and MCM-Bits. In Section IV, we illustrate that it indeed occurs.

We use as basis the ILP models from [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] and below report only the modifications to them.

A. PMCM-Adders

The ILP from [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF], given the target coefficients, first computes the upper bound on the minimum number of adders N A . Then, the solver searches the fundamentals associated with each adder a ∈ {a 0 , a 1 , . . . , a N A }, such that the topology abides to the rules of adder graphs and computes the target coefficients, such that the cost function is minimized.

Denote s a ∈ N to be the stage, on which the adder a is computed. Then, for all adders a and stages s we add the binary variable s a,s , such that s a,s = 1 if adder a is used as an input of stage s. The maximum number of stages can be computed a priori using the bound N A on the adder count. Then, in order to compute the maximum stage with which the adder a interacts with, s a ∈ N, we add the constraints

s a ≥ s × s a,s , ∀a, s, (2)
Then we simply introduce the equation (1) to count the register cost of each adder. To minimize the number of registers, the objective function should be adjusted accordingly. In the original models, the objective function minimizes the sum of actually used adders, which are indicated by binary variables u a , that are true if the adder a is used. We use this objective function as a basis and add the register cost into the weighted sum representing the total PMCM cost:

min cost a N A a=1 u a + cost r N A a=1 r a , (3)
where cost a and cost r are the weights of the adder and register costs, respectively. When targeting FPGAs, we will consider that adders come with a free register, hence we have cost a = 0. On ASICs, we can roughly estimate that the cost of registers is the same as the cost of adders. This objective function with the original MCM-Adders model and the new variables and constraints permits to solve the PMCM-Adders problem.

B. PMCM-Bits

When the input data word length is a priori known, targeting the MCM-Bits problem leads to hardware with lower cost [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF]. We propose to solve the PMCM-Bits problem by building upon the existing model for MCM-Bits.

In the original model, the most significant bit (MSB) propagation of the data is already encoded by integer variables for MSB propagation while the least significant bit (LSB) is fixed to zero. For simplicity, we consider the integer variable wl a corresponding to the data word length after adder a. Then, the number of one-bit registers, r b a , required for each adder is

r b a = wl a × r a . (4)
This leads to a finer-grain objective function:

min cost b N A a=1 b a + cost r b N A a=1 r b a , (5)
where b a is the number of one-bit adders of adder a, and cost b and cost r b are the cost of one-bit adders and one-bit registers, respectively. On ASICs, one-bit adders could be specifically half or full adders with a slightly different cost but [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] did not provide different counts for these one-bit adders. In details, each basic logic element (BLE) used in modern FPGAs consists of at least one one-bit adder and an optional output register. Thus, not the whole adder output comes with free registers but only the output bits computed by a one-bit adder as illustrated in Fig. 4a. The carry outputs or the gothrough output bits will have to be computed using the BLEs as well, hence the cost improvement that we obtain with PMCM-Bits might not be as interesting as for MCM-Bits whose goal is to save one-bit adders. As a consequence, we assume that the one-bit adders come for free in [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF], i. e. cost b = 0, and focus on counting register bits.

A #R C1 #B #R b C2 #A #R C1 #B #R b C2 #A #R C1 #B #R b C2 G.3 4
When targeting ASICs, each one-bit adder and flip-flop (FF) are independent. No register comes for free but one-bit adders do not have the same cost as BLEs, as they do not possess an integrated FF. Fig. 4b illustrates elements to consider when computing the total circuit cost. On ASICs, we will roughly estimate that the cost of registers is the same as the cost of one-bit adders.

Previous works [START_REF]Optimal Constant Multiplication Using Integer Linear Programming[END_REF], [START_REF] Garcia | Towards the Multiple Constant Multiplication at Minimal Hardware Cost[END_REF] have shown that the adder depth and/or the glitch path count can be considered with bounds and/or as a second objective. Yet, pipelining makes both metrics of less interest and the critical path would be a better high-level metric to consider. The critical path of the pipelined adder graph is determined by the adder with the largest number of one-bit adders. Using ILP modeling, it is straightforward to store this value into B max , an integer variable,

B max ≥ b a , ∀a ∈ [[1; N A]]. (6)
Then, the objective function can be modified as follows to minimize the critical path as a second objective,

min M ×   cost b N A a=1 b a + cost r b N A a=1 r b a   + B max , (7)
where M is fixed to a known upper bound of B max such as the maximum data word length in the adder graph, in order to ensure that the first term of the cost function is optimized first, and B max second.

B #R b #B + #R b #B #R b #B + #R b G.

IV. TOOL AND EXPERIMENT RESULTS

The flow of the jMCM tool is summarized in Fig. 1 and can be easily extended to include more high-level options similarly to our approach with the critical path. This tool is implemented in julia using the modeling language JuMP [START_REF] Dunning | JuMP: A Modeling Language for Mathematical Optimization[END_REF], so any generic MILP solver supported by JuMP can be used for the solving process as backend. The tool is open-source and freely available on git 1 .

With our tool, embedded system designers can provide target coefficients together with a just few high-level options, such as the input/output word length. Then, an ILP model, adjusted accordingly to the options, will be automatically generated and solved. This generates adder graphs that can be used to generate the VHDL code, for example using the FloPoCo [START_REF] De Dinechin | Designing Custom Arithmetic Data Paths with FloPoCo[END_REF] code generator.

We applied our tool to benchmarks from image processing (11 instances) [START_REF] Kumm | FIR filter optimization for video processing on FPGAs[END_REF] and from the whole FIRsuite project (75 instances) [START_REF] Firsuite | Suite of Constant Coefficient FIR Filters[END_REF], which is a collection of finite impulse response digital filters. Generated models were solved with Gurobi [START_REF]Gurobi Optimizer Reference Manual[END_REF], with a time limit of 30 minutes and 4 threads from 2.1 GHz CPUs. When solving the PMCM-Bits problem, input word length is fixed at 8 bits as it is a logical choice for the image-processing benchmarks. Detailed results are given only for the image processing benchmark while statistics integrate all 86 benchmarks.

In [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF] it was shown that solutions obtained with the RPAG heuristic require, on average, a lower number of adders plus registers than pipelining fixed adder graphs. In TABLE I, the state-of-the-art RPAG results are compared with our optimal approach for the PMCM-Adders problem showing that jMCM leads to adder graphs with a lower high-level cost than RPAG, by 17.57% on average. In details, the number of adders is increased by 1.86% allowing to reduce the number of registers that are not associated to an adder by 49.26%.

We observed a trade-off between the number of adders and the number of registers which discourages using tight bounds on the number of adders when solving the PMCM problem. We solved the PMCM-Adders problem with the smallest upper bound on the number of adders we could obtain and with this upper bound arbitrarily increased by two. For 11 instances, the larger upper bound permitted to obtain lower cost adder graphs.

On average, compared to solving the PMCM-Adders problem, no cost reduction is achieved by solving the PMCM-Bits problem. We observed that solving PMCM-Bits is more challenging for the solver, which translates into obtaining, in rare cases, worse solutions than PMCM-Adders. Our hypothesis is that, for hard instances, solving the PMCM-Adders problem leads to an adder and register reduction that is not reached by solving the PMCM-Bits within the available time. On the other hand, this might be explained in the following way: the interest of MCM-Bits is to count the number of one-bit adders and look for corner cases that permit to avoid using them, but it is somewhat leveled by the register bit count, which always depends on the word length of the adder output. Though we did observe one case, benchmark U.3-2, where PMCM-Bits found a better adder graph than PMCM-Adders.

The state-of-the-art RPAG heuristic demonstrated [START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF] that solving the PMCM as one step is better, w.r.t. the number of adders and registers, than a posteriori pipelining an optimal adder graph. The results presented in TABLE II show that this principle holds for the fine-grained metric of counting one-bit adders and one-bit registers. By solving the PMCM-Bits problem, instead of pipelining a posteriori the MCM-Bits solution, we achieve a 33.15% cost reduction in terms of number of one-bit registers, on average. We observed that sometimes the solver provides solutions in which adders could have been replaced by registers such as in Fig. 5a. When targeting FPGA, this has the same cost as the register used in Fig. 5b since the adder comes for free. Hence, the solver will not differentiate between these solutions. Hardware costs, such as power consumption, would however differ. These unnecessary adders can be replaced by registers with a trivial postprocessing that jMCM supports. With this work, we proposed an optimal approach to incorporating pipelining into the ILP-based design of multiplierless MCM. Our results, evaluated on a large set of benchmarks, demonstrate the superiority of optimal approach compared to the state-of-the-art heuristic RPAG. In contrast to previous approaches, we also incorporate the pipelining into a model that targets a low-level metric, based on counting one-bit adders. Our investigation reveals that an optimizing in one step, i. e. PMCM-Bits, is better than a posteriori pipelining of MCM-Bits solutions, confirming the same trend as with counting adders. However, in the allocated time, PMCM-Bits design exploration is rarely revealing better results than the high-level metric-based PMCM-Adders.

With this work we demonstrate the versatility and power of the ILP-based approach: one can rely on the jMCM tool and, by simple modification of constraints/cost function, automatically design multiplierless constant multiplication circuits that target different metrics. This new design automation tool permits to alleviate time and effort embedded system designers put into the low-level data path optimization and fine-tuning, and let them focus on more high-level tasks related to their implemented algorithm.

In future work, we plan to either provide a custom VHDL code-generator for the target MCM/PMCM circuits, or extend the FloPoCo tool. We also plan on making the last adjustments to permit to tackle truncated pipelined adder graphs. More extensions to the jMCM tool are awaited, in particular by including DSPs into solving the MCM problem when targeting FPGAs. In particular, we plan to automate the (pipelined) MCM design in presence of a certain budget of DSP blocks.

Fig. 3 :

 3 Fig. 2: Pipelining adder stages

 (a) One-bit adder outputs, carry outputs and go-through outputs are all BLEs.(b) One-bit adders and flipflops are independent.

Fig. 4 :

 4 Fig. 4: Counting resources on (a) FPGA and (b) ASICS

Fig. 5 :

 5 Fig. 5: Postprocessing replaces unnecessary adders with samecost registers

TABLE I :

 I Comparison of our results to RPAG[START_REF] Kumm | Pipelined adder graph optimization for high speed multiple constant multiplication[END_REF]. Here #A, #B, #R and #R b denote the number of adders, one-bit adders, registers, and one-bit registers, respectively. C 1 =#A+#R and C 2 =#B + #R b . Numbers in bold indicate best results.

	Bench	RPAG	PMCM-Adders	PMCM-Bits
	#			

TABLE II

 II

	: A posteriori pipelining of MCM-Bits solution vs.
	one-step optimization with PMCM-Bits	
	Bench	MCM-Bits	PMCM-Bits
	#		

https://github.com/remi-garcia/jMCM