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Bell’s inequality violation experiments are becoming increasingly popular in the practical teaching

of undergraduate and master’s degree students. Bell’s parameter S is obtained from 16 polarization

correlation measurements performed on entangled photons pairs. We first report here a detailed

analysis of the uncertainty u(S) of Bell’s parameter taking into account coincidence count statistics

and errors in polarizers’ orientation. We show using both computational modeling and

experimental measurement that the actual sequence of the polarizer settings has an unexpected and

strong influence on the error budget. This result may also be relevant to measurements in other

settings in which errors in parameters may have non-random effects in the measurement. # 2023
Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

Quantum optics experiments based on the generation of
entangled photons pairs are useful pedagogical tools for
undergraduate and master’s degree students.1–5 Using the
polarization properties of photons, they enable manipulation
of the mathematical formalism in a simple two-dimensional
space and illustrate the foundations of quantum physics: the
preparation of quantum states and the probabilistic and sta-
tistical aspects of projective measurements. It is also possible
with such experiments to introduce students to recent devel-
opments concerning quantum technologies and their applica-
tions to computing, communications, or sensing.6

The most striking of these quantum optics experiments is
the violation of Bell’s inequality7,8 that demonstrates the
non-locality of quantum physics. It uses entangled photon
pairs to distinguish experimentally between local-realistic
and non-local-realistic theories. The Nobel Prize in Physics
2022 was awarded to Alain Aspect, John F. Clauser, and
Anton Zeilinger “for experiments with entangled photons,
establishing the violation of Bell inequalities and pioneering
quantum information science,”9 showing the significance of
quantum entanglement in physics nowadays. In addition to
research in quantum physics, such experiments were devel-
oped for pedagogical purposes some 20 years ago10,11 and
have become widely available.12

Improving the significance of the violation and closing
loopholes is a topic for the research literature. In this peda-
gogical paper, we focus instead on improving the measure-
ment error. Usually, the uncertainty in Bell’s parameter is
calculated taking into account only coincidence counts statis-
tics.10,12,13 In our setup, in which the polarizers are rotated
by hand, we have to consider, furthermore, the experimental
errors in the polarizers’ orientations. Asking students to con-
sider the trade-offs between these two main uncertainty sour-
ces leads to fruitful discussions.

Additionally, during a master’s project, we realized that,
unexpectedly, the actual experimental sequence of the polar-
izers’ orientations had quite a significant impact on the error
budget. As we shall see, this comes from correlations
between the different measurements that make up S. We pre-
sent these results not only because they may allow other
instructors to help their students minimize the measurement
error but also because we suspect that similar correlations
between measurement results may occur unexpectedly in
other systems, and we hope that our work will aid instructors
in recognizing those correlations.

This paper is organized as follows: After the description
of our experiment and the main theoretical aspects, Bell’s
parameter uncertainty is derived analytically by the Gaussian
error propagation method. Then this uncertainty is numeri-
cally modelled by a Monte Carlo algorithm in order to better
describe real experimental sequences. This method allowed
us to optimize with a genetic algorithm, the measurement
protocol of Bell’s parameter in order to reduce the acquisi-
tion time or reinforce the strength of Bell’s inequality
violation. Finally, we give experimental evidence of our
findings.

II. BELL’S INEQUALITY IN THE TEACHING

LABORATORY

A. Experimental setup

Our graduate students use the experimental setup shown
in Fig. 1 for measuring Bell’s parameter.2,10 Entangled pho-
tons pairs are generated by parametric downconversion in a
pair of type I beta-barium borate (BBO) crystals15 pumped
by a 30 mW, 405 nm laser diode. A blue photon incident on
a single BBO crystal is downconverted into a pair of two
near-infrared photons at 810 nm (called the “signal” and
“idler” photons) that are polarized perpendicular to the
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crystallographic axis and are emitted on an cone with a 3�

half angle. The crystallographic axes of the two BBO crys-
tals are oriented at right angles so that one crystal produces
downconverted photons horizontally polarized (state
jHsijHii) and the second produces vertically polarized pho-
tons (state jVsijVii). A half-wave plate (k=2) and a quartz
phase compensator (C) are used to equalize the relative
weights and phases of the horizontal and vertical compo-
nents so that the photons can be emitted in the theoretical
state

jWEPRi ¼
1ffiffiffi
2
p jHsijHii þ jVsijViið Þ: (1)

The polarizers PA and PB are oriented, respectively, at angles
a and b from the vertical axis (state jVi). We denote their
eigenstates jVai ¼ cos ajVi � sin ajHi and jVbi ¼ cos bjVi
�sin bjHi. The polarizers perform the projection of the pho-
ton pair state jWi onto jVaijVbi, which is a measure of the
polarization correlation of the photons of the pair.
Interference filters (IFs) placed in front of Geiger mode ava-
lanche photodiodes (APDs) transmit only photons in a spec-
tral bandwidth of 10 nm centered at 810 nm. The count rates
on each detector are denoted /A and /B. Coincidence detec-
tion on both detectors is performed in a sc � 9:4 ns temporal
window with a field programmable gate array (FPGA) card
(Altera DE2-115) to record only the events that come from
the same photon pair.16,17 The corresponding rate is denoted
/c. Data are sent from the FPGA card to a computer every
100 ms.

B. Theory reminder

We summarize here briefly the main theoretical aspects,
following Ref. 10. The targeted Bell state jWEPRi is

jWEPRi ¼
1ffiffiffi
2
p jHsijHii þ jVsijViið Þ: (2)

This maximally entangled state19 is then projected on the
eigenstates jVaijVbi of polarizers A and B. The number of
coincidences Nc during the acquisition time Tacq is23

Nc ¼ /cTacq ¼ NpjhVajhVbjWEPRij2 ¼
Np

2
cos2 b� að Þ;

(3)

where Np is the number of coincidences that would be
detected without the polarizers during the acquisition time.

We model the experimental photon pair state by a pure
quantum state jWDCi,10

jWDCi ¼ cos hljHsijHii þ sin hle
jujVsijVii; (4)

where DC stands for down-conversion and hl is set by the
orientation of the half-waveplate (hl ¼ 45� ideally). u is the
relative phase between states jHsijHii and jVsijVii generated
in either crystal of the BBO pair and can be zeroed by adjust-
ing the quartz compensator. The number of coincidences for
this state is

Nc ¼ Np

�
sin2a sin2b cos2hl þ cos2a cos2b sin2hl

þ 1

4
sin ð2aÞ sin ð2bÞ sin ð2hlÞ cos u

�
þ C; (5)

where the parameter C takes into account experimental
imperfections.

The analysis proceeds by introducing the polarization cor-
relation coefficient

Eða; bÞ ¼ Ncða; bÞ þ Ncða?; b?Þ � Ncða; b?Þ � Ncða?; bÞ
Ncða; bÞ þ Ncða?; b?Þ þ Ncða; b?Þ þ Ncða?; bÞ

;

(6)

where a? ¼ aþ 90� and b? ¼ bþ 90�. Eða; bÞ is obtained
with four coincidence measurements and takes the extreme
values of þ1 and �1 for polarizations settings that are always
parallel or always perpendicular (Nc ¼ Np=2 or Nc ¼ 0 accord-
ing to Eq. (3)).

Finally, Bell’s parameter S is obtained by 16 coincidence
measurements and is defined by

S ¼ Eða; bÞ � Eða; b0Þ þ Eða0; bÞ þ Eða0; b0Þ: (7)

For the Bell state jWEPRi, (hl ¼ 45� and u ¼ 0) with a ¼ �45�;
a0 ¼ 0�; b ¼ �22:5

�
, and b0 ¼ 22:5

�
, Bell’s parameter

reaches the maximal theoretical value Smax ¼ 2
ffiffiffi
2
p

. In con-
trast, local-realistic theories only allow non-entangled pho-
tons pairs (factorizable states) for which the maximum value
of S is 2.

C. Experimental results for Bell’s parameter

A typical sequence of measurements is given in Table II of
Appendix A. Since each of the four correlation coefficients of
Eq. (6) requires four coincidence measurements, 16 values are
measured for NA, NB, and Nc. The acquisition time for each
polarization configuration is Tacq ¼ 10 s. The total number of
involved photons pairs was found from the sum of two additional
measurements:

Fig. 1. (Color online) Sketch of our typical setup for Bell’s parameter measurement.



Np ¼ Ncð0�; 0�Þ þ Ncð90�; 90�Þ ¼ 12380 6 111, from which
we infer an incident pair rate /p ¼ 1238 6 11 s�1. We compute
S¼ 2.590 or S¼ 2.528 depending on whether or not we subtract
the accidental coincidences.24 In practice, our students use the
first value so we will do the same. To make sense of this raw
number, we introduce the notion of error budget to our students,
i.e., the estimation of the different sources of uncertainty in the
measurement.

D. Analytical estimate of the uncertainty in Bell’s

parameter

As described earlier, Bell’s parameter S is computed from
16 individual measurements labelled by i 2 f1…16g. Each
measurement involves three random variables (Ni; ai; bi),
where Ni is the actual number of coincidences recorded in
the ith measurement and ai and bi are the actual polarizer ori-
entations, which may differ from the desired value. We have
motorized polarizer mounts (see below) but we don’t use
them in practical work with students because we think it
diminishes the interest of hands-on experimentation. Thus,
the main contributions to our error budget are the count rates
and the accuracy of the orientations of the polarizers. To the
best of our knowledge, only the counting uncertainty is usu-
ally taken into account. Photon pairs from spontaneous para-
metric downconversion follow a Poisson distribution,14 well
approximated by a normal distribution for large numbers of
pairs. We suppose, moreover, that the mean number of pairs
involved in each measurement is constant and equal to Np.
All Ni are then calculated from Eq. (3) with an associated
standard deviation uðNiÞ ¼

ffiffiffiffiffi
Ni

p
.

When uncertainty in the polarization orientation is
included, it is usually assumed to follow a normal law cen-
tered on the nominal values (second and third columns of
Table II in the Appendix) with the same standard deviation
uðaiÞ ¼ uðbiÞ ¼ dh, accounting for the experimental imper-
fections when rotating the polarizers, either by hand or with
motorized rotation mounts.

A commonly used method to evaluate uncertainty on a
given parameter is to compute its variance using the
Gaussian error propagation formula

uðSÞ2 ¼
X16

i¼1

�
@S

@Ni

� �2

uðNiÞ2 þ
@S

@ai

� �2

uðaiÞ2

þ @S

@bi

� �2

uðbiÞ2
�

þ
X16

i¼1

X
j6¼i

@S

@hi

� �
@S

@hj

� �
covðhi; hjÞ (8)

with hi ¼ bi � ai and where covðhi; hjÞ is the covariance
between random variables hi and hj. This term can take into
account the fact that angular random variables are not
independent.

We first assume all measurements independent and, thus,
discard the covariance term. u(S) is then given by

uðSÞ2 ¼
X16

i¼1

@S

@Ni

� �2

Ni þ
@S

@ai

� �2

dh2 þ @S

@bi

� �2

dh2

" #
: (9)

Computation by hand of such a large formula is a sowewhat
tedious task (see Appendix B) but easily carried out using

computer algebra. We find that, for a perfect Bell state, the
contribution of the coincidences alone to the variance on S is
2=Np. The contribution of the polarizers’ orientation errors is
much more intricate as trigonometric functions appear both
in the numerator and denominator in the definition of S.
However, in the end, all sum up quite nicely, and we get an
overall 6dh2 contribution to the variance. We, thus, finally
get

uðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Np
þ 6dh2

s
: (10)

With Np ¼ 12380 and dh ¼ 0:5
�

(careful manual setting of
the polarizers) we find, with degrees converted into radians

S ¼ 2:590 6 0:025: (11)

Our students can safely conclude that Bell’s inequality is
strongly violated in their experiment.

We can then discuss on the most efficient way to do the
experiment. The acquisition time Tacq is indeed the only
adjustable parameter in the experiment because dh is set by
the student’s skill. Equation (10) can also be written as
follows:

uðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

/p � Tacq
þ 6dh2

s
: (12)

For arbitrary long acquisition times rS !
ffiffiffi
6
p

dh. However,
in practice, it is no longer very profitable to integrate the sig-
nal once the two contributions are equal. For our incident
pair rate (1238 s�1), this occurs for Tacq � 3:5 s. We com-
monly choose Tacq ¼ 10 s so that the manipulation lasts a
reasonable time. The two contributions to the variance of S
are then, respectively, 1:6� 10�4 and 4:6� 10�4. The
counting error is much smaller than the angular error, and
we are almost at the limit of the performance of the experi-
ment. To improve it we need to reduce dh by implementing
more precise angular settings using vernier or motorized
mounts. For lower count rates such an investment could be
pointless, which shows the usefulness of making an error
budget and performing this uncertainty analysis before start-
ing the experiment.

However, the above uncertainty analysis does not cor-
rectly model real experiments in which only one and not
both polarizers are normally rotated between acquisitions.
While the Ni can still be considered as independent variables,
ai and bi are no longer independent, as one may have in prac-
tice aiþ1 ¼ ai or biþ1 ¼ bi. The analytical Gaussian error
propagation formula above, which assumes implicitly that
both angles are reset for each measurement, can, thus, be
considered as a worst case study. We will introduce a numer-
ical approach to deal with such real experimental conditions.

III. BELL’S PARAMETER UNCERTAINTY

MODELLING WITH MONTE-CARLO

SIMULATIONS

In order to better determine the statistical uncertainty of
Bell’s parameter, we implemented a Monte Carlo algo-
rithm.20,21 We first benchmarked our code against the analyt-
ical formula (Eq. (10)) using what we call in the following



the standard sequence where both polarizers are reset for
each of the 16 measurements. The process for estimating the
statistical uncertainty for Bell’s parameter is as follows:

(1) Assign a random variable to each input parameter: in our
case, the 16 triplets ðNi; ai; biÞ. The mean number of
incident photons pairs Np being known, the random vari-
able associated to Ni follows a Poisson distribution with
a mean value given either in Eq. 3 (true Bell state) or in
Eq. 5 (non-ideal Bell state). The angular errors are gener-
ated with a Gaussian distribution of width dh.

(2) Calculate the associated Bell’s parameter.
(3) Repeat the above procedure Nruns times.
(4) The uncertainty u(S) is then identified as the standard

deviation rS of Bell’s parameter calculated on the statis-
tical ensemble.

We show in Fig. 2 the evolution of the standard deviation
of Bell’s parameter rS as a function of Nruns for different val-
ues of the polarizer orientation uncertainty dh using the true
Bell state. We have chosen a large number of photons pairs
Np ¼ 10 000 so that only the angular error contributes signifi-
cantly to rS. This figure illustrates that convergence of the

Monte Carlo simulations is obtained typically for Nruns

¼ 1000, whatever the chosen value of dh.
Figure 3(a) shows how this calculated standard deviation

depends on both the mean total count number Np and the
polarizers’ angular uncertainty dh.

For perfect angular setting of the polarizers, dh ¼ 0� (pur-
ple solid line), rS reduces to the counting error with a slight
deviation from the normal value ð2=NpÞ1=2

(dashed blue line)
at low counts where Poisson and Gauss distributions actually
differ.

Conversely, rS reaches a nonzero asymptotic value for
large Np depending on the angular uncertainty dh. A linear
fit (the inset Fig. 3(b)) gives rS � 2:448 dh. The slope is not
significantly different from

ffiffiffi
6
p
� 2:449 obtained with our

analytical analysis.
These asymptotic behaviours establish the consistency of

our analytical and numerical approaches. We can now use
our numerical simulations in more realistic cases, where the
experimenter may rotate a single polarizer from one mea-
surement to another. As stated before, this operating mode
induces correlations between the ai’s and between the bi’s
that we don’t know how to take into account analytically.

IV. OPTIMIZING THE EXPERIMENTAL

PROTOCOL WITH MONTE-CARLO SIMULATIONS

A. Optimization with the simplest sequences

Intuitively, we may expect a reduced uncertainty in S by
lowering the number of interventions of the experimenter.
The three sequences shown in Fig. 4 are ones that minimize
the total number of rotations for polarizers A and B. These
have only NRot ¼ 17 independent ai’s and bi’s instead of 32:
for the first measurement, the experimenter sets both polar-
izers and then, for the remaining 15 ones, only one polarizer
(A or B) is rotated each time. In the following, we call them
short sequences.

Fig. 2. (Color online) Evolution and convergence of the standard deviation

of Bell’s parameter with respect to the size Nruns of the generated statistical

ensemble for different values of the polarizers’ orientation uncertainty dh
ranging from 0� to 2� by steps of 0:5

�
.

Fig. 3. (Color online) (a) Standard deviation rS of the Bell parameter as a

function of the mean total count number Np (i.e., acquisition time) and polar-

izers’ angular uncertainty dh. Using the same color code as in Fig. 2. The

extra dashed blue line corresponds to a normal distribution of events and

dh ¼ 0� (slope �1=2 in the log-log scale). It deviates from the actual

Poisson distribution (purple solid line) only at low counts. For large counts

and finite dh, rS settles to a finite value proportional to dh. Inset (b) Standard

deviation rS of Bell’s parameter for Np ¼ 106 as a function of dh. (M.C.)

with a linear fit (Lin. Fit.).

Fig. 4. (Color online) Three examples of measurement sequences reducing

the number of rotations for polarizers: the “Snake” (a), the “Frieze 1” (b),

and the “Frieze 2” (c).



Numerical implementation of such realistic sequences is
straightforward. For the first measurement, both angles are
randomly chosen. Then, from one measurement to the next,
we choose a new random value of either a or b according to
the specified sequence.

We compare in Fig. 5(a), the standard deviation of Bell’s
parameter for the standard measurement and the short
sequences “Snake” and “Friezes 1 and 2” depicted in Fig. 4.

First, we observe that, globally, the short sequences give
significantly better results, i.e., lower asymptotic uncertainty
on Bell’s parameter.

Second, we notice that the shortest sequences are not all
equally effective (Fig. 5(b)) with Snake performing almost
20% better than Frieze 2. This is unexpected: it is not only
the total number of rotations NRot that matters but also the
order in which they are performed. Correlations of angular
settings of the polarizers impact Bell’s parameter in a quite
intricate way.

B. OPTIMIZATION OF THE STANDARD

DEVIATION OF BELL’S PARAMETER WITH A

GENETIC ALGORITHM

Our inability to explain why some short sequences are bet-
ter than others implies that there might be better measure-
ment sequences than the ones considered thus far. To
address this issue, an optimization algorithm is needed since
the total number of possible protocols is 16! � 2� 1013. As
we cannot perform an extensive exploration of the whole
sequences space, we have chosen to use a genetic algorithm
technique.22

First, we label the 16 different polarizers’ settings as
shown in Fig. 6. The visual representation of the experi-
mental sequences as a path visiting each square of the
checkerboard (Fig. 4) is equivalent to a single permutation
of the sequence ½1;…; 16� more suitable for computer
handling.

Accordingly, the “Snake” and the “Frieze” are then
encoded as the following permutations:

• Snake: ½1 2 3 4 8 7 6 5 9 10 11 12 16 15 14 13�
• Frieze 1: ½1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10�
• Frieze 2: ½1 2 3 4 8 12 16 15 14 10 11 7 6 5 9 13�

We have chosen the following parameters for our genetic
optimization process:

• Np ¼ 100 000 incoming pairs so that the standard devia-
tion of Bell’s parameter depends essentially on the angular
uncertainty of the polarizers’ orientations set to dh ¼ 1�.

• A true Bell state is considered for which the number of
coincidences for each measurement is given in Eq. (3):
Ni ¼ ðNp=2Þ cos2ðbi � aiÞ.

• The population is formed by 1000 sequences randomly
chosen for the first generation (“parents”). We let the pop-
ulation evolve and select the 1000 “children” with lowest
uncertainty on Bell’s parameter for the next generation.22

• For each “generation,” Nruns ¼ 2000 iterations are com-
puted for each “individual” in order to ensure the conver-
gence of the Monte-Carlo simulation.

• The genetic algorithm is used without any constraints:
there are no limits on the number of polarizers’ rotations
(it is not restricted to one at each step), and there are no
conditions between the first and the last position of
polarizers.

Figure 7 shows an example of the optimization process
provided by the genetic algorithm. For each generation, we
display the average value and the lowest value of the uncer-
tainty in Bell’s parameter over the whole population. The
efficiency of the algorithm is clearly shown by its conver-
gence. The best reached value rS � 0:014 is almost half of
the best one obtained for the simple sequences above (see
Fig. 8). One quasi optimal sequence is the following:
½11 7 5 8 12 9 13 14 10 6 2 3 15 16 4 1�. It is quite non-intuitive
with no particular pattern despite the high symmetry of
Bell’s parameter definition (Fig. 9).

Fig. 5. (Color online) (a) Standard deviation of Bell’s parameter as a function of the number of generated pairs for the standard sequence (solid purple line)

and the shorter ones of Fig. 4. (b) Zoom on the asymptotic values showing that the different shortest sequences perform better than the standard sequence

(rS ¼ 0:043) but are not equally efficient.

Fig. 6. Labelling of the different polarizers settings.



Consequently, in the budget analysis framework presented
before, for a given uncertainty level on S, our best sequence
performs four times faster with dh ¼ 1�. The prefactor 6 of
dh2 in the error budget Eq. (10) can then be thought as a
complicated function of the actual experimental sequence.
The optimization we performed corresponds to the minimi-
zation of this function. We may assume that the reason why
some sequences result in lower error is the compensation
between uncertainties, as the angle settings are not indepen-
dent. A discussion of the covariance terms in Eq. (8) is pro-
posed in Appendix C. Even if they are not at the level of
prediction of Monte Carlo simulations, taking into account
covariances between angular random variables in the
Gaussian propagation error formula shows error compensa-
tions and illustrates the fact than sequences having the same
number of polarizers rotations do not have the same uncer-
tainty on S.

We were so surprised by such a significant yet counter-
intuitive improvement in the protocol that we thought it
should be verified experimentally.

V. EXPERIMENTAL VERIFICATION OF THE

QUASI OPTIMAL CONFIGURATION

A. Automation of measurements

Comparing two sequences is, however, quite a challenging
task. Indeed, we need a reliable value not of Bell’s parameter
itself but of its uncertainty. We, thus, have to repeat the

whole set of 16 measurements a sufficient number of times,
say �100 for each sequence. Moreover, the most important
parameter is the angular uncertainty, unknown to the experi-
menter who would have to keep it constant over several
thousands of angular settings. This is clearly not humanly
feasible.

We, thus, automated the measurement of Bell’s parameter
with computer-controlled motorized rotation mounts for the
polarizers. We programmed different measurement sequen-
ces, adding random errors in the angles to simulate human
setting. These errors follow a normal law whose dispersion
dh can be set to any value equal to or greater than the 0:1�

repeatability of our mounts.
In order to ensure that we were observing the asymptotic

behavior at large Np in Fig. 8, we set the integration time
long enough so that Np > 104. We compared the “snake”
and the “optimal” sequences for dh ¼ 0 6 0:1�, which a
human cannot do, dh ¼ 0:5 6 0:1�, a good experimenter, and
dh ¼ 1 6 0:1�. We ran the whole set of measurements typi-
cally 100 times for each dh (see Table I).

For dh ¼ 0 6 0:1�, both configurations give experimen-
tally the same standard deviation as only the photon number
statistics is involved. However, for either dh ¼ 0:5 6 0:1� or
dh ¼ 6 0:1�, the “optimal” sequence has a reduced standard
deviation of Bell’s parameter as compared to the “snake”
sequence. As predicted by the genetic algorithm, the optimal
sequence does actually perform better.

It should also be noted that experimental values for the
statistical uncertainty are quite close to those provided by the
Monte Carlo models of Fig. 8, despite the fact that the exper-
imental state we have created is not pure and, therefore, does
not match the perfect Bell state used in these calculations.
This means that the proposed optimal sequence is somewhat
robust with respect to the experimental imperfections.

Fig. 8. (Color online) Comparison of a quasi-optimized sequence provided

by the genetic algorithm (light blue dotted dashed line) with the standard

(solid purple line) and best intuitive (dashed green line) sequences.

Fig. 9. (Color online) Example of quasi optimal measurement sequence pro-

vided by the genetic algorithm.
Fig. 7. (Color online) Average and best standard deviation as a function of

the number of generations.

Table I. Statistics of Bell’s parameter measured for the “snake” and the

“optimal” configuration.

Configuration Number of measurements S rS

Snake dh ¼ 0 6 0:1� 86 2.5314 0.0174

Optimal dh ¼ 0 6 0:1� 85 2.532 0.0176

Snake dh ¼ 0:5 6 0:1� 107 2.4942 0.0221

Optimal dh ¼ 0:5 6 0:1� 106 2.5301 0.0149

Snake dh ¼ 1 6 0:1� 134 2.4712 0.0294

Optimal dh ¼ 1 6 0:1� 136 2.5213 0.0196



B. Decrease of rS with acquisition time

Because the coincidence detection circuit provides count
numbers each 100 ms,16,17 it is possible to post-process the
data in order to show how the standard deviation of Bell’s
parameter converges to its asymptotic value as the number
of detected pairs increases in much the same way as is easily
done numerically (Fig. 10).

Again, for dh ¼ 0�, both sequences present the same
behavior with a monotonic square root decrease in the uncer-
tainty on S with the total number of detected pairs (not
shown). More interestingly, as predicted by our Monte Carlo
simulations, we observe that the experimental rS settles
asymptotically to a finite value for dh ¼ 0:5

�
and dh ¼ 1�.

This experimentally demonstrates that there are protocols
that are inherently more robust in dealing with handling
errors by taking advantage of the correlations that exist in
the definition of Bell’s parameter.

VI. CONCLUSION

Our initial motivation to understand and quantify uncer-
tainty in Bell’s parameter S was to quantify the significance
level and to increase the strength of the violation of Bell’s
inequality. However, during a more advanced student pro-
ject, we uncovered a subtle and unexpected influence of the
sequence of measurements performed on the measurement
uncertainty. This allowed us to significantly improve the per-
formance of our setup by optimizing the experimental proto-
col. This discovery may have implications for other
experiments, even in completely different areas, as it often
happens that an experimental result combines several indi-
vidual measurements. We encourage readers to consider
other examples where this effect may be seen.
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APPENDIX A: EXPERIMENTAL RESULTS FOR

BELL’S PARAMETER MEASUREMENT

Below we provide a typical sequence of measurements for
the determination of Bell’s parameter. Each of the 16 values
provided for NA, NB, and Nc is integrated over Tacq ¼ 10 s.

The number of concidences Nc provided here is not corrected
for accidental coincidences. Within this experiment, the rate
of accidental coincidences /acc is about 8 s�1.

APPENDIX B: ANALYTICAL CALCULATION

OF THE UNCERTAINTY ON BELL’S PARAMETER

WITH THE GAUSSIAN PROPAGATION ERROR

METHOD

According to Table II and Eq. (7), Bell’s parameter can be
written as

S ¼ N1 þ N2 � N3 � N4

N1 þ N2 þ N3 þ N4

� N5 þ N6 � N7 � N8

N5 þ N6 þ N7 þ N8

þ N9 þ N10 � N11 � N12

N9 þ N10 þ N11 þ N12

þ N13 þ N14 � N15 � N16

N13 þ N14 þ N15 þ N16

:

(B1)

By considering a true Bell state jWEPRi ¼ ðjHsijHii
þjVsijViiÞ=

ffiffiffi
2
p

, the number of coincidences Ni is given by
Ni ¼ ðNp=2Þ cos2ðbi � aiÞ ¼ ðNp=2Þ cos2 hi, Np being the
number of incident pairs. It is then possible from this expres-
sion and Eq. (7) to calculate analytically all the partial

Fig. 10. (Color online) Experimental standard deviation of Bell’s parameter according the measurement time for the “snake” (purple) and the optimized

sequences (green) for dh ¼ 0:5� (a) and dh ¼ 1� (b).

Table II. Sixteen coincidences measurements for the determination of Bell’s

parameter.

i a (deg) b (deg) NA=103 NB=103 Nc

1 �45 �22.5 283 268 4871

2 45 67.5 307 292 5654

3 �45 67.5 281 294 1398

4 45 �22.5 308 272 889

5 �45 22.5 284 263 1170

6 45 112.5 307 299 1896

7 �45 112.5 282 302 5010

8 45 22.5 306 266 5036

9 0 �22.5 269 270 4938

10 90 67.5 308 292 5565

11 0 67.5 269 292 1244

12 90 �22.5 310 274 1170

13 0 22.5 269 267 5678

14 90 112.5 309 299 5577

15 0 112.5 270 299 676

16 90 22.5 309 266 1097



derivatives needed to compute the uncertainty of Bell’s
parameter in the following expression:

uðSÞ2 ¼
X16

i¼1

@S

@Ni

� �2

Ni þ
@S

@ai

� �2

dh2 þ @S

@bi

� �2

dh2

" #
:

(B2)

These derivatives will include the terms cos2ðbi � aiÞ. In
Table III, we show the value of hi ¼ bi � ai for each measure-

ment. There are only two values of cos2hi: Cp ¼ 2þ
ffiffiffi
2
p� �

=4

and Cm ¼ 2�
ffiffiffi
2
p� �

=4.

1. Coincidence counts contribution

In evaluating the first term in the summation in Eq. (B2),
it is helpful to start by considering only the measurements
i ¼ 1;…; 4, for which the partial derivatives are

@S

@N1

¼ @S

@N2

¼ 2 N3 þ N4ð Þ
N1 þ N2 þ N3 þ N4ð Þ2

; (B3)

@S

@N3

¼ @S

@N4

¼ � 2 N1 þ N2ð Þ
N1 þ N2 þ N3 þ N4ð Þ2

: (B4)

From these expressions, we can write

X4

i¼1

@S

@Ni

� �2

Ni ¼
4 N1 þ N2ð Þ N3 þ N4ð Þ
N1 þ N2 þ N3 þ N4ð Þ3

¼ 4� Cp � Cm

Np
: (B5)

By symmetry, the same expression is obtained for i ¼ 5;
…; 8; i ¼ 9;…; 12 and i ¼ 13;…; 16, resulting in

X16

i¼1

@S

@Ni

� �2

Ni ¼ 4� 4CpCm

Np
¼ 2

Np
: (B6)

The contribution of the detected coincidences to the variance
is 2=Np.

2. Angular contribution

In evaluating the second and third terms in the summation
in Eq. (B2), the following expressions are helpful:

@S

@ai
¼ @S

@Ni

@Ni

@hi

@hi

@ai
¼ � @S

@Ni

@Ni

@hi
; (B7)

@S

@bi

¼ @S

@Ni

@Ni

@hi

@hi

@bi

¼ @S

@Ni

@Ni

@hi
; (B8)

@Ni

@hi
¼ �Np cos hi sin hi: (B9)

From these expressions, we can write

@S

@ai

� �2

¼ @S

@bi

� �2

¼ @S

@Ni

@Ni

@hi

� �2

:

For i ¼ 1;…; 4, we have

X4

i¼1

@S

@ai

� �2

¼ @S

@N1

@N1

@h1

� �2

þ @S

@N2

@N2

@h2

� �2

þ @S

@N3

@N3

@h3

� �2

þ @S

@N4

@N4

@h4

� �2

¼ @S

@N1

� �2
@N1

@h1

� �2

þ @N2

@h2

� �2
" #

þ @S

@N3

� �2
@N3

@h3

� �2

þ @N4

@h4

� �2
" #

¼
4N2

pC2
m

N4
p

@N1

@h1

� �2

þ @N2

@h2

� �2
" #

þ
4N2

pC2
p

N4
p

@N3

@h3

� �2

þ @N4

@h4

� �2
" #

:

Making use of Eq. (B9), this becomes

X4

i¼1

@S

@ai

� �2

¼ 4C2
m

N2
p

2N2
pCp sin2 h1

h i
þ

4C2
p

N2
p

2N2
pCm sin2 h3

h i
¼ 8CmCp Cm sin2 h1þCp sin2 h3

	 

:

Since sin2 h1 ¼ 2�
ffiffiffi
2
p� �

=4¼ Cm and sin2 h3 ¼ 2þ
ffiffiffi
2
p� �

=4
¼ Cp, we obtain

X4

i¼1

@S

@ai

� �2

¼ 8CmCp C2
m þ C2

p

h i
¼ 3

4
: (B10)

Again, by symmetry, all the angular uncertainties contribute
the same so we get

X16

i¼1

@S

@ai

� �2

dh2 þ @S

@bi

� �2

dh2

" #

¼ 4� 2�
X4

i¼1

@S

@ai

� �2

dh2 ¼ 6dh2: (B11)

The contribution of the error on polarizers’ orientation to the
variance is 6dh2.

Hence, the final expression for the uncertainty on Bell’s
parameter is

uðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Np
þ 6dh2

s
: (B12)

APPENDIX C: UNCERTAINTY WITH DEPENDENT

RANDOM VARIABLES

In the expression for the coincidences Ni ¼ ðNp=2Þ
� cos2ðbi � aiÞ ¼ ðNp=2Þ cos2ðhiÞ, the random variables hi

Table III. Angles involved in the determination of the uncertainty of Bell’s

parameter. Cp ¼ 2þ
ffiffiffi
2
p� �

=4 and Cm ¼ 2�
ffiffiffi
2
p� �

=4.

i 1 2 3 4 5 6 7 8

hi ¼ bi � ai (�) 22.5 22.5 112.5 �67.5 67.5 67.5 157.5 �22.5

cos2 hi Cp Cp Cm Cm Cm Cm Cp Cp

i 9 10 11 12 13 14 15 16

hi ¼ bi � ai (�) �22.5 �22.5 67.5 �112.5 22.5 22.5 112.5 �67.5

cos2 hi Cp Cp Cm Cm Cp Cp Cm Cm



are not independent of each other if the polarizers are not re-
orientated for each measurement. An initial attempt to
account for this dependence uses the enhanced Gaussian
error propagation formula

uðSÞ2 ¼
X16

i¼1

@S

@Ni

� �2

Ni þ
@S

@hi

� �2

uðhiÞ2
" #

þ
X16

i¼1

X
j 6¼i

@S

@hi

� �
@S

@hj

� �
covðhi; hjÞ; (C1)

where covðhi; hjÞ is the covariance between random variables
hi and hj. The first-order partial derivatives can be positive or
negative, allowing some sequences to lower u(S).

With hi ¼ bi � ai, we have uðhiÞ2 ¼ 2dh2 and covðhi; hjÞ
¼ dh2 if the measurements i and j have a common angle.
Using the formulas of the partial derivatives given in
Appendix B 2, we obtain u(S) from Eq. (C1) and can com-
pare with Monte Carlo simulations. Results are given in
Table IV.

Compared to the value uðSÞ ¼ 0:043 (Eq. (10) with Np

¼ 105 and dh ¼ 1�), a reduction of the uncertainty is effec-
tively observed when covariances are taken into account
(negative partial derivatives) but not at the level of the pre-
diction of Monte Carlo simulations or observed in experi-
ments, especially for the optimal sequence. Uncertainty
compensations may be more complicated than those of Eq.
(C1) due to the nonlinear dependence of rS on the angles.

We developed an additional way to consider the uncer-
tainty at each measurement of a sequence. We first generate
values of Ni for an ideal and deterministic measurement
using a particular sequence (Ni ¼ ðNp=2Þ cos2ðbi � aiÞ and
Np ¼ 105), resulting in S ¼ 2

ffiffiffi
2
p

. Then we successively
replace each value of Ni with a new value calculated when
the angles include Gaussian-distributed errors, dh ¼ 1� and
re-calculate the value of S(i) at each measurement. We

repeated this process, averaging together the values of S(i)
obtained at each step until the convergence of the standard
deviation rSðiÞ of the statistical distribution of S(i). For a
given sequence, rSð16Þ is equal to its standard deviation rS.

Results are shown in Fig. 11 for the following sequences:
the “Snake,” the “Friezes 1 and 2,” the optimal given by the
genetic algorithm, and a sequence called “1:16” which corre-
sponds to the sequence ½1 2 … 16� where we have added a
new Gaussian-distributed error to the angle at each step,
when a polarizer is rotated.

The evolution of rSðiÞ at each measurement is shown. The
unexpected behaviour is for the optimal sequence, the uncer-
tainty in Bell’s parameter stays stable after the 4th measure-
ment, implying that error compensation occurs at each
polarizer rotation after that point. For other sequences, they
keep increasing toward to their value given in Table IV.
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