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Abstract: The reaction of [Co2(CO)8] with an equimolar amount of the internal alkyne N-(2-butyn-
yl)phthalimide (1-Phthalimido-2-butyne) 1 in heptane solution yields the title compound [Co2(CO)6(µ-
phthalimidoCH2C≡CMe)] 2. Compound 2 has been characterized using IR, 1H and 13C NMR
spectroscopy; the tetrahedrane-type cluster framework has been ascertained using a single-crystal
X-ray diffraction study performed at 100 K.

Keywords: cobalt; carbonyl; triphenylphosphite; crystal structure; molecular cluster

1. Introduction

Since the first reports dating from the 1950s on the reaction of dicobalt octacarbonyl
with alkynes yielding dicobaltatetrahedranes [Co2(CO)6(µ-RC≡CR′)] [1,2], there is nowa-
days a plethora of articles dealing with this organometallic reaction [3]. The interest in this
research is not only driven by merely synthetic aspects, i.e., spectroscopic and structural
characterization of these cage-like species, but also by the use of these compounds as precur-
sors for further modifications in material sciences [4] and organic syntheses [5,6]. An impor-
tant example for the latter domain is the Pauson–Khand reaction, in which [Co2(CO)8] reacts
with an alkyne, an alkene, and carbon monoxide to form an α,β-cyclolopentenone [7–11].
In addition to the applications using dicobaltatetrahedranes as synthetic tools, this class of
dinuclear organometallic compounds is emerging in bio-organometallic chemistry [12–21].
Some examples of dicobaltatetrahedranes, ligated using terminal functionalized alkynes
and displaying biological activity, are depicted in Scheme 1.

Among the organic heterocyclic compounds showing a promising biological and
medicinal activity, there are also some representatives based on the phthalimido
scaffold [22–24]. In 2005, Gust et al. also reported the reaction of propargyl phtalim-
ide with [Co2(CO)8] and determined the cytotoxicity and DNA binding efficiency of the
resulting complex N-(2-propynyl)phthalimide]hexacarbonyldicobalt (see compound V of
Scheme 1) [21]. In the context of our research on Co–Co carbonyl complexes towards
various alkynes producing dicobaltatetrahedranes [25,26], we attempted to synthetize a
Co–Co complex ligated using an internal alkyne, namely 1-Phthalimido-2-butyne 1, for
upcoming biological studies. Apart from the purely synthetic aspect, one of the objectives
was to compare the impact of the replacement of a terminal alkyne by an internal one
(Phtal-C≡CH vs. Phtal-C≡CMe).
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Scheme 1. Examples of some dicobaltatetrahedranes displaying biological activity (I, III–V: antipro-
liferative activity against cancer cells; II: hormonally active compound).

2. Results and Discussion

The title compound 2 was obtained via treatment of [Co2(CO)8] with an equimolar
amount of N-(2-butynyl)phthalimide 1 in heptane solution at 60 ◦C as shown in Scheme 2.
Upon cooling, small orange-red needle-shaped crystals of air-stable 2 were isolated, and
elemental analysis confirmed their composition as [Co2(CO)6(µ-phthalimidoCH2C≡CMe)].

Scheme 2. Synthesis of the title compound 2.

The IR spectrum of this product in cyclohexane, shown in Figure 1, reveals the signals
of terminal carbonyl with intense ν(CO) vibrations at 2093, 2055, and 2028 cm−1. In
addition, two further absorptions at 1775 and 1727 cm−1 are attributed to the carbonyls’
stretching modes (symmetric and antisymmetric) of the imide function [27]. These values
fit well with those measured in cyclohexane for [Co2(CO)6(µ-phthalimidoCH2C≡CH)] at
2094, 2057, and 2030 as well as 1775 and 1727 cm−1 (Figure S1). The latter complex has
already been described and characterized using IR spectroscopy in solid state as KBr pellets
(2095, 2054, 2036, 2016 (Co-CO); 1712 (C=O) cm−1) [21]. The infrared spectrum of 2 in the
solid state was also recorded in attenuated total reflectance (ATR) mode and is presented
in the Supplementary Materials (Figure S2). Despite being a monocrystalline solid, the
carbonyl absorptions were not fully resolved (2093, 2052, 2030, and 2008 as well as 1766
and 1708 cm−1).
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Figure 1. IR spectrum of compound 2 recorded in cyclohexane.

The 1H-NMR recorded in CDCl3 reveals a singlet at δ 2.65 due to the acetylenic methyl
group; a further singlet at δ 5.03 is attributed to the enantiotopic methylene hydrogens. The
remaining resonances at δ7.74 and 7.88 are assigned to the aromatic cycle (Figure 2). In the
proton-decoupled 13C-NMR spectrum depicted in Figure 3, only a broadened resonance
centered at δ 199.3 could be observed for the six Co-bound carbonyl groups, suggesting a
fluxional behavior of the COs. In contrast, the resonance of the two chemically equivalent
imido C=O carbonyl groups at δ 167.9, the two acetylenic carbons at δ 93. 2 and 91.8, as
well as those of the CH2 and CH3 carbons gave rise to well-resolved signals.

Figure 2. 1H-NMR spectrum (400 MHz, CDCl3) of compound 2 at 25 ◦C. The asterisk * denotes the
chloroform resonance.
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Figure 3. 13C{1H}-NMR spectrum (100.62 MHz, CDCl3) of compound 2 at 25 ◦C. The asterisk * denotes
the CDCl3 resonance.

In addition to the spectroscopic characterization of 2 in solution, the complex was
also unambiguously analyzed using X-ray diffraction performed at 100 K. Complex 2
crystallizes in the triclinic space group P-1; the asymmetric unit contains two independent
molecules with slightly different bond lengths and angles. As shown in Figure 4, in this
organometallic species the former alkyne is almost orthogonally µ2-η4-coordinated with
respect to the two crystallographically non-equivalent Co1 and Co2 centers, which are
linked through a metal–metal bond of 2.4688(14) Å.

Figure 4. Molecular structure of one of two independent molecules of 2. All H atoms are omitted for
clarity. Selected bond lengths (Å) and angles (deg): Co1–Co2 2.4688(14), Co1–C2 1.980(6), Co1–C3
1.952(6), Co2–C2 1.984(6), Co2–C3 1.954(7), Co1–C16 1.812(7), Co1–C17 1.784(8), Co1–C18 1.831(7),
Co2–C13 1.794(7), Co2–C14 1.812(7), Co2–C15 1.805(7), C2–C3 1.323(9); Co1–Co2–C3 50.75(15), Co2–
Co1–C2 50.83(19), Co1–C2–Co2 77.0(2), Co1–C3–Co2 78.4(2).
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The resulting tetrahedral skeleton, reminiscent of that of organic tetrahedranes (https:
//en.wikipedia.org/wiki/Tetrahedrane, accessed on 26 December 2022), allows for consid-
ering this 40-electron species an organometallic cluster of dimetallatetrahedranes, in which
two Co(CO)3 units of the parent cluster [{Co4(µ2-CO)3(CO)9] are replaced by isolobal C–R
fragments, forming the edges of the cluster core. The former alkyne unit lost its linearity;
the torsion angle C1–C2–C3–C4 changed to −3.1(18)◦. The coordination sphere around
each Co atom is completed by three terminal carbonyls. The mean Co–C bond length of the
four pseudo-equatorial carbonyls is somewhat longer than that of the two pseudo-axial
C≡O ligands (1.815(7) vs. 1.789(7) Å). The C2–C3 bond distance of 2 is much shorter
than that of a C–C single bond, but considerably elongated with respect to the C≡C bond
reported for [phthalimidoCH2C≡CCH2phthalimido] (CSD refcode ECUFOB) (1.323(9) vs.
1.191(4) Å) [28].

Although there are numerous examples of crystallographically characterized hex-
acarbonyldicobalt compounds which are µ2-η2,η2 capped by an internal alkyne, a sur-
vey of the CSD data base revealed only two other examples containing a -CH2-C≡C-
Me motif as is present in 2, namely (trans-5,8,8-trimethyl-trans-1,4,5,7-tetrahydro-cis-4-(2-
butynyl)bicyclo(5.1.0)octan-3-one)(hexacarbonyl)dicobalt (A) and (pent-3-yn-1-ol)(hexa-
carbonyl)dicobalt (B) (Figure 5) [29,30]. The most relevant averaged bond lengths (compris-
ing molecules 1 and 2) of 2 are listed in Table 1 and compared with those of compounds A
and B (averaged bond lengths).

Figure 5. Presentation of the two structurally characterized dicobaltatetrahedranes (A) and (B)
incorporating a -CH2-C≡C-Me motif.

Table 1. Comparison of relevant bond lengths (Å) and angles (◦) in 2 and the crystallographically
characterized [Co2(CO)6(µ-RCH2C≡CCH3)] tetrahedranes A and B.

2 A B

Co–Co 2.4679(14) 2.4688(9) 2.4690(9)
C–Calkyne 1.330(9) 1.325(6) 1.326(6)
Calkyne–CMe 1.481(9) 1.486(6) 1.492(6)
Calkyne–CH2 1.499(9) 1.500(7) 1.493(6)
Co–Calkyne 1.972(6) 1.974(5) 1.972(4)
Co–Cpseudo-equatorial 1.815(7) 1.823(5) 1.820(5)
Co–Cpseudo-axial 1.797(7) 1.785(6) 1.787(5)
CSD reference This work DOTKEC [29] HUKCIA [30]

In the molecular cell of 2 with Z = 4, there are no intermolecular contacts deserving
any discussion (Figure 6).

https://en.wikipedia.org/wiki/Tetrahedrane
https://en.wikipedia.org/wiki/Tetrahedrane
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Figure 6. View of the molecular cell of 2 showing the two pairwise arranged independent molecules.

3. Materials and Methods

N-(2-butynyl)phthalimide 1 was commercially purchased from Aldrich. 1H- and
13C-NMR spectra were recorded on a Brucker AC 400 (Bruker, Wissembourg, France) at
400 and 100.62 MHz, respectively, using CDCl3 as solvent. Infrared spectra were recorded
on a Vertex 70 spectrometer (Bruker, Wissembourg, France) in ATR mode or in solution.

(µ2-η4-N-(2-butynyl)phthalimide)(hexacarbonyl)dicobalt: Alkyne 1 (199.2 mg, 1 mmol)
was added to a stirred solution of Co2(CO)8 (342.0 mg, 1 mmol) in heptane (10 mL). An
immediate gas evolution was observed. The reaction mixture was then heated to 60 ◦C
for 5 h. The solution was cooled to room temperature prior to lowering its temperature to
4 ◦C. Product 2 crystallized as orange-red needles which were collected via filtration. Yield:
78%. Anal. Calc. for C18H9Co2NO8 (M.W = 485.14 g.mol−1): C, 44.56; H, 1.87; N, 2.89%.
Detected: C, 44.64; H, 1.92; N, 2.98 %. 1H-NMR (CDCl3) at 298 K: δ 2.65 (s, CH3), 5.03 (s,
NCH2), 7.74 (br, CH Ar), 7.88 (br, CH Ar) ppm. 13C{1H}-NMR (CDCl3) at 298 K: δ 20.3
(CH3), 39.7 (NCH2), 91.8 (Cq), 93.2 (Cq), 123.6 (CH), 132.0 (Cq), 134.4 (CH), 167.9 (C=O),
199.3 (br, CO) ppm.

Since the grown single-crystals of 2 used for the determination of the crystal structure
were quite small, CuKα radiation was employed instead of MoKα radiation. Moreover,
the crystals were twinned. The B-alert found in the checkcif is due to the high electronic
residual around the Co–Co bonds, which could not be further refined due to the low
resolution at 138.0◦.

Crystal data for C18H9Co2NO8, M = 485.12 g.mol−1, orange-red needles, crystal size
0.377 × 0.194 × 0.15 mm3, triclinic, space group P-1: a = 7.4317(4)Å, b = 13.4351(7) Å,
c = 19.2794(11) Å, α = 78.462(3◦, β = 84.011(3)◦, γ = 89.156(3)◦, V = 1875.73(18) Å3,
Z = 4, Dcalc = 1.718 g/cm3, T = 100 K, h = −8 ≤ h ≤ 8, k = −15 ≤ k ≤ 16, I = 0 ≤ l
≤ 16, GOF = 1.077, R1 = 0.0855, wR2 = 0.2428 for 6962 reflections with I > = 2σ (I) and
11958 independent reflections. Largest diff. peak/hole/e Å−3 1.35/−1.02. The structure
was solved using direct methods and refined using full-matrix least-squares against F2

(SHELXL, 2015 [31–33]).
Data were collected using graphite-monochromated CuKα radiation l = 1.54178 Å

and were deposited at the Cambridge Crystallographic Data Centre as CCDC 2219351.
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(Supplementary Materials). The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures.

4. Conclusions

We have demonstrated that addition of the internal alkyne N-(2-butynyl)phthalimide 1
to [Co2(CO)8] straightforwardly yields the stable complex [Co2(CO)6(µ-phthalimi-
doCH2C≡CMe)] 2 featuring a dimetallatetrahedrane framework. The investigation of
the biological activity of 2 and other related compounds will be the topic of a forthco-
ming study.

Supplementary Materials: The following are available online, CIF file, Check-CIF report, and ATR-IR
spectrum.
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