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MATRIX POINCARÉ INEQUALITIES AND CONCENTRATION

RICHARD AOUN, MARWA BANNA, AND PIERRE YOUSSEF

Abstract. We show that any probability measure satisfying a Matrix Poincaré inequality
with respect to some reversible Markov generator satisfies an exponential matrix concentration
inequality depending on the associated matrix carré du champ operator. This extends to the
matrix setting a classical phenomenon in the scalar case. Moreover, the proof gives rise to new
matrix trace inequalities which could be of independent interest. We then apply this general
fact by establishing matrix Poincaré inequalities to derive matrix concentration inequalities for
Gaussian measures, product measures and for Strong Rayleigh measures. The latter represents
the first instance of matrix concentration for general matrix functions of negatively dependent
random variables.

1. Introduction and main results

Concentration inequalities are versatile tools which found use in several pure and applied
mathematical problems. While in their essence, these inequalities are just a quantification of the
law of large numbers, they represent further illustrations of deep high dimensional phenomena in
areas across Mathematics. On a conceptual level, they assert that a random variable measurable
with respect to a large number of independent (or weakly dependent) random variables and
“depending little” on each individually, is almost constant with high probability. While many
methods were developed to prove concentration inequalities, perhaps the most insightful one is
the one based on functional inequalities such as Poincaré and log-Sobolev inequalities. Indeed,
these functional inequalities serve as a further illustration of the conceptual description we
mentioned above. For instance, in its classical form, Poincaré inequality relates the variance
of a function of a random variable to the average length of the gradient of the function. One
then readily sees that if a function varies little locally (in the usual sense of variations), then
with high probability it also varies little when evaluated at a random point. More generally,
these inequalities relate statistics of the measure, such as the variance and entropy of any
function, to the derivative along a semi-group associated with a Markov process generating the
measure. Beside the concentration phenomenon, such functional inequalities provide a further
understanding of the measure as they are intimately connected to the convergence rate of the
corresponding Markov process generating it. The interconnection between concentration and
functional inequalities is by now very well understood, and the use of such inequalities to derive
concentration proved to be very powerful due to its flexibility in dealing with any measure,
provided one can architect a suitable Markov process which generates it. We refer to [5] and
[20] for more on classical concentration inequalities.

Matrix concentration inequalities are noncommutative extensions of their scalar counterpart
and have been extensively developed in the last decade [1, 23, 25, 28, 29]. A big effort was
made to transfer our understanding of the scalar case to the matrix one. In this direction, many
papers were devoted to extending scalar methods for deriving concentration inequalities in the
matrix setting. We refer to the book of Tropp [30] for a detailed introduction to the subject and
an extensive list of references. As mentioned in the previous paragraph, the approach leading to
concentration inequalities based on functional inequalities has been successful in the scalar case:
it allowed to establish concentration inequalities in dependent settings and treat general functions
beyond the example of sums of random variables. In light of this, several efforts were made to
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extend this theory to the matrix setting. Several papers were devoted to properly defining the
matrix entropy and establishing its basic properties such as the subadditivity [6, 7, 8, 9, 10]. In
[7], Chen and Tropp aimed at extending φ-Sobolev inequalities to the matrix setting. In [8, 9],
Cheng and Hsieh further investigated the notion of Φ-entropy for operator valued functions and
established several matrix functional inequalities such as a matrix analogue of the Efron-Stein
inequality. The subadditivity of matrix entropy was used in [7] with the aim of developing a
matrix version of the entropy method. However, as was noted in [7], the attempt to adapt the
Herbst’s argument had some shortcomings requiring additional assumptions to be successfully
implemented. In addition to [7], we should mention the paper [25] where a family of exponential
matrix Efron-Stein inequalities are established and turned into matrix concentration. However,
the literature lacks a unified general framework for relating matrix functional inequalities to
matrix concentration.

In this paper, we focus on Poincaré inequalities and aim to implement a general procedure
turning a matrix Poincaré inequality into a concentration inequality. In the scalar case, such
a procedure was first introduced by Gromov and Milman [14] and alternative arguments were
later developed. We will adapt here the approach of Aida and Stroock [2] (see also [19, Section
2.5]). One of our contributions is to elaborate such a procedure, then establish matrix Poincaré
inequalities and use this to derive new matrix concentration inequalities for Gaussian measures
and negatively dependent measures.

Matrix Poincaré implies matrix concentration. Let us denote by Hd (resp. H+
d ) the set

of d × d Hermitian (resp. positive semi-definite) matrices. Given a probability measure µ on
some Polish space Ω and f : Ω → Hd whose matrix coefficients belong to L2(µ), the variance of
f is given by

Varµ(f) = Eµ[f
2]− (Eµf)

2,

where Eµ :=
∫
fdµ. It can be easily checked that Varµ(f) � 0, where � refers to the positive

semi-definite ordering. We will say that µ satisfies a matrix Poincaré inequality with constant
α and matrix Markov generator L with Dirichlet domain D(L) if for any f ∈ D(L) we have

Varµ(f) � αE(f),
where E(f) = −Eµ[fLf ] is the matrix Dirichlet form associated with L. As is verified in Propo-
sition 2.2, this definition makes sense as E(f) ∈ H+

d . The notion of matrix Poincaré inequality
(with respect to the positive semi-definite ordering) appears in the works of Chen and Hsieh
[8, 9] although not expressed in the language of semigroups. Together with Tomamichel [10],
the aforementioned authors later developed the basic definitions and properties of semigroups
acting on matrix functions, as well as the matrix Dirichlet form and matrix carré du champ
operator, which we use here. These notions will be recalled in Section 2 for completeness, and
can be thought of at this stage as natural extensions of their scalar counterpart by considering
the action of the Markov generator on each entry of the matrix valued function. Let Γ be the
matrix carré du champ operator associated to the matrix generator L defined on an algebra A
of D(L). Our first main result states as follows.

Theorem 1.1. Let µ be a probability measure on some Polish space Ω. Suppose that µ satisfies
a matrix Poincaré inequality with constant α and matrix Markov generator L reversible with
respect to µ. Then for any f ∈ A and t ≥ 0, we have

µ
(
λmax

(
f − Eµf

)
≥ t
)
≤ d exp

(
− t2

2αvf + t
√
2αvf

)
,

where vf =
∥∥‖Γ(f)‖

∥∥
L∞

.

The above theorem provides a general machinery turning a matrix Poincaré inequality into a
corresponding matrix concentration inequality. In view of such general phenomenon paralleling
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its scalar counterpart, establishing a matrix concentration inequality is reduced to proving a
matrix Poincaré inequality. To this aim, for a given probability measure, the main task lies in
designing the appropriate Markov generator and calculating the corresponding matrix carré du
champ operator.

The proof of Theorem 1.1 hides many challenging obstacles arising because of noncommuta-
tivity. As is customary, obtaining a concentration inequality follows by combining a Chernoff
bound with an estimate on the Laplace transform. The Poincaré inequality is then used to
obtain a recursive relation involving the Laplace transform, which when properly arranged pro-
duces the desired bound on the Laplace transform. This simple looking procedure carries a great
amount of difficulties when one attempts to extend it to the matrix setting. For instance, given
g : Ω → Hd, one starts applying the matrix Poincaré inequality to eg to get

Eµ[e
2g] � (Eµe

g)2 + αE(eg).
In the scalar case, E(eg) can be easily related to the Laplace transform which would automatically
translates the above relation into a recursive formula on the Laplace transform. Such a relation
is far from trivial in the matrix setting and requires the development of new matrix trace
inequalities which could be of independent interest. Such a relation is established in Section 3 (see
Theorem 3.1) where, in particular, a new matrix trace inequality is elaborated (see Theorem 3.3).
While obtaining a recursive formula is the end of the story in the scalar case, such a relation
cannot be directly iterated in the matrix setting. Indeed, since the square function is not operator
monotone, one cannot reapply the same procedure to bound (Eeg)2 in the above formula. To
overcome this issue, we exploit the operator monotonicity of the trace of such functions and
combine it with special convexity arguments to implement the iterative procedure.

Matrix Poincaré and Concentration for product measures. We derive a matrix Poincaré
inequality for the standard Gaussian measure and use the mechanism in Theorem 1.1 to deduce
corresponding concentration. To this aim, we consider the Ornstein-Uhlenbeck Markov process
whose matrix Dirichlet form is precisely the expectation of the sum of the squared partial
derivatives matrices. In this case, we obtain the following matrix Gaussian Poincaré inequality.

Theorem 1.2. Let µ = µ1⊗ . . .⊗µn be the standard Gaussian measure on R
n. Let f : Rn → Hd

be such that all of its matrix coefficients, together with their partial derivatives, are smooth and
in L2(µ). Then

Varµ(f) �
∫ n∑

i=1

(∂if)
2dµ,

where ∂if(x1, . . . , xn) :=
∂f
∂xi

(x1, . . . , xn) is the matrix whose entries are the i-th partial deriva-
tives of the corresponding entries of f .

The above inequality appears to be new and extends to the matrix setting the scalar Gaussian
Poincaré inequality. Indeed, when f is a scalar function, the right-hand side is precisely the
integral of the Euclidean norm squared of the gradient of f . A related Poincaré inequality for
the Gaussian unitary ensemble was obtained in [9, Theorem 4] with the trace applied to both
sides of the inequality. Combined with Theorem 1.1, the above statement implies the following
concentration inequality.

Theorem 1.3. Let µ = µ1⊗ . . .⊗µn be the standard Gaussian measure on R
n. Let f : Rn → Hd

be such that all of its matrix coefficients are smooth and in L2(µ). Then for any t ∈ R+,

µ

(
λmax

(
f − Eµf

)
≥ t

)
≤ d exp

(
− t2

2vf + t
√

2vf

)
,

where vf = sup
(x1,...,xn)∈Rn

∥∥
n∑

i=1

(∂if)
2(x1, · · · , xn)

∥∥ with ∂if(x1, . . . , xn) =
∂f
∂xi

(x1, . . . , xn).
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The interesting feature in the above theorem is that it captures concentration in terms of the
variations of the matrix function, in the usual sense of variations. We couldn’t locate a compa-
rable result in the literature, as previous matrix concentration inequalities designed specifically
for the Gaussian measure dealt with matrix Gaussian series; i.e. f(x1, . . . , xn) =

∑n
i=1 xiAi

for some deterministic A1, . . . , An ∈ Hd. We should note that for this particular example, the
literature contains sub-Gaussian bounds on matrix concentration (see [30, Chapter 4]).

In Section 5, we further illustrate this procedure by investigating general product measures.
To this aim, we prove a corresponding matrix Poincaré inequality (Theorem 5.3) and derive an
exponential matrix concentration inequality (Theorem 5.1). In this setting, the matrix Poincaré
inequality is equivalent to the matrix Efron-Stein inequality [8, Theorem 5.1]. We provide an
alternative proof of this by building an appropriate Markov process.

We should note that, as in the scalar case, the approach based on Poincaré inequalities cannot
lead to sub-Gaussian bounds on concentration. A possible approach to deriving sub-Gaussian
bounds would be the elaboration of matrix log-Sobolev inequalities and of a general procedure
turning these into corresponding matrix concentration inequalities. As of this writing, such
procedure remains a challenging task and it is not clear how it could be implemented.

Matrix Poincaré and concentration for SCP measures. Concentration inequalities be-
come increasingly more challenging without the independence structure. The matrix setting
adds another layer of difficulty to the problem. In view of this, it is not surprising that there
are few matrix concentration inequalities in the dependent case with [3, 22] only dealing with
sums of random matrices, while in the works [24, 25] a matrix bounded difference inequality was
established under a form of weak dependence.

The interesting feature in Theorem 1.1 is its ability to deal with any probability measure
µ, the main remaining task lies in the construction of a suitable Markov process having µ
as its stationary measure. With this perspective in mind, we are able to establish a matrix
concentration inequality for functions of negatively dependent random variables. More precisely,
we prove in Theorem 1.4 a matrix Poincare inequality for any homogeneous probability measure
on the n-dimensional unit cube satisfying a form of negative dependence known as the stochastic
covering property (SCP). Combined with Theorem 1.1, this implies a corresponding matrix
exponential concentration inequality. In the scalar case, sub-Gaussian concentration bounds
were obtained by Pemantle–Peres [26] and Hermon–Salez [16] who also established a modified
log-Sobolev inequality. The proof of Theorem 1.4 relies on the approach of [16] and extends it
to the matrix setting.

The stochastic covering property was put forward in [26] as a form of negative dependence.
Indeed, it was shown in [26] that the strong Rayleigh property implies SCP. The class of strong
Rayleigh measures was introduced by Borcea–Brändén–Liggett in [4] with the aim of building a
theory of negative dependence. One of the main features of this class is its stability under many
natural operation such as conditioning and projecting. Due to this, the strong Rayleigh property,
which implies negative association, is more commonly used. Moreover, the class of strong
Rayleigh measures (and thus the ones satisfying SCP) contains several interesting examples,
such as: determinantal measures and point processes, independent Bernoullis conditioned on
their sum, measures obtained by running the exclusion dynamics from a deterministic state.

We begin by recalling the definition of the stochastic covering property. Let n ∈ N. We equip
the n-dimensional discrete unit cube {0, 1}n with the partial order � defined by

x � y ⇐⇒ x = y or ∃! i ≤ n; yi = xi + 1.

We extend this order to the set of probability measures on {0, 1}n in the following way. If µ1

and µ2 are two probability measures on {0, 1}n, we write µ1 � µ2 if there exists a coupling κ on
{0, 1}n × {0, 1}n such that support(κ) ⊆ {(x, y) ∈ {0, 1}n × {0, 1}n : x � y}.
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Fix now k ∈ {1, · · · , n}. Let µ be a probability measure on {0, 1}n and ξ be a random variable
on Ω with distribution µ. We say that µ is k-homogeneous if P(

∑n
i=1 ξi = k) = 1, that is, µ is

a probability measure on Ω := {x ∈ {0, 1}n :
∑n

i=1 xi = k}. We say that µ has the stochastic
covering property if for any subset S of {1, · · · , n}, and any xS , yS ∈ {0, 1}S ,

xS � yS =⇒ µ (· | ξS = yS) � µ (· | ξS = xS) ,

where ξS denotes the restriction of ξ to the coordinates indexed by S. We should note that
µ (· | ξS = yS) is a probability measure on {0, 1}Sc

supported on vectors zSc satisfying ‖zSc‖1 =
k−‖yS‖1, where ‖ · ‖1 stands for the ℓ1-norm (here equal to the number of coordinates equal to
one). We are now able to state the matrix Poincaré inequality for SCP measures.

Theorem 1.4. Let µ be a k-homogeneous probability measure on Ω := {0, 1}n with the SCP

property and denote by Ω̃ = {(x, y) ∈ Ω2 : x and y differ on exactly 2 coordinates}. Then there

exists a Markov generator Q supported on Ω̃ and satisfying max{−Q(x, x) : x ∈ Ω} ≤ 1, such
that for any f : Ω → Hd, we have

Varµ(f) � 2kE(f),

where E is the Dirichlet form associated with Q.

We refer to Section 6 where an explicit expression of the Markov generator is given. The result
above states that any probability measure with the SCP property satisfies a matrix Poincaré
inequality with normalized Markov generator and constant 2k. The analogous result in the
scalar case was recently established in [16]. While in [16] a scalar Poincaré inequality (and a
modified log-Sobolev inequality) is derived by means of an induction method introduced in [21],
we extract from this inductive procedure the explicit Markov generator and prove the matrix
Poincaré inequality directly using operator convexity arguments. Combined with Theorem 1.1,
this implies the following matrix concentration inequality.

Theorem 1.5. Let µ be a k-homogeneous probability measure on Ω = {0, 1}n with the SCP
property. Let f : Ω → Hd be a 1-Lipschitz matrix function in the sense that for any x, y ∈ Ω,

‖f(x)− f(y)‖ ≤ ‖x− y‖1,

where ‖ · ‖ stands for the operator norm. Then, for any t ∈ R+,

µ

(
λmax

(
f − Eµf

)
≥ t

)
≤ d exp

(
− t2

8k + 2t
√
2k

)
.

A special case when f(x1, . . . , xn) =
∑n

i=1 xiAi for some A1, . . . , An ∈ Hd, was recently
investigated in [18] where, up to a logarithmic term, a sub-Gaussian concentration bound is
derived. The method developed in [18] extends to the matrix setting the martingale approach
elaborated in [26]. Once again, while our matrix Poincaré inequality cannot yield sub-Gaussian
concentration, it provides a matrix concentration valid for any matrix Lipschitz function while
the results in [18] are only concerned with the specific example provided by f(x1, . . . , xn) =∑n

i=1 xiAi for some A1, . . . , An ∈ Hd.
The paper is organized as follows. In Section 2, we recall the notion of matrix Markov gen-

erator, its associated matrix Dirichlet form and carré du champ operator and their properties.
In section 3, we establish the relation between the matrix Dirichlet form and the Laplace trans-
form. Section 4 is devoted to the proof of Theorem 1.1. In Section 5, we investigate the matrix
Poincaré inequality for product measures and in particular for the standard Gaussian measure.
Finally, Section 6 is devoted to the study of the matrix Poincaré inequality for SCP measures.
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2. Matrix markov semi-group and generator

In [10, Section 3], the authors developed a framework of Markov semigroups on matrix-valued
functions and defined a non-commutative version of the carré du champ operator and Dirichlet
form. In this preliminary section, we recall these notions in our context for completeness and
state the necessary properties which we will use. We refer to [10] for more on this topic.

Let Ω be a Polish space and (Xt)t≥0 be a Markov process with stationary measure µ. Let L2(µ)
be the Hilbert space of square integrable functions with respect to µ. The Markov semi-group
(Pt)t≥0 associated to (Xt)t≥0 defines an operator on L2(µ) through the formula

Ptf(x) = E[f(Xt) | X0 = x],

for any x ∈ Ω. Recall that the Markov process is said to be reversible if for every f, g ∈ L2(µ),

〈f, Ptg〉µ = 〈Ptf, g〉µ,
where 〈·, ·〉µ is the usual inner product of L2(µ). It is said to be ergodic if Ptf −→

t→+∞
Eµ(f) in

L2(µ) for every f ∈ L2(µ).
To the Markov semi-group (Pt)t≥0 is associated its infinitesimal generator L defined by

Lf = lim
t→0

Ptf − f

t
,

for every function f ∈ D(L), where D(L) is the L2(µ)-domain of L. In this paper, we are
mostly interested in (Hermitian) matrix valued functions. The action of the Markov semi-group
and that of the infinitesimal generator can be naturally extended to matrix valued functions by
considering the action of the semi-group on each entry of the matrix valued function. Therefore,
given a function f : Ω → Hd whose matrix coefficients belong to L2(µ) (or to D(L)), we set
similarly

Ptf(x) = E[f(Xt) | X0 = x],

for any x ∈ Ω and Lf = limt→0
Ptf−f

t . We will refer to Pt as matrix Markov semi-group and L as
matrix Markov generator to emphasize that we will be interested in their action on matrix valued
functions. By abuse of notation, the space of functions f : Ω → Hd whose matrix coefficients
belong to D(L) will be still denoted by D(L). Below, we collect some of the basic properties
paralleling their scalar counterpart and refer to [10] for their proofs.

Proposition 2.1. Let Ω be a Polish space and (Xt)t≥0 be a Markov process with stationary
measure µ. The matrix Markov semi-group (Pt)t≥0 and matrix Markov generator L satisfy the
following elementary properties for every matrix valued functions f, g ∈ D(L):

(1) Pt and L commute.
(2) If (Xt)t∈R+ is reversible then Eµ[fL(g)] = Eµ[L(f)g].
(3) Eµ[Lf ] = 0.
(4) Ptf takes values in H+

d .
(5) (Ptf)

2 � Ptf
2.

(6) If φ : R → R is a convex function, then

Tr
(
φ(Ptf)

)
≤ Tr

(
Ptφ(f)

)
.
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We introduce the matrix Dirichlet form given by

E(f) = −Eµ[fL(f)],

for any f ∈ D(L). Given an algebra A ⊆ D(L), define the matrix carré du champ operator by

Γ(f) :=
1

2

(
L(f2)− fL(f)− L(f)f

)
,

for f ∈ A, Let us note that already in the above definitions, we see the subtlety of the non-
commutative nature of the objects manipulated. For instance, while in the scalar counterpart f
and L(f) commute, this is no longer the case here and one needs to take into account this when
dealing with the above notions.

It is not clear at first glance if the usual properties of the Dirichlet form and the carré du
champ operator extend to their matrix counterparts. This is the case when the underlying
Markov process is reversible as we verify in the next proposition.

Proposition 2.2. Let Ω be a Polish space and (Xt)t≥0 be a reversible Markov process with
stationary measure µ. Then the matrix Dirichlet form E and the carré du champ operator Γ
satisfy the following properties for every matrix valued function f ∈ A:

(1) For any a ∈ R, we have Γ(af) = a2 Γ(f).
(2) E(f) = Eµ[Γ(f)].
(3) We have

Γ(f)(x) = lim
t→0

E
[(
f(Xt)− f(X0)

)2 | X0 = x
]

2t

and

E(f) = lim
t→0

E
[(
f(Xt)− f(X0)

)2]

2t
, X0 ∼ µ.

In particular, Γ(f) : Ω → H+
d and E(f) ∈ H+

d .
(4) If Ω is finite, then for any x ∈ Ω we have

Γ(f)(x) =
1

2

∑

y∈Ω
Q(x, y)

(
f(y)− f(x)

)2
,

and

E(f) = 1

2

∑

x,y∈Ω
µ(x)Q(x, y)

(
f(y)− f(x)

)2
,

where Q is the |Ω| × |Ω| matrix representing the Markov generator.

Proof. The first property follows easily from the linearity of L. To establish the second property,
note that

Eµ[Γ(f)] =
1

2

(
Eµ[L(f2)]− Eµ[fL(f)]− Eµ[L(f)f ]

)
.
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Using that Eµ[L(f2)] = 0 and that Eµ[fL(f)] = Eµ[L(f)f ] by reversibility, we get the claim. To
establish the third, we use the definition of L to explicitly write

Γ(f)(x) = lim
t→0

E[f2(Xt) | X0 = x]− f2(x)

2t
− lim

t→0

f(x)
(
E[f(Xt) | X0 = x]− f(x)

)

2t

− lim
t→0

(
E[f(Xt) | X0 = x]− f(x)

)
f(x)

2t

= lim
t→0

E[f2(Xt) | X0 = x] + f2(x)− f(x)E[f(Xt) | X0 = x]− E[f(Xt) | X0 = x]f(x)

2t

= lim
t→0

E
[(
f(Xt)− f(X0)

)2 | X0 = x
]

2t
,

which establishes the claim for Γ(f). Since E(f) = Eµ[Γ(f)], the expression of E(f) readily
follows. From these representations, it is clear that Γ(f) and E take values in H+

d .

Finally, when Ω is finite, using the above and defining hx : Ω → Hd by hx(y) =
(
f(y)−f(x)

)2
,

we get

Γ(f)(x) = lim
t→0

(Pthx)(x)

2t
=

1

2
(Qhx)(x) =

1

2

∑

y∈Ω
Q(x, y)hx(y),

which proves the expression of Γ(f) in last property of the proposition. It remains to use that
E(f) = Eµ[Γ(f)] to derive the expression of E(f) and finish the proof. �

We collect furthermore some useful identities connecting the variance and the Dirichlet form.
Unlike the scalar case, the following identity requires reversibility of the Markov process.

Lemma 2.3. Let Ω be a Polish space and (Xt)t≥0 be a reversible Markov process with stationary
measure µ. Then for any f ∈ D(L), we have

d

dt
Varµ(Ptf) = −2E(Ptf).

Moreover, if the Markov process is ergodic then

Varµ(f) = 2

∫ ∞

0
E(Ptf) dt.

Proof. We start by proving the first identity. As Eµ[Ptf ] = Eµ[f ] then

d

dt
Varµ[Ptf ] =

d

dt
Eµ[(Ptf)

2] = Eµ

[( d

dt
Ptf
)
Ptf
]
+ Eµ

[
Ptf
( d

dt
Ptf
)]

.

Noting that d
dtPtf = L(Ptf) and using reversibility, we get

d

dt
Varµ[Ptf ] = Eµ

[
L(Ptf)Ptf

]
+ Eµ

[
PtfL(Ptf)

]
= 2Eµ

[
PtfL(Ptf)

]
= −2E(Ptf).

In order to prove the second identity, we shall first prove that Varµ[Ptf ] converges to zero as t
goes to infinity. In fact, the ergodicity of the Markov process implies that, for any f : Ω → Hd

and any i, j ∈ {1, . . . , d}, (Ptf)ij converges to (Eµ[f ])ij in L2(µ). Then for any i, j = 1, . . . d,
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using Cauchy-Schwarz inequality

∣∣(Varµ[Ptf ])ij
∣∣ =

∣∣∣
d∑

k=1

Eµ[(Ptf − Eµ[f ])ik(Ptf − Eµ[f ])kj]
∣∣∣

≤
d∑

k=1

(
Eµ[(Ptf − Eµ[f ])

2
ik]
) 1

2
(
Eµ[(Ptf − Eµ[f ])

2
kj]
) 1

2 −−−→
t→∞

0

and hence Varµ[Ptf ] −−−→
t→∞

0. Therefore, we get by the fundamental theorem of calculus

Varµ[f ] = Varµ[P0f ]− lim
t→∞

Varµ[Ptf ] = −
∫ ∞

0

d

dt
Varµ[Ptf ]dt = 2

∫ ∞

0
E(Ptf, Ptf) dt.

�

3. Some matrix trace inequalities

The goal of this section is to establish the following trace inequality relating the matrix
Dirichlet form to the Laplace transform.

Theorem 3.1. Let Ω be a Polish space and (Xt)t≥0 be a reversible Markov process with station-
ary measure µ. Then, for any g : Ω → Hd belonging to the domain of Γ and any p ≥ 1,

Tr
[(
E(eg)

)p] ≤
∥∥∥‖Γ(g)‖p

∥∥∥
L∞

Tr
(
Eµ[e

2pg]
)
,

where E and Γ are respectively the matrix Dirichlet form and matrix carré du champ operator
associated with (Xt)t≥0.

The above theorem is the cornerstone of the argument relating the matrix poincaré inequality
to matrix concentration. In order to prove this statement, we establish some matrix trace
inequalities which we believe might be of independent interest. Before stating and proving these
inequalities, let us mention a key ingredient which we will rely on. The following statement is
a particular case of the results in [17], and provides an integral representation of the matrix
logarithmic mean in terms of the matrix arithmetic mean.

Theorem 3.2. [17, Corollary 2.4] There exists a probability measure ν on R such that the
following holds. Let H,K be two d× d positive definite matrices and let X ∈ Hd. Then

∫ 1

0
HτXK1−τ dτ =

∫

R

H isHX +XK

2
K−is dν(s).

The probability measure ν in the above statement can be made explicit (see equation 2.7 in
[17]), however this won’t be needed for our purposes. Let us mention that the above is only one
of several integral representations established by Hiai and Kosaki in [17].

Let us recall that given a function f : R → R, it can be extended to a function on Hermitian

matrices by applying it to each eigenvalue of the matrix. More precisely, if A =
∑d

i=1 λiviv
∗
i is

the spectral decomposition of A ∈ Hd, then one defines f(A) =
∑d

i=1 f(λi)viv
∗
i . The main trace

inequality used to prove Theorem 3.1 is the following.

Theorem 3.3. Let A be a d×d Hermitian (deterministic) matrix and let B be a d×d Hermitian
random matrix. Then for every increasing, convex function f : R+ → R+,

Tr
[
f
(
E[(eA − eB)2]

)]
≤ 1

2
Tr
[
f
(
E[(A−B)e2B(A−B)]

)]
+

1

2
Tr
[
f
(
eAE[(A−B)2]eA

)]
.

In particular, the above holds for f : t → tp when p ≥ 1.
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Proof. First, note that d
dτ e

τAe(1−τ)B = eτA(A−B)e(1−τ)B . Therefore, we can write

eA − eB =

∫ 1

0

d

dτ
eτAe(1−τ)B dτ =

∫ 1

0
eτA(A−B)e(1−τ)B dτ.

Denoting C := A−B and using Theorem 3.2, we have

eA − eB =

∫

R

eisA
eAC +CeB

2
e−isB dν(s) :=

∫

R

Γ(s) dν(s).

Using [11, Corollary 2.8], we have that
∫

R

Γ(s) dν(s) ·
∫

R

Γ(s)∗ dν(s) �
∫

R

Γ(s)Γ(s)∗ dν(s).

Putting the above together, we get

(eA − eB)2 �
∫

R

eisA
(eAC + CeB

2

)
·
(eAC + CeB

2

)∗
e−isA dν(s)

�
∫

R

eisA
eAC2eA + Ce2BC

2
e−isA dν(s),

where the last inequality follows after using that (eAC+CeB)(eAC+CeB)∗ � 2(eAC)(eAC)∗+
2(CeB)(CeB)∗.

Since f is continuous, convex monotone increasing, then so is Tr ◦ f (see for instance [6,
Theorem 2.10]). Therefore, recalling that A is deterministic, we have

Tr
[
f
(
E[(eA − eB)2]

)]
≤ Tr

[
f
(∫

R

eisAE
[eAC2eA + Ce2BC

2

]
e−isA dν(s)

)]

≤
∫

R

Tr
[
f
(
eisAE

[eAC2eA + Ce2BC

2

]
e−isA

)]
dν(s),

where the first inequality uses the monotonicity of Tr ◦ f , and the second its convexity. Now
note that eisA is unitary, therefore using that Tr ◦ f is unitary invariant, we get

Tr
[
f
(
E[(eA − eB)2]

)]
≤ Tr

[
f
(
E

[eAC2eA + Ce2BC

2

])]

≤ 1

2
Tr
[
f
(
E[(A−B)e2B(A−B)]

)]
+

1

2
Tr
[
f
(
eAE[(A−B)2]eA

)]
,

where the last inequality follows by convexity of Tr ◦ f . �

The above theorem seems new even when both A and B are deterministic. For instance, we
get that for any p ∈ N

Tr
[
(eA − eB)2p

]
≤ 1

2
Tr
[(
(A−B)2e2B

)p]
+

1

2
Tr
[(
e2A(A−B)2

)p]
.

The case p = 1 is related to some of the results in [25] even though it is incomparable to them
and cannot be derived from them.

To deduce Theorem 3.1 from Theorem 3.3, we will need the following lemma which relies on
an operator convexity inequality from [15].

Lemma 3.4. Let K ∈ Hd and Z ∈ H+
d be random matrices, not necessarily independent, and

assume that E[K2] � Id. Then for any p ≥ 1, we have

E[KZK] �
(
E[KZpK]

) 1
p .

In particular,

Tr
[(
E[KZK]

)p] ≤ ETr[KZpK].
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Proof. By a truncation argument, we may suppose without loss of generality that Z is uniformly
bounded. Let A be the C∗-algebra of uniformly bounded random Hermitian d× d matrices and
let K ∈ Hd be such that E[K2] � Id. Consider Φ : A → Hd defined by

Φ(Z) = E[KZK].

Clearly, Φ is linear and positive i.e. Φ(Z) � 0 if Z � 0, and Φ(0) = 0. Moreover, if Z is
uniformly bounded by 1, then using that E[K2] � Id we see that the operator norm of Φ(Z) is
bounded by 1. Thus, Φ is a contraction and we can apply [15, Corollary 2.2] to deduce that for
any p ≥ 1 and any Z ∈ A

Φ(Z
1
p ) � Φ(Z)

1
p ,

where we have used that the function t → t
1
p is operator concave for p ≥ 1. The first claim then

follows after a change of variables, while the second uses that Tr◦ (·)p is operator monotone. �

With the help of Lemma 3.4, we are now ready to show how Theorem 3.3 implies Theorem 3.1.

Proof of Theorem 3.1. Using Proposition 2.2, we start writing

Tr
[(
E(eg)

)p]
= lim

t→0

1

(2t)p
Tr
[(
E
(
eg(Xt) − eg(X0)

)2)p]
.

Let (A,B) :=
(
g(X0), g(Xt)

)
and note that it follows from the reversibility of (Xt)t≥0 that (A,B)

is an exchangeable pair. Since Tr[(·)p] is operator convex, then Jensen’s inequality implies that

Tr
[(
E(eg)

)p] ≤ lim
t→0

1

(2t)p
ETr

[(
E
[(
eA − eB

)2 | A
])p]

. (1)

Denote α =
∥∥∥E[(A−B)2 | A]

∥∥∥
L∞(A)

. Applying Theorem 3.3 conditionally on A, we get

ETr
[(
E[(eA−eB)2 | A]

)p] ≤ 1

2
ETr

[(
E[(A−B)e2B(A−B) | A]

)p]
+
1

2
Tr
[(
eAE[(A−B)2 | A]eA

)p]
.

Now note that eAE[(A−B)2 | A]eA � ‖E[(A−B)2 | A]‖ e2A for any realization of A. Therefore,
using the monotonicity of Tr[(·)p], we get that

Tr
[(
eAE[(A−B)2 | A]eA

)p] ≤ αpTr(e2pA),

for all realizations of A. On the other hand, using Lemma 3.4 conditionally on A with K = A−B√
α

and Z = e2B , we have

Tr
[(
E[(A−B)e2B(A−B) | A]

)p] ≤ ‖E[(A−B)2 | A]‖p−1Tr
[
E[(A−B)e2pB(A−B) | A]

]
,

for all realizations of A. Combining these estimates, we deduce that

ETr
[(
E[(eA − eB)2 | A]

)p] ≤ 1

2
αp−1

ETr
[
E[(A−B)e2pB(A−B) | A]

]
+

1

2
αpTr(e2pA)

=
1

2
αp−1

ETr
[
(A−B)2e2pB

]
+

1

2
αp

ETr(e2pA).

Using the exchangeability of A and B, we have

ETr
[
(A−B)2e2pB

]
≤ αETr(e2pA).

Combining the two previous estimates, we deduce that

ETr
[(
E[(eA − eB)2 | A]

)p] ≤
∥∥∥E[(A−B)2 | A]

∥∥∥
p

L∞
ETr(e2pA).

Replacing A and B by their values, and plugging back the above inequality in (1), we get

Tr
[(
E(eg)

)p] ≤
∥∥∥ lim
t→0

1

2t
E[
(
g(Xt)− g(X0)

)2 | X0]
∥∥∥
p

L∞
EµTr(e

2pg).
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Using Proposition 2.2, we have

lim
t→0

1

2t
E[
(
g(Xt)− g(X0)

)2 | X0] = Γ(g),

which after replacement in the previous inequality, finishes the proof. �

4. From matrix Poincaré inequality to matrix concentration

The goal of this section is to prove Theorem 1.1. Like usual, providing a bound on the Laplace
transform will be sufficient to derive the corresponding concentration inequality through the use
of a Chernoff bound. More precisely, we prove the following.

Theorem 4.1. Let µ be a probability measure on some Polish space Ω. Suppose that µ satisfies
a matrix Poincaré inequality with constant α and matrix Markov generator L reversible with
respect to µ. Given f : Ω → Hd belonging to the domain of Γ, denote

vf = sup
∥∥Γ(f)

∥∥.

Suppose that eλf has matrix coefficients in L1(µ) for any λ > 0. Then, for any δ <
√

2
αvf

, we

have

EµTr(e
δ(f−Eµf)) ≤ 2d

2− αvf δ2
.

With this bound in hand, we can easily derive the concentration inequality promised in
Theorem 1.1.

Proof of Theorem 1.1. The proof follows the standard method initiated by Ahlswede-Winter [1].
Using Chernoff bound, we write

µ
(
λmax

(
f − Eµf

)
≥ t
)
≤ inf

δ∈R+

e−δt
EµTr(e

δ(f−Eµf)).

Using Theorem 4.1, we get

µ
(
λmax

(
f − Eµf

)
≥ t
)
≤ inf

δ<
√

2
αvf

2de−δt

2− αvf δ2
≤ inf

δ<
√

2
αvf

d · e−δt+
αvf δ2

2−
√

2αvf δ .

Choosing δ = t

αvf+t
√

αvf/2
, we get the result. �

The rest of this section is devoted to the proof of Theorem 4.1. As explained in the introduc-
tion, the key is to establish some recursive relation involving the Laplace transform. To this aim,
the result of the previous section relating the matrix Dirichlet form to the Laplace transform
will play a crucial role in the derivation of such recursive formula. We start with the following
elementary lemma.

Lemma 4.2. Let A and B be two Hermitian matrices and γ > 1. Then, for any p ∈ N, we have

Tr
[
(A+B)p

]
≤
( γ

γ − 1

)p−1
Tr(Ap) + γp−1Tr(Bp).

Proof. Let Ã = γ
γ−1A and B̃ = γB. With these notations, we have

Tr
[
(A+B)p

]
= Tr

[(γ − 1

γ
Ã+

1

γ
B̃
)p]

.

Using the convexity of Tr[(·)p], we get

Tr
[
(A+B)p

]
≤ γ − 1

γ
Tr(Ãp) +

1

γ
Tr(B̃p).

Replacing Ã and B̃ by their expressions, we finish the proof. �
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The next lemma will help us implement an induction argument to prove Theorem 4.1.

Lemma 4.3. Let µ be a probability measure on some Polish space Ω. Suppose that µ satisfies
a matrix Poincaré inequality with constant α and matrix Markov generator L reversible with
respect to µ. Given g : Ω → Hd with Eµ[g] = 0, let

vg = sup
∥∥Γ(g)

∥∥.
If αvg < 1, then for any p ∈ N we have

Tr
[(
Eµ[e

2g]
)p] ≤ 1

(1− αvg)p−1
Tr
[(
Eµ[e

g]
)2p]

+ αvgTr
[
Eµ[e

2pg]
]
.

Proof. Let g : Ω → Hd. Since µ satisfies a matrix Poincaré inequality, then

Varµ(e
g) � αE(eg),

which amounts to

Eµ[e
2g] �

(
Eµ[e

g]
)2

+ αE(eg).
Using that Tr[(·)p] is operator monotone, the above inequality implies that

Tr
[(
Eµ[e

2g]
)p] ≤ Tr

[((
Eµ[e

g]
)2

+ αE(eg)
)p]

.

Now using Lemma 4.2, we get

Tr
[(
Eµ[e

2g]
)p] ≤

( γ

γ − 1

)p−1
Tr
[(
Eµ[e

g]
)2p]

+ γp−1αpTr
[(

E(eg)
)p]

,

where γ > 1 will be chosen in the sequel. Using Theorem 3.1, we deduce that

Tr
[(
Eµ[e

2g]
)p] ≤

( γ

γ − 1

)p−1
Tr
[(
Eµ[e

g]
)2p]

+ γp−1αpvpg EµTr(e
2p g).

It remains to choose γ = (αvg)
−1 to finish the proof. �

Proof of Theorem 4.1. Without loss of generality, we assume that Eµ[f ] = 0. We will implement
an induction procedure based on the previous lemma. We start by applying Lemma 4.3 with
g1 =

δf
2 and p = 1 to get

Tr
[
Eµ[e

δf ]
]
≤ 1

1− αvf (δ/2)2
Tr
[(

Eµ[e
δf
2 ]
)2]

,

where we used that vg1 = (δ/2)2vf . Now, apply again Lemma 4.3 with g2 = δf/22 and p = 2 to
get

Tr
[
Eµ[e

δf ]
]
≤ 1(

1− αvf (δ/2)2
)(
1− αvf (δ/22)2

)Tr
[(

Eµ[e
δf

22 ]
)22]

+
αvf (δ/2

2)2(
1− αvf (δ/2)2

)Tr
[
Eµ[e

δf ]
]
,

which after rearrangement leads to

Tr
[
Eµ[e

δf ]
]
≤ 1(

1− αvf (δ/2)2 − αvf (δ/22)2
)(
1− αvf (δ/22)2

)Tr
[(

Eµ[e
δf

22 ]
)22]

≤ 1(
1− αvf (δ/2)2 − 2αvf (δ/22)2

)Tr
[(

Eµ[e
δf

22 ]
)22]

≤ 1(
1− αvf δ2(1− 2−2)/2

)Tr
[(

Eµ[e
δf

22 ]
)22]

.

We will prove by induction on s that

Tr
[
Eµ[e

δf ]
]
≤ 1(

1− αvf δ2(1− 2−s)/2
)Tr

[(
Eµ[e

δf
2s ]
)2s]

.
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We verified the above inequality for s = 1 and s = 2. Suppose it is true for s, and apply
Lemma 4.3 with g = δf/2s+1 and p = 2s to get

Tr
[(

Eµ[e
δf
2s ]
)2s]

≤ 1
(
1− αvf (δ/2s+1)2

)2s−1Tr
[(
Eµ[e

δf/2s+1
]
)2s+1

]
+ αvf (δ/2

s+1)2Tr
[
Eµ[e

δf ]
]
.

Combining the above with the induction hypothesis, we get that

Tr
[
Eµ[e

δf ]
]
≤ 1
(
1− 2−1αvf δ2(1− 2−s)− αvf (δ/2s+1)2

)(
1− αvf (δ/2s+1)2

)2s−1Tr
[(
Eµ[e

δf/2s+1
]
)2s+1

]
.

Now using that (1− x)n ≥ 1− nx when x ≤ 1, we deduce from the above that

Tr
[
Eµ[e

δf ]
]
≤ 1

1− 2−1αvf δ2(1− 2−s)− αvf (δ/2s+1)2 − (2s − 1)αvf (δ/2s+1)2
Tr
[(
Eµ[e

δf/2s+1
]
)2s+1

]
,

which after a short calculation finishes the induction. To finish the proof, take the limit as
s → ∞ and notice that

Tr
[(

Eµ[e
δf
2s ]
)2s]

−→
s→∞

Tr
[
eδEµ[f ]

]
= d,

to finish the proof. �

5. Matrix Poincaré inequality for product measures

The aim of this section is to prove Theorems 1.2 and 1.3. Before doing so, we will investigate
general product measures. We will first show that an arbitrary product measure µ = µ1⊗. . .⊗µn

satisfies a suitable matrix Poincaré inequality, then will compute the associated carré du champ
operator to deduce the following matrix concentration inequality.

Theorem 5.1. Let µ = µ1 ⊗ . . . ⊗ µn be any product measure on some Polish space Ωn. Let
f : Ωn → Hd be such that

vf := sup
(x1,...,xn)∈Ωn

∥∥
n∑

i=1

∫ (
f(x1, . . . , xn)− f(x1, . . . , xi−1, z, xi+1, . . . , xn)

)2
dµi(z)

∥∥

is finite. Then, for any t ≥ 0, we have

µ

(
λmax

(
f − Eµf

)
≥ t

)
≤ d exp

(
− t2

vf + t
√
vf

)
.

The proof of Theorem 5.1 simply consists of constructing a Markov process with µ as station-
ary measure and having a suitable Markov generator L for which we prove a matrix Poincaré
inequality. In this case, the matrix carré du champ operator consists of the sum of the squared
variation in each coordinate of the matrix function. One of the simplest and most natural
smoothness assumptions on a matrix function f is the so-called bounded difference condition;
i.e. for any i = 1, . . . , n there exists a deterministic matrix Ai ∈ Hd such that

(
f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′, xi+1, . . . , xn)
)2 � A2

i

for any x′, x1, . . . , xn ∈ Ω. In this case, we instantly get that vf ≤ ‖∑n
i=1A

2
i ‖ and hence the

inequality

µ
(
λmax

(
f − Eµf

)
≥ t
)
≤ d exp

(
− t2

σ2 + tσ

)
, (2)

where σ2 := ‖∑n
i=1 A

2
i ‖. This is a weak form of the matrix bounded difference inequality, as

Poincaré inequality cannot capture sub-Gaussian concentration. The matrix bounded difference
inequality with sub-Gaussian tail bounds has been established as a consequence of matrix Azuma
inequality [29, Section 7], and later recovered with improved constant factors as a consequence of
a matrix exponential Efron-Stein inequality [25, Section 5] (see also [24] where the inequality is
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derived with an optimal exponent). While the approach based on the matrix Poincaré inequality
is unable to compete with such refined results, it provides a unifying framework for several
exponential concentration inequalities allowing to cover a wide range of examples and deriving
a variety of concentration inequalities. While Theorem 5.1 is stated for any product measure,
it could not be used for the example f(x1, . . . , xn) =

∑n
i=1 xiAi with the standard Gaussian

measure as the bounded difference condition is violated in this case. As a remedy, Theorem 1.2
provides a refined matrix Poincaré inequality yielding the concentration given in Theorem 1.3,
thus recovering the same bound as in (2) for matrix Gaussian series.

Theorem 5.1 follows by combining Theorem 1.1 with Theorem 5.3 below, and using Propo-
sition 5.2 which provides the expression of the matrix carré du champs operator. We start
by introducing a Markov process Xt = (X1

t , . . . ,X
n
t )t∈R+ having µ as stationary measure and

through which we obtain a matrix Poincaré inequality with respect to a suitable Dirichlet form.
Such a construction is known, see for instance [31, Chapter 2].

For each coordinate i = 1, . . . , n, we associate an independent Poisson process N i = (N i
t )t∈R+

with rate 1 and construct Xt as follows: we draw X0 according to µ independently of the Poisson
process. Then, whenever N i

t jumps for some i, we replace the value of Xi
t by an independent

sample from µi while keeping the remaining coordinates fixed.

Proposition 5.2. Let µ = µ1 ⊗ . . .⊗µn be any product measure on some Polish space Ωn. The
process (Xt)t∈R+ defined above is a reversible Markov process with µ as stationary measure and
semi-group given by

Ptf(x) =
∑

I⊆{1,...,n}
(1− e−t)|I|e−t(n−|I|)

∫
f(x1, . . . , xn)

∏

i∈I
dµi(xi),

for any x = (x1, . . . , xn) ∈ Ωn and any f : Ωn → Hd whose matrix coefficients belong to L2(µ).
Moreover, the carré du champ and Dirichlet form are respectively given by

Γ(f)(x) =
1

2

n∑

i=1

∫ (
f(x1, . . . , xn)− f(x1, . . . , xi−1, z, xi+1, . . . , xn)

)2
dµi(z)

and

E(f) =
n∑

i=1

∫ (
f(x1, . . . , xn)−

∫
f(x1, . . . , xi−1, z, xi+1, . . . , xn)dµi(z)

)2

dµ(x).

Proof. It is easy to verify that Xt is a Markov process with µ as stationary measure and that Xt

is reversible with respect to µ. Let f : Ωn → Hd and x = (x1, . . . , xn) ∈ Ωn. By construction,
the Markov semi-group is computed explicitly

Ptf(x) =
∑

I⊆{1,...,n}
P
[
N i

t > 0, for i ∈ I,N i
t = 0 for i /∈ I

] ∫
f(x1, . . . , xn)

∏

i∈I
dµi(xi)

=
∑

I⊆{1,...,n}
(1− e−t)|I|e−t(n−|I|)

∫
f(x1, . . . , xn)

∏

i∈I
dµi(xi).

Moreover as limt→∞(1 − e−t)|I|e−t(n−|I|) = 0 whenever |I| < n, one can readily see that the
process is ergodic. In light of Proposition 2.2, the carré du champ operator is given by

Γ(f)(x) = lim
t→0

E
[(
f(Xt)− f(X0)

)2 | X0 = x
]

2t

= lim
t→0

E
[(
f(Xt)− f(x)

)2 | X0 = x
]

2t
= lim

t→0

Pthx(x)

2t
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where hx : Ω → Hd is the function defined by hx(y) = (f(x) − f(y))2. Now noting that

limt→0 t
−1(1− e−t)|I|e−t(n−|I|) = 0 whenever |I| ≥ 2 and that hx(x) = 0, the explicit expression

of the Markov semigroup then yields that

lim
t→0

Pthx(x)

t
=

n∑

i=1

∫ (
f(x1, . . . , xn)− f(x1, . . . , xi−1, z, xi+1, . . . , xn)

)2
dµi(z).

Finally, recalling that E(f) = Eµ[Γ(f)] and using that
∫ (

f(x)−f(x1, . . . , xi−1, z, xi+1, . . . , xn)
)2
dµi(z)dµi(xi)

= 2

∫ (
f(x)−

∫
f(x1, . . . , xi−1, z, xi+1, . . . , xn)dµi(z)

)2

dµi(xi),

we get the expression of E(f). �

We are now ready to prove that µ satisfies a matrix Poincaré inequality with constant 1 with
respect to the above Dirichlet form.

Theorem 5.3. Let µ = µ1 ⊗ . . . ⊗ µn be any product measure on some Polish space Ωn. Then
for any f : Ωn → Hd whose matrix coefficients belong to L2(µ),

Varµ(f) � E(f).
Proof. Let f : Ωn → Hd. Define δif by

δif(x) := f(x)−
∫

f(x1, . . . , xi−1, z, xi+1, . . . , xn)dµi(z)

and note that

E(f) =
n∑

i=1

∫ (
δif(x)

)2
dµ(x).

Since (Xt)t∈R+ is ergodic and reversible, we apply Lemma 2.3 to write

Varµ(f) = 2

∫ ∞

0
E(Ptf) dt = 2

n∑

i=1

∫ ∞

0

∫
(δiPtf(x))

2dµ(x) dt.

Computing δiPtf(x) explicitly, we get

δiPtf(x) = e−t
∑

I⊆{1,...,n}
i/∈I

(1− e−t)|I|e−t(n−1−|I|)
∫

δif(x1, . . . , xn)
∏

i∈I
dµi(xi) .

Since
∑

I 6∋i(1− e−t)|I|e−t(n−1−|I|) = 1 and the square is operator convex, then by convexity and
Jensen’s inequality we obtain

(δiPtf(x))
2 � e−2t

∑

I⊆{1,...,n}
i/∈I

(1− e−t)|I|e−t(n−1−|I|)
(∫

δif(x1, . . . , xn)
∏

i∈I
dµi(xi)

)2

� e−2t
∑

I⊆{1,...,n}
i/∈I

(1− e−t)|I|e−t(n−1−|I|)
∫ (

δif(x1, . . . , xn)
)2∏

i∈I
dµi(xi) .

Taking the expectation we get,
∫

(δiPtf(x))
2dµ(x) � e−2t

∫
(δif(x))

2dµ(x)
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and hence

Varµ(f) �
(
2

∫ ∞

0
e−2t dt

)
n∑

i=1

∫
(δif(x))

2dµ(x) = E(f).

�

Remark 5.4. In view of the expression of the Dirichlet form, the above matrix Poincaré in-
equality implies the subadditivity of the variance

Varµ(f) � E(f) =
n∑

i=1

∫
Varµi

(f)dµ,

and hence the matrix Efron-Stein inequality for product measures. This shows that the latter is
a particular case of matrix Poincaré inequalities. We refer to [8, Theorem 5.1] for a direct proof
of the Matrix Efron-Stein inequality.

Matrix Poincaré for the standard Gaussian measure. The matrix Poincaré inequality
established above applies for any product measure. However, when given a specific product
measure, it is possible to architect a suitable Markov generator and prove other matrix Poincaré
inequalities which could result in better concentration inequalities. In the remaining part of
this section, we investigate the case of the n-dimensional standard Gaussian measure and prove
Theorem 1.2. With this in hand, Theorem 1.3 will then follow by using Theorem 1.1 together
with the expession of the matrix carré du champ operator given in Proposition 5.5 below.

As we have seen in Remark 5.4, the matrix Poincaré inequality we established can be inter-
preted as a matrix Efron Stein inequality. In view of this, it is enough to investigate the matrix
Poincaré inequality for the one dimensional standard Gaussian measure and then extend it by
tensorization to the n-dimensional case. To this aim, let us consider the Ornstein-Uhlenbeck
semi-group acting on matrix valued functions in the obvious way, by considering the action
entrywise. More precisely, the Ornstein-Uhlenbeck semi-group is defined by

Ptf(x) = E
[
f
(
e−tx+

√
1− e−2tξ

)]
, ξ ∼ N(0, 1),

for any f : R → Hd. The Ornstein-Uhlenbeck process is a reversible ergodic Markov process with
stationary measure the standard Gaussian measure. Moreover, the associated Markov generator
is given by

L(f)(x) = −xf ′(x) + f ′′(x),

where f ′(x) (resp. f ′′(x)) denotes the matrix whose entries are the derivatives (resp. second
derivatives) of the corresponding entries of f(x).

Proposition 5.5. The matrix Dirichlet form and matrix carré du champ operator associated
with the Ornstein-Uhlenbeck process and standard Gaussian measure γ are given by

Γ(f)(x) = (f ′(x))2 and E(f) = Eγ [(f
′)2],

for any smooth function f : R → Hd whose matrix coefficients and their derivatives belong to
L2(µ).

Proof. To compute the matrix carré du champ operator, we start writing

Γ(f)(x) =
1

2

(
L(f2)(x) − f(x)L(f)(x)− L(f)(x)f(x)

)

=
1

2

(
− x(f2)′(x) + (f2)′′(x)− f(x)

(
− xf ′(x) + f ′′(x)

)
−
(
− xf ′(x) + f ′′(x)

)
f(x)

)

= (f ′(x))2.

Finally, we finish the proof by recalling that the Dirichlet form is the expectation of the carré
du champ operator. �
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We are ready now to prove the Gaussian matrix Poincaré inequality.

Proof of Theorem 1.2. We first prove the one dimensional version of the theorem. Recalling the
expression of the semi-group, we note that (Ptf)

′(x) = e−tPtf
′(x). Using this together with

Property (5) of Proposition 2.1, we have

E(Ptf) = Eγ

[(
(Ptf)

′)2] = e−2t
Eγ

[
(Ptf

′)2
]

� e−2t
Eγ

[
Pt(f

′)2
]
= e−2t

Eγ

[
(f ′)2

]
= e−2tE(f).

Integrating over R+ and using Lemma 2.3, we deduce the desired matrix Poincaré inequality in
the one dimensional case. To derive the inequality for the n-dimenstional standard Gaussian
measure µ = µ1 ⊗ . . .⊗ µn, we use Remark 5.4 to write

Varµ(f) �
∫ n∑

i=1

Varµi
(f)dµ,

then use the established one dimensional matrix Poincaré to get

Varµ(f) �
∫ n∑

i=1

( ∂

∂xi
f(x1, . . . , xn)

)2
dµ,

and finish the proof. �

6. Matrix Poincaré inequality for SCP measures

The goal of this section is to prove Theorem 1.4 from which the concentration inequality in
Theorem 1.5 follows. In the sequel, µ denotes a probability measure on Ω := {x ∈ {0, 1}n :∑n

i=1 xi = k} with the SCP property and ξ a random vector on Ω distributed according to µ.
We will start by introducing the (normalized) Markov generator for which µ satisfies a Poincaré
inequality with constant 2k. To this aim, given x, y ∈ Ω, we denote x ∼ y if x and y coincide
on all but exactly 2 coordinates.

Given x ∼ y, we denote by sxy (resp. syx) the unique coordinate i ∈ {1, . . . , n} such that
xi = 0 and yi = 1 (resp. xi = 1 and yi = 0). Note that for any two vectors x, y in Ω, it is
possible to construct a sequence of intermediate vectors (zi)0≤i≤ℓ such that z0 = x, zℓ = y and
zi ∼ zi+1 for any i = 0, . . . , ℓ−1. Indeed, the intermediate sequence can be derived by swapping
zeros and ones (step by step) on the coordinates where x and y differ. This motivates us to
build the generator on vectors differing exactly by one such swap.

Before providing the explicit expression of the generator, let us describe briefly the intuition
behind it. Given x ∼ y, to transition from x to y, a swap has to be made between the coordinates
sxy and syx, and the transition probability is governed by µ. We will uncover the coordinates of
x and y in a random order until reaching the coordinate where the two differ (which could be
sxy or syx), in which case we exhibit a “swapping” probability of this coordinate. The uncovered
coordinates will be indexed by an ordered subset S = (s1, . . . , sℓ) ⊂ [n]. We will say that (S, x, y)
is admissible if x ∼ y and xS = yS, that is, the restriction of x and y to the coordinates in the
ordered set S coincide. Note that this automatically implies that S does not contain sxy and
syx. Now given an admissible triple (S, x, y) and s 6∈ S, since µ satisfies the SCP property, then
there exists a coupling κsS of the measures µ(· | ξS = xS, ξs = 0) and µ(· | ξS = xS , ξs = 1)

which is supported on {(xS̄ , yS̄) ∈ {0, 1}S̄ × {0, 1}S̄ : xS̄ � yS̄ and ‖xS̄‖1 = k − ‖xS‖1}, where
we denoted by S̄ the unordered set S̄ = (S ∪ {s})c.

We are now ready to introduce the Markov generator Q defined for every x ∼ y by

Q(x, y) :=
1

2k

n−2∑

ℓ=0

(n− 1− ℓ)!

n!

∑

S: |S|=ℓ
(S,x,y) admissible

H
sxy
S (x, y) +H

syx
S (y, x)

µ(x | ξS = xS)
, (3)
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where

Hs
S(x, y) := κsS(x, y)P(ξs = 0 | ξS = xS)P(ξs = 1 | ξS = xS).

We set Q(x, x) = −
∑

y∼xQ(x, y) to complete the construction. The above expression puts
in place the informal description provided previously. Indeed, it is obtained by averaging over
all possible ways of uncovering the coordinates of x and y. This can be seen by noting that

the factor (n−1−ℓ)!
n! represents the probability of uncovering the coordinates in some fixed order

(s1, . . . , sℓ, sxy). Finally, after uncovering the coordinates, we exhibit the transition probability
on the differing coordinate using the corresponding coupling between the measures obtained by
conditioning on the uncovered coordinates. We should note that the above Markov generator
is the one implicitly used in [16]. Indeed the above expression can be recovered by carefully
following the iterative procedure implemented there.

Clearly, Q is reversible by construction. Moreover, Q is normalized as we check in the next
proposition.

Proposition 6.1. With above notations, we have

max
x∈Ω

{−Q(x, x)} ≤ 1.

Proof. Let x ∈ Ω and denote by Suppx := {i ∈ {1, . . . , n} : xi = 1} its support. We start
writing

−Q(x, x) =
∑

y∼x

Q(x, y) =
1

2k

n−2∑

ℓ=0

(n− 1− ℓ)!

n!
(αℓ + βℓ),

where

αℓ :=
∑

y∼x

∑

S: |S|=ℓ
(S,x,y) admissible

H
sxy
S (x, y)

µ(x | ξS = xS)
,

and

βℓ :=
∑

y∼x

∑

S: |S|=ℓ
(S,x,y) admissible

H
syx
S (y, x)

µ(x | ξS = xS)
.

We will estimate αℓ and βℓ separately.
Note that, for x given, the collection of all admissible triples (S, x, y) is in a one to one

correspondence with admissible triples (s, S, yS̄) where s 6∈ Suppx, S ⊂ [n] \ {s} ordered set,
and yS̄ a 0/1 vector on S̄ = (S ∪ {s})c satisfying ‖yS̄‖1 = ‖xS̄‖1 − 1. To see this, given yS̄ , note
that one can uniquely define y ∼ x by concatenating xS, yS̄ and setting ys = 1. In view of this,
we can write

αℓ =
∑

s 6∈Supp x

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

yS̄

κsS(x, y)P(ξs = 0 | ξS = xS)P(ξs = 1 | ξS = xS)

µ(x | ξS = xS)
.

Recalling that
∑

yS̄

κsS(x, y) = µ(x | ξS = xS , ξs = 0),



20 RICHARD AOUN, MARWA BANNA, AND PIERRE YOUSSEF

we get

αℓ =
∑

s 6∈Suppx

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

P(ξs = 1 | ξS = xS)

≤
∑

S⊂[n]
S ordered, |S|=ℓ

∑

s∈Sc

E[ξs | ξS = xS ]

=
∑

S⊂[n]
S ordered, |S|=ℓ

∑

i 6∈S
xi

=
n∑

i=1

∑

S⊂[n]\{i}
S ordered, |S|=ℓ

xi = k
(n− 1)!

(n− 1− ℓ)!
.

where we used that E[
∑

s∈Sc ξs | ξS = xS ] =
∑

i 6∈S xi (due to the homogeneity of µ).

To estimate βℓ, note that, given x, the collection of all admissible triples (S, x, y) is in a one
to one correspondence with all triples (s, S, yS̄) where s ∈ Suppx, S ⊂ [n] \ {s} ordered set, and
yS̄ a 0/1 vector on S̄ = (S ∪ {s})c satisfying ‖yS̄‖1 = ‖xS̄‖1. To see this, given yS̄ , note that
one can uniquely define y ∼ x by concatenating xS , yS̄ and setting ys = 0. Therefore, we have

βℓ =
∑

s∈Suppx

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

yS̄

κsS(y, x)P(ξs = 0 | ξS = xS)P(ξs = 1 | ξS = xS)

µ(x | ξS = xS)
.

Recalling that ∑

yS̄

κsS(y, x) = µ(x | ξS = xS , ξs = 1),

we get

βℓ =
∑

s∈Supp x

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

P(ξs = 0 | ξS = xS) ≤ k
(n− 1)!

(n− 1− ℓ)!
,

where we used the trivial bound P(ξs = 0 | ξS = xS) ≤ 1.
Putting together the estimates on αℓ and βℓ, we deduce that

−Q(x, x) ≤ n− 1

n
≤ 1,

and finish the proof. �

Before we proceed with the proof of the matrix Poincaré inequality promised in the introduc-
tion, we need the following identity which we interpret as a two state matrix Poincaré.

Lemma 6.2. Let π be a probability measure on {0, 1} and Q̃ be a reversible Markov generator.
Then for any f : {0, 1} → Hd, we have

Varπ(f) =
1

Q̃(0, 1) + Q̃(1, 0)
E(f, f).

Proof. First note that

Varπ(f) = π(0)
(
f(0)− Eπ[f ]

)2
+ π(1)

(
f(1)− Epi[f ]

)2
= π(0)π(1)

(
f(0)− f(1)

)2
.

On the other hand, using the reversibility of Q̃, we can write

E(f, f) = π(0)Q̃(0, 1)
(
f(0)− f(1)

)2
.
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Also, by reversibility of Q̃, it is easy to see that π(1) = Q̃(0,1)

Q̃(0,1)+Q̃(1,0)
. This finishes the proof. �

Proof of Theorem 1.4. We will show that µ satisfies a matrix Poincaré inequality with constant
2k with respect to the Markov generator defined in (3). We showed in Proposition 6.1 that Q
is normalized, and it remains to show that for any f : Ω → Hd, we have

Varµ(f) � 2kE(f, f).
First, by Proposition 2.2,

2kE(f, f) =
n−2∑

ℓ=0

(n− 1− ℓ)!

n!

∑

x∼y

∑

S: |S|=ℓ
(S,x,y) admissible

P(ξS = xS)H
sxy
S (x, y)

(
f(x)− f(y)

)2
,

where we have used the reversibility of Q to simplify the expression. Note that the collection of
all admissible triples (S, x, y) is in one to one correspondence with all quintuples (s, S, xS , xS̄ , yS̄),
where S̄ := (S∪{s})c, s 6∈ S, xS̄ � yS̄ and ‖xS̄‖1 = k−‖xS‖1. To see this, note that if (S, x, y) is
admissible then xS = yS . Moreover, given (s, S, xS , xS̄ , yS̄), it is possible to uniquely reconstruct
x (resp. y) by concatenating xS and xS̄ (resp. xS and yS̄) and setting xs = 0 (resp. ys = 1). In the
sequel, given an admissible quintuple (s, S, xS , xS̄ , yS̄), x and y refer to the vectors constructed
as we just described. In view of this, for any ℓ = 0, . . . , n − 2, we can write

γℓ :=
∑

x∼y

∑

S: |S|=ℓ
(S,x,y) admissible

P(ξS = xS)H
sxy
S (x, y)

(
f(x)− f(y)

)2

=

n∑

s=1

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

xS

P(ξs = 0 | ξS = xS)P(ξs = 1, ξS = xS)
∑

(xS̄ ,yS̄)

κsS(x, y)
(
f(x)− f(y)

)2
.

Since the square is operator convex and κsS is a probability measure on S̄×S̄, then using Jensen’s
inequality we get

γℓ �
n∑

s=1

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

xS

P(ξs = 0 | ξS = xS)P(ξs = 1, ξS = xS)
(
f(s,S,xS)(0) − f(s,S,xS)(1)

)2
,

where f(s,S,xS) : {0, 1} → Hd is defined by

f(s,S,xS)(0) =
∑

(xS̄ ,yS̄)

κsS(x, y) f(x) =
∑

xS̄

µ(x | ξs = 0, ξS = xS)f(x) = E[f(ξ) | ξs = 0, ξS = xS],

and

f(s,S,xS)(1) =
∑

(xS̄ ,yS̄)

κsS(x, y) f(y) =
∑

yS̄

µ(y | ξs = 1, ξS = xS)f(x) = E[f(ξ) | ξs = 1, ξS = xS ].

Now for a given triple (s, S, xS), define a probability measure π on {0, 1} by π(0) = P(ξs = 0 |
ξS = xS) and π(1) = P(ξs = 1 | ξS = xS). Moreover, define a reversible Markov generator Q̃ by

Q̃(0, 1) = P(ξs = 1, ξS = xS). On the one hand,

E(f(s,S,xS), f(s,S,xS)) = π(0)π(1)Q̃(0, 1)
(
f(s,S,xS)(0) − f(s,S,xS)(1)

)2

= P(ξs = 0 | ξS = xS)P(ξs = 1, ξS = xS)
(
f(s,S,xS)(0) − f(s,S,xS)(1)

)2
.

On the other hand, by the two-state matrix Poincaré inequality (Lemma 6.2),

E(f(s,S,xS), f(s,S,xS)) =
(
Q̃(0, 1) + Q̃(1, 0)

)
Varπ(f(s,S,xS)) = P(ξS = xS)Varπ(f(s,S,xS)).
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Thus we get

P(ξs = 0 | ξS = xS)P(ξs = 1, ξS = xS)
(
f(s,S,xS)(0)− f(s,S,xS)(1)

)2
= P(ξS = xS)Varπ(f(s,S,xS)),

which when replaced in the expression of γℓ yields to

γℓ �
n∑

s=1

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

xS

P(ξS = xS)Varπ(f(s,S,xS)).

Now note that

Eπ[f(s,S,xS)] = E[f(ξ) | ξS = xS ],

and
∑

xS

P(ξS = xS)Eπ[f
2
(s,S,xS)

] =
∑

xS

P(ξs = 0, ξS = xS)
(
E[f(ξ) | ξs = 0, ξS = xS ]

)2

+
∑

xS

P(ξs = 1, ξS = xS)
(
E[f(ξ) | ξs = 1, ξS = xS ]

)2

=
∑

xS∪{s}

P(ξS∪{s} = xS∪{s})
(
E[f(ξ) | ξS∪{s} = xS∪{s}]

)2
.

Putting together these identities, we get

γℓ �
n∑

s=1

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

xS∪{s}

P(ξS∪{s} = xS∪{s})
(
E[f(ξ) | ξS∪{s} = xS∪{s}]

)2

−
n∑

s=1

∑

S⊂[n]\{s}
S ordered, |S|=ℓ

∑

xS

P(ξS = xS)
(
E[f(ξ) | ξS = xS]

)2

=
∑

S⊂[n]
S ordered, |S|=ℓ+1

∑

xS

P(ξS = xS)
(
E[f(ξ) | ξS = xS]

)2

− (n− ℓ)
∑

S⊂[n]
S ordered, |S|=ℓ

∑

xS

P(ξS = xS)
(
E[f(ξ) | ξS = xS]

)2
.

In view of this, the sum involving γℓ is a telescopic sum, yielding to

2kE(f, f) =
n−2∑

ℓ=0

(n− 1− ℓ)!

n!
γℓ

� 1

n!

∑

S⊂[n]
S ordered, |S|=n−1

∑

xS

P(ξS = xS)
(
E[f(ξ) | ξS = xS ]

)2 −
(
E[f(ξ)]

)2
.

Finally, note that by homogeneity, fixing n − 1 coordinates automatically determines the re-
maining coordinate. Therefore, for any ordered set S of size n− 1, we have

∑

xS

P(ξS = xS)
(
E[f(ξ) | ξS = xS ]

)2
= E[f2(ξ)],

which when replaced in the previous inequality finishes the proof. �

Finally, we end the section by showing how to derive the concentration inequality stated in
Theorem 1.5.
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Proof of Theorem 1.5. The proof will follow by combining Theorem 1.1 and Theorem 1.4. First,
using Proposition 2.2, we have for any f : Ω → Hd and any x ∈ Ω

Γ(f)(x) =
1

2

∑

y∈Ω
Q(x, y)

(
f(x)− f(y)

)2
,

where Q is the Markov generator defined in (3). Note that if f is 1-Lipschitz in the sense of
Theorem 1.5, then ‖f(x) − f(y)‖ ≤ 2 for any x ∼ y. Using this together with the triangular
inequality, we deduce that for any 1-Lipschitz matrix function f , we have

‖Γ(f)(x)‖ ≤ 2,

for any x ∈ Ω. Replacing this estimate in Theorem 1.1 together with the value of the matrix
Poincaré constant from Theorem 1.4, we finish the proof. �
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