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abstract
The study of concomitants has recently met a renewed interest due to its appli-
cations in selection procedures. For instance, concomitants are used in ranked-
set sampling, to achieve efficiency and reduce cost when compared to the sim-
ple random sampling. In parallel, the search for new methods to provide a rich
description of extremal dependence among multiple time series has rapidly
grown, due also to its numerous practical implications and the lack of suitable
models to assess it. Here, our aim is to investigate extremal dependence when
choosing the concomitants approach. In this study, we show how the extremal
dependence of a vector (X, Y) impacts the asymptotic behavior of the maxima
over subsets of concomitants. Furthermore, discussing the various conditions
and results, we investigate how transformations of the marginal distributions
of X and Y influence the degeneracy of the limit.
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1 introduction
Let (Xi, Yi), i = 1, . . . ,n, be a sequence of independent and identically dis-
tributed (i.i.d.) bivariate random vectors with common cumulative distribu-
tion (cdf) function F(x,y). We define the concomitants of order statistics as fol-
lows. Arrange the X variates in ascending order, thus obtaining the order
statistics X(1) 6 X(2) 6 · · · 6 X(n) for the X variable. Then, the Y variable
corresponding to the i-th order statistic X(i) is called the concomitant of the
i-th order statistic, and is denoted by Y[i]. For example, if the maximum of
the X variates is X(n) ≡ X3, then its concomitant is Y[n] ≡ Y3. Concomitants
of order statistics are of notable interest in practical applications: It is worth
mentioning their utility in problems concerning the estimation of parameters
for multivariate datasets affected by type II censoring, in the development of
selection procedures (where it is more convenient to measure a characteristic
linked to a measure of interest), in the setting of ranked-set sampling schemes.
In particular, the latter deals with situations where the measurement of the
variable of interest is time-consuming or expensive, but the ranking of a set of
observations linked to the target variable is easy to be performed. For such
cases, ranked-set sampling is a better alternative with respect to the simple
random sampling, both in terms of efficiency and reduced cost, hence this re-
newed attention on the study of concomitants. We report the seminal works
Dell and Clutter (1972), Stokes and Sager (1988), and more recently Wang et al.
(2006), Shao (2010), Balci et al. (2013), Wang et al. (2016), Wang et al. (2017),
Zamanzade and Wang (2018), Ozturk (2019) among others.
Our motivation is to investigate extremal dependence when choosing the con-
comitant approach. Looking at the literature, this topic has been tackled in the
90’s. One can mention the seminal paper Nagaraja and David (1994) where,
given a number k, they study the distribution of the maximum of the concomi-
tants V1 = max

(
Y[n], . . . , Y[n−k+1]

)
. Finite and asymptotic results are given in

both cases k a fixed integer (extreme case) and k = [np], p ∈ (0, 1) (quantile
case). This leads to the natural question of how much V1 is close to the max-
imum Y(n), a fundamental problem in practical applications, tackled in Joshi
and Nagaraja (1995). In their work, authors propose to link this question to the
study of the joint distribution of two maxima of concomitants. More precisely,
given an i.i.d. sequence of bivariate random vectors with parent random vector
(X, Y), define, for k > 1,

V1 = max
(
Y[n], . . . , Y[n−k+1]

)
and V2 = max

(
Y[n−k], . . . , Y[1]

)
. (1)

Joshi and Nagaraja (1995) introduced the random variable Wk := V1/Y(n) and
proved that its cdf satisfies

P(Wk 6 w) = P(V1 6 wV2, V2 > 0) ,

for which they need to compute the joint distribution of (V1,V2).
Before briefly reporting their result, let us introduce some notations that will
be used throughout the paper.
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Let G(z;µ,σ, ξ), for µ, ξ ∈ R,σ > 0, denote a Generalised Extreme Value dis-
tribution (GEV). A distribution function F is said to belong to the Maximum
Domain of Attraction (MDA) of G, written as F ∈ D(G), if there exist normaliz-
ing sequences of constants an > 0 and bn ∈ R such that Fn(anz+ bn)→ G(z),
as n → ∞ for any z ∈ ΓG = {z : ξ(z − µ)/σ > 0}. The structure of a MDA
is studied in Fisher and Tippett (1928), Gnedenko (1943), among others, and
more recently, with another view, in Leonetti and Khorrami Chokami (2022).
Sufficient conditions for a distribution F to belong to the MDA of a certain
GEV G are the so called Von Mises conditions: We refer to Resnick (1987,
Propositions 1.15 - 1.17) for a thorough description and provide a brief recall
in Appendix C for the paper to be self-contained.

A measurable function h : R+ 7→ R+ is regularly varying at infinity with index
a (written h ∈ RVa) if for x > 0

lim
t→∞ h(tx)h(t)

= xa.

The index a is called the exponent of variation. When a is 0, h is said slowly
varying (SV).

The upper-tail dependence coefficient of a random vector (X, Y) with copula C and
marginal distributions FX and FY , respectively, is defined as (Coles et al. (1999))

λu := lim
α→1

P
(
Y > F−1Y (α) | X > F−1X (α)

)
= lim
α→1

1− 2α−C(α,α)
1−α

, (2)

F−1 denoting the generalized inverse function of a cdf F.
Note that λu ∈ [0, 1], where λu = 0 means extremal independence between X
and Y.

Let us also introduce the following notation, borrowed from Joshi and Na-
garaja (1995). Given a vector (X, Y), we define

F1(y | x) := P(Y 6 y | X > x) , (3)
F2(y | x) := P(Y 6 y | X 6 x) , (4)
F3(y | x) := P(Y 6 y | X = x) . (5)

The conditional distributions F1, F2 and F3 play a fundamental role in comput-
ing the distributions of the concomitants of the order statistics as well as the
distributions of their transformations.

Theorem 2 in Joshi and Nagaraja (1995): Suppose FX satisfies one of the Von Mises
conditions and, for all x and y, assume FX ∈ D(GX), FY ∈ D(GY), and

nP(X > anx+ bn, Y > cny+ dn) →
n→∞ 0, ∀x,y ∈ R, (6)

where the norming constants (an)n, (bn)n, (cn)n and (dn)n are such that

F3(cny+ dn | anx+ bn)→ 1 as n→∞. (7)
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Further, suppose there exist constants ãn > 0 and b̃n ∈ R such that

F1(ãny+ b̃n | anx+ bn) →
n→∞ H1(x,y). (8)

Then, the cdf of (V1,V2) satisfies

F(V1,V2)(ãnv1 + b̃n, cnv2 + dn) →
n→∞ H(v1)GY(v2), ∀v1, v2 ∈ R, (9)

where H(v1) = (k!)−1
∫
Hk1(x, v1)(− logGX(x))

kgX(x) dx.

We begin our analysis by focusing on Condition (7). We first show in Lemma 1

the relation between (6) and (7), which proof is given in Appendix A.

Lemma 1. Let x,y ∈ R. Then, we have

nP(X > anx+ bn, Y > cny+ dn) →
n→∞ 0

⇔ F3 (cny+ dn | anz+ bn) →
n→∞ 1, ∀z > x. (10)

Now, we can see that (7) can be directly understood in terms of the upper-tail
dependence coefficient, namely:

Proposition 1. Consider a bivariate random vector (X, Y) with copula C. Then,

F3 (cny+ dn | anx+ bn) →
n→∞ 1, ∀x > y ⇔ λu = 0

where the normalizing constants are chosen depending on the MDA to which X and Y
belong.

Note that Proposition 1 is then simply another way to express Proposition 5.27

in Resnick (1987, p. 296), which states that

λu = 0 ⇔ nP(X > anx+ bn, Y > cny+ dn) →
n→∞ 0.

Using Lemma 1 and Proposition 1, we can now rewrite Theorem 2 in Joshi
and Nagaraja (1995) in terms of λu. This reformulation, given in Corollary 1, is
helpful since it clarifies the connection between the asymptotic independence
of (V1,V2) and that of (X, Y).

Corollary 1. Suppose FX satisfies one of the Von Mises conditions and, for all x, y,
FX ∈ D(GX) and FY ∈ D(GY). Moreover, assume that the upper tail dependence
coefficient between X and Y is 0: λu = 0. If there exist constants ãn > 0, b̃n s.t.
F1(ãny+ b̃n | anx+ bn) →

n→∞ H(x,y), then the cdf F(V1,V2) of (V1,V2) satisfies (9).

The assumption of asymptotic independence between X and Y is generally
too restrictive in practical applications, especially in this highly interconnected
world. For instance, over the past 15 years, we have had to live through a
major global financial crisis, then a pandemic, combined with an increase in
cyber attacks. The presence of systemic risk, with a strong dependence among
extremes, is one characteristic of all those events (e.g. Dacorogna and Kratz
(2015)). Hence, investigating this (asymptotic) dependence aspect is of primary
interest. This is the main objective of the next section.
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2 joint asymptotics for maxima over subsets
of concomitants

We aim at studying the limiting distribution of the concomitants (V1,V2) when
X and Y may exhibit some asymptotic dependence. To do so, we take advan-
tage of the joint-tail model representation given in Ledford and Tawn (1998),
then we state the main result (in Subsection 2.2) and discuss the choice of the
normalizing constants to avoid degeneracy in the limit.

2.1 The LT joint-tail model

First, let us recall some definitions related to the slowly varying notion in the
bivariate case. It will be needed to define the joint-tail model.

Definition 1. A function L that satisfies

lim
n→∞ L(nx,ny)

L(n,n)
= r(x,y), with r(ax,ay) = r(x,y), (11)

for all a > 0 and (x,y) ∈ R2
+, is said to be bivariate slowly varying (BSV).

It can be shown that there exists a univariate function r∗ such that

r(x,y) = r∗(w), with w =
x

x+ y
. (12)

Definition 2. A BSV function L for which the function r∗ defined in (12) satis-
fies

r∗(w)

r∗(1−w)
is SV at w = 0 and w = 1,

is said to be quasi-symmetric.

Let us now present the joint-tail model, named the LT joint-tail model, intro-
duced in Ledford and Tawn (1998) to study the asymptotic distribution of the
concomitant of the max, Y[n], i.e. the limit distribution of the marginal distribu-
tion of V1 (case k = 1), and to compute P

(
Y(n) = Y[n]

)
.

Let (X, Y) be a bivariate random vector with unit Fréchet marginals (i.e. FX(x) =
e−1/x, x > 0) and joint distribution function F(x,y). Suppose that there exist
functions c(t) and ψ(x,y) for which the joint survival function

F̄(x,y) = 1− e−1/x − e−1/y + F(x,y)

satisfies

lim
t→∞ tF̄(tx, ty)

c(t)
= ψ(x,y) for all (x,y) ∈ R2

+. (13)

Additionally suppose that there exists γ ∈ R such that{
F̄(0, t)/F̄(t, 0) is RVγ at infinity and
F̄(t, 0)/F̄(0, t) is RV−γ at infinity.

(14)

Then the following holds.
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Definition 3 (The LT joint-tail model). Assume (X, Y) have unit Fréchet marginals.
Let η ∈ (0, 1] be the coefficient of tail dependence used to determine the decay rate
of F−1(t, t), as t→∞. Under Assumptions (13) and (14), the joint survival dis-
tribution of (X, Y) is given by

P(X > x, Y > y) = L(x,y)x−αy−β, ∀x,y, (15)

where α,β > 0, α+β = η−1 and the function L(x,y) is a quasi-symmetric BSV
function (see Definition 2).

The coefficient η describes the type of limiting dependence between X and Y,
while the function L its relative strength given a particular value of η; see Led-
ford and Tawn (1998) and Heffernan (2000) for further comments. As pointed
out in de Haan and Zhou (2011), the η = 1/2 corresponds to the case where X
and Y are independent, while the case η > 1/2 indicates a positive association
of the extremes of (X, Y). Values of η lower than 1/2 represent cases where the
extremes of X and Y are negatively associated. The bounding cases of perfect
negative and positive dependence correspond respectively to η→ 0 and η = 1

with L(·) = 1. Coles et al. (1999) introduce an elementary measure of depen-
dence: Since the survival copula C̄ is given by C̄(u, v) = 1− u− v+ C(u, v),
they consider the following indices to describe the upper-tail dependence:

χ̄ := lim
u→1

2 log(1− u)
log C̄(u,u)

− 1 = 2η− 1 (16)

λu := 2− lim
u→1

logC(u,u)
logu

=


c if χ̄ = 1, L(t)→ c > 0, as t→∞,
0 if χ̄ = 1, L(t)→ 0, as t→∞,
0 if χ̄ < 1.

(17)

Since χ̄ = 1 if and only if η = 1, we have a link between λu and η as well. In
other words,

• X and Y are asymptotically independent when α+β = 1 and L(n,n) →
n→∞ 0,

or when α+β > 1 (with no condition on the limit as n→∞ of L(n,n));

• X and Y are asymptotically dependent when α+β = 1 and L(n,n) →
n→∞ c >

0. Note that, in this case, c = λu.

This turns out to be useful when considering extensions of Theorem 2 in Joshi
and Nagaraja (1995), relaxing Condition (7).
For the sake of simplicity, we will use the notation C 6⊥⊥ to indicate the asymp-
totic dependence case, that is α+ β = 1 and L(n,n) →

n→∞ λu > 0. Thus, the
indicator 1C 6⊥⊥ = 1 points out the presence of asymptotic dependence.

2.2 Main result

Let us state our main result on the joint asymptotic behaviour of maxima of
concomitants, allowing for asymptotic dependence of X and Y:
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Theorem 1.
Let (X, Y) be a bivariate random vector with unit Fréchet marginals and upper-tail
dependence coefficient λu. Assume that (X, Y) follows the LT joint-tail model given in
Definition 3, with survival cdf (15), and that the BSV function L is such that

L(nx, ãny+ b̃n) →
n→∞ c̃(x,y) where (18)

c̃(x,y) x1−α < yβ, c̃(x,y) ∼
y→0

y−β, c̃(x,y) = o
(
y−β

)
for y→∞,

with ãn = O
(
n
1−α
β

)
and b̃n = O (ãn) or o (ãn) .

Then, the joint distribution of the concomitants maxima (V1,V2) defined in (1) satisfies:

F(V1,V2)(ãnv1 + b̃n, nv2)

−−−→
n→∞

∫+∞
0

Hk1(v1 | x)H2(v2 | x)
x−k−2

k!
e−1/x dx, ∀v1, v2 ∈ R,

(19)

where H1(y | x) := 1− c̃(x,y) x1−α y−β and H2(y | x) is defined by the product of
the limits given below in (20) and (21), respectively, with r(x,y) = λ−1u c̃(x,y).

To prove Theorem 1, we need to evaluate the asymptotic behavior of the three
conditional distributions F1, F2 and F3 defined in (3), (4) and (5), respectively,
each adequately transformed to obtain a non-degenerated limit distribution.
This is what is presented in the following lemma.

Lemma 2. Assume the LT joint-tail model (15) holds and call r the limit function
corresponding to L. Then, as n→∞,

Fn2 (ny | nx)→ exp
{
−
1

y

(
1− λur(x,y)

(y
x

)α
1C 6⊥⊥

)}
, (20)

F3(ny | nx)→ 1+ λux
−α+2yα−1

(
∂

∂x
r(x,y) −

α

x
r(x,y)

)
1C 6⊥⊥ . (21)

Moreover, under Condition (18), we have

F1(ãny+ b̃n | nx) →
n→∞ c̃(x,y). (22)

Note that taking 1C 6⊥⊥ = 0 in (20) and (21) provides lim
n→∞ Fn2 (ny | nx) = e−1/y

and lim
n→∞ F3(ny | nx) = 1, which characterise copulas with asymptotic indepen-

dence, as considered in Joshi and Nagaraja (1995). The proofs of Theorem 1

and Lemma 2 are developed in Appendix A.
It is worth noticing that Condition (18) is needed to ensure that H1(v1 | x)

is a proper cdf for v1 ∈ (0,+∞). Moreover, our Theorem 1 gives precise for-
mulations on the choice of the normalizing constants ãn and b̃n. This is in
fact a delicate point, reason why we dedicate a comprehensive discussion on
it: Explanations relative to Condition (18) are given in the next subsection,
while Section 4 addresses the fundamental example of the Gaussian bivariate
distribution, for which Condition (18) does not hold.
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2.3 Discussion on the choice of ãn and b̃n

In the following, we carefully deduce which are the only possible asymptotic
behaviours of the constants ãn and b̃n. We highlight the importance of the
present subsection, as finding suitable constants which lead to non degenerate
limits represents generally an issue in asymptotic theories.
We start by noticing that the limit of F1(ãny+ b̃n | nx) strongly depends on
that of L(nx, ãny+ b̃n). Indeed, we can write

F1(ãny+ b̃n | nx) = 1−
L(nx, ãny+ b̃n)(nx)−α(ãny+ b̃n)

−β

1− e−1/(nx)

∼
n→∞ 1−

L(nx, ãny+ b̃n)

nα−1xα−1(ãny+ b̃n)
β

(23)

using the approximation 1− e−1/(nx) ∼
n→∞ (nx)−1.

In the following, we discuss which sequences ãn and b̃n should be chosen to
have F1(ãny+ b̃n | nx) →

n→∞ 1, i.e. V1 not degenerate.

Given a couple (x,y), we study the limit of (23) depending on the behavior of
L, namely:

(i) Assume L(nx, ãny+ b̃n)→ 0 as n→∞. To have F1(ãny+ b̃n | nx) 6→ 1,
we need L(nx,ãny+b̃n)

nα−1xα−1(ãny+b̃n)
β 6→ 0. But, since we are in the case L(nx, ãny+

b̃n) →
n→∞ 0, this would mean, either

• nα−1xα−1(ãny+ b̃n)
β →
n→∞ 0 at the same rate of L, which is impos-

sible because of the assumptions of the model (L ∼ SV), or

• nα−1xα−1(ãny+ b̃n)
β →
n→∞ 0 faster than L, which is impossible be-

cause we would have L(nx,ãny+b̃n)
nα−1xα−1(ãny+b̃n)

β →
n→∞ ∞, that denies F1 is a

cdf.

Hence case (i) is not possible.

(ii) Assume L(nx, ãny + b̃n) → ∞ as n → ∞. So, as n → ∞, the term
nα−1xα−1(ãny+ b̃n)

β tends to infinity faster than L(nx, ãny+ b̃n) does,
which yields that F1(ãny+ b̃n | nx) →

n→∞ 1. Hence, this case (ii) has also
to be discarded.

(iii) The previous reasoning implies that we can only have, as n→∞,

L(nx, ãny+ b̃n) →
n→∞ c̃(x,y) ∈ (0,∞).

Which conditions on ãn and b̃n can be given? Here, we have to distin-
guish whether c̃(x,y) depends on y or not.

(A) Suppose c̃(x,y) depends on y. Then,
L(nx, ãny+ b̃n)

nα−1xα−1(ãny+ b̃n)
β

∼
n→∞ c̃(x,y)

nα−1xα−1(ãny+ b̃n)
β

, so we have to

consider the relative behaviour of ãn and b̃n.
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(a) If ãn = o(b̃n), then ãny+ b̃n ∼ b̃n, as n→∞. This implies
c̃(x,y)

nα−1xα−1(ãny+b̃n)
β ∼
n→∞ c̃(x,y)

nα−1xα−1b̃
β
n

, so, in order to maintain the

dependence on y, we need nα−1b̃βn 6→
n→∞ 0,∞. This condition

obviously depends on the value of α: Call γ = (1−α)/β, then

• If 0 < α < 1, nα−1 →
n→∞ 0, the only possibility is b̃n = O (nγ)

with γ ∈ (0, 1), since α+β > 1.

• If α = 1, then b̃n would be independent of n; it is then
impossible to propose (ãn, b̃n) in such a case.

• If α > 1, then b̃n = O (nγ) with γ < 0. However, since we
are interested in the dependence in the extremes, we need
to consider

nP(X > nx, Y > nγy) 6 n1−γ ·nγP(X > nγx, Y > nγy) 6→
n→∞ 0,

which implies γ ∈ (0, 1). So, the case α > 1 cannot be
considered.

(b) If b̃n = o (ãn) or b̃n = O (ãn), then ãny+ b̃n ∼
n→∞ ãny and

c̃(x,y)

nα−1xα−1(ãny+ b̃n)
β

∼
n→∞ 1

nα−1ã
β
n

c̃(x,y) x1−α.

Hence, we need to consider ãn = O (nγ) and α ∈ (0, 1).

(B) Suppose c̃(x,y) does not depend on y. In this case,

L(nx, ãny+ b̃n)

nα−1xα−1(ãny+ b̃n)
β

∼
n→∞ n1−α

max
(
ã
β
nyβ, b̃βn

) c̃x1−α,

and since we do not want to loose the dependence on y, we need
to assume max

(
ã
β
ny

β, b̃βn
)

= ã
β
ny

β. Moreover, we need to ask

n1−αã
−β
n 6→ 0 (otherwise F1(ãny+ b̃n | nx) →

n→∞ 1), which implies

ãn = O (nγ) and α ∈ (0, 1).

Therefore, to obtain a non degenerate limit for F1(ãny+ b̃n | nx), we need to
assume α ∈ (0, 1), ãn = O (nγ) and b̃n = o (ãn) or b̃n = O (ãn). Now that
the main result is provided with a justification of the constants involved, let us
illustrate the theoretical results on standard examples of the risk literature.

3 illustration of the results
In this section, we consider two examples: the Pareto - Lomax with Survival
Clayton copula and the Bivariate Symmetric Logistic Extremal copula. We ap-
ply our asymptotic approximations given in Theorem 1 and compare it with
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the empirical results obtained via simulation. The choice of such examples lies
in the fact that the extremal dependence is ruled by parameters, so easy to con-
trol. Note also that for the following examples we can achieve the same results
by direct computation (with a considerable amount of time and tedious calcu-
lations), thus it is possible to make comparisons by means of the mathematical
expressions obtained.
We simulate 5000 replicates of 100000 bivariate samples. The dimension k

of the subsample used to compute V1 is set to 10 (Appendix B contains sim-
ulations relative to other values of k, to have insights of its impact on the
asymptotic result).

3.1 Pareto - Lomax marginals with Survival Clayton copula

Let (XP, YP) be a random vector with Survival Clayton(θ) copula and Pareto -
Lomax(ν, 1) marginals (the subscript P indicates the Pareto marginals):

F̄XP(x) = (1+ x)−ν, ∀x > 0, F̄YP(y) = (1+ y)−ν, ∀y > 0, ν > 0,

F̄P(x,y) = P(XP > x, YP > y) =
(
(1+ x)νθ + (1+ y)νθ − 1

)−1/θ
, θ > 0.

(a) Survival Clayton copula (θ = 2) (b) Logistic copula (γ = 1/2)

Figure 1: Joint tail F̄(x,y) (gray) with unit Fréchet marginals, as expressed in (24), and
its approximation (black and gold) given by Equation (15). The parameters α and β
are both set to 0.5 in the two examples.

First, we transform te Pareto marginals into the unit Fréchet ones, to match
the assumptions of the model given in Theorem 1. We can write

F(x,y) = FP
(
F−1XP

(
e−1/x

)
, F−1YP

(
e−1/y

))
,
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(a) Bivariate distribution of (V1,V2).
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Figure 2: Survival Clayton(θ = 2), with k = 10. Panel (a) shows the empirical uni-
variate log cdf of V1 (in black), together with the asymptotic theoretical log values (in
gold) obtained by numerically integrating the asymptotic joint cdf (19) to obtain the
marginal. Panel (b) shows the absolute values of the errors between empirical and
theoretical cdf of V2. The upper plot of panel (c) shows the empirical univariate cdf
of V1 (in black), together with the asymptotic theoretical values (in gold), in log scale,
obtained by numerically integrating the asymptotic joint cdf (19). The lower plot of
panel (c) represents the L1 error between the marginal empirical and theoretical cdf.

where, for the Pareto distribution, F−1XP(q) = F−1YP (q) = (1− q)−1/ν − 1. We
obtain

F̄(x,y) =
((
1− e−1/x

)−θ
+
(
1− e−1/y

)−θ
− 1

)−1/θ

. (24)

Now, observe that the joint survival (24) can be rewritten, for x > x0 > 0 and
y > y0 > 0, as

F̄(x,y) ∼
(
xθ + yθ − 1

)−1/θ
=
(
xθ + yθ − 1

)−1/θ
(xy)1/2(xy)−1/2

= L(x,y)x−1/2y−1/2,

where L(x,y) =
(
xθ + yθ − 1

)−1/θ
(xy)1/2(xy) and clearly α = β = 1/2.

Note that
L(n,n) = (2nθ − 1)

−1/θ
n→ 2−1/θ as n→∞.

This is coherent with the value of the upper-tail dependence coefficient, since

λU = lim
q→1

P
(
Y > F−1Y (q) | F−1X (q)

)
= lim
q→1

(1− q)−1(2(1− q)−θ − 1)
−1/θ

= 2−1/θ.

According to Theorem 1, since 1−α = β, we have ãn = an = n. Hence,

L(nx,ny) =
(
nθxθ +nθyθ − 1

)−1/θ
n(xy)1/2 →

n→∞
(
xθ + yθ

)−1/θ
(xy)1/2 = c̃(x,y).
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Note that, for each a > 0,

c̃(ax,ay) =
(
(ax)θ + (ay)θ

)−1/θ
(a2xy)

1/2
= c̃(x,y),

which means that c̃(x,y) and also r(x,y) := 21/θc̃(x,y) satisfy (11). Moreover
it is straightforward to show that c̃(x,y) satisfies Condition (18) in Theorem 1.
Since it holds

∂

∂x
r(x,y) = 21/θ

∂

∂x
c̃(x,y) = 21/θx−1c̃(x,y)

(
1

2
−

(
1+

(y
x

)θ)−1
)

,

applying Lemma 2 and Theorem 1 gives that

H1(y | x) = 1−

(
1+

(y
x

)θ)−1/θ

, (25a)

H2(y | x) =

(
1−

(
1+

(y
x

)θ)−1/θ−1
)

e−
1
y+
(
1+(yx )

θ
)−1/θ

. (25b)

The plot in Figure 2a shows the bivariate surface computed by applying Theo-
rem 1 (the integration is performed numerically) and the values of the bivariate
empirical cdf computed in the simulated V1 and V2. These points lie on the
surface, thus displaying the very good quality of the asymptotic approxima-
tion of Theorem 1. It can also be assessed from Figures 2b and 2c, showing
the boxplot of the absolute value of the errors between the black cloud and
the surface in Figure 2a, the asymptotic approximation of the marginal distri-
butions of V1 and the errors in V2, respectively. For what concerns the error
(lower plot of Figure 2c), we observe that it is small for low values of v2 (the
maximum error is close to 1%) and converges very quickly to 0. In particular,
it is 0% for all the values of v2 we are considering.

3.2 Unit Fréchet marginals with Logistic Extremal copula

Let (X, Y) be a random vector with unit Fréchet marginals and a bivariate
symmetric logistic extremal dependence, i.e.

F(x,y) = e−V(x,y),

where
V(x,y) =

(
x−1/γ + y−1/γ

)γ
, x,y > 0, γ ∈ (0, 1).

By considering the bivariate joint tail approximation (15) proposed in Ledford
and Tawn (1997) characterised by a general extremal dependence function V ,
we can write in our case

L(x,y) = (xy)−1/2(x+ y) − (xy)1/2V(x,y). (26)

Note that
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(a) Bivariate distribution of (V1,V2).
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Figure 3: Logistic(γ = 1/2), with k = 10. Panel (a) shows the empirical univariate log
cdf of V1 (in black), together with the asymptotic theoretical log values (in gold) ob-
tained by numerically integrating the asymptotic joint cdf (19) to obtain the marginal
one. Panel (b) shows the absolute values of the errors between the empirical and the
theoretical cdf of V2. The upper plot of panel (c) shows the empirical univariate cdf
of V1 (in black), together with the asymptotic theoretical values (in gold), in log scale,
obtained by numerically integrating the asymptotic joint cdf (19). The lower plot of
panel (c) represents the L1 error between the marginal empirical and theoretical cdf.

L(n,n) = 2− V(1, 1),

since V is homogeneous of order −1 (i.e. V(nx,ny) = n−1V(x,y)). Moreover,
1−α = β, so that ãn = an = n. Hence, we can write

L(nx,ny) = n−1(xy)−1/2n(x+ y) −n(xy)1/2n−1V(x,y)

= (xy)−1/2(x+ y) − (xy)1/2V(x,y) = c̃(x,y).

Note that, for each a > 0,

c̃(ax,ay) = c̃(x,y),

so that the candidate L in (26) is a proper BSV function. Simple algebra helps
to prove that c̃(x,y) satisfies Condition (18) in Theorem 1. Since it holds

∂

∂x
c̃(x,y) =

(xy)−1/2

2

(
1−

y

x
− yV(x,y)

(
1− 2(xV(x,y))−1/γ

))
,

by applying Lemma 2 and Theorem 1, we obtain

H1(y | x) = x
(
V(x,y) − y−1

)
, (27a)

H2(y | x) =

(
1+

(y
x

)− 1γ)γ−1e−1x
((
1+(yx )

− 1γ

)γ
−1

)
. (27b)

After having obtained the functions H1 and H2, we can now apply a numerical
integration to compute the joint cdf (19).
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4 discussion on the gaussian case
Whilst our focus so far was on obtaining the joint asymptotic cdf of (V1,V2)
when (X, Y) exhibits asymptotic or extremal dependence, we question if Condi-
tion (18) of Theorem 1 is strongly related to the extremal dependence assump-
tion. In other words, what does occur if the BSV function L goes to 0 or to
infinity? This is why we return to the case when (X, Y) is Gaussian, as it is well
known that (X, Y) is then asymptotically independent. This case has already
been treated in the literature, due both to practical interest of the distribution
and to its known manageability. Although direct computations in this case
become simple, problems arise in applying models involving approximations
with SV functions. In fact, even if such approximations are provided, they are
then not used to compute for instance the conditional distributions we encoun-
tered above (as far as we could observe in the literature). The objective of the
present section is to question this apparent paradox and provide tools to over-
come this issue, thus bridging the gap between direct computations and those
made through asymptotic models, with some attention put on the asymptotic
behaviour of the BSV L.

4.1 Existing literature

Let us start to review the existing literature on the Gaussian case.

(a) Joshi and Nagaraja (1995): By direct computations, the authors are able to
provide constants ãn, b̃n such that the rescaled distribution of (V1,V2) con-
verges to a product of a standard normal cdf to the power k and a Gumbel
cdf. When applying those constants in our case, after the transformation
of the Gaussian marginals into unit Fréchet, Condition (18) in Theorem 1

is not satisfied. In fact, we obtain that F1 degenerates for n→∞.

Hence, our question: Could we find other transformations of the marginals
that let us circumvent the case L → 0, and possibly find a new method
or solution to handle this case? The relevance of this problem lies in the
fact that relations between asymptotic dependence and the behavior of L
are generally unknown: We know by formula (16) that the behaviour of
L(n,n) and the values η takes are linked to the upper-tail dependence
coefficient λu, but the case L 6→ 0 and η < 1 is not tackled. Moreover, we
also need to consider L(n, ãn) instead of L(n,n).

(b) Ledford and Tawn (1998): The focus here is only on the asymptotic dis-
tribution of the concomitant of the maximum X(n), that is the asymptotic
distribution of V1 when k = 1 (in our notation), meaning to study F1. The
authors explain that there can be cases where unit Fréchet marginals are
not appropriate and suggest a standard Gumbel transformation for the
variable Y, arriving to a new BSV function L1 (in fact the first order ap-
proximation of L) that avoids the degeneracy of the limit of H1 (with our
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notations). However, to compare this approach with the case where both
the marginals are unit Fréchet, they need to assume y→∞.

Let (XN, YN) be a bivariate normal random vector with standard normal marginals
and with correlation 0 < ρ < 1. Theorem 3 in Joshi and Nagaraja (1995) states
that, in the extreme case (k fixed, n→∞), it holds that

P

(
V1 − ãn

b̃n
6 v1,

V2 − an
bn

6 v2

)
→
n→∞ Φk(v1)e−e−v2 , (28)

where

an = (2 logn)−1/2 bn =
√
2 logn−

1

2

log (4π logn)√
2 logn

(29a)

ãn =
√
1− ρ2 b̃n = ρbn. (29b)

Formula (28) represents an asymptotic independence property of V1 and V2,
strongly connected to the fact that

F1(ãny+ b̃n | anx+ bn) = P
(
YN 6 ãny+ b̃n | XN > anx+ bn

)
→
n→∞ Φ(y).

(30)
Recall that our model in Theorem 1 is not applicable here. In fact, Condition
(18) is not satisfied as L(n, ãn)→ 0 for any choice of the normalizing constants.
Thus, further study would be needed in such a case.
A way to look at the problem may be through Wadsworth and Tawn (2013).
The authors study the effect of letting the components of a bivariate random
vector grow at different rates, with the result of stating a new class of regular
variation conditions and providing a new characterization of the link between
the multivariate tail decay and the considered marginal growth rates.
More precisely, the authors transform the marginals of the original vector into
standard exponentials, called (XE, YE), and assume that, for all (ζ1, ζ2) ∈ R2

+ \

{0},
P(XE > ζ1 logn, YE > ζ2 logn) ∼

n→∞ L(n; ζ1, ζ2)n−κ(ζ1,ζ2) (31)

where L is a univariate SV function in n as n → ∞, and the function κ(ζ1, ζ2)
maps the different marginal growth rates to the joint tail decay rate with the role
of providing information about the level of dependence between variables at sub-
asymptotic levels. Assumption (31) is then used to describe models for condi-
tional probabilities of extreme exceedances, i.e.

P(XE > ζ1 logn | YE > logn) ∼
n→∞ L(n; ζ1, 1)e(1−κ(ζ1,ζ2)) logn. (32)

Studying (32) is proven by the authors to be equivalent to the search for func-
tions a∗, b∗ and h such that

lim
n→∞P

(
XE − b

∗(logn)
a∗(logn)

> x

∣∣∣∣ YE > logn
)

= e−h(x). (33)

The use of the exponential marginals is helpful to identify the normalizing
constants for the bivariate Gaussian example, thus partially filling the gap
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left open in Ledford and Tawn (1998), where, as previously explained, a way
to tackle the problem is given in the case of Fréchet-Gumbel marginals, al-
beit that solution can be used only for some high values of Y. However, this
discussion does not yet answer our main question: Why, when using unit
Fréchet marginals, aren’t we able to find normalizing constants that lead to
a non-degenerate limit for L(nx, ãny+ b̃n)? Our understanding of the prob-
lem is made more complete by the insightful paper by Heffernan and Resnick
(2007). There, the authors explore the implications of assuming the existence
of a scaling function c∗1(·), a centering function c∗2(·), and a non-null Radon
measure µ on Borel subsets of [−∞,∞]× (−∞,∞] such that, for each fixed
y ∈ Eξ := {y ∈ R : 1+ ξy > 0} (where ξ is the shape parameter of the extreme
value distribution relative to FY), it holds

a) µ([−∞, x]× (y,+∞)) is a finite and non-degenerate distribution function
in x

b) the limit of the cdf of the normalized X given that Y is extreme exists and

P

(
X− c∗2 ◦ b←(t)
c∗1 ◦ b←(t)

6 x

∣∣∣∣ Y > t) →
t→y+

µ([−∞, x]× (0,+∞)), (34)

where y+ is the right-end point of FY . It is worth noticing the fact that we are
free to change the marginal of Y without disturbing the convergence in (34),
but this is not true for the X variable. In the paper it is proven that, in the case
of the bivariate standard Gaussian, it is not possible to obtain a non-degenerate
expression for µ in (34) if the marginals of X and Y are both transformed into
the Pareto type, while an asymptotic form is still reachable if the marginals
are transformed into exponentials. We refer to Heffernan and Resnick (2007,
Sec. 7) for a thorough discussion of this aspect.

4.2 Revisiting the Gaussian case

Now that we have a better and more complete understanding on the issues
underlying the treatment made in the literature of the Gaussian case, we pro-
vide a way to find suitable constants through the application of model (32)
and formulas (29a) and (29b). We know that, if (XN, YN) is a bivariate normal
random vector and correlation ρ ∈ (0, 1),

P
(
YN > ãny+ b̃n | XN > anx+ bn

)
→
n→∞ 1−Φ(y), (35)

where the constants are given in (29a) and (29b). The following results hold:

Theorem 2. Let (XE, YE) be a bivariate random vector with unit exponential marginals
and correlation ρ ∈ (0, 1), such that (32) holds, with ζ1 := ζ1(n,y). Then, we have

P
(
YE > ãn,Ey+ b̃n,E | XE > logn

)
→ 1

y
√
2π

e−(ρy)2/2, as n→∞, (36)
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where

ãn,E = ρ
√
1− ρ2

(√
2 logn−

1

2

log (4π logn)√
2 logn

)
(37a)

and b̃n,E = ρ2 logn−
ρ2

2
log (4π logn) +

ρ2

16

(log (4π logn))2

logn
. (37b)

Corollary 2. Note that, if we assume y large enough (as in Ledford and Tawn (1998)),
then we can use the Mill’s ratio to obtain

P
(
YE > ãn,Ey+ b̃n,E | XE > logn

)
∼

n→∞ ρ (1−Φ(ρy)) . (38)

Refer to Appendix A for the proofs.
The limit distribution given in (38) is similar to those in Joshi and Nagaraja
(1995) and Wadsworth and Tawn (2013). The differences among the final for-
mulas are due to the different chosen orders of the Taylor approximations.

5 discussion
The work presented has provided a deep understanding of the impact of the ex-
tremal dependence of a bivariate random vector (X, Y) on the joint asymptotic
behavior of suitably rescaled maxima over subsets of concomitants. Studying
the framework of asymptotically dependent random variables is actually of
great interest in practical applications and completes the literature.
Our main result addresses this problem, providing the expression of the asymp-
totic joint cdf of the two rescaled maxima of concomitants. In particular, we
take advantage of the joint-tail model proposed in Ledford and Tawn (1997) to
provide the asymptotic form of all the conditional distributions describing Y
given the behaviour of X, which contribute to the asymptotic joint cdf of the
two maxima of concomitants. We also explain in detail how to choose suitable
normalizing constants needed to avoid the degeneracy of such distributions
(thus preventing the joint cdf of the maxima of concomitants to be degenerate
as well). Our theoretical results are illustrated through two examples of in-
terest in the risk analysis literature: We compute the analytical expressions of
the conditional distribution and perform a numerical integration to obtain the
joint cdf. We show the goodness of the asymptotic approximation in all the
examined cases through a numerical simulation.
Furthermore, we reconsider Theorem 2 in Joshi and Nagaraja (1995) and show
how some hypotheses are connected to the upper-tail dependence coefficient
characterizing the copula of the parent vector (X, Y), thus providing an intu-
itive interpretation of the formulas therein and a new reformulation of the
cited Theorem.
More importantly, we revisit the example of the bivariate Gaussian distribution
in our case, furnishing a comprehensive discussion on it. We deeply study the
reasons why the joint-tail model in Ledford and Tawn (1997) fails in providing
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a non-degenerate asymptotic distribution and fill the gap in the extension of
the joint-tail model proposed in Wadsworth and Tawn (2013), by showing how
to compute suitable normalization constants in this case. Our results are coher-
ent with those obtained by direct computation in Joshi and Nagaraja (1995).
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a appendix - proofs
Proof of Lemma 1. Using the notations of Lemma 1, and indicating with D(Gγ1),
D(Gγ2), D(G0) the MDAs of the Fréchet, the Weibull and the Gumbel distri-
butions, respectively, we can write, for x,y ∈ R and x+ denoting the upper
end-point of the distribution of X,

nP(X > anx+ bn, Y > cny+ dn)

=

∫x+
anx+bn

nP(Y > cny+ dn | X = t) fX(t)dt

6 n
∫x+
anx+bn

fX(t)dt = n(1− FX(anx+ bn)) <∞, ∀n ∈N.

As shown in the proof of Proposition 2.5 in Resnick (1987), it holds

nanfX(anz+ bn)1
(
x 6 z < a−1n (x+ − bn)

)
→
n→∞ 1 (z > x)g(z)

with

g(z) :=


γ1z

−(γ1+1), z > 0, γ1 > 0, if FX ∈ D(Gγ1),
γ2(−z)

γ2−1, z < 0, γ2 > 0, if FX ∈ D(Gγ2),
e−z, z ∈ R, if FX ∈ D(G0).

Note the role of the indicator 1
(
x 6 z < a−1n (x+ − bn)

)
, needed to ensure that

we are integrating over the support of X. In order to apply the Extended
Dominated Convergence Theorem, we need to check that∫

R

nanfX(anz+x
+)1 (z > x) dz = n (1− FX(anx+ bn)) →

n→∞
∫

R

g(z)1 (z > x) dz.

For the Gumbel case, we have

n (1− FX(anx+ bn))→ e−x and
∫

R

g(z)1 (z > x) dz = e−x.

The Fréchet and Weibull cases follow the same reasoning. Since the two quan-
tities are equal, we can exchange limit and integral, as follows:

lim
n→∞

∫
R

nP(Y > cny+ dn | X = t) fX(t)1 (t > anx+ bn) dt

=

∫
R

lim
n→∞P(Y > cny+ dn | X = anz+ bn) · lim

n→∞nanfX(anz+ bn)
· 1
(
z < a−1n (x+ − bn)

)
· 1 (z > x) dz.
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Since the integrand is positive, then the integral tends to 0 if and only if the
latter tends to 0, that is, if and only if

P(Y > cny+ dn | X = anz+ bn) = 1− F3 (cny+ dn | anz+ bn) →
n→∞ 0

for all z > x (note that lim
n→∞nanfX(anz+ bn) 6= 0). Hence the result.

Proof of Lemma 2. In order to make use of (15), we write all the conditionals in
terms of F̄ and recall the notation C 6⊥⊥ for the case α+ β = 1 and λU > 0. For
what concerns F2(y | x), we have

F2(y | x) = P(Y 6 y | X < x) = 1− P(Y > y | X < x) = 1−
F̄Y(y) − F̄(x,y)

FX(x)
.

Since

F̄Y(ny) − F̄(nx,ny)
FX(nx)

= e
1
nx

(
1− e−

1
ny −

L(nx,ny)
nα+βxαyβ

)
∼

n→∞ 1

n

(
1+

1

nx

)(
1

y
−

L(nx,ny)
nα+β−1xαyβ

)
=

1

ny

(
1+

1

nx

)(
1−

L(nx,ny)
nα+β−1xαyβ−1

)
∼

n→∞ 1

y

(
1+

1

nx

)(
1−

L(n,n)
nα+β−1

r(x,ny)x−αy1−β
)

∼
n→∞ 1

ny

(
1− λUr(x,y)

(y
x

)α
1C 6⊥⊥

)
,

we obtain

Fn2 (ny | nx) =

[
1−

(
F̄Y(ny)

FX(nx)
−
F̄(nx,ny)
FX(nx)

)]n
∼

n→∞
[
1−

1

ny

(
1− λUr(x,y)

(y
x

)α
1C 6⊥⊥

)]n
.

Thus

Fn2 (ny | nx) →
n→∞ e−

1
y

(
1−λUr(x,y)(yx )

α
1C 6⊥⊥

)
.

For F3(y | x), note that

F3(y | x) =
1

fX(x)

∂

∂x
F(x,y) =

1

fX(x)

∂

∂x

(
FX(x) − F̄(y) + F̄(x,y)

)
= 1+

1

fX(x)

∂

∂x
F̄(x,y) = 1+ x2−αy−βe

1
x

(
∂

∂x
L(x,y) −

α

x
L(x,y)

)
.

It follows that

F3(ny | nx) ∼
n→∞ 1+n2−α−βe

1
nxx2−αy−β

(
∂

∂(nx)
L(nx,ny) −

α

nx
L(nx,ny)

)
= 1+ e

1
nxx2−αy−βn2−α−β

(
1

n

∂

∂x
L(nx,ny) −

α

nx
L(nx,ny)

)
∼

n→∞ 1+ e
1
nxn1−α−βL(n,n)x2−αy−β

(
∂

∂x
r(x,y) −

α

x
r(x,y)

)
→
n→∞ 1+ λUx2−αy−β

(
∂

∂x
r(x,y) −

α

x
r(x,y)

)
1C 6⊥⊥ ,

which concludes the proof.
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Proof of Theorem 1. The proof is based on Lemma 2, and Joshi and Nagaraja
(1995). To begin with, we report the finite-sample bivariate cumulative distri-
bution of (V1,V2) (Joshi and Nagaraja (1995, Equation (2.1))),

F(V1,V2)(v1, v2) = E
[
h
(
v1, v2,X(n−k)

)]
(39)

where the function h is defined as

h(v1, v2, x) = Fk1(v1 | x)F
n−k−1
2 (v2 | x) F3 (v2 | x) .

The rational under Equation (39) lies in Kaufmann and Reiss (1992). Condi-
tioned on the event {X(n−k) = x}, the maxima V1 and V2 have the following
behaviour: V1 can be considered as the sample maximum of a random sample
of size k from F1(· | x), while V2 behaves like the sample maximum of a sample
of size n− k, composed by n− k− 1 i.i.d. variables from F2(· | x) and a single
random variable from F3(· | x).
Following Joshi and Nagaraja (1995), from Equation (39), we can write

F(V1,V2)(ãnv1 + b̃n, cnv2 + dn) =
∫
F1(ãnv1 + b̃n | anx+ bn)F

n−k−1
2 (cnv2 + dn | anx+ bn)

F3 (cnv2 + dn | anx+ bn)anfX(anx+ bn)dx.

Since our goal is to compute the joint asymptotic distribution of V1 and V2 as
n → ∞, we refer to Joshi and Nagaraja (1995) and Nagaraja and David (1994)
for what concerns the swap between the limit operation and the integral. Since
X is unit Fréchet distributed, it is clear that the marginal FX is in the domain
of attraction of GX(x) = e−1/x and that gX(x) = x−2e−1/x. We refer to Lemma
1 and Result 1 in Nagaraja and David (1994), for the convergence as n → ∞
of the term anfX(anx + bn) to g(k)(x) :=

(− logGX(x))
k

k! gX(x). Theorem 1 then
follows by Condition (18) and Lemma 2.

Proof of Theorem 2. Note that XN > anx+ bn is equivalent to XN > bn, as an →
0 when n → ∞. Let us now report the model in Wadsworth and Tawn (2013)
in terms of standard normal marginals, namely

P(YE > ζ1(n,y) logn | XE > logn)

= P
(
YN > Φ

−1
(
1−n−ζ1(n,y)

) ∣∣∣ XN > Φ−1
(
1−n−1

))
∼ L1 (n; ζ1(n,y), 1)n1−κ(ζ1(n,y),1)

(40)

where

κ(ζ1(n,y), 1) =
ζ1(n,y) + 1− 2ρ

√
ζ1(n,y)

1− ρ2
, and (41)

L1(n; ζ1(n,y), 1) = (4π logn)
2ρ2−ρ(

√
ζ1(n,y)+1/

√
ζ1(n,y))

2(1−ρ2)
ζ1(n,y)

1−ρ/
√
ζ1(n,y)

2(1−ρ2) (1− ρ2)
3/2

(
√
ζ1(n,y) − ρ)(1− ρ

√
ζ1(n,y))

,

(42)
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whenever ρ2 < min{ζ1(n,y), 1}. The authors explain that the SV function L,
which we have in the case of the standard exponential marginals (from Equa-
tion (32)), is such that L/L1 ∼ 1 as n→∞.
To ease the notation, in the following, we use ζ1 for ζ1(n,y). We want to find
some constants ãn,E and b̃n,E such that {YE > ζ1(n,y) logn} is equivalent to
{YE > ãn,Ey+ b̃n,E}, so we set

ζ1 =
ãn,Ey+ b̃n,E

logn
. (43)

By using the first equality in (40) and knowing that if YN ∼ N(0, 1) then
− log (1−Φ(YN)) ∼ Exp(1), it follows that

ζ1 =
− log

(
1−Φ(ãny+ b̃n

)
logn

. (44)

This means that we can rewrite (35) by transforming the marginals into stan-
dard exponential and then apply the model (40). Combining (43) and (44), we
obtain

ãn,Ey+ b̃n,E = − log
(
1−Φ(ãny+ b̃n

)
∼

n→∞ − log
(
φ(ãny+ b̃n)

ãny+ b̃n

)
through the Mill’s ratio, if ãn →∞ or b̃n →∞

= − log
(

1√
2π

e−(ãny+b̃n)
2
/2

)
+ log

(
ãny+ b̃n

)
=
1

2
log(2π) +

1

2
ã2ny

2 + ãnb̃ny+
1

2
b̃2n + log b̃n + log

(
1+

ãn

b̃n
y

)
∼

n→∞ 12 log(2π) +
1

2
ã2ny

2 + ãnb̃ny+
1

2
b̃2n + log b̃n +

ãn

b̃n
y if ãn = o

(
b̃n
)

= ãn

(
b̃n +

1

b̃n

)
y+

1

2
log(2π) +

1

2
ã2ny

2 +
1

2
b̃2n + log b̃n

∼
n→∞ ãnb̃ny+ 12b̃2n (the discarded terms are o

(
ãnb̃n

)
).

So, we can identify the terms, which gives

ãn,E = ãnb̃n, b̃n,E =
1

2
b̃2n.

Note that, up to now, we have not used the constants in (29b), but found some
general conditions on the their growth as n increases. By using (29b), we have

ãn,E = ρ
√
1− ρ2

(√
2 logn−

1

2

log (4π logn)√
2 logn

)

b̃n,E = ρ2 logn−
ρ2

2
log (4π logn) +

ρ2

16

(log (4π logn))2

logn
.
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Replacing the constants in (43) it yields

ζ1 = ρ
2

(
1+

1

ρ

√
2(1− ρ2)

logn
y−

1

2

log (4π logn)
logn

+ o
(
(logn)−1

))
. (46)

Now, notice that with ζ1 defined in (46), the condition ρ2 < min{ζ1(n,y), 1}
is always satisfied for large n and for ρ ∈ (0, 1), as it yields ρ2 < ρ2 +

O
(
(logn)−1/2

)
. Hence, since

√
ζ1 = ρ

(
1+

1

ρ

√
2(1− ρ2)

logn
y−

1

2

log (4π logn)
logn

+ o
(
(logn)−1

))1/2

∼
n→∞ ρ

(
1+

1

2ρ

√
2(1− ρ2)

logn
y−

1

4

log (4π logn)
logn

−
1− ρ2

4 logn
y2 + o

(
(logn)−1

))
,

the expression of κ(ζ1, 1) becomes

κ(ζ1, 1) = 1+
ρ2

2 logn
y2 + o

(
(logn)−1

)
.

By using these expressions into Equation (40), we have

P(YE > ζ1(n,y) logn | XE > logn)

∼
n→∞

exp
{
2ρ2−ρ(

√
ζ1+1/

√
ζ1)

2(1−ρ2)
log (4π logn) + 1−ρ/

√
ζ1

2(1−ρ2)
log ζ1 + (1− κ(ζ1, 1)) logn

}
(1− ρ2)

−3/2
(
√
ζ1 − ρ)(1− ρ

√
ζ1)

.

Since(
1−

ρ√
ζ1

)
log ζ1 ∼

n→∞ log ρ
ρ

√
2(1− ρ2)

logn
y+

1

2ρ2
2
(
1− ρ2

)
logn

y2

−
log ρ
2

log (4π logn)
logn

−
1− ρ2

2
log ρ

y2

logn
+ o

(
(logn)−1

)
=

log ρ
ρ

√
2(1− ρ2)

logn
y−

log ρ
2

log (4π logn)
logn

+

(
log ρ−

2

ρ2

)
1− ρ2

2 logn
y2 + o

(
(logn)−1

)
,

(
√
ζ1 − ρ)(1− ρ

√
ζ1) ∼

n→∞(1− ρ2)
3/2

√
2logn

y− ρ
1− ρ2

4

log (4π logn)
logn

− ρ
1− ρ4

4 logn
y2 + o

(
(logn)−1

)
and

2ρ2 − ρ
(√
ζ1 + 1/

√
ζ1
)

2(1− ρ2)
∼

n→∞−
1

2
+
1

4ρ

√
2(1− ρ2)

logn
y−

1

8

log (4π logn)
logn

−
1− ρ2

8 logn
y2 + o

(
(logn)−1

)
,
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where we neglected all the terms characterized by a faster decay with respect
to (logn)−1, we obtain

P(YE > ζ1(n,y) logn | XE > logn) ∼
n→∞ 1

y
√
2π

e−(ρy)2/2.

Proof of Corollary 2. Notice that

P(YE > ζ1(n,y) logn | XE > logn) ∼
n→∞ ρ

ρy
√
2π

e−(ρy)2/2 = ρ
ϕ(ρy)

ρy
,

where ϕ denotes the probability density function of the standard normal dis-
tribution. Under the assumption that y is large, it is straightforward to show,
by using the Mill’s ratio, that

P(YE > ζ1(n,y) logn | XE > logn) ∼
n→∞ ρ (1−Φ(ρy)) ,

which completes the proof.

b appendix - discussion on k

The present section contains some graphical results of the examples considered
in Section 3. We recall that each example runs a simulation of 5000 replicates
of 100000 bivariate sample (X, Y). As a result, we obtain a bivariate sample
for (V1,V2) of dimension 5000 (each replicate of the (X, Y) sample gives one
couple of (V1,V2)), for each k. The values of k indicating the dimension of
the extreme set are fixed to 1, 50, 100, 250, 500, 1000, 1500, 2000. However, the
figures do not show the results for each of the considered values: This choice
is made to foster the readability, as a lot of almost similar plots on a single page
may be redundant. From a quick look at Figures 4 to 7 for both examples, we
can draw the same important conclusions:

(a) The range of the entries relative to V1 is much wider than the range of
the entries corresponding to V2;

(b) The cloud of black points in the surfaces in Figure 4 and Figure 6 becomes
closer and closer to the v1 axis as k increases.

This is a clear effect of the positive dependence between (X, Y). To see this,
think about the definition of (V1,V2): V1 is the maximum of the concomi-
tants of the largest k order statistics and V2 is the maximum of the remaining
set. The clear difference between the ranges of the two samples indicates that
the highest concomitants contribute to the values of V1 and the lowest con-
comitants are responsible of the relatively low values of V2. Moreover, as k
increases, almost all the values that V2 takes are lower than 1, while V1 can
assume values which are greater than 100, for example. Explained differently,
high values of concomitants generally correspond to high order statistics of X.
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(a) k = 1.

(b) k = 50. (c) k = 100.

(d) k = 250. (e) k = 1000. (f ) k = 2000.

1

50

100

250

1000

2000

0.000 0.005 0.010 0.015 0.020
Error (absolute value)

k

(g) Boxplots of the errors.

Figure 4: Survival Clayton(θ = 2). Bivariate cdf computed by numerically integrating
equation (19), for various values of k. The black bullets correspond to the bivariate
empirical cdf of the simulated samples. Panel g) shows the boxplots of the errors
in absolute value between the bivariate asymptotic cdf computed in (V1,i,V2,i) for
i = 1, . . . , 5000 and the corresponding empirical bivariate cdf. The gold dots represent
the error means.



appendix - discussion on k 28

k = 1 k = 50 k = 500 k = 1500
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V1: log cdf comparison

k = 1 k = 50 k = 500 k = 1500
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(a) V1: log marginal cdf comparison and marginal error behaviour with respect to v1.

k = 1 k = 50 k = 500 k = 1500
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V2: log cdf comparison

k = 1 k = 50 k = 500 k = 1500
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v2

V2: Error (absolute value)

(b) V2: log marginal cdf comparison and marginal error behaviour with respect to v2.

Figure 5: Survival Clayton(θ = 2). Empirical univariate cdf of V1 and V2, together
with the asymptotic theoretical values obtained by numerically integrating the asymp-
totic joint cdf (19).
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(a) k = 1.

(b) k = 50. (c) k = 100.

(d) k = 250. (e) k = 1000. (f ) k = 2000.
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Error (absolute value)

k

(g) Boxplots of the errors.

Figure 6: Logistic(γ = 1/2). Bivariate cdf computed by numerically integrating equa-
tion (19), for various values of k. The black bullets correspond to the bivariate empiri-
cal cdf of the simulated samples. Panel g) shows the boxplots of the errors in absolute
value between the bivariate asymptotic cdf computed in (V1,i,V2,i) for i = 1, . . . , 5000
and the corresponding empirical bivariate cdf. The gold dots represent the error
means.
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k = 1 k = 50 k = 500 k = 1500
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V1: log cdf comparison
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(a) V1: log marginal cdf comparison and marginal error behaviour with respect to v1.
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V2: log cdf comparison
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(b) V2: log marginal cdf comparison and marginal error behaviour with respect to v2.

Figure 7: Logistic(γ = 1/2) example. Empirical univariate cdf of V1 and V2, together
with the asymptotic theoretical values obtained by numerically integrating the asymp-
totic joint cdf (19).
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It has to be said that the plotting range of the surfaces is chosen in order to
enhance the visualization purposes, as extremely wide intervals would have
been not suitable to observe the results. However, there can be points which
fall outside the plotting area: Figure 4e contains more points in the middle-
right part, while Figure 4f contains more points in the upper-right part. This
indicates that when k is 1000, some concomitants high in value do not belong
to the extreme set, but when k increases to 2000, the partition to which they
belong changes. In other words, V1 "steals" high values to V2 when k increases.
Plots relative to the marginal distributions support the presented conclusions:
There is no noticeable difference among the log cdf shown in Figure 5a and
Figure 7a, which means that the sample in V1 does not change so much, while
the upper end point of the distribution of V2 appears to shrink towards 0 (Fig-
ure 5b and Figure 7b). This is again an indication of the "stealing" argument:
Since high values of concomitants contributing to V2 pass into the extreme set
as k increases, only low values of concomitants are left to compute V2, which
becomes smaller and smaller. As previously said, this is the effect of the posi-
tive dependence between (X, Y).
Finally, the extremely low errors shown in the boxplots in Figure 4g and Fig-
ure 6g ensure that the asymptotic approximation is almost perfect. The same
conclusion can be made from the plots sowing the marginal errors in Figure 5

and Figure 7. Despite some variability for low values of v1 and v2 (which is
small anyway), the errors rapidly approach 0 as v1 and v2 increase, which is
important for practical applications as we are usually interested in studying
what happens over high thresholds.

c appendix - the von mises conditions
This section reports the Von Mises conditions, as written in Resnick (1987),
borrowing his notation.

Proposition 1.15 (Resnick (1987)): Suppose F is absolutely continuous with positive
density f in some neighborhood of∞.

(a) If for some α > 0
lim
x→∞ xf(x)/(1− F(x)) = α (47)

then F ∈ D (Φα). We may choose an to satisfy anf (an) ∼ α/n.

(b) If f is nonincreasing and F ∈ D (Φα) then (47) holds.

(c) Equation (47) holds iff for some z0 and all x > z0, we have

1− F(x) = c exp
{
−

∫x
z0

t−1α(t) dt
}

where limt→∞ α(t) = α and c is a positive constant.
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Proposition 1.16 (Resnick (1987)): Suppose F has finite right end-point x0 and is
absolutely continuous in a left neighborhood of x0 with positive density f.

(a) If for some α > 0

lim
x↑x0

(x0 − x) f(x)/(1− F(x)) = α (48)

then F ∈ D (Ψα).

(b) If f is nonincreasing and F ∈ D (Ψα) then (48) holds.

(c) Equation (48) holds iff c(x) can be taken to be constant in some left neighborhood
of x0 in the representation

1− F(x) = c(x) exp
{
−

∫x
x0−1

δ(t)/ (x0 − t) dt
}

and for x < x0

where limt↑x0 δ(t) = α, limt↑x0 c(t) = c0 > 0.

Proposition 1.17 (Resnick (1987)): Let F be absolutely continuous in a left neighbor-
hood of x0 with density f.

(a) If

lim
t↑x0

f(x)

∫x0
x
(1− F(t)) dt/(1− F(x))2 = 1 (49)

then F ∈ D(Λ). In this case we may take

f(t) =

∫x0
t
(1− F(s)) ds/(1− F(x))

bn = (1/(1− F))←(n), an = f (bn) .

(b) If f is nonincreasing and F ∈ D(Λ) then holds.

(c) Equation (49) holds iff

1− F(x) = c exp
{
−

∫x
z0

(g(t)/f(t)) dt
}

, z0 < x < x0, (50)

where limt↑0 g(x) = 1 and f is absolutely continuous with density f(x)→ 0 as
x ↑ x0.

(d) Equation (49) or (50) are equivalent to tf ((1/(1− F))←(t)) ∈ RV0 (Sweeting
(1985)).
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