
HAL Id: hal-03943021
https://hal.science/hal-03943021v1

Submitted on 17 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L p Pattern Matching in a Stream
Tatiana Starikovskaya, Michal Svagerka, Przemyslaw Uznański

To cite this version:
Tatiana Starikovskaya, Michal Svagerka, Przemyslaw Uznański. L p Pattern Match-
ing in a Stream. Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques APPROX-RANDOM 2020, 2020, Virtual conference, France.
�10.4230/LIPIcs.APPROX/RANDOM.2020.35�. �hal-03943021�

https://hal.science/hal-03943021v1
https://hal.archives-ouvertes.fr

Lp Pattern Matching in a Stream
Tatiana Starikovskaya
DIENS, École normale supérieure, PSL Research University, Paris, France
tat.starikovskaya@gmail.com

Michal Svagerka
ETH Zürich, Switzerland
michal.svagerka@alumni.ethz.ch

Przemysław Uznański
Institute of Computer Science, University of Wrocław, Poland
puznanski@cs.uni.wroc.pl

Abstract
We consider the problem of computing distance between a pattern of length n and all n-length
subwords of a text in the streaming model.

In the streaming setting, only the Hamming distance (L0) has been studied. It is known that
computing the exact Hamming distance between a pattern and a streaming text requires Ω(n) space
(folklore). Therefore, to develop sublinear-space solutions, one must relax their requirements. One
possibility to do so is to compute only the distances bounded by a threshold k, see [SODA’19,
Clifford, Kociumaka, Porat] and references therein. The motivation for this variant of this problem
is that we are interested in subwords of the text that are similar to the pattern, i.e. in subwords
such that the distance between them and the pattern is relatively small.

On the other hand, the main application of the streaming setting is processing large-scale data,
such as biological data. Recent advances in hardware technology allow generating such data at
a very high speed, but unfortunately, the produced data may contain about 10% of noise [Biol.
Direct.’07, Klebanov and Yakovlev]. To analyse such data, it is not sufficient to consider small
distances only. A possible workaround for this issue is the (1 ± ε)-approximation. This line of
research was initiated in [ICALP’16, Clifford and Starikovskaya] who gave a (1± ε)-approximation
algorithm with space Õ(ε−5√n).

In this work, we show a suite of new streaming algorithms for computing the Hamming, L1, L2

and general Lp (0 < p < 2) distances between the pattern and the text. Our results significantly
extend over the previous result in this setting. In particular, for the Hamming distance and for
the Lp distance when 0 < p ≤ 1 we show a streaming algorithm that uses Õ(ε−2√n) space for
polynomial-size alphabets.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases streaming algorithms, approximate pattern matching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.35

Category APPROX

Funding Tatiana Starikovskaya: This work was partially funded by the grant ANR-19-CE48-0016
from the French National Research Agency (ANR).
Przemysław Uznański: Supported by Polish National Science Centre grant 2019/33/B/ST6/00298.

1 Introduction

In the problem of pattern matching, we are given a pattern P of length n and a text T and
must find all occurrences of P in T . A particularly relevant variant of this fundamental
question is approximate pattern matching, where the goal is to find all subwords of the
text that are similar to the pattern. This can be restated in the following way: given a

© Tatiana Starikovskaya, Michal Svagerka, and Przemysław Uznański;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 35; pp. 35:1–35:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tat.starikovskaya@gmail.com
mailto:michal.svagerka@alumni.ethz.ch
mailto:puznanski@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Lp Pattern Matching in a Stream

pattern P , a text T , and a distance function, compute the distance between P and every
n-length subword of T . A very natural similarity measure for words is the Hamming distance.
Furthermore, if both P and T are over an integer alphabet Σ, one can consider the Manhattan
distance or the Euclidean distance.

I Definition 1 (Hamming, Manhattan and Euclidean distances). For a vector U = u1u2 . . . un,
its Hamming norm is defined as ‖U‖H = |{i : ui 6= 0}|, Manhattan norm is defined as
‖U‖1 =

∑
i |ui| and Euclidean norm is defined as ‖U‖2 =

(∑
i u

2
i

)1/2. For two words
V = v1v2 . . . vn and W = w1w2 . . . wn, their Hamming distance is defined as ‖V −W‖H ,
their Manhattan distance as ‖V −W‖1, and their Euclidean distance as ‖V −W‖2.

Those distance functions naturally generalize to the so called Lp distances, where p > 0
is the exponent.

I Definition 2 (p’th moment, p’th norm). For a vector U = u1u2 . . . un and p ≥ 0, its
p’th moment Fp is defined as Fp(U) =

∑
i |ui|p, and for p > 0 its Lp norm is defined as

‖U‖p = Fp(U)1/p = (
∑
i |ui|p)

1/p. For two words V = v1v2 . . . vn and W = w1w2 . . . wn
considered as vectors, the p’th moment of their difference is Fp(V −W) and their Lp distance
is defined as ‖V −W‖p = Fp(V −W)1/p = (

∑
i |vi − wi|p)

1/p.

In other words, the Manhattan distance is the L1 distance, the Euclidean distance is the L2
distance, and the Hamming distance can be considered as the L0 distance.

Below we assume that the length of the text is 2n, as any algorithm on a text of larger
length can be reduced to repeated application of an algorithm that runs on texts of length 2n.
This is done by splitting the text into blocks of length 2n which overlap by n characters.

Offline setting. For the Hamming distance, the problem has been extensively studied in
the offline setting, where we assume random access to the input. The first algorithm, for
a constant-size alphabet, was shown by Fischer and Paterson [21]. The algorithm uses
O(n logn) time and in substance computes the Boolean convolution of two vectors a constant
number of times. This was later extended to polynomial-size alphabets in [1, 33]. With
a somewhat similar approach, the same complexity can be achieved for the L1 distance
in [13]. Later, in [34, 35] the authors proved that these problems must have equal (up to
polylogarithmic factors) complexities by showing reductions from the Hamming to the L1
distance and back.

To improve the complexity for large alphabets, the natural next step was to study
approximation algorithms. Until very recently, the fastest (1± ε)-approximation algorithm
for computing the Hamming distances was by Karloff [29]. The algorithm combines random
projections from an arbitrary alphabet to the binary one and Boolean convolution to solve
the problem in O(ε−2n log3 n) time. In a breakthrough paper Kopelowitz and Porat [31] gave
a new approximation algorithm improving the time complexity to O(ε−1n log3 n log ε−1),
which was later significantly simplified [32]. Using a similar technique, Gawrychowski
and Uznański [23] showed an approximation algorithm for computing the L1 distance in
O(ε−1n log4 n) (randomized) time, later made deterministic in time O(ε−1n log2 n) in [39].
Using similar techniques, the authors of [39] gave Õ(ε−1n)-time (1 + ε)-approximation
algorithm for Lp distances for any constant positive p.1

1 Across the paper we use Õ to indicate that we are suppressing poly-log(n) factors.

T. Starikovskaya, M. Svagerka, and P. Uznański 35:3

Streaming setting. In the streaming setting, we assume that the pattern and the text
arrive as streams, one character at a time (the pattern arrives before the text). The main
objective is to design algorithms that use as little space as possible, and we must account for
all the space used by the algorithm, including the space required to store the input, in full
or in part. It is also often the case that the text arrives at a very high speed and we must
be able to process it faster than it arrives to fulfil the space guarantees, preferably, in real
time. To this aim, the time complexity of streaming algorithms is defined as the worst-case
amount of time spent on processing one character of the text, i.e. per arrival.

In the streaming setting, only the Hamming distance (L0) has been studied. It is known
that computing the Hamming distance between a pattern and a streaming text exactly
requires Ω(n) space, even for the binary alphabet and with a small probability error allowed,
which can be shown by a straightforward reduction to communication complexity (folklore).

Therefore, to develop sublinear-space solutions, one must relax their requirements. One
possibility to do so is to compute only the distances bounded by a threshold k. This variant
of the problem is often reffered to as k-mismatch problem. The k-mismatch problem has
been extensively studied in the literature [15, 16, 25, 38], with this line of work reaching Õ(k)
memory complexity and Õ(

√
k) time per input character. The motivation for this variant of

this problem is that we are interested in subwords of the text that are similar to the pattern,
in other words, the distance between the pattern and the text should be relatively small. On
the other hand, the main application of the streaming setting is processing large-scale data,
such as biological data. To decrease the cost of generating such data, recently new hardware
approaches have been developed. They have become widely used due to cost efficiency, but
unfortunately, the produced data may contain about 10% of noise [30]. To analyse such data,
it is not sufficient to consider small distances only, and a possible workaround for this issue is
(1± ε)-approximation. This line of research was initiated by Clifford and Starikovskaya [17]
who gave a (1± ε)-approximation algorithm with space Õ(ε−5√n) that uses Õ(ε−4) time
per arriving character of the text.

Independently and in parallel with this work, authors of [12] showed a (1±ε)-approximation
streaming algorithm for the k-mismatch problem that uses Õ(ε−2

√
k) space. For a special

case of k = n, they show how to reduce the space further to Õ(ε−1.5√n). Compared to
our solution, their algorithm has worse time complexity of Õ(ε−3) per arrival, and more
importantly, it is not obvious whether it can be generalised to other Lp norms as it uses a
very different set of techniques.

Sliding window. The problem of computing distance between P and every n-length subword
of T in the streaming setting resembles the problem of maintaining the Lp norm of a n-
length suffix of a streaming text, also referred to as sliding window. In fact, the latter is
a simplification of the former, with setting P = [0, 0, . . . , 0]. There is an extensive line
of work on maintaining the Lp norm of a sliding window, refer to [4, 5, 6, 7, 8, 18] and
references therein. The main message is that the norm of a sliding window can be maintained
efficiently, e.g. for 1 ≤ p ≤ 2 the Lp norms can be maintained (1 ± ε)-approximately in
space Õ(ε−1). However, those results do not translate to our case: in the sliding window,
one can easily isolate “heavy hitters”, that is updates with a significant contribution to
the output. In our case, the contribution of an update depends on its relative position to
the pattern, and one can easily construct instances where a contribution of a position in
the text changes drastically relative to its alignment with the pattern, which necessitates a
significantly different approach.

APPROX/RANDOM 2020

35:4 Lp Pattern Matching in a Stream

1.1 Our results
In this work, we show a suite of new streaming algorithms for computing the Hamming, L1,
L2 and general Lp (0 < p ≤ 2) distances between the pattern and the text. Our results
significantly improve and extend the results of [17].

I Theorem 3. Given a pattern P of length n and a text T over an alphabet Σ = [1, 2, . . . , σ],
where σ = nO(1), there is a streaming algorithm that computes a (1± ε)-approximation of
the Lp distance between P and every n-length subword of T correctly w.h.p.
1) in Õ(ε−2√n+ log σ) space, and Õ(ε−2) time per arrival when p = 0 (Hamming distance);
2) in Õ(ε−2√n + log2 σ) space and Õ(

√
n log σ) time per arrival when p = 1 (Manhattan

distance);
3) in Õ(ε−2√n+ log2 σ) space and Õ(ε−2√n) time per arrival when 0 < p < 1/2;
4) in Õ(ε−2√n+ log2 σ) space and Õ(ε−3√n) time per arrival when p = 1/2;
5) in Õ(ε−2√n+log2 σ) space and Õ(σ

2p−1
1−p
√
n/ε2+3· 2p−1

1−p) time per arrival when 1/2 < p < 1;
6) in Õ(ε−2−p/2√n log2 σ) space and O(ε−p/2

√
n+ ε−2 log σ) time per arrival for 1 < p ≤ 2.

We also improve and extend the space lower bound of [17], who showed that any streaming
algorithm that computes a (1±ε)-approximation of the Hamming distance between a pattern
and a streaming text must use Ω(ε−2 log2 n) bits for all ε such that 1/ε < n1/2−γ for some
constant γ (condition inherited from [27]). We show the following result:

I Lemma 4. Let 2 ≤ 1/ε < n and 0 ≤ p ≤ 2. Any (1 ± ε)-approximation algorithm that
computes the Lp distance between a pattern and a streaming text for each alignment, must
use Ω(min(1/ε2, n)) bits of space.

1.2 Techniques
At a very high level, the structure of all algorithms presented in this paper is similar to that
of [17]. We process the text by blocks of length b ≈

√
n. To compute an approximation of the

distance / the p’th moment at a particular alignment, we divide the pattern into two parts:
a prefix of length ≤ b aligned with a suffix of some block of the text, and the remaining suffix
(see Fig. 1). We compute an approximation of the distance / the p’th moment for both of
the parts and sum them up to obtain the final answer. Our main contribution is a set of new
tools that allows computing the approximations efficiently.

To be able to compute the approximation of the distance / the p’th moment between the
prefix and the corresponding block of the text, we compute, while reading each block of the
text, its compact lossy description that we refer to as prefix encoding. The prefix encoding
captures the relation between the read block and the prefix of the pattern of length b. To
compute the distance / the p’th moment between the suffix and the text, we will use suffix
sketches. For each position i of the text, the suffix sketch describes the subword T [b · k+ 1, i]
of the text where k is the smallest integer such that i− b · k ≤ n (see Fig. 1).

For the Hamming distance, we define the prefix encodings in Section 2.1 and the suffix
sketches in Section 3.1. Our Hamming prefix encoding introduces a novel use of a known
technique called subsampling. The prefix encodings are used to approximate the distance
between any suffix of one word and the prefix of another word of the same length. In brief,
the idea is to replace each character of the two words by the don’t care character “?”, a
special character that matches any other character of the alphabet. We repeat the process
a logarithmic number of times to create a logarithmic number of pairs of “subsamples”.
For each pair, we find the longest suffix of one subsample that matches the prefix of the

T. Starikovskaya, M. Svagerka, and P. Uznański 35:5

P [1, j] P [j + 1, n]

bk i

prefix enc. prefix enc. suffix sk.

Figure 1 High level structure of the algorithms. To compute the distance between the prefix
(red) of the pattern and the text, we use the prefix encoding, between the suffix (grey) and the text
we use the suffix sketch.

second subsample up to at most Θ(1/ε2) mismatches. We then show that this information
can be used to approximate the Hamming distance between any suffix-prefix pair. Similar
techniques were used in [3, 19, 22, 24, 28, 37] for estimating the Hamming norm in streams.
The crucial difference with our approach is that we must be able to compute the Hamming
norm of any suffix-prefix pair of the two words, and we must be able to do it efficiently. As
for the suffix sketches, for the binary alphabet we use the sketches introduced in [17]. We
then show a reduction from arbitrary alphabets to the binary alphabet, which improves the
space consumption of Hamming suffix sketches by a factor of 1/ε2.

We can solve the problem of L1 (Manhattan distance) pattern matching by replacing each
character of the pattern and of the stream with its unary encoding and running the solution
for the Hamming distance. However, this would introduce a multiplicative factor of σ (the
size of the alphabet) to the time complexity. We show efficient randomised reductions from
the Manhattan to Hamming distance that allow simulating the solution for the Hamming
distance without a significant overhead. In particular, to design the prefix encodings we use
random shifting and rounding, while for the suffix sketches we use range-summable hash
functions [9]. We show the Manhattan prefix encodings in Section 2.2 and the Manhattan
suffix sketches in Section 3.2.

For generic Lp distances, 0 < p ≤ 2, we discuss the prefix encodings in Section 2.4 and
the suffix sketches in Section 3.3. Our approach to Lp prefix encodings is rather involved.
In the case of 0 < p < 1, we construct a novel embedding from Lpp space into the Hamming
space, which might be of independent interest. While the target dimension of the Hamming
space is large, we construct the embedding in such a way that each value is mapped into
a compressible sequence of form cd1

1 . . . cdt
t for some small value of t, and where values of

d1, . . . , dt are constant across all input values. Such compressed representation allows us
to efficiently apply the subsampling framework and reduce the problem to the Hamming
distance case. For 1 < p ≤ 2, we identify a logarithmic number of anchor suffixes, and
partition each of them into ε−p words of roughly even contribution to the distance. We then
use the partition to decode prefix-suffix distance queries for arbitrary length queries. Such
construction is a generalization and improvement of the approach presented in [17]. For
suffix sketches, we simply use the p-stable distributions [26].

Finally, we combine the prefix encodings and the suffix sketches to prove Theorem 3 in
Section 4. To simplify the notation, we use x ε= y to denote (1− ε)y ≤ x ≤ (1 + ε)y from
now on. We will also use the fact that for p > 0 we can speak of approximating the p’th
moment of differences between the pattern and the n-length substrings of the text and the
Lp distances between the pattern and the n-length substrings of the text interchangeably, it
changes the complexities up to a constant factor only:

APPROX/RANDOM 2020

35:6 Lp Pattern Matching in a Stream

I Observation 5. For any constant p > 0 and ε < 1/2, there is a constant Cp such that
finding a (1 ± Cp · pε) approximation of the p’th moment of a vector suffices for (1 ± ε)-
approximating its p’th norm, and finding a (1 ± Cp · ε/p) approximation of its p’th norm
suffices for (1± ε)-approximating its p’th moment.

2 Prefix encodings

In this section we present a solution to the following problem. Imagine we have a block
of text T ′[1, b] = T [i + 1, i + b] and a prefix of the pattern P ′ = P [1, b]. We want to find
a compressed representation (encoding) of T ′ so that the following is possible: given any
1 ≤ d ≤ b, the compressed representation of T ′, and P ′ (explicitly), we can 1± ε approximate
‖T ′′ − P ′′‖p, where T ′′ = T ′[b− d+ 1, b] is a suffix of T ′ and P ′′ = P ′[1, d] is a prefix of P ′.

We start by presenting a solution to the Hamming distance case, which is a basis to our
solution for all other Lp norms for 0 < p ≤ 2.

2.1 Hamming (L0) distance
Recall that “?” is the don’t care character, a special character that matches any other
character of the alphabet.

I Definition 6 (Hamming subsampling). Consider a word U of length n. Let q = d3 logne
and let h(i) : [n] → {0, 1}q be a function drawn at random from a pairwise independent
family. For r = 0, . . . , q, we define the r-th level Hamming subsample of U , hSubr(U), as
follows:

hSubr(U)[i] =
{
U [i], if the r lowest bits of h(i) are all 0;
?, otherwise.

.

In particular, hSub0(U) = U .

Fix an integer k = Θ(1/ε2) large enough. For two words U, V , consider the following
estimation procedure:

I Algorithm 7.
1. Denote Xr to be the Hamming distance between hSubr(U) and V and let f = min{i :

Xi ≤ k}.2
2. Output Zf = 2f ·Xf as an estimate of ‖U − V ‖H .

The following lemma is a rephrasing of a known result regarding subsampling in estimation
of the Hamming norm (cf. [3, Theorem 3], or [24, Theorem 2]).

I Lemma 8. For Zf as in Algorihtm 7 there is Zf
ε= ‖U −V ‖H with probability at least 3/4.

Since the subsampling is performed independently for each position, one can use sub-
sampling to approximate the Hamming distance between any suffix of B and any prefix of P
of equal lengths in a similar fashion.

We are now ready to define the Hamming prefix encoding of a block. For brevity, let
Bjr = hSubr(B)[b− j + 1, b] and P jr = P [1, j] (the same for all r). Furthermore, given two
words U, V of equal length, define the mismatch information MI(U, V) = {(i, U [i], V [i]) :
U [i] does not match V [i]}.

2 We emphasize that hSubr(U) contains don’t care characters, so the Hamming distance is defined as the
number of pairs of characters of hSubr(U) and V that do not match.

T. Starikovskaya, M. Svagerka, and P. Uznański 35:7

I Definition 9. Consider a b-length block B of the text T . For each 0 ≤ r ≤ d3 logne, let
j∗(r) be the maximal integer such that the Hamming distance between Bj

∗(r)
r and P j

∗(r)
r is

at most k = Θ(ε−2). We define the Hamming prefix encoding of B to be a tuple of pairs
j∗(r),MI(Bj

∗(r)
r , P

j∗(r)
r).

Note that the prefix encoding of B uses O(k logn) = O(ε−2 logn) space. We can compute
it efficiently:

I Lemma 10. Assume constant-time random access to P [1, b]. Given a b-length block B of
the text T , its Hamming prefix encoding can be computed in Õ(kb) = Õ(bε−2) time.

Proof. To compute the encoding, we use the algorithm of [14]. Formally, for each r we create
a word T ′ by appending b don’t care characters to the subsample hSubr. The algorithm
of [14] can be used to find all b-length subwords of T ′ that match P [1, b] with up to
k mismatches, moreover for each of these subwords the algorithm outputs the mismatch
information. We take the leftmost subword only, which corresponds to j∗(r) because of the
don’t care characters. In total, our algorithm uses Õ(kb) = Õ(ε−2b) time. J

We now show how to compute the Hamming distance between any j-length suffix of B
and any j-length prefix of P given P [1, b] and the Hamming prefix encoding of a block B.

I Lemma 11. Given the prefix encoding of a b-length block B of the text T , there is an
algorithm that computes, for any j = 1, . . . , b, a (1 + ε)-approximation of the Hamming
distance between the j-length suffix of B and the j-length prefix of P in Õ(kb) = Õ(bε−2)
time.

Proof. Denote Xr to be the Hamming distance between P jr and Bjr . We compute the
smallest f such that Xf ≤ k in the following way. For each r, we use MI(Bj

∗(r)
r , P

j∗(r)
r) to

restore Bj
∗(r)
r . We then append P j

∗(r)
r with b don’t care characters and run the algorithm

of [14] for the resulting text and the pattern. This allows to compute Xr for all j ≤ j∗(r),
and if j > j∗(r), then Xf > k by definition. In total, the algorithm takes Õ(kb) = Õ(ε−2b)
time. J

2.2 Manhattan (L1) distance
Recall a word morphism ν : Σ → {0, 1}σ, ν(a) = 1a0σ−a. Our goal in this section is to
simulate implicitly procedures from Lemma 10 and Lemma 11 on words ν(B) and ν(T)
without introducing any significant overhead.

I Definition 12 (Manhattan scaling). Consider a word U of length n. Let q = d3 lognσe
and let h : [n]→ 2q be a function drawn at random from a 4-wise independent family. For
r = 0, . . . , q, we define the r-th level Manhattan subsample of U , mSubr(U), as a word of
length n such that mSubr(U)[i] =

⌊
U [i]+(h(i) mod 2r)

2r

⌋
. In particular, mSub0(U) = U .

Fix an integer k = Θ(1/ε2) large enough. For words U, V , consider mSubr(U),mSubr(V)
for all r = 0, . . . , q, and the following estimation procedure:

I Algorithm 13.
1. Denote Xr = ‖mSubr(U)−mSubr(V)‖1 and let f = min{i : Xi ≤ k}.
2. Output Zf = 2f ·Xf as an estimate of ‖U − V ‖1.

I Lemma 14. For Zf as in Algorihtm 13 there is Zf
ε= ‖U − V ‖1 with probability ≥ 3/4.

APPROX/RANDOM 2020

35:8 Lp Pattern Matching in a Stream

To approximate the Manhattan distance between any suffix of B and any prefix of P of
equal lengths, we define the encoding similar to the Hamming distance case. Specifically, we
still use the mismatch information, building on the fact that for any two words ‖U − V ‖H ≤
‖U − V ‖1 and from the mismatch information the exact value of ‖U − V ‖1 can be found.
We define Bjr = mSubr(B)[b − j + 1, b] as before, but change the definition of P jr slightly.
Intuitively, we define P jr to be the j-length prefix of P subsampled in a synchronized way
with Bjr . Formally, P jr [i] =

⌊
P [i]+(h(b−j+i) mod 2r)

2r

⌋
.

I Definition 15. Consider a b-length block B of the text T . For each 0 ≤ r ≤ d3 lognσe, let
j∗(r) be the maximal integer such that the Manhattan distance between Bj

∗(r)
r and P j

∗(r)
r is

at most k = Θ(ε−2). We define the Manhattan prefix encoding of B to be a tuple of pairs
j∗(r),MI(Bj

∗(r)
r , P

j∗(r)
r).

Note that the prefix encoding of B uses O(k lognσ) = O(ε−2 logn) space.

I Lemma 16. Assume constant-time random access to P [1, b]. Given a b-length block B of
the text T , its Manhattan prefix encoding can be computed in Õ(b2) time and Õ(b) space.

Proof. Let q = d3 lognσe. For each r = 0, . . . , q and j = 1, . . . , b we compare Bjr and P jr
character by character in O(b) time to find j∗(r) and the corresponding mismatch information.
The claim follows. J

I Lemma 17. Given the prefix encoding of a b-length block B of the text T , there is an
algorithm that computes, for all j = 1, . . . , b, a (1 ± ε)-approximation of the Manhattan
distance between the j-length suffix of B and the j-length prefix of P in Õ(b2) time.

Proof. Denote Xr = ‖P jr − Bjr‖H . We compute the smallest f such that Xf ≤ k in the
following way. For each r, we use MI(Bj

∗(r)
r , P

j∗(r)
r) to restore Bj

∗(r)
r . If j > j∗(r), the

Manhattan distance between P jr and Bjr is at least k. Otherwise, we compare P jr and
Bjr character by character to compute the Manhattan distance in O(b) time. The claim
follows. J

2.3 Generic (Lp) distance for 0 < p < 1

Our goal is to construct a morphism (parametrised by p) acting as a randomized embedding
of (Lp)p into the Hamming distance. The intuition behind our approach is as follows. Let
r0, r1, . . . ∈ [0, 1] be a sequence of real numbers picked independently and u.a.r. Define a
sequence of values

di =
{
ε−1 · (1 + ε)pi when i > 0
ε−1 · (1+ε)p

(1+ε)p−1 when i = 0

and for a character c ∈ Σ consider sequence of characters c0, c1, . . . where ci = b c
(1+ε)i + ric

(similarly, a character c′ defines a sequence c′0, c′1, . . .). Now consider two characters c, c′ ∈ Σ
such that |c− c′| = (1 + ε)` for some integer ` and a random variable x =

∑∞
i=0 di · ‖ci− c′i‖H .

T. Starikovskaya, M. Svagerka, and P. Uznański 35:9

There is

E [x] =
∞∑
i=0

di · Pr[ci 6= c′i] =
∑̀
i=0

di · 1 +
∞∑

i=`+1
di ·
|c− c′|
(1 + ε)i =

= ε−1 (1 + ε)p

(1 + ε)p − 1 + ε−1
∑̀
i=1

(
(1 + ε)p

)i + ε−1|c− c′|
∞∑

i=`+1

(
(1 + ε)p−1)i =

= ε−1 ((1 + ε)`+1)p

(1 + ε)p − 1 + |c− c′|ε−1 ((1 + ε)`+1)p−1

1− (1 + ε)p−1 =

= |c− c′|p
(

(1 + ε)p

(1 + ε)p − 1 + 1
(1 + ε)1−p − 1

)
ε−1 ≈ ε−2|c− c′|p 1

p(1− p) . (1)

We thus see that an idealized morphism of the form ϕ : c → cd0
0 c

d1
1 . . . would have the

property that ‖U −V ‖pp ∼ ‖ϕ(U)−ϕ(V)‖H on words of length n. But there are the following
issues: (i) characters are mapped into infinite length words, (ii) number of repetitions of
characters (di) is fractional, (iii) we cannot guarantee that character distance is always of
form (1+ε)i and (iv) the distance is preserved only in expectation. We show how to overcome
these issues to achieve the following result:

I Theorem 18. Given 0 < p < 1 and ε > 0 there is a word morphism ϕ : c ∈ Σ →
cd0
0 c

d2
2 . . . c

dt−1
t−1 such that:

1) t = Õ(ε−2) when 0 < p < 1/2, t = Õ(ε−3) when p = 1/2 and t = Õ(σ
2p−1
1−p /ε2+3· 2p−1

1−p)
when 1/2 < p < 1.

2) values of t and d0, . . . , dt−1 do not depend on c,
3) there exists a constant α = α(p, ε) such that for any two words U, V of length at most n,

we have ‖U − V ‖pp
ε= α · ‖ϕ(U)− ϕ(V)‖H with probability at least 9/10,

4) it is enough for the randomness to be realized by a hash function r : [t] → [D] from a
4-independent hash function family for some D = poly(nσε−1), which can be generated
from a Õ(log σ) bits size seed.
We now describe how to use the morphism ϕ to approximate the Lp distances in a small

space. To design an efficient algorithm, we take advantage of the fact that ϕ(U) has a
compressed representation of size comparable with the length of U (at least when p ≤ 1/2).

I Definition 19 (Lp scaling). Consider a word S = se1
1 s

e2
2 . . . sem

m of length m′ =
∑
i ei.

Let h : [m] → 2q be a function drawn at random from a 4-wise independent family, where
q = d3 logm′e. For r = 0, . . . , q, we define the r-th level subsample of S,

Subr(S) = (s1)
⌊

e1+(h(1) mod 2r)
2r

⌋
(s2)

⌊
e2+(h(2) mod 2r)

2r

⌋
. . . (sm)

⌊
em+(h(m) mod 2r)

2r

⌋
In particular, Sub0(U) = U .

Consider two words S,Q of form S = se1
1 . . . sem

m and Q = qe1
1 . . . qen

m . Fix an integer
k = Θ(1/ε2) large enough and consider Subr(S),Subr(Q) for all r = 0, 1, . . . , d3 logm′e,
where m′ =

∑
i ei.

I Algorithm 20.
1. Denote Xr = ‖Subr(S)− Subr(Q)‖H and let f = min{i : Xi ≤ k}.
2. Output Zf = 2f ·Xf as an estimate of ‖S −Q‖H .

I Lemma 21. For Zf as in Algorihtm 20 there is Zf
ε= ‖S −Q‖H with probability ≥ 3/4.

APPROX/RANDOM 2020

35:10 Lp Pattern Matching in a Stream

We are now ready to define Lp prefix encodings. Consider a b-length block B of the text
and define Bjr = Subr(ϕ(B))[(b− j)t+ 1, bt] (t is defined as in Theorem 18). Also, define P jr
to be the (tj)-length prefix of ϕ(P) subsampled in a synchronized way with Bjr .

I Definition 22. Consider a b-length block B of the text T . For each r = 0, . . . , d3 logn′e,
where n′ = |ϕ(B)|, let j∗(r) be the maximal integer such that the Hamming distance between
B
j∗(r)
r and P j

∗(r)
r is at most k = Θ(ε−2). We define the Lp prefix encoding of B to be a tuple

of pairs j∗(r),MI(Bj
∗(r)
r , P

j∗(r)
r).

The Lp prefix encoding of B uses O(k logn′) = O(ε−2 log(nσε−1)) space.

I Lemma 23. Assume constant-time random access to P [1, b]. Given a b-length block B
of the text T , its Lp prefix encoding can be computed in O(b2 · t lognσε−1) time and O(b+
ε−2 lognσε−1) space.

Proof. For each r = 0, . . . , d3 logn′e and j = 1, . . . , b, we compute the Hamming distance
between Bjr and P jr in O(bt) time using the compressed representation to find j∗(r) and the
corresponding mismatch information. The claim follows. J

I Lemma 24. Given the Lp prefix encoding of a b-length block B of the text T , there is an
algorithm that computes, for all j = 1, . . . , b, a (1 ± ε)-approximation of the Lp distance
between the j-length suffix of B and the j-length prefix of P in Õ(b2 · t lognσε−1) time and
O(b+ ε−2 lognσε−1) space.

Proof. Denote Xr = ‖P jr − Bjr‖H . We compute the smallest f such that Xf ≤ k in the
following way. For each r, we use MI(Bj

∗(r)
r , P

j∗(r)
r) to restore Bj

∗(r)
r . If j > j∗(r), the

Hamming distance between P jr and Bjr is at least k. Otherwise, we compare P jr and Bjr to
compute the Hamming distance in O(bt) time. The claim follows. J

2.4 Generic (Lp) distance for 1 < p ≤ 2
For 1 < p ≤ 2, we use a scheme similar to the one developped in [17] for the Hamming
distance, but adapt it to generic Lp distances. Particularly, we plug in a standard tool used
in this situation, the p-stable distribution. We additionally have to adapt the scheme a bit,
taking into account that Lp norm is sub-additive under concatenation when p > 1.

I Definition 25 (p-stable distribution [40]). For a parameter p > 0, we say that a distribu-
tion D is p-stable if for all a, b ∈ R and random variables X,Y drawn independently from D,
the variable aX + bY is distributed as (|a|p + |b|p)1/p

Z, where Z is a random variable with
distribution D.

Consider a word X = x1x2 . . . xn, and let α1, α2, . . . , αn be independent random vari-
ables drawn from a p-stable distribution D with expected value µD. By Definition 25,
we have E [

∑
i αixi] /µD = ‖X‖p. The p-stable distributions exist for all 0 < p ≤ 2, and

a random variable X from a p-stable distribution can be generated using the formula
X = sin(pΘ)

cos1/p(Θ)

(
cos(Θ(1−p))

ln(1/r)

)(1−p)/p
[11, 40], where Θ is uniform on [−π/2, π/2] and r is

uniform on [0, 1].
However, to be able to design an efficient sketching scheme that allows to approximate the

Lp norm with high probability, there are three technicalities to be overcome: First, one must
show that

∑
i αixi concentrates well, second, the formula above assumes infinite precision of

computation, and finally, one cannot use fully independent random variables αi as above

T. Starikovskaya, M. Svagerka, and P. Uznański 35:11

B1 B2

P1 P2

1 qk+1 qi
k j qi+1

k qk b

b− j + 11

Figure 2 Using the prefix encoding of B to compute the Lp distance between a suffix of B and a
prefix of the pattern. To compute the distance between B1 and P1, we replace B1 with a subword
of the pattern, and between B2 and P2 we use the sketches.

as this would require much space. To overcome these issues, Indyk [26] combined p-stable
distributions and pseudorandom generators for bounded space computation [36]. We restate
the final result of Indyk below, in the form that will be convenient for us later.

I Theorem 26 (cf. Theorem 2, Theorem 4 [26]). For any 0 < p ≤ 2, there is a non-uniform
streaming algorithm that maintains a sketch Sketchp(S) of a word S of length n over an
alphabet of size σ such that:
1) when a new character of S arrives, the sketch can be updated in O(ε−2 log(n/ε)) time;
2) the algorithm and the sketch use O(ε−2 log(σn/ε) log(n/ε)) bits of space.
Given the sketches Sketchp(X),Sketchp(Y) of two words X,Y of length n, one can estimate
‖X − Y ‖p up to a factor 1± ε with probability at least 9/10 in time Õ(1/ε2).

We now proceed to building the Lp prefix encoding by using Sketchp and the landmarking
technique.

I Definition 27 (Lp prefix encoding). Let 1 < p ≤ 2. Consider a word S of length b on the
alphabet of size σ. Define q0 = b. For k = 0, . . . , dlog bσpe, let qk ≤ qk−1 be the leftmost
position such that the p’th moment of the difference between S[qk, b] and P [1, b− qk + 1], i.e.
‖S[qk, b]− P [1, b− qk + 1]‖pp, is at most 2k.

Further, divide S[qk, b] into Θ(1/εp) blocks such that each block is either a single character,
or the p’th moment of the difference between each block and the corresponding subword of
P [1, b− pk + 1] is at most εp · 2k. Let qk = q0

k ≤ q1
k ≤ . . . q`k

k = b be the block borders. We
choose q1

k, q
2
k, . . . , q

`k

k from left to right, and each position qik is chosen to be the rightmost
possible.

The Lp prefix encoding of S is defined to contain sorted lists of the positions qk and qik,
characters S[qik], and sketches for (1± Cp · ε/p)-approximating the p’th norm of S[qjk, b], for
all k, j and Cp as in Observation 5, see also Theorem 26.

The encoding takes Õ(ε−2−p log σ log(σn/ε) log(n/ε)) bits of space. We now show that
given the Lp prefix encoding of a block B of the text of length b, one can compute a (1± ε)-
approximation of the Lp distance between any prefix P [1, b− j + 1] of the pattern P and the
corresponding suffix B[j, b] of B.

I Lemma 28. Let 1 < p ≤ 2. For any two vectors X,Y of equal length,
∣∣∣‖X+Y ‖pp−‖X‖pp

∣∣∣ =
O(‖Y ‖pp + ‖Y ‖p · ‖X‖p−1

p).

I Lemma 29. Let 1 < p ≤ 2. Given the Lp prefix encoding of a block B of the text T of
length b, one can find (1 ± ε)-approximation of the p’th moment of the difference between
any prefix P [1, b− j + 1] of the pattern P and the corresponding suffix B[j, b] of B in time
Õ(ε−2 + log σ).

APPROX/RANDOM 2020

35:12 Lp Pattern Matching in a Stream

Proof. Let qk be the position that is closest to i from the left, and qik ≤ j < qi+1
k (see Fig. 2).

We can find qk, qik, q
i+1
k in time O(log(bσp) + 1/εp) by iterating over the sorted lists.

The position qi+1
k divides P [1, b− j + 1] into two parts, P1 and P2. Denote B1 and B2

the respective subwords of B they are aligned with (see Fig. 2). Let m1 = Fp(P1 − B1)
and m2 = Fp(P2 −B2). Then m = Fp(P [1, b− j + 1]−B[j, b]), being the value we need to
approximate, is equal to m1 +m2.

We can find m′2
ε= m2 using the sketches for B2 = B[qi+1

k , b] and P2 in time Õ(1/ε2).
Furthermore, if qik = qi+1

k − 1, then we can compute m1 exactly as we store B[qik]. Otherwise,
we consider the subword P̃ = P [j − qk + 1, qi+1

k − qk + 1] of the pattern P . Denote
m′1 = Fp(P1 − P̃) and use it as our estimation of m1.

Since 1 ≤ p ≤ 2, by definition, Fp(B1 − P̃) ≤ εp · 2k−1, and Fp(P1 − B1) ≤ 2k. By
Lemma 28 with X = P1 −B1 and Y = B1 − P̃ ,

|m′1−m1| = O(‖B1− P̃‖pp+‖B1− P̃‖p‖P1−B1‖p−1
p) = O(εp2k+ε(2k)

1
p (2k)

p−1
p) = O(ε2k)

and finally |(m1 +m2)− (m′1 +m′2)| ≤ O(εm) + εm2 = O(εm). J

I Lemma 30. Let 1 < p ≤ 2. The Lp prefix encoding of a b-length block B of the text can
be computed in time Õ(b2 + ε−2b log σ) and space Õ(b+ ε−2−p log2 σ).

Proof. For j = 1, . . . , b, we naively compute the Lp distance between the suffix of B and
the prefix of P in O(b) time. We then find the positions qk. For each k = 0, . . . , dlog bσpe,
we can find the positions qik in O(b) time and compute the sketches in Õ(ε−2b) time by
Theorem 26. J

3 Suffix sketches

In this section, we give the definitions and explain how we maintain the suffix sketches for
each of the distances.

3.1 Hamming distance
We first recall Euclidean suffix sketches as presented in [17]. In fact, we will not use them for
the Euclidean distance as for it we can use the generic solution of Section 3.3, but they will
serve as a foundation of Hamming suffix sketches.

All sketches presented in this section are correct with constant probability, which can
be amplified to 1 − δ for arbitrarily small δ by a standard method of repeating sketching
independently Θ(log δ−1) times and taking the median of the estimates.

I Lemma 31 (Euclidean sketches [2]). Let M be a random matrix of size d× n filled with
4-wise independent random ±1 variables, for d = Θ(ε−2) chosen big enough. For a vector
X ∈ Rn there is 1√

d
‖MX‖2

ε= ‖X‖2 with constant probability 9/10, taken over all possible
choices of M . We say that a vector MX of dimension d is a Euclidean sketch of X.

I Definition 32 (Euclidean suffix sketches [17]). Consider a word X of length n. We define
its Euclidean suffix sketch as follows.

Let b be the block length. Let R be a random matrix of size d× b filled with 4-wise inde-
pendent random ±1 variables and let α1, . . . , αdn/be be 4-wise independent random coefficients
with values ±1 as well. We define a matrix M of size d× n such that Mi,jb+k = αj · Ri,k.

Let X ′ be a word of length dn/be · b obtained from X by appending an appropriate number
of zeroes. The Euclidean suffix sketch of X is defined as eSketch(X) = MX ′, where X ′ is
considered as a vector.

T. Starikovskaya, M. Svagerka, and P. Uznański 35:13

Observe that the matrix M does not need to be accessed explicitly. Indeed, from
MX ′ =

∑
i αi · R ·

[
X ′[bi], . . . , X ′[bi+ b− 1]

]T it follows that the Euclidean suffix sketch
can be computed by first sketching each block of X ′ using the matrix R, and then taking a
linear combination of the sketches of the blocks (using the random ±1 coefficients αi).

I Lemma 33 ([17]). Selecting d = Θ(ε−2) gives 1√
d
‖eSketch(X)‖2

ε= ‖X‖2 with probability
at least 9/10 (taken over all possible choices of R, αi).

By linearity of sketches, we obtain ‖X − Y ‖2
ε= 1√

d
‖eSketch(X) − eSketch(Y)‖2 with

probability at least 9/10 as well.
We now define Hamming suffix sketches. First note that for binary words X,Y there

is Ham(X,Y) = ‖X − Y ‖2, and therefore in the case of the binary alphabet we can use
the Euclidean suffix sketches. We will now show how to reduce the case of arbitrary
polynomial-size alphabets to the case of the binary alphabet.

To this end, [17] used a random mapping of Karloff [29] as a black-box reduction, which
led to sketches of size ∼ ε−4 . We now show a more careful reduction to avoid this overhead
and to achieve dependency ε−2 in total. Consider a word morphism defined on alphabet as
µ : Σ → {0, 1}σ, µ(a) = 0a10σ−a−1 (and acting on words by concatenating the images of
each character of the input word). Note that ‖µ(X)− µ(Y)‖22 = 2 · ‖X − Y ‖H , thus using
the Euclidean suffix sketches on top of µ(X) and µ(Y) allows computation of the respective
Hamming distance. Formally,

I Definition 34 (Hamming suffix sketches [17]). Consider a word X of length n on the
alphabet of size σ. We define its Hamming suffix sketch as follows.

Let b be the block length, R be a random matrix of size d×σb filled with 4-wise independent
random ±1 variables, and α1, . . . , αdn/be be 4-wise independent random coefficients with values
±1 as well. We define a matrix M of size d× σn such that Mi,σjb+k = αj · Ri,k.

Let X ′ be a word of length dn/be · b obtained from X by appending an appropriate number
of zeroes. The Hamming suffix sketch of X is defined as hSketch(X) = Mµ(X ′), where µ(X ′)
is considered as a vector.

I Lemma 35. Selecting d = Θ(ε−2) gives 1
2d‖hSketch(X)‖22

ε= ‖X‖H with probability at
least 9/10 (taken over all possible choices of R, αi).

Proof. Follows immediately as a corollary of Lemma 33 and the properties of the embedding µ.
In more detail, the following holds with probability at least 9/10:

1
2d · ‖hSketch(X)‖22 =

= 1
2d‖Mµ(X ′)‖22 = 1

2d‖Mµ(X)‖22 = 1
2d‖eSketch(µ(X))‖22

ε= 1
2‖µ(X)‖22 = ‖X‖H . J

As µ(X), µ(Y) are sparse, there is an efficient streaming algorithm for maintaining the
Hamming suffix sketches of a text:

I Lemma 36. Given a text T , there is a streaming algorithm that for every position i outputs
the Hamming suffix sketch of a word T [b · k + 1, i], where k is the largest integer such that
i − b · k ≤ n. The algorithm takes O(dn/b + log dσn) space and O(d(1 + n/b2)) time per
character.

APPROX/RANDOM 2020

35:14 Lp Pattern Matching in a Stream

3.2 Manhattan (L1) distance
To show efficient suffix sketches for the Manhattan distance, we consider a word morphism
ν : Σ→ {0, 1}σ, ν(a) = 1a0σ−a. Note that ‖ν(X)− ν(Y)‖22 = ‖ν(X)− ν(Y)‖H = ‖X − Y ‖1,
thus using the Hamming suffix sketches on top of ν(X) and ν(Y) allows computation of the
respective Manhattan distance.

However, if we apply the morphism straightforwardly, we will have to pay an extra σ
factor per character to compute the Manhattan suffix sketches. To improve the running time,
we will use range-summable hash functions. Range-summable hash functions were introduced
by Feigenbaum et al. [20], and later their construction was improved by Calderbank et al. [9].

I Definition 37 (cf. [9]). A family H of hash functions h(x; ξ) : [t] × {0, 1}s → {−1, 1}
(here x is the argument and ξ is the seed) is called k-independent, range-summable if it
satisfies the following properties for any h ∈ H:
1. (k-independent) for all distinct 0 ≤ x1, . . . , xk < t and all b1, . . . , bk ∈ {−1,+1},

Pr
ξ∈{0,1}s

[h(x1; ξ) = b1 ∧ · · · ∧ h(xk; ξ) = bk] = 2−k

2. (range-summable) there exists a function g such that given a pair of integers 0 ≤ α, β ≤ σ,
and a seed ξ, the value g(α, β; ξ) =

∑
α≤x<β h(x; ξ) can be computed in time polynomial

in log t.3

I Corollary 38 (cf. Theorem 3.1 [9]). There is a 4-independent, range-summable family of
hash functions h(x; ξ) : [t]× {0, 1}s → {−1,+1} with a random seed ξ of length s = O(log2 t)
such that any range-sum g(α, β; ξ) can be computed in O(log3 t) time.

I Observation 39. For a word X = x1x2 . . . xn, let Y = ν(X) = y1y2 . . . ynσ. Let h, g be as
in Corollary 38 with t = nσ. Then

∑n
i=1 g(iσ, iσ + xi; ξ) =

∑nσ
i=1 yih(i; ξ).

Thus, we see that range-summable hash functions can be used to efficiently simulate ν.

I Definition 40 (Manhattan suffix sketches). Consider X be a word of length n. We define
its Manhattan suffix sketch as follows.

Let b be the block length. Let h, g be as in Corollary 38 with t = bdσ. Let R be a random
matrix of size d× σb filled with 4-wise independent random ±1 variables, such that Ri,k =
h(ibσ + k; ξ) and let α1, . . . , αdn/be be 4-wise independent random coefficients with values ±1
as well. We define a matrix M of size d×σn such that Mi,σjb+k = αj ·Ri,k = αj ·h(dk+ i; ξ).

Let X ′ be a word of length dn/be·b obtained from X by appending an appropriate number of
zeroes. The Manhattan suffix sketch of X is defined as mSketch(X) = Mν(X ′), where ν(X ′)
is considered as a vector.

I Lemma 41. Selecting d = Θ(1/ε2) gives 1
d‖mSketch(X)‖22

ε= ‖X‖1 with probability at
least 9/10 (taken over all possible choices of αi and ξ).

Proof. Follows immediately as a corollary of Lemma 33 and the properties of the embedding ν.
In more detail, the following holds with probability at least 9/10:

1
d
· ‖mSketch(X)‖22 =

= 1
d
‖Mν(X ′)‖22 = 1

d
‖Mν(X)‖22 = 1

d
‖eSketch(ν(X))‖22

ε= ‖ν(X)‖22 = ‖X‖1. J

3 In [9], the function h was defined to take values in {0, 1}. We can change the range of values to {−1,+1}
by taking h′ = 1− 2h while preserving the properties.

T. Starikovskaya, M. Svagerka, and P. Uznański 35:15

I Lemma 42. Given a text T , there is a streaming algorithm that for every position i outputs
the Manhattan suffix sketch of a word T [b · k + 1, i], where k is the smallest integer such that
i− b · k ≤ n. The algorithm takes O(d · (n/b) + log2 σ) space, and O(d(1 + n/b2) · log3(bdσ))
time per character.

3.3 Generic (Lp) distance for 0 < p ≤ 2
For generic Lp distances, we use the approach of [26] based on p-stable distributions.

I Corollary 43. Given a text T , there is a streaming algorithm that for every position i

outputs the Lp suffix sketch of a word T [b · k + 1, i], where k is the smallest integer such
that i − b · k ≤ n. The algorithm takes O(ε−2(n/b) · log(σn/ε) log(n/ε)) bits of space and
O(ε−2(n/b) log(n)) time per character.

Proof. We start a new instance of the sketching algorithm of Theorem 26 at every block
border and continue running it for the next dn/be blocks. At each moment, there are O(n/b)
active instances of the algorithm. The bounds follow. J

4 Proof of Theorem 3

Recall the structure of the algorithms. During the preprocessing, we compute the suffix
sketches of suffixes P [1, n], P [2, n], . . . , P [b, n] of P . During the main stage, the text is
processed by blocks of length b. To compute an approximation of the distance / the p’th
moment at a particular alignment, we divide the pattern into two parts: a prefix of length at
most b, and the remaining suffix. We compute an approximation of the distance / the p’th
moment for both of the parts and sum them up to obtain the final answer. To compute an
approximation of the distance / the p’th moment between the prefix and the corresponding
block of the text, we compute, while reading each block of the text, its prefix encoding, and
to compute an approximation of the distance / the p’th moment between the suffix and the
text, we use the suffix sketches.

1) Hamming (L0) distance. When we receive a new block of the text, we compute its
Hamming prefix encoding using the algorithm of Lemma 10 in O(b) space. We de-amortize
the computation over the subsequent block and spend Õ(ε−2) time per character. We
store the resulting encoding for the next O(n/b) blocks. In total, the encodings require
Õ(ε−2n/b) space. The Hamming suffix sketches of P [1, n], P [2, n], . . . , P [b, n] occupy
O(ε−2b) space. The algorithm of Lemma 36 that computes the suffix sketches takes
O(ε−2n/b+log(ε−2σn)) space and O(ε−2(1+n/b2)) time per character. Consider a block
starting with position p. To compute the Hamming distances between n-length subwords
that end in this block and the pattern, we apply the following approach. First, while
reading the block preceding the current one, we decode the Hamming prefix encoding of
the block that starts at position p− n using Lemma 11. We de-amortize the algorithm
to spend Õ(ε−2) time per character. Hence, at the position i, we know the (1 ± ε)-
approximation between the prefixes of the pattern and the corresponding subwords of the
text. At each position, we can compute the Hamming distance between the corresponding
suffix of the pattern and the text in Õ(ε−2) time using the Hamming suffix sketch. By
taking b =

√
n, we obtain the claim.

2) Manhattan (L1) distance. We proceed analogously to the Hamming distance case.
The Manhattan prefix encoding of each block is computed using Lemma 16, in Õ(b)
time per character. We store the resulting encoding for the next O(n/b) blocks, giving

APPROX/RANDOM 2020

35:16 Lp Pattern Matching in a Stream

in total Õ(ε−2n/b) space. The Manhattan suffix sketches of P [1, n], P [2, n], . . . , P [b, n]
occupy O(ε−2b) space. Algorithm of Lemma 42 takes Õ(ε−2(b+ n/b) + log2 σ) space and
Õ(ε−2(1 + n/b2)) time per character. For decoding the prefix encoding we use Lemma 17,
spending Õ(b) time per character. Once again we take b =

√
n, and assume w.l.o.g.

ε−1 ≤
√
n (as otherwise we can use a naive algorithm with O(n) space and O(n) time

per character).
3) Generic (Lp) distance for 0 < p < 1. The Lp prefix encodings of the blocks are com-

puted using Lemma 23, using Õ(t · b) time per character. We store the resulting encodings
for the next O(n/b) blocks, giving in total Õ(ε−2n/b) space. The Lp suffix sketches of
P [1, n], P [2, n], . . . , P [b, n] occupy Õ(ε−2b log σ) space. Algorithm of Corollary 43 com-
putes the Lp suffix sketches for the text in Õ(ε−2(n/b) log σ) space and Õ(ε−2n/b) time
per character. For decoding the prefix encoding we use Lemma 24, spending Õ(t · b) time
per character. We take b =

√
n, and substitute t accordingly to Theorem 18.

4) Generic (Lp) distance for 1 < p < 2. Note that for ε < 1/n we can use a naive
algorithm, that is to store S itself in O(n) space. The update takes constant time, and
computing the Lp norm takes O(n) time which is better than the guarantees of the
theorem for such values of ε. For ε ≥ 1/n, the algorithm of Lemma 30 computes the
Lp prefix encodings of the blocks in Õ(b+ ε−2−p log2 σ) space and Õ(b+ ε−2 log σ) time
per character. The encodings occupy Õ(ε−2−p(n/b) log2 σ) space. The Lp suffix sketches
of P [1, n], P [2, n], . . . , P [b, n] occupy Õ(ε−2b log σ) space. Algorithm of Corollary 43
computes the Lp suffix sketches for the text in Õ(ε−2(n/b) log σ) space and Õ(ε−2n/b)
time per character. Taking b = ε−p/2

√
n and assuming w.l.o.g. ε−1 <

√
n, we obtain the

claim.

5 Conclusion

We pose several open questions. First is whether the time-complexity for 1/2 < p < 1 can
be improved to not involve any dependency on σ. For this we need a better technique than
bounding variance of the embedding into Hamming distance: in our technique, the tail gets
”too heavy”. Another pressing question is whether for all values of p > 0 we could improve
upon

√
n time per character. We also remark that it seems unlikely that an embedding to

Hamming space could be used to reduce space complexity for p > 1: Lpp does not admit the
triangle inequality while the Hamming distance does, and the Lp distance is not additive
with respect to concatenation, while the Hamming distance is.

References
1 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.
2 Dimitris Achlioptas. Database-friendly random projections: Johnson–Lindenstrauss with binary

coins. J. Comput. Syst. Sci., 66(4):671–687, 2003. doi:10.1016/S0022-0000(03)00025-4.
3 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting

distinct elements in a data stream. In RANDOM 2002, pages 1–10, 2002. doi:10.1007/
3-540-45726-7_1.

4 Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch L2-heavy-hitters on
sliding windows. Theor. Comput. Sci., 554:82–94, 2014.

5 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In FOCS
2007, pages 283–293, 2007.

6 Vladimir Braverman and Rafail Ostrovsky. Effective computations on sliding windows. SIAM
J. Comput., 39(6):2113–2131, 2010.

https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1007/3-540-45726-7_1

T. Starikovskaya, M. Svagerka, and P. Uznański 35:17

7 Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. Zero-one laws for sliding windows
and universal sketches. In APPROX-RANDOM 2015, pages 573–590, 2015.

8 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

9 A. Robert Calderbank, Anna C. Gilbert, Kirill Levchenko, S. Muthukrishnan, and Martin
Strauss. Improved range-summable random variable construction algorithms. In SODA 2005,
pages 840–849, 2005.

10 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication complexity
of gap-Hamming-distance. In STOC 2011, pages 51–60, 2011. doi:10.1145/1993636.1993644.

11 J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random
variables. J. of the American Statistical Association, 71(354):340–344, 1976.

12 Timothy M. Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Ap-
proximating text-to-pattern Hamming distances. In STOC 2020, pages 643–656, 2020.
doi:10.1145/3357713.3384266.

13 Peter Clifford, Raphaël Clifford, and Costas S. Iliopoulos. Faster algorithms for delta, gamma-
matching and related problems. In CPM 2005, pages 68–78, 2005. doi:10.1007/11496656_7.

14 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding theory to
efficient pattern matching. In SODA 2009, pages 778–784, 2009.

15 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
The k-mismatch problem revisited. In SODA 2016, pages 2039–2052, 2016. doi:10.1137/1.
9781611974331.ch142.

16 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem. In
SODA 2019, pages 1106–1125, 2019. doi:10.1137/1.9781611975482.68.

17 Raphaël Clifford and Tatiana Starikovskaya. Approximate Hamming distance in a stream. In
ICALP 2016, pages 20:1–20:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.20.

18 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. doi:10.1137/
S0097539701398363.

19 Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended
abstract). In ESA 2003, pages 605–617, 2003. doi:10.1007/978-3-540-39658-1_55.

20 Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An approx-
imate L1-difference algorithm for massive data streams. SIAM J. Comput., 32(1):131–151,
2002. doi:10.1137/S0097539799361701.

21 Michael J. Fischer and Michael S. Paterson. String-matching and other products. Technical
report, Massachusetts Institute of Technology, 1974.

22 Sumit Ganguly. Counting distinct items over update streams. Theor. Comput. Sci., 378(3):211–
222, 2007. doi:10.1016/j.tcs.2007.02.031.

23 Paweł Gawrychowski and Przemysław Uznański. Towards unified approximate pattern
matching for Hamming and L1 distance. In ICALP 2018, pages 62:1–62:13, 2018. doi:
10.4230/LIPIcs.ICALP.2018.62.

24 Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of
data streams. In SPAA 2001, pages 281–291, 2001. doi:10.1145/378580.378687.

25 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards optimal approximate streaming pattern
matching by matching multiple patterns in multiple streams. In ICALP 2018, pages 65:1–65:16,
2018.

26 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006. doi:10.1145/1147954.1147955.

27 Thathachar S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):26,
2013.

28 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In PODS 2010, pages 41–52, 2010. doi:10.1145/1807085.1807094.

APPROX/RANDOM 2020

https://doi.org/10.1145/1993636.1993644
https://doi.org/10.1145/3357713.3384266
https://doi.org/10.1007/11496656_7
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.4230/LIPIcs.ICALP.2016.20
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1137/S0097539701398363
https://doi.org/10.1007/978-3-540-39658-1_55
https://doi.org/10.1137/S0097539799361701
https://doi.org/10.1016/j.tcs.2007.02.031
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.1145/378580.378687
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/1807085.1807094

35:18 Lp Pattern Matching in a Stream

29 Howard J. Karloff. Fast algorithms for approximately counting mismatches. Inf. Process. Lett.,
48(2):53–60, 1993. doi:10.1016/0020-0190(93)90177-B.

30 Lev Klebanov and Andrei Yakovlev. How high is the level of technical noise in microarray
data? Biol Direct., 2:9, April 2007. doi:10.1186/1745-6150-2-9.

31 Tsvi Kopelowitz and Ely Porat. Breaking the variance: Approximating the Hamming distance
in 1/ε time per alignment. In FOCS 2015, pages 601–613, 2015. doi:10.1109/FOCS.2015.43.

32 Tsvi Kopelowitz and Ely Porat. A simple algorithm for approximating the text-to-pattern
Hamming distance. In SOSA@SODA 2018, pages 10:1–10:5, 2018. doi:10.4230/OASIcs.SOSA.
2018.10.

33 S. R. Kosaraju. Efficient string matching. Manuscript, 1987.
34 Karim Labib, Przemysław Uznański, and Daniel Wolleb-Graf. Hamming distance completeness.

In CPM 2019, pages 14:1–14:17, 2018. doi:10.4230/LIPIcs.CPM.2019.14.
35 Ohad Lipsky and Ely Porat. L1 pattern matching lower bound. Inf. Process. Lett., 105(4):141–

143, 2008. doi:10.1016/j.ipl.2007.08.011.
36 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,

12:4:449–461, 1992. doi:10.1007/BF01305237.
37 A. Pavan and Srikanta Tirthapura. Range-efficient counting of distinct elements in a massive

data stream. SIAM J. Comput., 37(2):359–379, 2007. doi:10.1137/050643672.
38 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming model.

In FOCS 2009, pages 315–323, 2009. doi:10.1109/FOCS.2009.11.
39 Jan Studený and Przemysław Uznański. Approximating approximate pattern matching. In

CPM 2019, volume 128, pages 15:1–15:13, 2019. doi:10.4230/LIPIcs.CPM.2019.15.
40 Vladimir M. Zolotarev. One-dimensional stable distributions, volume 65 of Translations of

Mathematical Monographs. American Mathematical Soc., 1986. Translated from Russian by
H.H. McFaden, Translation edited by B. Silver.

6 Omitted proofs

I Lemma 4. Let 2 ≤ 1/ε < n and 0 ≤ p ≤ 2. Any (1 ± ε)-approximation algorithm that
computes the Lp distance between a pattern and a streaming text for each alignment, must
use Ω(min(1/ε2, n)) bits of space.

Proof. Let us first show the lower bound for p = 0, i.e., for Hamming distance. We show
the lower bound by reduction to a two-party communication complexity problem called
GAP-Hamming-distance. In this problem, the two parties, Alice and Bob are given two
binary words of length n and a parameter g = εn, 1 ≤ g ≤ n/2. Alice sends Bob a message,
and Bob’s task is to output 1 if the Hamming distance between his and Alice’s word is larger
than n/2 + g, and zero if it is at most n/2− g. Otherwise, he can output “don’t know”. By
Proposition 4.4 [10], the communication complexity of this problem is Ω(min{1/ε2, n}).

We can now show a space lower bound for any (1±ε)-approximate algorithm for computing
the Hamming distance between the pattern and the text by a standard reduction. Suppose
that 2 ≤ 1/ε ≤ n there is an algorithm that uses o(min{1/ε2, n}) bits of space. Let P be
Alice’s word, T Bob’s word. After reading P , the algorithm stores all the information about it
in o(min{1/ε2, n}) bits of space. We construct the communication protocol as follows: Alice
sends the information about P to Bob. Using it, Bob can continue running the algorithm
and compute the approximation of the Hamming distance between P and T . We have thus
developed a communication protocol with complexity o(min{1/ε2, n}), a contradiction.

We can now show the lower bound for 0 < p ≤ 2. We immediately obtain a space lower
bound for any (1± ε)-approximate algorithm for computing the p’th moment between the
pattern and the text at every alignment. Indeed, on binary words the p’th moment is equal
to the Hamming distance for all 0 < p ≤ 2. The lower bound for the Lp distance follows by
Observation 5. J

https://doi.org/10.1016/0020-0190(93)90177-B
https://doi.org/10.1186/1745-6150-2-9
https://doi.org/10.1109/FOCS.2015.43
https://doi.org/10.4230/OASIcs.SOSA.2018.10
https://doi.org/10.4230/OASIcs.SOSA.2018.10
https://doi.org/10.4230/LIPIcs.CPM.2019.14
https://doi.org/10.1016/j.ipl.2007.08.011
https://doi.org/10.1007/BF01305237
https://doi.org/10.1137/050643672
https://doi.org/10.1109/FOCS.2009.11
https://doi.org/10.4230/LIPIcs.CPM.2019.15

T. Starikovskaya, M. Svagerka, and P. Uznański 35:19

I Lemma 8. For Zf as in Algorihtm 7 there is Zf
ε= ‖U −V ‖H with probability at least 3/4.

Proof. Denotem = ‖U−V ‖H . Consider a fixed value r. Let I1, I2, . . . , In be binary variables
indicating existence of a mismatch between hSubr(U) and V at positions 1, . . . , n, so that
Xr =

∑
j Ij . We observe that E [Xr] = m/2r and therefore E [Zr] = m, because each of

the m positions with mismatch between U and V generates a mismatch between hSubr(U)
and V with probability 1/2r.

Furthermore, as the function h in Definition 6 is drawn from a pairwise independent
family, there is Var [Xr] =

∑
j Var [Ij] ≤

∑
j E
[
(Ij)2] =

∑
j E [Ij] = E [Xr] = m/2r. Let

c = min{i : E [Xi] ≤ k} = dlog2
(
m
k

)
e. By Chebyshev’s inequality, we have

Pr[|Zr−m| ≥ 4
√
m2(c+ 1)] = Pr[|Xr−m/2r| ≥ 22+(c+1−r)/2

√
m/2r] ≤ 1/24+(c+1−r) (2)

We estimate Pr[f > c + 1] = Pr[Xc+1 > k]. Assume w.l.o.g. that k ≥ 32. Observe that
m/2c ≤ k, which implies, for k ≥ 32, m/2c+1 + 4

√
m/2c+1 ≤ k/2 + 4

√
k/2 ≤ k. By

Equation 2, there is

Pr[Xc+1 > k] ≤ Pr[Xc+1 ≥ m/2c+1 + 4
√
m/2c+1] ≤ 1/16.

It follows that Pr[f > c+ 1] = Pr[Xc+1 > k] ≤ 1/16. Hence, we obtain

Pr[|Zf −m| ≥ 4
√

2/k ·m] ≤ Pr[|Zf −m| ≥ 4
√
m2c+1] ≤

≤ Pr[f > c+ 1] +
c+1∑
r=0

Pr[|Zf −m| ≥ 4
√
m2c+1 and f = r] ≤

≤ Pr[f > c+ 1] +
c+1∑
r=0

Pr[|Zr −m| ≥ 4
√
m2c+1] ≤

≤ 1/16 +
c+1∑
r=1

1/24+(c+1−r) < 1/4.

It follows that we can choose k = Θ(1/ε2) large enough so that Zf
ε= ‖U − V ‖H with

probability ≥ 3/4. J

I Lemma 14. For Zf as in Algorihtm 13 there is Zf
ε= ‖U − V ‖1 with probability ≥ 3/4.

Proof. Take some position i and denote for short a = mSubr(U)[i] and b = mSubr(V)[i] and
c = U [i]−V [i]

2r . There is |a− b| ∈
{⌊
|c|
⌋
,
⌈
|c|
⌉}

and E [|a− b|] = |c|. Since |a− b|−
⌊
|c|
⌋
is a 0/1

variable, there is Var [|a− b|] = Var
[(
|a− b| −

⌊
|c|
⌋)]
≤ E

[(
|a− b| −

⌊
|c|
⌋)]
≤ E [|a− b|].

Summing for all values of i, we reach that

Var [Xr] = Var [‖mSubr(U)−mSubr(V)‖1] ≤ E [‖mSubr(U)−mSubr(V)‖1] = E [Xr] .

Since we have reached an identical variance bound, the proof follows step-by-step the proof
of Lemma 8. J

I Theorem 18. Given 0 < p < 1 and ε > 0 there is a word morphism ϕ : c ∈ Σ →
cd0
0 c

d2
2 . . . c

dt−1
t−1 such that:

1) t = Õ(ε−2) when 0 < p < 1/2, t = Õ(ε−3) when p = 1/2 and t = Õ(σ
2p−1
1−p /ε2+3· 2p−1

1−p)
when 1/2 < p < 1.

2) values of t and d0, . . . , dt−1 do not depend on c,

APPROX/RANDOM 2020

35:20 Lp Pattern Matching in a Stream

3) there exists a constant α = α(p, ε) such that for any two words U, V of length at most n,
we have ‖U − V ‖pp

ε= α · ‖ϕ(U)− ϕ(V)‖H with probability at least 9/10,
4) it is enough for the randomness to be realized by a hash function r : [t] → [D] from a

4-independent hash function family for some D = poly(nσε−1), which can be generated
from a Õ(log σ) bits size seed.

Proof. We will consider three cases: 0 < p < 1/2, p = 1/2, and 1/2 < p < 1.

Case 0 < p < 1/2. Our plan is to build upon the scheme highlighted earlier in this section.
Specifically, we preserve the values of ci.

Consider a pair of characters c, c′. First, note that E [x] is an increasing function of |c−c′|.
From this and Equation 1 we obtain that E [x] ε= |c − c′|p

(
(1+ε)p

(1+ε)p−1 + 1
(1+ε)1−p−1

)
ε−1 for

all values of |c− c′|.
Second, fix q = d 1

1−p log1+ε(σε−3)e and observe that truncating the sum after the (q− 1)-
th term introduces an additional factor 1±Θ(ε) to the approximation, since for c 6= c′ we
have∑

i≥q

di ·
|c− c′|
(1 + ε)i = ε−1|c− c′| ((1 + ε)q)p−1

1− (1 + ε)p−1 ≤
ε−1σ

(1− (1 + ε)p−1)σε−3 = Θ(ε).

We also round di down to the nearest integer, which introduces an additional 1 ± Θ(ε)
relative error, since ∀idi ≥ ε−1. Finally, we set ϕ(c) = cd0

0 . . . c
dq−1
q−1 . We then have

E [‖ϕ(c)− ϕ(c′)‖H] = Θ(ε−2|c− c′|p 1
p(1−p)).

To guarantee that the equality holds with probability at least 9/10 and not just in
expectation, we repeat the scheme several times, with independent random seeds. That is,
consider morphisms ϕ1(c), ϕ2(c), . . . , ϕs(c) and define a morphism ϕ(c) = ϕ1(c)ϕ2(c) . . . ϕs(c)
with property:

E [‖ϕ(c)− ϕ(c′)‖H] = s · E [‖ϕi(c)− ϕi(c′)‖H] = s ·Θ(ε−2|c− c′|p 1
p(1− p)).

Assume w.l.o.g. that (1 + ε)`−1 < |c− c′| ≤ (1 + ε)`. We proceed to bound

Var [‖ϕ(c)− ϕ(c′)‖H] ≤ s ·
q∑

i=`+1
(di)2 · Pr[ci 6= c′i] ≤

≤ s ·
q∑

i=`+1
ε−2((1 + ε)2p)i |c− c

′|
(1 + ε)i ≤

≤ s · ε−2|c− c′|
∞∑

i=`+1
((1 + ε)2p−1)i ≤

≤ s · ε−2|c− c′|2p (1 + ε)2p−1

1− (1 + ε)2p−1 ≤

= s · O(|c− c′|2pε−3 1
1− 2p).

We set s = Θ(|c−c
′|2pε−3(p(p−1))2

ε2(|c−c′|pε−2)2(1−2p)) = O(ε−1 1
1−2p) for the claim to hold via Chebyshev’s

inequality. The error probability coming from Chebyshev’s inequality can be made arbitrarily
small constant by fixing the constant factor in s to be large enough. We finally set t = sq.

T. Starikovskaya, M. Svagerka, and P. Uznański 35:21

Case p = 1/2. Note that for p, p′ such that |p− p′| ≤ logσ(1 + ε) we have |x|p ε= |x|p′ for
all −σ ≤ x ≤ σ. We can therefore reduce this case to p = 1/2− logσ(1 + ε). However, we
have to take into account that the asymptotic growth of t hides 1/(1− 2p) dependency on p
for 0 < p < 1/2, hence t = Õ(ε−3) for p = 1/2.

Case 1/2 < p < 1. The proof follows the steps of the case 0 < p < 1/2. We first bound
the variance:

Var [‖ϕ(c)− ϕ(c′)‖H] ≤ s ·
q∑

i=`+1
(di)2 · Pr[ci 6= c′i] =

= s · ε−2|c− c′|
q∑

i=`+1
((1 + ε)2p−1)i =

= s · O(ε−3|c− c′|((1 + ε)q)2p−1) =

= s · O(ε−3|c− c′|σ
2p−1
1−p /ε3· 2p−1

1−p).

We set s = Θ
(
ε−3|c−c′|σ

2p−1
1−p /ε

3· 2p−1
1−p

ε−2|c−c′|2p

)
= O(σ

2p−1
1−p /ε1+3· 2p−1

1−p), so that by Chebyshev’s

inequality, the probability of obtaining ‖U − V ‖pp
ε= α · ‖ϕ(U) − ϕ(V)‖H is an arbitrarily

small constant (by setting s to be large enough).

Randomness. The only source of randomness in the description are the values ri ∈ [0, 1]
picked u.a.r. and independently. We note that the values ri can be picked instead as a finite
precision floating-point numbers. Since all the values we are working with are bounded by
poly(nσε−1), it is enough to set precision accordingly. We also observe that our concentration
argument involves only Chebyshev’s inequality and thus only the variance and the expected
value, so it suffices to require that ri are 4-wise independent. J

I Lemma 21. For Zf as in Algorihtm 20 there is Zf
ε= ‖S −Q‖H with probability ≥ 3/4.

Proof. Consider a fixed subsampling level r. For simplicity, let Subr(S) = s
e′1
1 s

e′2
2 . . . s

e′m
m and

Subr(Q) = q
e′1
1 q

e′2
2 . . . q

e′m
m . Define a random variable xi to be the contribution of of se

′
i
i , q

e′i
i to

the Hamming distance Xr, i.e.

xi = ‖se
′
i
i − q

e′i
i ‖H = e′i · ‖si − qi‖H .

Since e′i ∈ {dei/2re, bei/2rc} and E [e′i] = ei/2r, we have E [xi] = ei · ‖si − qi‖H and

Var [xi] = Var [xi − bei/2rc] ≤ E [xi − bei/2rc] ≤ E [xi] .

Summing over all values of i, we reach E [Xr] = ‖S − Q‖H and Var [Xr] ≤ E [Xr]. These
bounds are identical to that of Lemma 8 and we can proceed in a similar fashion to obtain
the claim. J

I Lemma 28. Let 1 < p ≤ 2. For any two vectors X,Y of equal length,
∣∣∣‖X+Y ‖pp−‖X‖pp

∣∣∣ =
O(‖Y ‖pp + ‖Y ‖p · ‖X‖p−1

p).

Proof. Consider x, y ∈ R. If |x| ≥ |y|, then by Taylor expansion, |x+y|p = |x|p(1+y/|x|)p =
|x|p(1 +O(|y/x|)) = |x|p ±O(|y||x|p−1). If |x| < |y|, then |x+ y|p = O(|y|p). Thus for any
real values, we have

|x+ y|p = |x|p +O(|y|p + |y| · |x|p−1).

APPROX/RANDOM 2020

35:22 Lp Pattern Matching in a Stream

Denote X = [x1, x2, . . . , xn]T and Y = [y1, y2, . . . , yn]T . There is

‖X + Y ‖pp =
∑
i

|xi + yi|p =
∑
i

|xi|p ±O

(∑
i

|yi|p +
∑
i

|yi||xi|p−1

)
.

Pick q = p/(p− 1) so that 1/p+ 1/q = 1. By Hölder’s inequality:

∑
i

|yi||xi|p−1 ≤

(∑
i

|yi|p
)1/p(∑

i

|xi|(p−1)q

)1/q

= ‖Y ‖p‖X‖p−1
p . J

I Lemma 36. Given a text T , there is a streaming algorithm that for every position i outputs
the Hamming suffix sketch of a word T [b · k + 1, i], where k is the largest integer such that
i − b · k ≤ n. The algorithm takes O(dn/b + log dσn) space and O(d(1 + n/b2)) time per
character.

Proof. We fix the matrix R and the random coefficients α1, . . . , αdn/be from Definition 34.
We do not store R and αi explicitly, but generate them using two hash functions drawn at
random from a 4-wise independent family. For example, to generate R we can consider a
family of polynomials 2((ax3 + bx2 + cx + d mod p) mod 2) − 1, with parameters a, b, c, d
chosen u.a.r. from the prime field Fp for p ≥ db, and αi can be generated in a similar fashion.
This way, we need to store only O(log(dσb) + log(n/b)) = O(log dσn) random bits that define
the coefficients of two polynomials to generate R and αi.

We process the text T by blocks B1, B2, . . . of length b. For each block Bk we compute
its sketch using the matrix R. That is, at the beginning of each block we initialize its sketch
as a zero vector of length d. When a new character T [i] of a block Bk arrives, we compute
and add [M [1, i · bσ + T [i]],M [2, i · bσ + T [i]], . . . ,M [d, i · bσ + T [i]]]T to the sketch, which
takes O(d) time. We store the sketch of Bk until the block Bk+dn/be and use it to compute
the suffix sketches for the positions in this block.

Consider now a block Bk+dn/be. We first compute the suffix sketch for the position
b · (k + dn/be), which is the position preceding the block Bk+dn/be. The suffix sketch for it
is simply a linear combination of the sketches of the blocks Bk+dn/be−1, Bk+dn/be−2, . . . , Bk
with coefficients α1, . . . , αdn/be−1. Since each sketch is a vector of length d, we can compute
the linear combination in O(dn/b) time. To make this computation time-efficient, we start
it b positions before position b · (k + dn/be) arrives, and de-amortise the computation over
these b positions. This way, we use only O(dn/b2) time per character.

Now, using the suffix sketch for the position b · (k + dn/be), we can compute the suffix
sketches for all positions in the block Bk+dn/be one-by-one, using only O(d) time per character:
When a new character T [i] arrives, we add [αdn/beM [1, i · bσ + T [i]], αdn/beM [2, i · bσ +
T [i]], . . . , αdn/beM [d, i · bσ + T [i]]]T to the suffix sketch to update it.

Note that at any time we store O(n/b) sketches of the blocks, so the algorithm uses
O(dn/b+ log dσn) space in total. J

I Lemma 42. Given a text T , there is a streaming algorithm that for every position i outputs
the Manhattan suffix sketch of a word T [b · k + 1, i], where k is the smallest integer such that
i− b · k ≤ n. The algorithm takes O(d · (n/b) + log2 σ) space, and O(d(1 + n/b2) · log3(bdσ))
time per character.

Proof. The proof mirrors the proof of Lemma 36, and we describe the key elements. We
fix the random coefficients α1, . . . , αdn/be and the hash function h from Definition 40. As
previously, we do not store the coefficients αi explicitly, but generate them using a hash

T. Starikovskaya, M. Svagerka, and P. Uznański 35:23

function drawn at random from a 4-wise independent family. The matrix R is already defined
by h, with the following parameters: it requires O(log2(bdσ)) bits of seed, and range-sum
queries are answered in time O(log3(bdσ)).

In the sketching of blocks, we proceed in the same manner, except that when a new
character T [i] of a block Bk arrives, we compute and add

∑
0≤j<T [i][M [1, i·bσ+j], . . . ,M [d, i·

bσ + j]]T = αi · [g(bσ, bσ + T [i]; ξ), g(2bσ, 2bσ + T [i]; ξ), . . . , g(d · bσ, d · bσ + T [i]; ξ)]T to the
sketch, which takes O(d · log3(bdσ)) time (log3(bdσ) times slower as the corresponding step
in Lemma 36).

Consider now a block Bk+dn/be. When a new character T [i] arrives, we update the suffix
sketch by adding αdn/be · [g(bσ, bσ+T [i]; ξ), g(2bσ, 2bσ+T [i]; ξ), . . . , g(d · bσ, d · bσ+T [i]; ξ)]T
to it.

All of the operations are O(log3(bdσ)) time slower than the corresponding steps in
Lemma 36, and the memory complexity is increased by the seed size O(log2(bdσ)) term
(log2 b and log2 d terms get absorbed). J

APPROX/RANDOM 2020

	Introduction
	Our results
	Techniques

	Prefix encodings
	Hamming (L0) distance
	Manhattan (L1) distance
	Generic (Lp) distance for 0 < p < 1
	Generic (Lp) distance for 1 < p <= 2

	Suffix sketches
	Hamming distance
	Manhattan (L1) distance
	Generic (Lp) distance for 0 < p <= 2

	Proof of Theorem 3
	Conclusion
	Omitted proofs

